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Abstract

In this thesis, we study two iterative schemes for solving coupled flow and mechan-

ics in deformable porous media. We consider Biot’s model and its extension to

a Multiple Network Poroelastic Theory (MPET) model. Solutions of both mod-

els are approximated using the fixed-stress and the undrained splitting methods.

These splitting methods divide the equations into two sub-problems: one for the

mechanics and one for the flow. In the fixed-stress split, the equation modeling

flow is solved first followed by the mechanics equation. The undrained split solves

the sub-problems in the opposite order. For the MPET model, we prove that both

schemes are contractions which implies the convergence of the approximated so-

lutions. In other words, the splitting methods result in the same solutions as the

monolithic scheme. Additionally, the proofs provide estimated convergence rates.
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Chapter 1

Introduction

Coupled fluid flow(s) and mechanics appear in several scientific fields ranging from

geomechanics [3, 4] to biomechanics [5, 6, 7, 8]. Biot’s equations form a quasi-

static model which describes the deformation of an elastic skeleton and the fluid

flow inside it. The system is derived from a combination of mass conservation,

Darcy’s law and mechanical equilibrium for elastic deformation [5]. In Biot’s

equations the unknowns are pore pressure p, displacement u and flux w, and the

model reads as follows:

Find (p,u,w) such that

∇ · [2µε(u) + λ(∇ · u)I] + α∇p = f (1.1a)

∂t
( p
M

+ α∇ · u
)

+∇ ·w = ψ (1.1b)

K−1w +∇p = ρfg. (1.1c)

The remaining variables are given in Table 2.1. After discretizing in both space

and time, we need to choose a monolithic or an iterative splitting algorithm to

solve the coupled equations. As will be demonstrated later, the time discretiza-

tion is often done by applying Backward Euler’s method. A rewriting of the

system eliminates the flux, and in this thesis, we solve for both pressure and

displacement using the conformal finite element method. To solve the coupled

flow and mechanical problem we choose to use a splitting scheme as opposed to a

monolithic one. The former is also called a sequential method, while the latter is

known as a coupled method. A monolithic scheme is unconditionally stable but

is usually more computationally expensive than a splitting scheme. Additionally,

the splitting schemes are easier to implement because they allow us to work with

1



CHAPTER 1. INTRODUCTION 2

smaller sub-problems and already existing robust algorithms [9].

When solving Biot’s equations using a splitting method, we solve either the

flow or mechanics equation first. The other sub-problem is then solved using

the information from the previous step. This process is repeated until a set

tolerance is reached [9, 10]. There are several choices of iterative splitting schemes;

the fixed-stress split, the fixed-strain split, the drained split and the undrained

split being the most well-known ones [9, 10, 11, 12]. Multiple studies have been

carried out on the convergence analysis of the splitting schemes solving Biot’s

model. The splitting algorithms presented in this thesis are the fixed-stress split

and the undrained split, mainly chosen due to stability issues arising from the

remaining two mentioned methods [9, 11]. What distinguishes the two chosen

methods is the order in which the unknowns are solved for, the structure of the

stabilization term and to which equation a stabilization term is added to. As

the name dictates, the stabilization term is included to provide stability to the

method. That is, if chosen appropriately, the stability term ensures convergence of

the approximated solution. In this thesis, the convergence proof for the undrained

split is adapted from the method used for optimizing the fixed-stress splitting

for Biot’s equations (see [13]). The proof uses natural norms (L2) to show a

contraction of the unknowns, and it will be revisited for an extension of Biot’s

model.

The demand for a more complex model of porous medium with more than

one fluid system has resulted in the development of Multiple Network Poroelastic

Theory (MPET) models. MPET has several application fields, with some exam-

ples being models of naturally fractured reservoirs [14] and models of interacting

biological fluids and tissues [5, 6, 7, 15]. A quadruple MPET model has also been

used to model the brain. The solid matrix in the model represents the brain tis-

sue and the four interacting fluid networks are composed of cerebrospinal fluids,

arteries, veins, and capillary blood vessels [2, 5].

We now have a model where the unknowns are multiple pressures and fluxes,

pi and wi for i = 1, . . . , N , respectively. These properties model the flow for each

of the N fluid systems. The unknown displacement u models the deformation of

the solid matrix as in Biot’s model. To model the interactions between the fluid

systems, terms are added to the flow equation (1.1b) in Biot’s model. These terms

are the pressure differences (pi − pj) scaled by the network transfer coefficients
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βij. In the mechanics equation (1.1a), we now substitute the single pressure

gradient by the sum of all N (scaled) pressure gradients. In some cases, e.g.

brain modeling, gravity can be considered negligible [16]. This results in a system

which reads as follows:

Find (pi,u,wi) such that

−∇ · [2µε(u) + λ(∇ · u)I] +
∑
i

αi∇pi = f (1.2a)

∂t(αi∇ · u+ cpipi) +∇ ·wi +
∑
j 6=i

βij(pi − pj) = ψi (1.2b)

wi = −Ki∇pi. (1.2c)

1.1 Contributions

The contributions of this thesis are as follows

• An adaption of the convergence proof for the fixed-stress split to the undrained

split for Biot’s model.

• Convergence proofs for the fixed-stress and undrained spitting methods for

the MPET model. These are based on proving that the splitting methods

are contractions using L2-norm. For the former, the contraction is shown on

the unknowns themselves, while for the latter a contraction on composites

of the unknowns is shown.

• Numerical examples of solving Biot’s model and a dual MPET model in

FEniCS.

• An exposition motivating the natural extension of Biot’s model to the

MPET model as well as the physical interpretation of the two chosen split-

ting schemes.

1.2 Outline

In Chapter 2 we begin with briefly describing flow in porous media at a general

level. Then we introduce the framework of Biot’s equations, namely the concepts

of mass conservation, Darcy’s law and elastic deformation. A slightly different

approach to the same model is then presented in Section 2.2. It includes the fluid

variational content and the drained bulk modulus. This theory motivates the
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natural extension of Biot’s model to the MPET model, as well as the physical

interpretations of the splitting schemes that are introduced later. At the end of

the second chapter, we introduce some useful identities from functional analysis

and a brief description of the Finite Element Method (FEM).

The subsequent chapter describes the process of solving Biot’s equations. We

derive the variational formulation and discretize the system in both space (FEM)

and time (backward Euler). The fixed-stress split and the undrained split are

then described and used in a numerical example. A convergence proof for the

undrained splitting method (of Biot’s equations) is carried out at the end of this

chapter. We define errors and show that they converge to zero by exploiting the

Banach fixed point theorem.

In the fourth chapter we extend Biot’s model by exploring the Multiple Net-

work Poroelastic Theory (MPET). We revisit the splitting schemes from Section

3.4 in the previous chapter, and we present a numerical example of the dual

MPET model. Convergence analysis is performed on both splitting methods. We

adapt a proof of the fixed-stress splitting scheme and attempt to further adapt the

previous proof strategies to the undrained splitting scheme for the MPET model.

The latter falls short, and we change to yet another strategy. We, therefore, study

a composite of the errors to show convergence.



Chapter 2

Basic theory

2.1 Porous media - Biot’s model

2.1.1 Modeling a porous medium

When referring to porous media we consider a solid matrix or skeleton with

void spaces called pores. These pores can be filled with one or several fluids

in the form of gasses or liquids. The physical properties of a porous media are

not practical to discuss for an exact (given) point in space. Instead, we study

the properties in a volume surrounding the point. We call this a representative

elementary volume (REV). Some important terms when modeling porous media

are porosity, permeability and poroelasticity. The former, which we denote φ, is

a measure of how much of the REV is void space. It is defined as the ratio of

pore volume to the total volume of a REV, i.e.,

φ =
volume(pores in REV)

volume(REV)
. (2.1)

Another important property of a porous medium is its permeability, which is a

measure of how easily fluid flows through the solid matrix. Significant pore space

(large φ) does not necessarily imply high permeability because the latter depends

on how connected the pores are. Lastly, poroelasticity is a property that describes

the deformation of a porous material filled with pressurized fluid. As we soon

demonstrate, poroelasticity plays a central role in describing Biot’s model. We

will from this point on consider properties to be defined across the whole porous

media from the REV approach. That is, the models presented in this thesis are

based on the assumption of macroscopic scale material heterogeneity [17].

5
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2.1.2 Mass conservation

The well-known law of mass conservation is one of the fundamental building

blocks in Biot’s model [18, 19]. For an arbitrary volume, ω, the general form of a

mass conversation law can be formulated as follows: The mass inside ω is equal

to the sum of the mass flowing through the boundary ∂ω and the mass added to

the system by external sources/sinks r. That is,∫
ω

∂tmdx = −
∫
∂ω

F · n ds+

∫
ω

r dx for all ω,

where F and n denote the flux and the outward pointing normal vector, respec-

tively. The minus sign is explained by n pointing outwards. By applying Gauss’

theorem, the boundary integral can be rewritten as −
∫
∂ω
F ·n ds = −

∫
ω
∇·F dx.

Because the volume is arbitrary, we have that∫
ω

∂tmdx = −
∫
ω

∇ · F dx+

∫
ω

r dx,

which implies

0 = ∂tm+∇ · F − r.

We let wv denote the volumetric flux and ψ be an external mass source. For

conservation of mass we have the mass per unit volume m = φρf , the mass flux

F = ρwv and the external mass source r = ψ. This gives

∂t(ρfφ) +∇ · (ρfwv) = ψ. (2.2)

2.1.3 Darcy’s law

Another fundamental principle of Biot’s model is Darcy’s law, which is included

in any introduction to modeling porous media. Examples of formulations can

be found in [18, 19], with this section being closely based on [1, 20]. Darcy’s

law states that fluid in a porous medium flows from regions of higher hydraulic

head to those with lower hydraulic head. The hydraulic head, h, is related to

the pressure and fluid elevation of a point in the column, and it is measured in

units of length [L]. A manometer is an instrument that measures how much the

water rises in the narrow tube pictured in Figure 2.1. The figure is from [1].

When the water has reached equilibrium., i.e., when the water stops rising, the

pressure inside the manometer is equal to the atmospheric pressure at the water

surface. Let x denote the distance along the sand column. The gauge pressure,
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Figure 2.1: Darcy’s experiment. Figure from [1]

the pressure at a measuring point in the column, is the difference between the

absolute pressure along the column and the atmospheric pressure. We write

this as p = pabs − patm = ρg(h − z) while keeping in mind that this pressure is

dependent on x. By rewriting we obtain the following expression for the hydraulic

head: h = p
ρg

+ z. In other words, the hydraulic head is the sum of the scaled

pressure at the measuring point within the column and the elevation of the same

point.

We now move on with a description of Darcy’s experiment which lead to his

eponymous law. Darcy packed a column with sand while studying the relations

between the following five quantities (with units in square brackets, [units], ex-

plained in Table 2.1): The volumetric flow rate qDarcy [L3T−1], the hydraulic head

h [L], the cross-sectional area A [L2], the distance between the two measuring

points (the length of the column) [L] and the pressure head ψ = p/(ρg) [L]. The

subscripts denote the properties at the two different measuring points. Through

empirical experiments, Darcy found the volumetric flow rate through the column

to be proportional to the cross-sectional area and the height difference. He also

observed that it was inverse proportional to the length of the column, that is,

qDarcy ∼
A(h2 − h1)

l
.

We introduce the proportionality coefficient κ which denotes the hydraulic con-
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ductivity. From Darcy’s law, the fluid flows from a higher to a lower hydraulic

head. By using the convention of positive direction being upwards, we have a

negative flux in this example. This gives us the following expression for the

volumetric flux

qDarcy = κ
A(h2 − h1)

l
with dimensions of [L3T−1]. (2.3)

The hydraulic conductivity κ can be expressed as

κ =
kρg

µ
,

where µ is the viscosity of the fluid, ρ is the fluid density, k is the intrinsic

permeability and g is the gravitational acceleration. This states that hydraulic

conductivity is dependent on the properties of both the fluid and the skeleton of

the porous medium. When dividing the volumetric flux in equation (2.3) by the

cross-sectional area, we obtain the quantity wv :=
qDarcy

A
with units [LT−1]. We

call wv the volumetric flux because the quantity is measured per unit time and

per unit area. Despite identical dimensions for volumetric flow and velocity, the

properties are not the same. The volumetric flux wv, is a measure of the fluid

volume per total area per time, while flow velocity is the fluid volume per area of

fluid. That is, the former area is the area occupied by both fluid and solid, while

the latter area is only occupied by fluid [1].

Darcy’s law can also be extended to differential form. We start by assuming

that the difference in hydraulic heads δh = h2 − h1 is very small and that the

column in Figure 2.1 is aligned parallel to the vertical axis (z). If we additionally

assume the hydraulic head is a well-behaved function, we can rewrite Darcy’s

equation (in one dimension) on the differential form

wv = −κdh
dz
.

The goal of this section is to state Darcy’s law for the volumetric flow as a vector

quantity. We proceed by expressing the volumetric flow with Einstein notation as

wv = uiei, i = 1, . . . , d. Here d ∈ {2, 3} is the spatial dimension and ei represents

the i-th standard unit vector. The analog for the spatial derivative in dimensions

d ≥ 2 is the gradient in Cartesian coordinates expressed as ∇h = ∂h
∂xi
ei with

Einstein notation. We arrive at wv = −κ∇h. If the hydraulic conductivity is

anisotropic, we express it as a second order tensor κ. That is, Darcy’s law for an

anisotropic porous medium becomes

wv = −κ∇h.
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Sometimes it might be useful to define the gravitational vector as g := −g∇z.
Note that when the hydraulic conductivity is anisotropic, the intrinsic permeabil-

ity must also be anisotropic. We denote the latter k. This allows us to express

the volumetric flux as

wv = − k
µf

(∇p+ ρfg∇z) = − k
µf

(∇p− ρfg). (2.4)

To describe the flow in a deformable porous medium we will focus on Biot’s

model. This model consists of one equation describing the mechanical behavior

of the system and two equations for describing the fluid flow. For the mechanics

equation we start off by expressing the poroelasticity through the poroelastic

Cauchy stress tensor:

σpor(u, p) = σ(u)− αpI. (2.5)

Recall that poroelasticity is a property that describes the deformation of a porous

material filled with pressurized fluid. From equation (2.5) we see that the poroe-

lastic Cauchy stress tensor σpor depends on the pressure p and the displacement

u. Here σ denotes the linear stress tensor, α is the Biot coefficient and I is the

identity tensor. The linear stress tensor depends on the divergence of the dis-

placement u and the linear strain tensor ε. That is, we can express linear stress

as

σ(u) = 2µε(u) + λ(∇ · u)I, (2.6)

where µ and λ are Lamé parameters and ε(u) = 1
2

(
∇u + (∇u)T

)
is the lin-

ear strain tensor. We use the convention that strain is positive for extension

[2]. By letting f denote the body forces in the porous medium, the mechanical

deformation is given as

−∇ · σpor = f . (2.7)

We arrive at the mechanics equation (2.9a) in Biot’s model by combining equa-

tions (2.5)-(2.7), i.e.,

−∇ ·
[
2µε(u) + λ(∇ · u)I

]
+ α∇p = f .

To obtain the equations (2.9b)-(2.9c) describing the fluid flow we start with

the mass conservation from equation (2.2). Let w = ρfwv and Φf = ρfφ be the

mass flux and mass of the fluid, respectively. As before, φ denotes the porosity

defined in (2.1). The mass conservation can then be written as

∂tΦf +∇ ·w = ψ. (2.8)
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Fluid mass is a function of the displacement u and pressure p, hence

Φf (u, p) =
p

M
+ α∇ · u,

where α is the Biot coefficient and M is the Biot modulus. For physical explana-

tion of the latter, see Section 2.2. By inserting the last equation in the rewritten

mass conservation equation (2.8), we arrive at

∂t

(
p

M
+ α∇ · u

)
+∇ · u = ψ.

The second flow equation (2.9c) arises from Darcy’s law. As in the previous

derivation we use that w = ρfwv or, equivalently, wv = 1
ρf
w. This is combined

with Darcy’s law (2.4) and rewritten to obtain

w = −kρf
µf

(∇p− ρfg).

By defining K =
kρf
µf

and rearranging we arrive at

K−1w +∇p = ρfg.

That is, K is the permeability tensor scaled by the fluid viscosity.

2.1.4 The complete set of Biot’s equations

We have now shown that combining the concepts of mass conservation, Darcy’s

law and elastic deformation lead to Biot’s model. The unknowns are the pore

pressure p, displacement u and flux w, and the complete set of Biot’s equations

is as follows:

−∇ · [2µε(u) + λ(∇ · u)I] + α∇p = f (2.9a)

∂t

(
p

M
+ α∇ · u

)
+∇ ·w = ψ (2.9b)

K−1w +∇p = ρfg. (2.9c)

A description of the symbols used can be found in Table 2.1. In addition,

we need both boundary conditions and initial conditions to solve the system.

These we will come back to in Chapter 3. We also assume some restrictions on

the parameters. The fluid density and the gravitational acceleration vector are

both considered constant. We also assume that the Biot modulus M , the Biot

coefficient α, and the Lamé parameters µ and λ to be positive and bounded.
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Lastly, the tensor K is assumed symmetric and constant with respect to time

as well as being bounded. As in [13], we end this section by summarizing the

assumptions:

• ρf ∈ R, g ∈ Rd are constants,

• M, α, µ, λ are positive bounded parameters

• K ∈ [L∞(Ω)]d×d is symmetric, constant with respect to time and satisfies

0 < kmz
Tz ≤ zTK(x)z ≤ kMz

Tz <∞, ∀ x ∈ Ω and ∀ z ∈ Rd\{0}.

2.2 Another approach to Biot’s model

This section is based on theory from [2, 17, 21, 22] and it will be useful in the

extension of Biot’s model to the Multiple Network Poroelastic theory (MPET)

model. Additionally, some of the physical variables presented in this section will

be revisited in the splitting schemes and in the convergence analysis in Section

4.3.

A slightly different approach to Biot’s model involves the variation of fluid

content, ξ, to describe the mechanics of a poroelastic material. ξ is the variation

of fluid volume per unit volume of porous material [17], and by convention, it is

positive for fluid entering the porous solid. As before, ε denotes the strain tensor

which is also, by convention, is positive for extension. Let qi be the flux through

a unit area (of the porous solid) with the normal point in the xi direction. It

describes the fluid motion relative to the solid motion. The strain tensor follows

the same relation to the displacement u as before, i.e.,

ε(u) = εijei ⊗ ej where εij =
1

2
(ui,j + uj,i). (2.10)

Here the index before the comma denotes the spatial direction (xi) and the index

after is the derivative (∂xi). In this section, repeated indices are summed over

unless otherwise is stated. Einstein notation will be used. The fluid mass balance

relation is
∂ξ

∂t
= −qi,i. (2.11)

As in the previous description (see Table 2.1), p denotes the pore pressure and

σ is the stress tensor. Note that we now have two pairs of conjugate quanti-

ties: stress/strain and pressure/fluid content. The work increment dW can be
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Table 2.1: Symbols in Biot’s model (2.9a)-(2.9c) and used to describe the poroe-

lastic theory. The units L, F, T, M denote length, force, time and mass, respec-

tively. In the second part of the table, Einstein notation is used. The subscript

after comma denotes spatial derivative.

Symbol Description Units

µ Lamé parameter —

ε(u) = 1
2
(∇u+∇uT ) Linear strain tensor —

λ Lamé parameter —

u Displacement L

I Identity tensor —

α Biot coefficient —

p Pressure FL−2

f Body forces F

M Biot modulus FL−2

wv = k
µf

(∇p+ ρfg∇z) Volumetric flux (Darcy’s law) L3T−1

w = ρfwv Mass flux ML−2T−1

ψ Source term —

k Intrinsic permeability tensor L2

K =
kρf
µf

= k
vf

Permeability tensor scaled by

the kinematic viscosity vf
T

ρf Fluid density ML−3

g Gravitational acceleration vector LT−2

ε =
ui,j+uj,i

2
ei ⊗ ej Strain tensor —

ε = εkk Volumetric strain —

σ = σijei ⊗ ej Stress tensor FL−2

σ = σkk
3

Mean stress FL−2

ξ Variation of fluid content —

G Drained shear modulus FL−2

Kdr Drained bulk modulus FL−2

B Skempton’s pore pressure coefficient —

δij Kronecker delta function —

cp = 1
M

Storage coefficient F−1L2

βij Network transfer coefficient ML−1T−1
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Table 2.2: Sub and superscripts

Symbol (Sub/super) Description

n (super) Time level

k (super) Iteration level

h (sub) Spatial discretization

i, j (sub) Fluid system number

ex (sub) Exact solution

expressed as

dW = σij dεij + p dξ. (2.12)

In Biot’s formulation of the constitutive equations for a fluid-filled porous ma-

terial, linearity is assumed between the stress and strain. Reversibility in the

deformation is also assumed, i.e., there is no energy dissipation during a closed

cycle. The elastic expressions can be extended by using the linear assumption on

(σij, p) and (εij, ξ). Let Kdr and G denote the drained bulk modulus and shear

modulus, respectively. For an isotropic material response, we have

εij =
σij
2G
−
( 1

6G
− 1

9K

)
δijσkk +

1

3H ′
δijp (2.13)

ξ =
σkk
3H ′′

+
p

R′
. (2.14)

The remaining constants H ′, H ′′ and R′ describe the relationship between the

stress and strain in the solid and fluid. From the reversibility assumption, the

work increment satisfies

dW = σijdεij + pdξ = εijdσij + ξdp.

This shows that we are dealing with an exact differential and consequently we

have
∂εij
∂p

=
∂ξ

∂σij
.

This relation combined with equations (2.13) and (2.14) shows that H ′ = H ′′.

We may use this to rewrite the constitutive law to involve only four constitutive

constants: G, Kdr, H
′ and R′. In addition, we introduce the notation eij and sij

for deviatoric stress and strain, respectively. Lastly, σ = −σkk/3 is mean stress

and ε is the volumetric strain. The constitutive equations (2.13)-(2.14) can then

be separated into deviatoric and volumetric parts as follows:

eij =
1

2G
sij (deviatoric) (2.15)
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ε = −
( σ

Kdr

− p

H ′

)
(volumetric) (2.16a)

ξ = −
( σ
H ′
− p

R′

)
(volumetric). (2.16b)

Additionally, the deviatoric stress and strain (sij and eij), pore and mean pres-

sure (p and σ), and volumetric strain ε are related through the following equations

sij = σij + σδij (2.17)

eij = εij −
ε

3
δij (2.18)

σ = −σkk
3

(2.19)

ε = εkk. (2.20)

Two concepts concerning fluid-filled porous media are the drained and undrained

deformations. The drained condition is constant pore pressure, while the undrained

condition is constant variation of fluid content. That is, dp = 0 and dξ = 0 for

drained and undrained deformation, respectively. The drained bulk modulus can

be expressed as

Kdr = V
dσ

dV

∣∣∣
dp=0

.

In other words, the drained bulk modulus is related to the changes in external

mean stress and volume strain. For simplicity, only the case with zero pore

pressure (p = 0) is considered for the drained behavior. This assumption in

equations (2.16a)-(2.16b) gives

ε = − σ

Kdr

and (2.21)

ξ = αε with α =
Kdr

H ′
. (2.22)

The constant α is the ratio of fluid volume gained or lost (due to loading) of

an element to the volume change of the element itself. Because the change of

fluid volume cannot be greater than the total volume change, |α| ≤ 1. We also

have that the volumes must have the same sign and consequently α ∈ [0, 1]. As

stated earlier, the undrained condition is constant variation of fluid content. The

undrained bulk modulus is

Ku = V
dσ

dV

∣∣∣
ξ=0

.

When ξ = 0, we see from (2.16b) that the pore pressure is proportional to σ.

That is,

p = Bσ with B =
R′

H ′
.
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B is called the Skempton pore pressure coefficient. Furthermore, we have that

the volumetric strain ε is proportional to the total pressure, i.e.,

ε =
σ

Ku

(2.23)

with Ku = Kdr

(
1 +

KdrR
′

H ′2 −KdrR′

)
. (2.24)

Here Ku is the undrained bulk modulus. Undrained material is stiffer in volumet-

ric response compared to drained material, i.e., more force is needed to compress

undrained material. This is because both the fluid and the solid matrix are re-

acting to the exerted forces. Before we move on to an example, we emphasize

that

0 ≤ Kdr ≤ Ku <∞.

Consider a poroelastic material that is exposed to a sudden constant loading.

The resulting long-term and short-term behavior of such an event can be described

in terms of drained and undrained responses. An instant after the load has been

applied, the pore fluid will not have moved very far. At some (local) pore-scale we

say that the fluid has not moved between neighboring material elements. That is,

the variation of fluid content ξ is zero. This is the undrained response. As time

passes, the pore pressure will reach equilibrium. That is, the pore pressure will

match the pressure at the boundary. If we assume this is zero, we are situated

with the drained response. The volumetric deformation is characterized by (2.23)

when studying the short-term and evolves to (2.21) as time passes.

Introducing the drained and undrained bulk moduli allow us to rewrite the

volumetric response in equations (2.16a)-(2.16b) to involve Kdr, Ku and α as

the constitutive constants (instead of Kdr, H
′ and R′). We obtain the following

rewritten system which describes the volumetric response in an isotropic elastic

material: 

ε = −
(

σ
Kdr
− p

H′

)
ξ = −

(
σ
H′ − p

R′

)
α = Kdr

H′

B = R′

H′

Ku = Kdr

(
1 + KdrR

′

H′2−KdrR′

)
=⇒


ε = − 1

Kdr
(σ − αp)

ξ = − α
Kdr

(
σ − p

B

)
,

B = Ku−Kdr

αKu
.
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Furthermore, the volumetric relations can be (inversely) be expressed as

σ = αMξ −Kuε

p = M(ξ − αε)

where M =
Ku −Kdr

α2
=

H ′2R′

H ′2 −KR′
.

As in the previous section, M is the Biot modulus and satisfies

1

M
=
∂ξ

∂p

∣∣∣
ε const.

. (2.25)

That is, M is the inverse of the change in variation of fluid content due to change

in pore pressure under constant volumetric strain. The inverse of the Biot mod-

ulus M is often referred to as the storage coefficient cp.

Recall the equations

ε = − 1

Kdr

(σ − αp) (2.26)

ξ = − α

Kdr

(
σ − p

B

)
, (2.27)

where B =
Ku −Kdr

αKu

. (2.28)

As previously described, Biot’s equations connect the physical quantities volu-

metric strain ε and the increment of fluid content ξ with the average normal

stress σ and pore pressure p. Let Kdr, B and α denote the drained bulk modulus,

Skempton’s pore pressure coefficient and the Biot coefficient, respectively. These

parameters are all independent material properties and are given in the second

part of Table 2.1. Biot’s model can then be expressed as[
ε

ξ

]
= − 1

Kdr

[
1 α

α α/B

][
σ

p

]
. (2.29)

We will revisit this notation in Section 4.1 when extending Biot’s model. The

mechanics equation (2.9a) does indeed describe the same poroelastic theory as

in this section. This can be verified by studying the relations between the Lamé

parameters µ and λ and the ”engineering constants” G, E, Kdr and ν which are

found in Chapter 2.3.1 of [21] and in [22]. Note that the literature on poroelastic

constitutive relations uses varying sign conventions. Let ν denote the Poisson

ratio and recall that G and Kdr are the drained shear modulus and (drained)

bulk modulus, respectively. The Poisson ratio is a property of the solid matrix
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only. We end this section by stating some relations from [21]:

λ = Kdr −
2G

3
=

Eν

(1 + ν)(1− 2ν)
(2.30)

µ = G =
E

2(1 + ν)
. (2.31)

Here E is Young’s modulus, and the versions including it and ν will be used later

in the numerical examples for solving Biot’s equations (see Section 3.4.1).

2.3 Preliminaries

In this thesis, we use basic definitions from functional analysis. When referring

to inner product vector spaces and norms these should be understood as the

standard definitions from e.g., [23, 24]. Let Ω denote a bounded domain in

Rd where d ∈ {2, 3} with the Lipschitz-continous boundary ∂Ω. The spaces

L2(Ω) and H1(Ω) are defined as the usual Sobolev spaces, and we assume that

integration by parts is well-defined. If we define space X := Xd, where d is the

spatial dimension, the bold font will be omitted. It should be clear from context

whether or not the norm is for such a vector space. Particularly, this simplified

notation is used for V = H1(Ω) meaning [H1(Ω)]d.

Before we list some useful estimates and identities, we state the trace theorem

needed to define the solution and test function spaces.

Theorem 1 (Trace theorem). Let Ω be a bounded Lipschitz domain and define

the function space

C∞(Rd)|Ω :=
{
v : Ω→ R | v can be extended to ṽ : Rd → R and ṽ ∈ C∞(Rd)

}
.

The function

T :
(
C∞(Rd)|Ω, ‖·‖H1

)
→
(
L2(∂Ω), ‖·‖L2

)
v 7→ v|∂Ω

restricts v to ∂Ω and is continuous. Because the space C∞(Rd)|Ω is dense in

H1(Ω), there exists a unique extension of T which is linear and continuous. That

is, the function

T :
(
H1(Ω), ‖·‖H1

)
→
(
L2(∂Ω), ‖·‖L2

)
is linear and continuous, and allows us to work with boundary conditions.
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Some useful estimates and identities

In this section, we present some identities and estimates which will be used in

the convergence analyses. From this point on, norms without subscripts are to

be understood as L2-norms as defined in e.g., [23], unless otherwise is stated.

• Young’s inequality For two real non-negative numbers a, b ≥ 0 we have

ab ≤ 1

2ε
a2 +

ε

2
b2, ∀ε > 0. (2.32)

Let (X, ‖·‖X) be a normed vector space with the norm induced by an inner

product, i.e., ‖·‖X = 〈·, ·〉1/2X . We omit the subscript X. For xi, x, y ∈ X the

following hold

• Triangle inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X

• Cauchy-Scwarz inequality

|〈x, y〉| ≤ ‖x‖ ‖y‖ for all x, y ∈ X (2.33)

• Binomial identity

〈x, y〉 =
1

2

(
‖x− y‖2 + ‖x‖2 − ‖y‖2 ). (2.34)

• Polarization identity

〈x, y〉 =
1

4
‖x+ y‖2 − 1

4
‖x− y‖2 (2.35)

• If the assumptions presented at the beginning of this section hold, then we

have the following ∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
2

≤ n

n∑
i=1

‖xi‖2 . (2.36)

Proof. The following calculations and rewritings show that the estimate
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(2.36) holds true:∥∥∥∥∥∑
i

xi

∥∥∥∥∥
2

=
∑
i

(
‖xi‖2 +

∑
j 6=i

〈xi, xj〉
)
≤
∑
i

(
‖xi‖2 +

∑
j 6=i

‖xi‖ ‖xj‖
)

≤
∑
i

(
‖xi‖2 +

∑
j 6=i

(1

2
‖xi‖2 +

1

2
‖xj‖2 ))

=
∑
i

(
‖xi‖2 +

n− 1

2
‖xi‖2 +

∑
j 6=i

1

2
‖xj‖2

)
=
∑
i

(
‖xi‖2 +

n− 1

2
‖xi‖2 − 1

2
‖xi‖2 +

1

2

∑
j

‖xj‖2

)
=
∑
i

(
‖xi‖2 +

n− 1

2
‖xi‖2 − 1

2
‖xi‖2

)
+
n

2

∑
j

‖xj‖2

=
∑
i

(
1 +

n− 1

2
− 1

2
+
n

2

)
‖xi‖2 = n

∑
i

‖xi‖2

The first inequality comes from applying the Cauchy-Schwarz inequality,

while the second line follows from Young’s inequality with constant ε = 1.

To obtain the fourth line, we add and subtract ‖xj‖2 from the third line.

• Let i, j = 1, . . . , n and 0 ≤ βij = βji. It then follows that∑
i

〈∑
j 6=i

βij(xi − xj), xi
〉
≥ 0 (2.37)

Proof. By using Einstein notation, we prove that the inequalities hold, i.e.,

assume β is a symmetric matrix with main diagonal elements equal to 0.

That is, assume δijβij = 0, where δij denotes the Kronecker-delta function.

We first show that

βij(xi − xj)xi = −βij(xi − xj)xj. (2.38)

By interchanging name of indices and using the symmetric property of βij,

we have

βij(xi − xj)(xi + xj) = −βij(xi − xj)(xi + xj).

This shows that the equation above is equal to 0, and consequently we have

the equality in (2.38). Now we shift out focus to the term we want to show

is positive. Rewriting this term results in

βij(xi − xj)xi = βij(xi − xj)(xi − xj + xj)

= βij(xi − xj)(xi − xj) + βij(xi − xj)xj.
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Rearranging and using (2.38) gives

βij(xi − xj)(xi − xj) = βij(xi − xj)xi − βij(xi − xj)xj
(2.38)
= 2βij(xi − xj)xi.

Note that βij(xi − xj)(xi − xj) is non-negative and so

0 ≤ 1

2
βij(xi − xj)(xi − xj) = βij(xi − xj)xi,

which is what we wanted to show.

• Assume K is symmetric and x,y ∈X Then, we have

〈Kx,y〉 = 〈K1/2x,K1/2y〉 (2.39)

Proof. This identity is shown by using the direct calculations as follows:

〈Kx,y〉 =

∫
Ω

(Kx)Ty dx =

∫
Ω

xTKTy dx
Symmetry

=

∫
Ω

xTKy dx

=

∫
Ω

xTK1/2K1/2y dx
Symmetry

=

∫
Ω

(K1/2x)T (K1/2y) dx

= 〈K1/2x,K1/2y〉.

• The inner product of a symmetric tensor and an anti-symmetric tensor is

0 [25]. Let A and B denote a symmetric and an anti-symmetric tensor,

respectively. Using Einstein notation we have the following

aijbij = ajibij = −ajibji = −aijbij. (2.40)

The first and second equality hold true from the assumptions of symmetry

and anti-symmetry, i.e. aij = aji and bij = −bji. The last equality comes

from swapping indices i and j. A quantity which is equal to the negative

of itself must be zero.

• Poincaré inequality

Let V = H1
0 (Ω) be the the subset of H1(Ω) of functions with zero trace.

Then there exists a constant CΩ > 0 such that

‖v‖L2(Ω) ≤ CΩ ‖∇v‖L2(Ω) for all v ∈ V (2.41)

• Korn’s inequality from [26]

There exists a constant C > 0 such that

‖v‖H1(Ω) ≤ C
[
‖v‖2

L2(Ω) + ‖ε(v)‖2
L2(Ω)

]1/2

for all v ∈ H1(Ω). (2.42)
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When combining Korn’s inequality as stated in (2.42) and the Poincaré

inequality (2.41), we arrive at the estimate from [15]:

‖v‖2
L2(Ω) ≤ C̃ ‖ε(v)‖2

L2(Ω) for all v ∈ V = H1
0 (Ω), (2.43)

where C̃ > 0 is a constant dependent on only the domain Ω and its Dirichlet

part of the boundary.

Proof. The following is just a proof of how (2.43) follows from Korn’s and

Poincaré inequalities, (2.42) and (2.41), respectively. Assume v ∈ V =

H1
0 (Ω). Starting with the definition of the H1(Ω)-norm, we have

‖∇v‖2
L2(Ω) ≤ ‖v‖

2
L2(Ω) + ‖∇v‖2

L2(Ω) = ‖v‖2
H1(Ω)

≤ C2
[
‖v‖2

L2(Ω) + ‖ε(v)‖2
L2(Ω)

]
≤ C ′ ‖∇v‖2

L2(Ω) + C2 ‖ε(v)‖2
L2(Ω) ,

where C ′ = C2CΩ is the combined constant from Korn’s inequality and the

Poincaré inequality. By assuming C ′ 6= 1, this implies

‖∇v‖2
L2(Ω) ≤ C? ‖ε(v)‖2

L2(Ω) for all v ∈ H1
0 (Ω) (2.44)

with C? = C2

1−C′ . We obtain (2.43) by applying the Poincaré inequality on

(2.44).

• Banach fixed point theorem

Before we state the Banach fixed point theorem, we need the definition of

a contraction. This theory is essential for the convergence proofs in Section

3.5, Section 4.3 and Section 4.4.

Definition 1. Let (V, ‖·‖V ) and (W, ‖·‖W ) be normed vector spaces. The

function f : V → W is a contraction if there exists a constant CLip ∈ (0, 1)

such that

‖f(u)− f(v)‖W ≤ CLip ‖u− v‖V for all u, v ∈ V.

Theorem 2 (Banach fixed point theorem). Let X be a Banach space and

f : X → X a contraction with Lipschitz constant CLip. Then f has a

unique fixed point x∗, i.e., x∗ = f(x∗). In addition, the fixed-point iteration

xk := f(xk−1) starting at any x0 ∈ X converges to x∗ and satisfies the

following estimates∥∥xk − x∗∥∥ ≤ CLip

1− CLip

∥∥xk − xk−1
∥∥ ≤ Ck

Lip

1− CLip

∥∥x1 − x0
∥∥ .
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Proof. The proof can be found in various literature such as [23].

2.4 The finite element method (FEM) for a

monolithic scheme

The finite element method (FEM) is a tool to solve partial differential equations.

It is based on subdividing the spatial domain Ω into a finite number of elements,

hence the name of the method. The solution is subsequently approximated on

each element. A weak formulation of the problem is derived from the strong

formulation (see Section 3.1) as well as defining the function spaces for the solu-

tions and test functions. This is followed by discretizing the spatial domain and

defining discrete function spaces Section 3.2. See [16, 23, 27] for more details.

Before we get started with the finite element method, we comment on a useful

rewriting of Biot’s equation. We can rewrite Darcy’s law (2.9c) with respect to

the flux asw = ρfKg−K∇p. By substituting the flux in equation (2.9b) we only

have to solve two equations with the two unknowns pressure and displacement.

Equation (2.9a) will be referred to as the mechanics equation and the rewritten

version combining (2.9b)-(2.9c) will be called the flow equation.

The finite element method begins with taking the strong formulation of a

problem and deriving a weak formulation. In our case, the strong formulation is

given in the system (2.9a)-(2.9c), and the details of constructing the variational

form are presented in Section 3.1. We seek to find the weak solutions u and p

in the solution spaces V and Q, respectively. When the hat notation is used, we

are dealing with test spaces. In this thesis, we only consider Dirichlet boundary

conditions. Without loss of generality, we may assume these to be homogeneous.

That is, u = 0 and p = 0 on ∂Ω. For Neumann boundary conditions, see e.g.,

[19, 28, 29]. In [18], a more general class of boundary conditions including both

the usual Dirichlet and Neumann conditions is used. The function spaces V and

Q are chosen based on which function spaces f and ψ in (2.9a)-(2.9b) belong to,

respectively. The solution spaces and test spaces need not be identical but in our

case they are. We define them as

V = V̂ = [H1
0 (Ω)]d = {v ∈ [H1(Ω)]d | Tu = 0 on ∂Ω} and

Q = Q̂ = H1
0 (Ω) = {q ∈ H1(Ω) | Tq = 0 on ∂Ω}.

Here d is the spatial dimension (d = 2, 3 in most cases) and T is the trace operator
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in the trace theorem. For now, we assume that the weak formulation of the fully

coupled problem can be written as follows:

Find (u, p) ∈ V ×Q such that

a
(
(u, p), (v, q)

)
= L

(
(v, q)

)
for all V̂ × Q̂,

where a is a bilinear form and L is a linear bounded functional. We omit the hat

notation from now on since the test and solution spaces are the same. When using

the FEM, we seek solutions in a finite dimensional subspace of V . Denote this

with subscript h. In other words we want to find a solution (uh, ph) ∈ V h ×Qh

which satisfies

a
(
(uh, ph), (vh, qh)

)
= L

(
(vh, qh)

)
for all V h ×Qh,

where V h and Qh are finite-dimensional subsets of V and Q, respectively.

Let Nh be the dimension of the space V h×Qh. We make an ansatz that the

solution can be expressed as

(uh, ph) =

Nh∑
j=1

yj(φj, ψj), where {(φj, ψj)}
Nh
j=1 is a basis for V h ×Qh.

By choosing the test functions (vh, qh) to be the basis functions (φi, ψi), we

produce a linear system Ay = b with the unknown y ∈ RNh . The entries of

matrix A and vector b are as follows

Aij = a((φj, ψj), (φi, ψi)) and

bi = L((φi, ψi)).

We end this section with a remark on the notation. In this section ψj with a

subscript denotes a basis function for the function space Q, and it should not be

mistaken as the source function ψ (without subscript). Later, in Chapter 4, this

notation will be changed.



Chapter 3

Solving Biot’s equations

In this chapter, we study some methods for solving Biot’s equations. Recall the

system

∇ · [2µε(u) + λ(∇ · u)I] + α∇p = f (3.1a)

∂t
( p
M

+ α∇ · u
)

+∇ ·w = ψ (3.1b)

K−1w +∇p = ρfg, (3.1c)

where the unknowns are p, u andw. We want to solve the equations on the spatial

domain Ω and in the time interval (0, T ) where T is the final time. Let d denote

the spatial dimension. In the numerical example in Section 3.4.1, we have that

Ω is the unit square, i.e., d = 2. The techniques prior to that section can be used

for a general Ω ⊂ Rd (d = 2, 3) which is bounded and has a Lipschitz continous

boundary ∂Ω [23, 30]. In this thesis, we only work with Dirichlet boundary

conditions. As stated in Section 2.4, these can be assumed homogeneous without

loss of generality. The aim is to solve (3.1a)-(3.1c) for some given initial conditions

p(0, x), u(0, x) and w(0, x).

3.1 Variational formulation

In this section, we derive the variational formulations of equation (3.1a)-(3.1c).

Recall the solution spaces and test spaces defined in Section 2.4

Q = Q̂ = H1
0 (Ω) = {q ∈ H1(Ω) | Tq = 0 on ∂Ω} (3.2a)

V = V̂ = [H1
0 (Ω)]d = {v ∈ [H1(Ω)]d | Tu = 0 on ∂Ω} and . (3.2b)

24
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We start with the mechanics equation (3.1a). After taking the inner product of

this equation with a test function v ∈ V and integrating over the domain, we get

−
∫

Ω

(
∇·2µε(u)

)
·v dx−

∫
Ω

(
∇·λ(∇·u)I

)
·v dx+

∫
Ω

α∇p·v dx =

∫
Ω

f ·v dx. (3.3)

Recall that the two first terms of (3.3) are equal to −
∫

Ω
∇ ·

(
σ(u)

)
· v dx by

equation (2.6). Applying integration by parts to this term results in

−
∫

Ω

(
∇ · σ(u)

)
· v dx =

∫
Ω

σ(u) :∇v dx−
∫
∂Ω

(σ(u) · n) · v ds,

where the last term is zero from the choice of test space V . Here the two vertical

dots (:) denote the inner product of second order tensors. For two second order

tensors A and B the inner product is defined as A :B = tr(ATB). We note

that the inner products of a symmetric and an anti-symmetric tensor is 0 from

(2.40) [25]. When splitting ∇v = (∇v)sym + (∇v)anti-sym and using that σ(u) is

symmetric, we see that

σ(u) :∇v = σ(u) : (∇v)sym + σ(u) : (∇v)anti-sym = σ(u) : (∇v)sym + 0.

That is, only the symmetric part of ∇v survives in the inner product σ(u) :∇v.

By replacing ∇v with its symmetric part ε(v) = 1
2

(
∇v + (∇v)T

)
and rewriting

using (2.6) and integration by parts for the pressure term, we obtain∫
Ω

2µ
(
ε(u) : ε(v)

)
+
(
λ(∇ · u)I

)
: ε(v) dx−

∫
Ω

αp∇ · v dx =

∫
Ω

f · v dx.

From the definition of inner product for second order tensors, we have that the

second term (of the first integral) is equal to(
λ(∇ · u)I

)
: ε(v) = λ(∇ · u)tr(ITε(v)) = λ(∇ · u) tr(ε(v)) = λ(∇ · u)(∇ · v).

In the last equality it was used that tr(ε(v)) = tr(∇v) = ∇ · v. This results in

the final variational formulation of (3.1a): Given p ∈ Q, find u ∈ V such that

〈2µε(u), ε(v)〉+ 〈λ∇ · u,∇ · v〉 − 〈αp,∇ · v〉 = 〈f ,v〉 (3.4)

on Ω× (0, T ) and for all v ∈ V .

When we derive the variational forms of the flow equations, we use that

equation (3.1c) can be rewritten as

w = ρfKg −K∇p. (3.5)
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Inserting this in (3.1b), multiplying by q and integrating over the domain Ω result

in ∫
Ω

[
1

M
(∂tp)q + α∂t(∇ · u)q +∇ · (ρfKg)q −∇ · (K∇p)q

]
dx =

∫
Ω

ψq dx.

We define the gravitational vector scaled by the fluid density as gρ = ρfg. Then,

by applying integration by parts and using inner product notation, we arrive at

the variational formulation: Given u ∈ V , find p ∈ Q such that ∀ q ∈ Q the

following holds on Ω× (0, T )

〈(1/M)∂tp, q〉+ 〈α∂t(∇ · u), q〉 − 〈Kgρ,∇q〉+ 〈K∇p,∇q〉 = 〈ψ, q〉. (3.6)

To revisit the theory from Section 2.4, we now add the variational forms

in equations (3.4) and (3.6). We then rearrange such that unknown terms and

known terms are separated by the equality sign. The problem then reads as

follows: Find (u, p) ∈ V ×Q such that

〈2µε(u), ε(v)〉+ 〈λ∇ · u,∇ · v〉 − 〈αp,∇ · v〉+ 〈(1/M)∂tp, q〉

+ 〈α∂t(∇ · u), q〉+ 〈K∇p,∇q〉 = 〈f ,v〉+ 〈ψ, q〉+ 〈Kgρ,∇q〉 (3.7)

holds on Ω × (0, T ) and for all (v, q) ∈ V × Q. Note that this formulation is a

monolitic one as opposed to the sequential ones presented later in Section 3.4.

The functions spaces Q and V are chosen based on which function space ψ and

f belong, respectively.

Assuming we have approximated solutions of the pressure and displacement,

we can solve for the flux by obtaining a variational form from equation (3.1c).

We choose the solution and test spaces to be the same as for the displacement.

That is, Z = [H1
0 (Ω)]d and the variational form is

〈K−1w, z〉 = 〈ρfg, z〉+ 〈p,∇ · z〉. (3.8)

3.2 Discretization in space

Let P1(Ω) and P2(Ω) be the spaces of linear and quadratic piecewise polynomials

on Ω, respectively. We construct a mesh of Ω which we call T . The mesh consists

of polytopes that arise from subdividing the domain. Such a polytope is called

an element and we denote it K. For the spatial dimensions d = 2 and d = 3,

the polytopes are triangles and tetrahedrons, respectively, and the mesh is called
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a triangulation of Ω. An example of the former is shown in Figure 3.1. The

vertices of the elements are called nodes and the union of the elements composes

the domain Ω, i.e., Ω̄ = ∪K∈ThK [20, 23, 31]. We end this section by choosing

the solution and test spaces to be as follows

Qh =
{
qh ∈ H1

0 (Ω) such that qh|K ∈ P1(K) ∀ K ∈ Th
}

and

V h =
{
vh ∈ [H1

0 (Ω)]d such that vh|K ∈ [P2(K)]d ∀ K ∈ Th
}
.

3.3 Discretization in time: Backward Euler

To solve Biot’s equations we will use the backward Euler discretization of the

time-derivative ∂t. The time-derivative of a function y = y(x(t), t) can be ap-

proximated as

∂ty ≈
yn − yn−1

∆t
, (3.9)

where the superscript n denotes the n-th time step and ∆t = tn − tn−1. Assume

the initial time is t0 = 0 and let T be the final time. When working with uniform

time steps, we rename ∆t as τ where τ = T
# of time steps

. Recall the variational form

in equation (3.6). After applying backward Euler, the two first terms become

〈(1/M)∂tp, q〉+ 〈α∂t(∇ · u), q〉

=

〈
(1/M)

pn − pn−1

τ
, q

〉
+

〈
α∇ ·

(un − un−1

τ

)
, q

〉
. (3.10)

We introduce the subscript h to denote the spatial discretization. By including

this subscript, using (3.10) in (3.6), multiplying by τ and rearranging, we obtain

the following variational formulation:

Given (un−1
h , pn−1

h ) ∈ V h ×Qh, find (unh, p
n
h) ∈ V h ×Qh such that

〈2µε(unh), ε(vh)〉+ 〈λ∇ · unh,∇ · vh〉 − 〈αpnh,∇ · vh〉 = 〈fn,vh〉, (3.11)

〈(1/M)pnh, qh〉+ 〈α(∇ · unh), qh〉+ τ〈∇ · (ρfKg), qh〉+ τ〈K∇pnh,∇qh〉

= τ〈ψn, qh〉+ 〈(1/M)pn−1
h , qh〉+ 〈α(∇ · un−1

h ), qh〉 (3.12)

for all (vh, qh) ∈ V h ×Qh.

3.4 Introducing the splitting methods

In the previous sections, we obtained a fully coupled discrete system from spatial

discretization and from applying Backward Euler. The next step is to solve the
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system at each time step n ≥ 1 until the desired final time T is reached. Solving a

fully coupled system is computationally more expensive and requires complicated

code management [9]. We, therefore, choose to apply splitting schemes.

In this section, we study two splitting schemes, namely, the fixed-stress split-

ting scheme and the undrained splitting scheme. For other sequential methods

such as fixed-strain and drained splits, see [11] and [9], respectively. These are

shown to be conditionally stable. Additionally, a weighted two-level scheme and

a three-level scheme are presented in [32]. To ensure stability, a (stability) term is

added. The stability parameters for the splitting schemes in this thesis are from

[13] and [10]. What distinguishes the two chosen methods is the order in which the

unknowns are solved for, the structure of the stabilization term and to which equa-

tion the stabilization term is added to. For both splitting methods we start by

constructing a sequence (un,k, pn,k), k ≥ 0 initiated by (un,0, pn,0) = (un−1, pn−1).

The superscripts k and k − 1 denote the current and previous iteration step, re-

spectively. We continue to iterate until a certain criterion, which we denote ε, is

reached. This tolerance we willl come back to in Section 3.4.

In the fixed-stress splitting scheme we use the flow equation to solve for pk

first and the stabilization term βFS〈pn,k − pn,k−1, q〉 is added to the right hand

side of (3.12). Because of the choice to discretize in time before introducing

the splitting methods, we emphasize that the stabilization term is dependent on

the time derivative of pk [10]. If choosing to introduce the splitting scheme and

time discretization in the opposite order, then the stabilization term would be

βFS〈∂t(pk − pk−1), q〉. This shows that another choice for the discretization in

time would lead to a different stabilization term. The fixed-stress method was

motivated physically by, as the name reveals, fixing the volumetric stress. This

gives the assumption that Kdr∇ · un,k − αpn,k = Kdr∇ · un,k−1 − αpn,k−1, which

implies

∇ · un,k = ∇ · un,k−1 +
α2

Kdr

(pn,k − pn,k−1),

where Kdr is the drained bulk modulus described in Section 2.2 [9, 31]. By

applying this condition on the flow equation, α2

Kdr
〈pn,k − pn,k−1, q〉 was suggested

as a stabilization term. In other words, the stabilization parameter was βFS =
α2

Kdr
). More optimal rates such as α2

2( 2µ
d

+λ)
have later been explored [10, 31]. After

approximating the pressure, we use the resulting pk in (3.11) to solve for u. Let

subscript h denote the discretization in space. The variational formulation for

the fixed-stress scheme is then as follows



CHAPTER 3. SOLVING BIOT’S EQUATIONS 29

Fixed-stress Step 1: Given (un,k−1
h , pn,k−1

h ) ∈ V h × Qh, find pn,kh ∈ Qh such

that

〈(1/M)pn,kh , qh〉+ 〈α(∇ · un,k−1
h ), qh〉+ τ〈∇ · (ρfKg), qh〉+ τ〈K∇pn,kh ,∇qh〉

+βFS〈pn,kh , qh〉 = τ〈ψn, qh〉+〈(1/M)pn−1
h , qh〉+〈α(∇·un−1

h ), qh〉+βFS〈pn,k−1
h , qh〉

(3.13)

for all qh ∈ Qh.

Fixed-stress Step 2: Given pn,kh ∈ Qh, find un,kh ∈ V h such that

〈2µε(un,kh ), ε(vh)〉+ 〈λ∇ · un,kh ,∇ · vh〉 − 〈αpn,kh ,∇ · vh〉 = 〈fn,vh〉, (3.14)

for all vh ∈ V h.

On the other hand, the undrained splitting scheme solves for uh first with the

stabilization term L〈∇ · (un,kh − u
n,k−1
h ),∇ · vh〉 (L > 0) added to the right hand

side of equation (3.11). The physical reasoning behind this scheme is freezing

the fluid mass content when solving the mechanics equation [10, 11]. From this

assumption we have pk + αM∇ · uk = pk−1 + αM∇ · uk−1, which implies

−αpk = −αpk−1 + α2M∇ · (uk − uk−1)

after discretizing in time. Substituting this in the mechanics equation (3.11) leads

us to the stabilizations term L〈∇ · (un,k − un,k−1),∇ · v〉 with the stabilization

parameter L = Mα2, which was used in [10]. After discretizing in space, we

arrive at the undrained splitting scheme which reads as follows:

Undrained Step 1: Given (un,k−1
h , pn,k−1

h ) ∈ V h×Qh, find un,kh ∈ V h such that

〈2µε(un,kh ), ε(vh)〉+ 〈λ∇ · un,kh ,∇ · vh〉 − 〈αpn,k−1
h ,∇ · vh〉+ L〈∇ · un,kh ,∇ · vh〉

= 〈fn,vh〉+ L〈∇ · un,k−1
h ,∇ · vh〉, (3.15)

for all vh ∈ V h.

Undrained Step 2: Given un,kh ∈ V h, find pn,kh ∈ Qh such that

〈(1/M)pn,kh , qh〉+ 〈α(∇ · un,kh ), qh〉+ τ〈∇ · (ρfKg), qh〉+ τ〈K∇pn,kh ,∇qh〉

= τ〈ψn, qh〉+ 〈(1/M)pn−1
h , qh〉+ 〈α(∇ · un−1

h ), qh〉 (3.16)

for all qh ∈ Qh.
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Stopping criterion

As described in the previous section the iterative process stops when a stopping

criterion is satisfied. There are multiple choices for when to end the iteration. One

option is to fix the number of iterations per time step. It has been shown that

the fixed-stress splitting method is convergent for a fixed number of iterations

and that the undrained splitting method with a fixed number of iterations is

convergent if the system is compressible [9, 11]. Another option is to continue

iterating until the norm of the difference of two consecutive iterations becomes

smaller than a given tolerance. We call it the absolute tolerance and denote it

εa. The absolute stopping criterion then becomes: Iterate until the following is

satisfied

max

{∥∥∥pn,kh − pn,k−1
h

∥∥∥ , ∥∥∥un,kh − un,k−1
h

∥∥∥} < εa.

These norms will not tell the full story. If the solutions are of large magnitude, the

error might be of order greater than the absolute stopping criterion and therefore

the iteration will never stop. Contrarily, small solutions may result in too few

iterations. We therefore introduce the relative stopping criterion

max

{∥∥∥pn,kh − pn,k−1
h

∥∥∥∥∥∥pn,kh ∥∥∥ ,

∥∥∥un,kh − un,k−1
h

∥∥∥∥∥∥un,kh ∥∥∥
}
< εr.

3.4.1 Numerical example

In this section, we will study the two splitting methods from Section 3.4. The

example was carried out using FEniCS [25], and it was constructed with the

following analytical solutions

p = tx(1− x)y(1− y), u =

[
tx(1− x)y(1− y)

tx(1− x)y(1− y)

]
, and w = −K∇p (3.17)

We want to compare the estimated convergence rate to the theoretical one. In

this example, we have used P1 elements for the pressure and P2 elements for

the displacement. Because convergence analysis with different mesh sizes was

carried out, the time step τ also varied. We will come back to this. The Lamé

parameters used were, as introduced in Section 2.2, λ = νE
(1+ν)(1−2ν)

and µ = E
2(1+ν)

.

The remaining parameters used can be found Table 3.1. Due to large variations

in the physical parameters, creating solvers for Biot’s model is computationally

challenging. In geophysics, the permeabilities typically range from 10−21 to 10−9
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m2 (square meters), while in biomechanics the same properties are most often

in the range from 10−16 to 10−14 m2 [33, 34]. To compare the order of Young’s

modulus E and Poisson ratios ν within geomechanics and biomechanics, see e.g.,

[33, 35] and [15, 36], respectively.

Table 3.1: Parameters used in test problem for Biot’s model.

Symbol Value Units Description

d 2 — Spatial dimension

K 1 T Permeability divided by fluid viscosity

E 1 FL−2 Bulk modulus

M 1 FL−2 Biot modulus

α 1 — Biot coefficient

ν 0.4999 — Poisson ratio

µ 0.3334 — Lamé parameter

λ 1666 — Lamé parameter

ρf 1 ML−3 Fluid density

βFS ≈ 0.000230 — Stabilization parameter for fixed-stress split

Mα2 1 FL−2 Stabilization parameter for undrained split

εr 10−8 — Stopping criterion

Before we comment on the results from performing convergence analysis, we

describe the mesh that was used. The mesh was constructed by dividing the

sides of the unit square into equally sized intervals. From these intervals, one

can construct a grid of a2 squares by drawing parallel lines to the boundary. The

smaller squares were then divided in two through the diagonal. Let h denote the

mesh size which in 2D is the longest distance within an element. In this specific

case, the elements are right isosceles triangles, and consequently, h is the length

of the hypotenuse. That is, the mesh size is h =
√

2/a. An example with a = 8

and h ≈ 0.18 is found in Figure 3.1.

We now move on to approximating convergence rates. Let the exact solutions

be denoted with subscript ex and the approximated with subscript h as before.

We define the error of p as

ej = ‖pex − ph‖ ,

where the norm is chosen as either the L2-norm or the H1-norm. To study the

convergence rate we use different mesh sizes and compare the resulting errors.
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Figure 3.1: Example of mesh used in numerical example solving Biot’s equations

on the unit square. Here each side is divided into 8 (a = 8) and the mesh diameter

is approximately h ≈ 0.177.

We then calculate the ratio of the logarithms of the errors ej and the logarithm

of mesh sizes hj. That is, the convergence rate is estimated by

convergence rate ≈ log(e2/e1)

log(h2/h1)
. (3.18)

The calculations for the convergence rates of vector-valued functions are analo-

gous to the ones for scalar functions.

Figure 3.2: Estimated convergence rates for u in the test case with the analytical

solution presented in (3.17). The convergences rates are estimated using L2-norm

and H1-norm.

In Table 3.2, the results from performing convergence analysis on the undrained

split of the test case with solutions (3.17) are presented. The theoretical conver-

gence rates from [37] are given to compare with the approximated ones. For the
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Table 3.2: Error norms and convergence rates for p and u from test problem with

analytical solutions stated in (3.17). Here the undrained split was used. The

values marked with single and double asterisk, ∗ and ∗∗, should be compared to

the numbers in Figure 3.2.

Mesh size h ‖pex − p‖L2 ‖uex − u‖L2 ‖pex − p‖H1 ‖uex − u‖H1

0.18 5.3 · 10−4 6.8 · 10−5 0.012 3.8 · 10−3

0.088 1.7 · 10−4 1.7 · 10−5 7.6 · 10−3 1.8 · 10−3

0.044 4.2 · 10−5 2.8 · 10−6 3.8 · 10−3 5.4 · 10−4

0.022 1.1 · 10−5 3.3 · 10−7 1.9 · 10−3 1.2 · 10−4

0.011 2.6 · 10−6 2.7 · 10−8 9.5 · 10−4 2.1 · 10−5

Estimated rate 2.0 2.0∗ 1.0 3.0∗∗

Theoretical rate 2.0 2.0 1.0 3.0

displacement, u, the estimated convergence rates were higher than the theoret-

ical ones. Because there is not a clear convergence of these estimated rates, a

more detailed result of the estimated convergence rates is shown in Figure 3.2.

To estimate the convergence rates using (3.18), both τ and h were halved. The

starting value of the former was 0.2 and the mesh size h is found in Table 3.2.

After obtaining a solution of p and u, we solve for the flux w. When doing so,

P2 elements were used. The error norms and estimated convergence rates for the

flux are presented in Table 3.3. Note that the theoretical values are educated

guesses and should be looked further into.

Table 3.3: Error norms and convergence rates for w from test problem with

analytical solutions stated in (3.17). Note that the theoretical values are educated

guesses and should be looked further into.

Mesh size h ‖wex −w‖L2 ‖wex −w‖H1

0.18 2.8 · 10−3 0.16

0.088 9.7 · 10−4 0.11

0.044 2.5 · 10−4 0.059

0.022 6.5 · 10−5 0.030

0.011 1.6 · 10−5 0.015

Estimated rate 2.0 1.0

Theoretical rate 2.0 1.0
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We close this section with a small comment on the number of iterations it

took to reach the relative stopping criterion εr = 10−8. For both the fixed-stress

split and the undrained split it took 4 iterations per time step.

3.5 Convergence analysis of the undrained split

for Biot’s model - Proof strategy A

Convergences analysis of the two splitting methods for Biot’s equations has been

carried out multiple times. Proving that a scheme is a contraction is a popular

technique to prove convergence of the splitting method. Some examples of the

analysis performed on the fixed-stress and the undrained splitting methods are

[3, 9, 10, 29, 31] and [10, 11], respectively. We will now adapt the proof in [13]

for the undrained splitting method.

Let pn and un denote the solutions at time level n, and let the errors be

defined as the differences between the approximated and the exact solutions.

That is, we define the errors as

en,ku := un,k − un and en,kp := pn,k − pn. (3.19)

In this section, the goal is to prove that the undrained splitting scheme (3.15)-

(3.16) is a contraction and how it follows that the approximated solutions un,k

and pn,k converge to the exact solution. We want to determine the values of the

stabilization parameter L such that the iterative is guaranteed convergence. The

result is summarized in the following theorem:

Theorem 3. Let the assumptions in the list from Section 2.1.4 hold true. If

δ ≥ 2
3
αM and L ≥ max{2

3
α2M, 2(1 − λ)}, then the undrained splitting scheme

(3.15)-(3.16) is a contraction which satisfies the estimate

2µ

λ+ L
2

∥∥ε(en,ku )
∥∥2

+
∥∥∇ · en,ku

∥∥2
+

L− αδ
2
(
λ+ L

2

) ∥∥∇ · (en,ku − en,k−1
u )

∥∥2

+
1

4M(λ+ L
2

) ∥∥en,kp + en,k−1
p

∥∥2
+

τ

4(λ+ L
2

) ∥∥∥K1/2∇(en,kp + en,k−1
p )

∥∥∥2

+
1

2(λ+ L
2

)( 3

2M
− α

δ

)∥∥en,kp − en,k−1
p

∥∥2
+

3τ

4(λ+ L
2

) ∥∥∥K1/2∇(en,kp − en,k−1
p )

∥∥∥2

≤ γ2
∥∥∇ · en,k−1

u

∥∥2
, (3.20)

where γ2 = λ
λ+L

2

and the errors are those defined in (3.19). Consequently, the
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approximated solutions (pn,k,un,k) converge to the solutions (pn,un), which satisfy

the equations (3.11)-(3.12) before discretizing in space.

Proof. To prove this, we adapt the proof [13] given for the fixed-stress split. The

proof is outlined in the following 4 steps:

1. Obtain the mechanics and flow error equations and test these with v = en,ku

and q = en,k−1
p . Then add the error equations and use (2.34) on the term

arising from the stabilization term.

2. Subtract flow error equation at iteration level k − 1 from k and test with

en,kp − en,k−1
p . Rewrite terms involving M or K by using the identity (2.35).

3. Test the error flow equations at iteration level k with q = en,kp − en,k−1
p .

Bound the α-term using Cauchy-Schwarz and Young’s inequalities.

4. Add the equation from Step 2 and the estimate from Step 3, rearrange and

choose an appropriate stabilization parameter L to verify a contraction on

the function mapping ∇ · en,k−1
u 7→ ∇ · en,ku . That is, obtain an estimate of

the form ∥∥∇ · en,ku

∥∥2 ≤ γ2
∥∥∇ · en,k−1

u

∥∥2
, γ2 ∈ [0, 1).

Recall the variational forms (3.15)-(3.16). In this proof, we will work with the

variational forms which arise from time discretizing without spatial discretization.

The subscript h is therefore removed. By subtracting the variational forms for the

approximated solution (at iteration level k) from the ones for the exact solutions,

we show that equations (3.15) and (3.16) hold true for the errors en,ku and en,k−1
p .

That is,

2µ〈ε(en,ku ), ε(v)〉+ λ〈∇ · en,ku ,∇ · v〉 − α〈en,k−1
p ,∇ · v〉

+ L〈∇ · (en,ku − en,k−1
u ),∇ · v〉 = 0 (3.21)

and

(1/M)〈en,kp , q〉+ α〈∇ · en,ku , q〉+ τ〈K∇en,kp ,∇q〉 = 0. (3.22)

These equations are the mechanics error equation and the flow error equation,

respectively. The term arising from the stabilization term can be rewritten using

identity (2.34). When adding (3.21) and (3.22), we see that the terms involving
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α cancel, and we are left with

2µ
∥∥ε(en,ku )

∥∥2
+ λ

∥∥∇ · en,ku

∥∥2

+
L

2

[ ∥∥∇ · (en,ku − en,k−1
u )

∥∥2
+
∥∥∇ · en,ku

∥∥2 −
∥∥∇ · en,k−1

u

∥∥2
]

+ (1/M)〈en,kp , en,k−1
p 〉+ τ〈K1/2∇en,kp ,K1/2∇en,k−1

p 〉 = 0. (3.23)

In the last line, identity (2.39) was used. Equation (2.35), which is also called

the polarization identity, allows us to rewrite the last two terms to obtain

2µ
∥∥ε(en,ku )

∥∥2
+ λ

∥∥∇ · en,ku

∥∥2

+
L

2

[ ∥∥∇ · (en,ku − en,k−1
u )

∥∥2
+
∥∥∇ · en,ku

∥∥2 −
∥∥en,k−1

u

∥∥2
]

+
1

4M

∥∥en,kp + en,k−1
p

∥∥2 − 1

4M

∥∥en,kp − en,k−1
p

∥∥2

+
τ

4

∥∥∥K1/2∇(en,kp + en,k−1
p )

∥∥∥2

− τ

4

∥∥∥K1/2∇(en,kp − en,k−1
p )

∥∥∥2

= 0. (3.24)

The negative terms involving the pressure errors can be recognized as scaled

versions by rewriting the flow error equation. We derive the flow error equation

for the error en,kp − en,k−1
p and test this with q = en,kp − en,k−1

p to obtain

(1/M)
∥∥en,kp − en,k−1

p

∥∥2
+ α〈∇ · (en,ku − en,k−1

u ), (en,kp − en,k−1
p )〉

+ τ
∥∥∥K1/2∇(en,kp − en,k−1

p )
∥∥∥2

= 0.

By applying Cauchy-Schwarz and Young’s inequalities on the α-term, we get the

following estimate

(1/M)
∥∥en,kp − en,k−1

p

∥∥2
+ τ

∥∥∥K1/2∇(en,kp − en,k−1
p )

∥∥∥2

− α
[δ

2

∥∥∇ · (en,ku − en,k−1
u )

∥∥2
+

1

2δ

∥∥en,kp − en,k−1
p

∥∥2
]
≤ 0, for all δ > 0. (3.25)

Adding (3.24) and (3.25) and rearranging gives us

2µ
∥∥ε(en,ku )

∥∥2
+
(
λ+

L

2

)∥∥∇ · en,ku

∥∥2
+

1

2

(
L− αδ

) ∥∥∇ · (en,ku − en,k−1
u )

∥∥2

+
1

4M

∥∥en,kp + en,k−1
p

∥∥2
+
τ

4

∥∥∥K1/2∇(en,kp + en,k−1
p )

∥∥∥2

+
1

2

( 3

2M
− α

δ

)∥∥en,kp − en,k−1
p

∥∥2
+

3τ

4

∥∥∥K1/2∇(en,kp − en,k−1
p )

∥∥∥2

≤
∥∥∇ · en,k−1

u

∥∥2
. (3.26)

To show a contraction, we want an estimate of the form∥∥∇ · en,ku

∥∥2 ≤ γ2
∥∥∇ · en,k−1

u

∥∥2
, γ2 ∈ [0, 1). (3.27)
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Such a form is obtained when all the terms on the right hand side of (3.26) are

non-negative and γ2 = 1
λ+L/2

< 1. We therefore require that

0 ≤
( 3

2M
− α

δ

)
, 1 <

(
λ+

L

2

)
and 0 ≤ L− αδ. (3.28)

Recall that δ is a real non-negative number we can choose. For the first inequality

to hold, we must choose δ ≥ 2
3
αM . This implies that any stabilization parameter

L ≥ max
{

2
3
α2M, 2(1−λ)

}
satisfies the last two inequalities in (3.28). Ultimately,

we have that the function mapping ∇ · en,k−1
u 7→ ∇ · en,ku is a contraction.

Let γ be the constant in estimate (3.27). When applied k − 1 times, the

same inequality gives∥∥∇ · en,k−1
u

∥∥ ≤ γ
∥∥∇ · en,k−2

u

∥∥ ≤ · · · ≤ γk−1
∥∥∇ · en,0u

∥∥ . (3.29)

Consequently, we have that

lim
k→∞

∥∥∇ · en,k−1
u

∥∥ ≤ lim
k→∞

γk−1
∥∥∇ · en,0u

∥∥ = 0 (3.30)

from the fact that γ < 1 and evaluating the limits of (3.29). Because we have

that all left hand side terms of inequality (3.26) are positive (from the choices

of δ and L), all norms on the right hand side must tend to 0 as k tends to ∞.

Since both en,kp − en,k−1
p → 0 and en,kp + en,k−1

p → 0 (note the different signs), we

have that en,kp → 0 as k → ∞. In other words, pn,k → pn from the definition of

the pressure error en,kp in (3.19). We also have that
∥∥ε(en,ku )

∥∥2 → 0. By applying

Korns’s and the Poincaré inequalities (see (2.43)), we have that∥∥en,ku

∥∥2

L2(Ω)
≤ C

∥∥ε(en,ku )
∥∥2

L2(Ω)
for all en,ku ∈ V = H1

0 (Ω).

That is, the displacement error, en,ku , itself tends to 0. We have now shown

that both the pressure and displacement errors converge to 0 and therefore the

approximated solutions converge. Since all the errors converge, it follows that

the scheme in (3.15)-(3.16) does as well. We finally have that the solutions of

undrained splitting scheme converge to solutions of the fully coupled scheme in

(3.11)-(3.12).



Chapter 4

The MPET model

4.1 From a single-porosity to a

multi-porosity/multi-permeability model

For a multi-compartmental porous medium, Biot’s model becomes unrealistic.

Applying this model to separate fluid compartments is an impractical approach

to modeling such a porous medium. In addition, the interactions between different

fluids are neglected to fit Biot’s model. It has therefore been necessary to establish

Multiple Network Poroelastic Theory (MPET).

There are different ways of developing MPET models. One way is to study

a specific case and suggest a model from observations. This was done in the

1950s by studying fissured rocks [38]. Another method of developing a MPET

model is to suggest an extension of the already known theory, e.g., extending

Biot’s model. Next, the extension is checked if is a realistic model. Starting with

modeling geomechanical structures [14, 18, 38, 39], the applications of MPET

models have been developed in multiple fields, e.g., biomechanics. Bone and

brain tissue are examples of biomaterials that have porous structures. To model

the latter, a quadruple MPET model has been considered. The solid matrix

represents the brain parenchyma/tissue and the four connected fluid networks

are composed of cerebrospinal fluids, veins, arteries and capillary blood vessels

[2, 5]. In [5], the validity of the quadruple MPET model (as an extension of Biot’s

model) is investigated using arterial spin labeling MRI data. More specifically,

MPET is has been used in modeling Alzheimer’s disease and cerebral edema (fluid

38
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Figure 4.1: A conceptual illustration of poroelastic deformation: Single-porosity

model from [2]. The small spring at the top represents the hydraulic conductivity,

while the larger spring represents the elasticity of the solid matrix. When a force

F is applied, both the pore pressure changes and elastic deformation takes place.

accumulation around the brain) [5].

To distinguish the N fluid networks with different viscosity and permeabili-

ties, we introduce the subscript i (i = 1, 2, . . . , N) to denote the i-th network. A

conceptual description of the extension is found in [2] and will now be explored.

We start by describing the deformation in a single-porosity model which we

later extend to a dual-porosity/dual-permeability model and, ultimately, a multi-

porosity/multi-permeability model. Assume we have a container filled with a

given fluid. The container is bounded by a piston and a needle valve at the top.

Furthermore, the valve is connected to a spring which represents the hydraulic

conductivity κ. A larger spring of stiffness ks is connected to the piston, and

it represents the elasticity of the matrix skeleton. When the piston undergoes a

sudden compressive load F , an instantaneous change in pressure occurs, p(0+).

The larger spring is compressed by a force F = ks∆l(0
+). Here ∆l(t) denotes

the change in length at time t of the spring relative to its equilibrium state. This

instantaneous built-up pressure is known as Skempton’s effect. As time passes,

the built-up pressure will open the valve and fluid is allowed to escape from the

container. After a long time (t → ∞) there will be zero pore pressure and only

the larger spring counteracts the force F . At any point in time, the container

system tries to balance the applied force F . That is, the magnitude of force F is

the same as the sum of the force which the pore pressure inflicts on the piston

and the (larger) spring force. By denoting Ap as the area of the piston, we can

express the loading force as

F = ks∆l(t) + Ap(t).
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Recall from Section 2.2 that the mean stress, pressure, strain and fluid variational

content are related in the following way[
ε

ξ

]
= − 1

Kdr

[
1 α

α α/B

][
σ

p

]
. (4.1)

Let µ and λ denote the Lamé coefficients. As stated earlier in equations (2.5)

and (2.6), the constitutive relation (poroelastic stress tensor) is given by

σpor(u) = σ(u)− α∇p = 2µε(u) + λ(∇ · u)I − α∇p. (4.2)

Note that the minus sign for the α-term occurs due to the convention of pos-

itive strain for extension. Equations (4.1) and (4.2) model the deformation of

a homogeneous, isotropic and linearly poroelastic medium in three dimensions.

As an extension of the single-porosity model, Berryman’s postulate says that a

dual-porosity elastic material satisfies the following
ε

ξ1

ξ2

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33



σ

p1

p2

 . (4.3)

The entries aij represent effective poroelastic properties and can be expressed in

terms of Kdr,i, Bi, αi [2]. For more studies on the properties of the dual-porosity

model, see [39].

The setup illustrated in Figure 4.1 can be extended to a dual-porosity/dual-

permeability. We now consider two connected containers where the fluid can flow

between them (see Figure 4.2). In addition, the containers share a piston. The

spring with spring coefficient kef represents the elasticity of the matrix skeleton

and it is now composed of two springs. That is, kef = k−1
s1

+ k−1
s2

. As in the

singe-porosity case, a force F is pushing the piston downwards. Two different

pressures instantaneously arise after F is introduced to the system. Let A1 and

A2 denote the cross-section areas of the two containers. Then, at any time the

magnitude of force F can be expressed as

F = kef∆l(t) + A1p1(t) + A2p2(t). (4.4)

In the dual-porosity case, the Cauchy stress tensor is given by the scaled pressure

gradients subtracted from the linear stress tensor. The scaling factors αi (i = 1, 2)

are the Biot coefficients for each of the fluid networks. That is,

σpor(u) = σ(u)−
2∑
i=1

αi∇pi = 2µε(u) + λ(∇ · u)I −
2∑
i=1

αi∇pi. (4.5)
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Figure 4.2: A conceptual illustration of poroelastic deformation: Dual-

porosity/dual-permeability model from [2]. The small springs at the top represent

the hydraulic conductivities, while the larger spring (composed of two springs)

represents the elasticity of the solid matrix. An applied force F causes changes

in the pore pressure and deformation of the porous medium.

The dual-porosity/dual-permeability can be extended to a multi-porosity/multi-

permeability in an analogous way. We have the following generalized forms of

(4.3) and (4.5), given in equations (4.6) and (4.7), respectively
ε

ξ1

...

ξN

 =


a11 . . . a1(N+1)

a21
. . .

...

a(N+1)1 . . . a(N+1)(N+1)



σ

p1

...

pN

 and (4.6)

σpor(u) = 2µε(u) + λ(∇ · u)I −
N∑
i=1

αi∇pi. (4.7)

This system (4.6) can be rewritten to include the Biot moduli Mii (not summing

here) of the fluids and the interporosity moduli Mij. See [2] for details rewrit-

ing equation (4.6). The prefix inter tells us that properties are dependent on

interactions between the fluid systems.

To model the fluid interactions, we introduce the network transfer coefficients

βij. For two networks i and j we have βij = βji with dimensions [ML−1T−1].

Note that the total porosity φ and the Biot coefficients satisfy the relation φ ≤∑N
i=1 αi ≤ 1 [5]. When modeling blood flow one commonly neglects gravity [16],

so we assume g = 0. With the perspective of studying numerical schemes, this is

also a practical assumption to make as the gravitational term does not contribute

to the convergence analysis [40]. If gravity is included, the resulting terms in the

variational forms are analogous to the ones in Chapter 3. From this point on,

ψi denotes the source function for system i and should not be confused with

the basis functions in Section 2.4. We also move away from Einstein notation,
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and consequently, sums are explicitly expressed using
∑

i. The complete MPET

system is described by the following equations with i = 1 . . . , N

−∇ · [2µε(u) + λ(∇ · u)I] +
∑
i

αi∇pi = f (4.8a)

∂t(αi∇ · u+ cpipi) +∇ ·wi +
∑
j 6=i

βij(pi − pj) = ψi (4.8b)

wi = −Ki∇pi. (4.8c)

We recall that the subscript i distinguishes the N different fluid networks. The

sigma-sum notation,
∑

i, is a compressed notation for summing over all networks,

i.e.,
∑

i =
∑N

i=1. In comparison with the previous model (2.9a)-(2.9c), the Biot

modulus M is now replaced by the constrained specific storage coefficients cpi with

dimensions [F−1L2] (see Section 2.2). The remaining symbols represent the same

quantities as in the previous model (see Table 2.1) and the Lamé parameters

µ and λ are related to E and ν as presented in equations (2.30)-(2.31). Note

that since Ki is dependent on the viscosity, vfi , it is also network-dependent,

hence the subscript i. As in Biot’s model, the unknowns are the pressures, the

displacement and the fluxes, i.e., (pi,u,wi) for i = 1, 2, . . . , N . We extend the

assumptions from Biot’s model to hold for each fluid networks. That is, we assume

the following

• g = 0 and ρf ∈ R are constants,

• cpi , αi, µ, λ are positive bounded parameters,

• Ki ∈ [L∞(Ω)]d×d are symmetric, constant with respect to time and satisfy

0 < ki,mz
Tz ≤ zTKi(x)z ≤ ki,Mz

Tz <∞, ∀ x ∈ Ω and ∀ z ∈ Rd\{0}

for i = 1, . . . , N .

4.2 Solving the MPET model

We now proceed to solve the MPET system of equations. The choice of function

spaces follows the one from solving Biot’s model in Chapter 3. We state them as

Qi,h =
{
qi,h ∈ H1

0 (Ω) such that qi,h|K ∈ P1(K) ∀ K ∈ Th
}

⊂ Qi = H1
0 (Ω) = {q ∈ H1(Ω) | Tq = 0 on ∂Ω} for i = 1, . . . , N, (4.9)
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and

V h =
{
vh ∈ [H1

0 (Ω)]d such that vh|K ∈ [P2(K)]d ∀ K ∈ Th
}

⊂ V = [H1
0 (Ω)]d = {v ∈ [H1(Ω)]d | Tu = 0 on ∂Ω}. (4.10)

Again, T is the trace operator in Theorem 1, and K is an element in in the Finite

Element Method (FEM). The subscript h denotes the spatial discretization and

the finite-dimensional space. Let the superscript n, n − 1 denote current and

previous time steps, respectively. By following the same approaches as the ones

used in Section 3.1 and Section 3.3, we obtain the variational formulation. That

is, backward Euler is used to discretize in time, and the variational forms are

obtained by multiplying the equations with appropriate test functions followed

by applying integration by parts. Before we discretize in space, we arrive at the

variational formulation:

Given (un−1, pn−1
i ) ∈ V ×Qi, find (un, pni ) ∈ V ×Qi such that

〈2µε(un), ε(v)〉+ 〈λ∇ · un,∇ · v〉 −
〈∑

i

αip
n,k
i ,∇ · v

〉
= 〈fn,v〉, (4.11)

〈cpi(pni − pn−1
i ), q〉+ 〈α∇ · (un − un−1), qi〉+ τ〈Ki∇pni ,∇qi〉

+ τ

〈∑
j 6=i

βij(p
n,k
i − p

n,k
j ), qi

〉
= τ〈ψni , qi〉 (4.12)

for all (v, qi) ∈ V ×Qi with i = 1, . . . , N .

Furthermore, the stabilization terms are adapted from the splitting schemes

solving Biot’s equations. For the fixed-stress split, we choose the stabilization

term(s) to be Li

〈∑
j(p

n,k
j −p

n,k−1
j ), qi

〉
with Li > 0 for each of the fluid equations

[33, 41]. We include the subscript h to denote the discretization in space. This

results in the following scheme:

Fixed-stress Step 1: Given(un,k−1
h , pn,k−1

i,h ) ∈ V h × Qi,h, find pn,ki,h ∈ Qi,h such

that

〈αi∇ · (un,k−1
h − un−1

h ), qi,h〉+ 〈cpi(p
n,k
i,h − p

n−1
i,h ), qi,h〉+ τ〈Ki∇pn,ki,h ,∇qi,h〉

+ τ

〈∑
j 6=i

βij(p
n,k
i,h − p

n,k
j,h ), qi,h

〉
+ Li

〈∑
j

(pn,kj,h − p
n,k−1
j,h ), qi,h

〉
= τ〈ψni , qi,h〉

(4.13)
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for all qi,h ∈ Qi,h, i = 1, . . . , N .

Fixed-stress Step 2: Given pn,ki,h ∈ Qi,h, find un,kh ∈ V h such that

2µ〈ε(un,kh ), ε(vh)〉+ λ〈∇ ·un,kh ,∇ · vh〉 −
〈∑

i

αip
n,k
i,h ,∇ · vh

〉
= 〈fn,vh〉 (4.14)

for all vh ∈ V h.

Note that there are multiple stabilization parameters Li, i = 1, . . . , N in this

scheme when solving the MPET model as opposed to the single parameter in

Biot’s model. The undrained split only has one stabilization term as this only

acts on the single mechanics equation, and the scheme is stated as follows:

Undrained Step 1: Given (un,k−1
h , pn,k−1

i,h ) ∈ V h × Qi,h, find un,kh ∈ V h such

that

2µ〈ε(un,kh ), ε(vh)〉+ λ〈∇ · un,kh ,∇ · vh〉 −
〈∑

i

αip
n,k−1
i,h ,∇ · vh

〉
+ L〈∇ · (un,kh − u

n,k−1
h ),∇ · vh〉 = 〈fn,vh〉 (4.15)

for all vh ∈ V .

Undrained Step 2: Given un,kh ∈ V h, find pn,ki,h ∈ Qi,h such that

〈αi∇ · (un,kh − u
n−1
h ), qi,h〉+ 〈cpi(p

n,k
i,h − p

n−1
i,h ), qi,h〉+ τ〈Ki∇pn,ki,h ,∇qi,h〉

+ τ

〈∑
j 6=i

βij(p
n,k
i,h − p

n,k
j,h ), qi,h

〉
= τ〈ψni , qi,h〉 (4.16)

for all qi,h ∈ Qi,h, i = 1, . . . , N .

4.2.1 A numerical example of a dual MPET model

In this section, we present an example analogous to the one carried out in Section

3.4.1. Let them be as follows:

p1 = xy sin(x− 1) sin(y − 1), (4.17a)

p2 = txy(x− 1)(y − 1), (4.17b)

u =

[
txy(x− 1)(y − 1)

txy(x− 1)(y − 1)

]
and (4.17c)

wi = −Ki∇pi, i = 1, 2. (4.17d)

Here we will focus on the fixed-stress split. Since we only have two fluid systems

we denote β12 = β21 = β. Let the Ki’s be constant scalars. As in the test case
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for Biot’s model, λ = Eν
(2+ν)(1−2ν)

and µ = E
2(1+ν)

. We adapted the stabilization

parameters for the fixed-stress split to be Li = L = 1
0.1+λ

for i = 1, 2. The rest of

the parameters can be found in Table 3.1.

Table 4.1: Parameters used in a numerical example of a dual MPET system.

d E ν λ µ cp1 cp2 αp1 αp2 K1 K2 β L

2 1 0.4999 1666 0.333 1 1 1 1 1 1 1 6.000 · 10−4

Before commenting on the results, we come with a remark on the imple-

mentation. When following Chapter 3.5 in the FEniCS Tutorial by Langetangen

and Logg [25], there was some trouble caused by defining the variational forms

outside the time-stepping loop. Because of the way the variables are stored and

updated, the variational forms are redefined in every iteration of the splitting

schemes. This is an inefficient fix that should be investigated further.

The stopping criterion from Section 3.4.1 was adapted to include both pres-

sure errors as well as the displacement error. When the tolerance was set to

εr = 1e− 8, it needed 4 iterations per time step. The approximated solutions to

the test case with analytical solutions in (4.17a)-(4.17d) at final time T = 0.5 are

presented in Figure 4.3. Note that the results from approximating the flux are

(a) Approximated solu-

tion p1,h

(b) Approximated solu-

tion p2,h

(c) Approximated solu-

tion uh

Figure 4.3: Plots of approximated solutions at final time T = 0.5 for the dual

MPET system with exact solutions in (4.17a)-(4.17d). The mesh size was h ≈
0.11.

not included in this section. As in the numerical example for Biot’s model (See

Section 3.4.1), the approximated converges rates are as expected (from theoreti-

cal estimates) for the two pressures but not for the displacement. The approach

to estimating the rates can be found in (3.18). In Figure 4.4, we see that the
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approximated convergence rates for the displacement are better than the theo-

retical ones [37]. The mesh and time step refinements are the same as in Section

3.4.1. That is, the time step and mesh size are halved simultaneously. The error

norms of the pressure and the displacement, measured in both L2 and H1-norms,

are presented in Table 4.2.
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(a) Estimated convergence rates for

p1 = xy sin(x− 1) sin(y − 1)

(b) Estimated convergence rates for

p2 = xy(x− 1)(y − 1)

(c) Estimated convergence rate for

u = txy(x− 1)(y − 1)[1, 1]T

Figure 4.4: Estimated convergence rates for the dual MPET system with the analytical solutions (4.17a)-(4.17c) in both L2-norm

and H1-norm. It was used P1 elements for both the pressures and P2 elements for the displacement.
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Table 4.2: Error norms and convergence rates for pressures pi, i = 1, 2 and u from the dual MPET test problem with the analytical

solutions (4.17a)-(4.17c). The values marked with single and double asterisk, ∗ and ∗∗, should be compared to the numbers in Figure

4.4c.

Mesh size h ‖p1,ex − p1‖L2 ‖p2,ex − p2‖L2 ‖uex − u‖L2 ‖p1,ex − p1‖H1 ‖p2,ex − p2‖H1 ‖uex − u‖H1

0.18 1.3 · 10−3 5.5 · 10−4 6.8 · 10−5 0.27 0.012 3.8 · 10−3

0.088 3.2 · 10−4 1.8 · 10−4 1.7 · 10−5 0.014 7.6 · 10−3 1.8 · 10−3

0.044 8.1 · 10−5 4.4 · 10−5 2.8 · 10−6 6.9 · 10−3 3.8 · 10−3 5.4 · 10−4

0.022 2.0 · 10−5 1.1 · 10−5 3.3 · 10−7 3.4 · 10−3 1.9 · 10−3 1.2 · 10−4

0.011 5.1 · 10−6 2.7 · 10−6 2.7 · 10−8 1.7 · 10−3 9.5 · 10−4 2.1 · 10−5

Estimated rate 1.0 1.0 2.0∗ 2.0 2.0 3.0∗∗

Theoretical rate 1.0 1.0 2.0 2.0 2.0 3.0
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4.3 Convergence analysis of the fixed-stress split

for the MPET model - Proof strategy B

The goal of this section is determining values of the stabilization parameters Li

such that the fixed-stress scheme is guaranteed convergent. As stated in the

previous section, the stabilization terms for this splitting scheme are

Li

〈∑
j

(pn,kj − p
n,k−1
j ), qi

〉
with Li > 0. (4.18)

Let pni and un denote the solutions at time level n. We define the errors as

en,ku := un,k − un and en,kpi := pn,ki − pni . (4.19)

Convergence occurs when the fixed-stress splitting scheme (4.13)-(4.14) is a con-

traction. We summarize in the following theorem.

Theorem 4. Let the assumptions in the list from Section 4.1 hold true. If δ ∈
(0, 2) and L ≥ α2

max

δKdr
, then the fixed-stress splitting scheme for MPET model (4.13)-

(4.14) is a contraction which satisfies the estimate∥∥∥∥∥∑
i

en,kpi

∥∥∥∥∥
2

+
τ

cp
n

+ L
2

∑
i

∥∥∥K1/2
i ∇en,kpi

∥∥∥2

+
τ

cp
n

+ L
2

〈∑
j 6=i

βij(e
n,k
pi
− en,kpj ), qi

〉

+
1

2
( cp
n

+ L
2

)(L− α2
max

δKdr

)∥∥∥∥∥∑
i

(
en,kpi − e

n,k−1
pi

)∥∥∥∥∥
2

+
1

cp
n

+ L
2

(
1− δ

2

)(
2µ
∥∥ε(en,ku )

∥∥2
+ λ

∥∥∇ · en,ku

∥∥2
)

≤ γ2

∥∥∥∥∥∑
i

en,k−1
pi

∥∥∥∥∥
2

, (4.20)

where γ2 =
L
2

cp
n

+L
2

, αmin = mini αi, L = mini Li, cp = mini cpi and Kdr is the

drained bulk modulus. The errors are those defined in (4.19). Consequently, the

solutions (pn,k,un,k) converge to the solutions (pn,un) resulting from solving the

MPET system (4.11)-(4.12).

Proof. The proof can be summarized in the following 5 steps:

1. Obtain the mechanics error equation and the i-th pressure error equation

for iteration level k. Test these with the k-th level error, i.e., qi = en,kpi
and v = en,ku . Sum all the pressure error equations (

∑
i) and then add the

mechanics error equation.
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2. Rewrite the term arising from stability terms (term involving the Li’s) using

the binomial identity (2.34). The term containing the network transfer

coefficients (βij’s) is non-negative (see (2.37)), and consequently this can

be omitted from this point on.

3. Test the mechanics error equations with v = en,ku − en,k−1
u to find an ex-

pression for the terms containing the Biot coefficient (αi’s). Find a bound

using Cauchy-Schwarz and Young’s inequalities.

4. Rewrite
(
2µ
∥∥ε(en,ku − en,k−1

u )
∥∥2

+ λ
∥∥∇ · (en,ku − en,k−1

u )
∥∥2 )

by taking the

difference of the mechanics error equation for iteration level k and k − 1.

Then test with v = en,ku −en,k−1
u and apply the Cauchy-Schwarz inequality.

Introduce an estimate involving the drained bulk modulus Kdr. This allows

the term(s) to be bounded by
∥∥∑

i(e
n,k
pi
− en,k−1

pi
)
∥∥2

.

5. Add the obtained bounds from the previous steps and rearrange the terms

to confirm the contraction of the function mapping
∑

i e
n,k−1
pi

7→
∑

i e
n,k
pi

,

i.e., verify that the fixed-stress splitting scheme is a contraction.

Later, a similar proof strategy is used for the undrained splitting method. The

goal is then to show a contraction of the function mapping ∇ · en,k−1
u 7→ en,ku

instead of the summed pressure errors. We will show that the analogous proof

strategy does not work for the undrained splitting scheme.

As in Section 3.5, we will work with the variational forms which do not

involve discretization in space, i.e., the subscript h is removed. Note that the

scheme still is discretized in time. From the variational forms (4.13)-(4.14) we

have

Step 1: Given (un,k−1, pn,k−1
i ) ∈ V ×Qi, find pn,ki ∈ Qi such that

〈αi∇ · (un,k−1 − un−1), qi〉+ 〈cpi(p
n,k
i − pn−1

i ), qi〉+ τ〈Ki∇pn,ki ,∇qi〉

+ τ

〈∑
j 6=i

βij(p
n,k
i − p

n,k
j ), qi

〉
+ Li

〈∑
j

(pn,kj − p
n,k−1
j ), qi

〉
= τ〈ψni , qi〉 (4.21)

for all qi ∈ Qi, i = 1, . . . , n.

Step 2: Given pn,ki ∈ Qi, find un,k ∈ V such that

2µ〈ε(un,k), ε(v)〉+ λ〈∇ · un,k,∇ · v〉 −
〈∑

i

αip
n,k
i ,∇ · v

〉
= 〈fn,v〉 (4.22)

for all v ∈ V .
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By subtracting the variational forms with the approximated version from the

exact and using the definitions of the errors, we obtain the error equations

〈αi∇ · en,k−1
u , qi〉+ 〈cpien,kpi , qi〉+ τ〈Ki∇en,kpi ,∇qi〉

+ τ

〈∑
j 6=i

βij(e
n,k
pi
− en,kpj ), qi

〉
+ Li

〈∑
j

(en,kpj − e
n,k−1
pj

), qi

〉
= 0 (4.23)

2µ〈ε(en,ku ), ε(v)〉+ λ〈∇ · en,ku ,∇ · v〉 −
〈∑

i

αie
n,k
pi
,∇ · v

〉
= 0. (4.24)

We proceed by testing equations (4.23)-(4.24) with the functions v = en,ku and

qi = en,kpi . Recognizing the norms defined by the inner product, allows us to

rewrite to

〈∇ · en,k−1
u , αie

n,k
pi
〉+ cpi

∥∥en,kpi ∥∥2
+ τ

∥∥∥K1/2
i ∇en,kpi

∥∥∥2

+ τ

〈∑
j 6=i

βij(e
n,k
pi
− en,kpj ), qi

〉
+ Li

〈∑
j

(en,kpj − e
n,k−1
pj

), en,kpi

〉
= 0 (4.25)

2µ
∥∥ε(en,ku )

∥∥2
+ λ

∥∥∇ · en,ku

∥∥2 −
〈∑

i

αie
n,k
pi
,∇ · en,ku

〉
= 0. (4.26)

We now sum the flow error equations (4.25) for all the systems (
∑

i) and then

add the mechanics error equation (4.26):〈
∇ · en,k−1

u ,
∑
i

αie
n,k
pi

〉
+
∑
i

cpi
∥∥en,kpi ∥∥2

+ τ
∑
i

∥∥∥K1/2
i ∇en,kpi

∥∥∥2

+ τ
∑
i

〈∑
j 6=i

βij(e
n,k
pi
− en,kpj ), en,kpi

〉
+
∑
i

Li

〈∑
j

(en,kpj − e
n,k−1
pj

), en,kpi

〉
+ 2µ

∥∥ε(en,ku )
∥∥2

+ λ
∥∥∇ · en,ku

∥∥2 −
〈∑

i

αie
n,k
pi
,∇ · en,ku

〉
= 0. (4.27)

The first and last left hand side terms can be bounded from below by testing with

v = en,ku −en,k−1
u in equation (4.24) and applying Cauchy-Schwarz inequality and

Young’s inequality. This gives us〈
∇ · en,k−1

u ,
∑
i

αie
n,k
pi

〉
−
〈∑

i

αie
n,k
pi
,∇ · en,ku

〉
= −2µ〈ε(en,ku ), ε(en,ku − en,k−1

u )〉 − λ〈∇ · en,ku ,∇ · (en,ku − en,k−1
u )〉

≥ −δ
2

(
2µ
∥∥en,ku

∥∥2
+ λ

∥∥∇ · en,ku

∥∥2
)

− 1

2δ

(
2µ
∥∥ε(en,ku − en,k−1

u )
∥∥2

+ λ
∥∥∇ · (en,ku − en,k−1

u )
∥∥2
)
, for all δ > 0.
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For the term arising from the stability term, we need the binomial identity (2.34).

We introduce L := mini Li and move the sum inside the inner product (and change

index name) to obtain the bound∑
i

Li

〈∑
j

(en,kpj − e
n,k−1
pj

), en,kpi

〉
≥ L

〈∑
j

(en,kpj − e
n,k−1
pj

),
∑
i

en,kpi

〉

=
L

2

(∥∥∥∥∥∑
i

(en,kpi − e
n,k−1
pi

)

∥∥∥∥∥
2

+

∥∥∥∥∥∑
i

en,kpi

∥∥∥∥∥
2

−

∥∥∥∥∥∑
i

en,k−1
pi

∥∥∥∥∥
2)

.

The fourth left hand side term in (4.27) is non-negative (see the proof of

(2.37) in Section 2.3). Therefore this term is omitted from now on. From defining

cp := mini cpi and using the identity ‖
∑

i ai‖
2 ≤ n

∑
i ‖ai‖

2 (2.36), we have

cp
n

∥∥∥∥∥∑
i

en,kpi

∥∥∥∥∥
2

≤
∑
i

cpi
∥∥en,kpi ∥∥2

.

The inequalities above combined with equation (4.27) imply the following esti-

mate

cp

∥∥∥∥∥∑
i

en,kpi

∥∥∥∥∥
2

+ τ
∑
i

∥∥∥K1/2
i ∇en,kpi

∥∥∥2

+
L

2

(∥∥∥∥∥∑
i

(en,kpi − e
n,k−1
pi

)

∥∥∥∥∥
2

+

∥∥∥∥∥∑
i

en,kpi

∥∥∥∥∥
2

−

∥∥∥∥∥∑
i

en,k−1
pi

∥∥∥∥∥
2)

+ 2µ
∥∥ε(en,ku )

∥∥2
+ λ

∥∥∇ · en,ku

∥∥2 − δ

2

(
2µ
∥∥en,ku

∥∥2
+ λ

∥∥∇ · en,ku

∥∥2
)

− 1

2δ

(
2µ
∥∥ε(en,ku − en,k−1

u )
∥∥2

+ λ
∥∥∇ · (en,ku − en,k−1

u )
∥∥2
)
≤ 0. (4.28)

Next, we need to bound the last term from above by
∥∥∑

i(e
n,k
pi
− en,k−1

pi
)
∥∥2

(Step

4). We begin by obtaining the mechanics error equation for iteration level i − 1

and subtract this from (4.24). Then we test with v = en,ku −en,k−1
u . After rewriting

and applying the Cauchy-Schwarz inequality, we have

2µ
∥∥ε(en,ku − en,k−1

u )
∥∥2

+ λ
∥∥∇ · (en,ku − en,k−1

u )
∥∥2

≤

∥∥∥∥∥∑
i

αi(e
n,k
pi
− en,k−1

pi
)

∥∥∥∥∥∥∥∇ · (en,ku − en,k−1
u )

∥∥ . (4.29)

We now use the drained bulk modulus Kdr to further bound the last term. As

described in Section 2.2, the bulk modulus is a measure on how much force is
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needed to compress a material [17, 22]. It is a non-negative constant which

satisfies

Kdr ‖∇ · u‖2 ≤ 2µ ‖ε(u)‖2 + λ ‖∇ · u‖2 ∀ u ∈ V . (4.30)

Letting u = en,ku − en,k−1
u in the previous inequality (4.30) and applying it to

(4.29), shows that

∥∥∇ · (en,ku − en,k−1
u )

∥∥ ≤ 1

Kdr

∥∥∥∥∥∑
i

αi(e
n,k
pi
− en,k−1

pi
)

∥∥∥∥∥ .
Combining this with inequality (4.29) and multiplying by − 1

2δ
, we arrive at the

estimate

− α2
max

2δKdr

∥∥∥∥∥∑
i

(en,kpi − e
n,k−1
pi

)

∥∥∥∥∥
2

≤ − 1

2δKdr

∥∥∥∥∥∑
i

αi(e
n,k
pi
− en,k−1

pi
)

∥∥∥∥∥
2

≤ − 1

2δ

(
2µ
∥∥ε(en,ku − en,k−1

u )
∥∥2

+ λ
∥∥∇ · (en,ku − en,k−1

u )
∥∥2
)
,

where αmax := maxi αi. By using this bound in (4.28) and after rewriting, we

conclude with the following bound

(cp
n

+
L

2

)∥∥∥∥∥∑
i

en,kpi

∥∥∥∥∥
2

≤
(cp
n

+
L

2

)∥∥∥∥∥∑
i

en,kpi

∥∥∥∥∥
2

+ τ
∑
i

∥∥∥K1/2
i ∇en,kpi

∥∥∥2

+
1

2

(
L− α2

max

δKdr

)∥∥∥∥∥∑
i

(
en,kpi − e

n,k−1
pi

)∥∥∥∥∥
2

+
(

1− δ

2

)(
2µ
∥∥ε(en,ku )

∥∥2
+λ

∥∥∇ · en,ku

∥∥2
)

≤ L

2

∥∥∥∥∥∑
i

en,k−1
pi

∥∥∥∥∥
2

, δ > 0. (4.31)

The first inequality holds true for any L which satisfies L ≥ α2
max

δKdr
together with a

choice of δ > 0 which satisfies 1− δ
2
≥ 0. We then have L/2

cp
n

+L
2

< 1. That is, choos-

ing δ ∈ (0, 2) and L ≥ α2
max

δKdr
, ensures a contraction and ultimately convergence.

This implies ∥∥∥∥∥∑
i

en,kpi

∥∥∥∥∥
2

≤ γ2

∥∥∥∥∥∑
i

en,k−1
pi

∥∥∥∥∥
2

(4.32)

where γ2 =
L
2

cp
n

+ L
2

, with cp = min
i
cpi .

From [42] we have that Kdr = 2µ
d

+ λ, which implies L ≥ α2
max

δ
(

2µ
d

+λ
) . Note

that there can be found a more optimal stabilization parameter L by bound-

ing more terms in (4.31). Optimal parameter is here to be understood as the
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parameter which results in the smallest number of iterations [31]. The term∑
i

∥∥∥K1/2
i ∇en,kpi

∥∥∥2

can be bounded from below with respect to
∑

i

∥∥en,kpi ∥∥2
(and

consequently also
∥∥∑

i e
n,k
pi

∥∥2
by (2.36)). By using the assumptions on Ki (see

end of Section 4.1) and applying the Poincaré inequality with constant CΩ on

each individual fluid system i, we get

ki,m
C2

Ω

∥∥en,kpi ∥∥2 ≤
∥∥∥K1/2

i ∇en,kpi
∥∥∥2

.

Combined with inequality (2.36) we have

kmin

nC2
Ω

∥∥∥∥∥∑
i

en,kpi

∥∥∥∥∥
2

≤ kmin

C2
Ω

∑
i

∥∥en,kpi ∥∥2 ≤
∑
i

∥∥∥K1/2
i ∇en,kpi

∥∥∥2

, (4.33)

where kmin = mini ki,m and n is the number of fluid systems. Additionally, the

term(s) 2µ
∥∥ε(en,ku )

∥∥2
+ λ

∥∥∇ · en,ku

∥∥2
can also be bounded by the norm of the

pressure errors. See [31] for details on bounding these terms.

We proceed to showing that the approximated solutions converge to the

exact ones. This is equivalent to showing that norm of the pressure error and

displacement error converge to 0. From estimate (4.32) and the same reasoning

leading to (3.30) in Section 3.5, we have

lim
k→∞

∥∥∥∥∥∑
i

en,kpi

∥∥∥∥∥ = 0. (4.34)

Note that the norm in (4.34) is a semi-norm of en,kpi because it does not imply

that each individual pressure converge to 0 [41]. The limit (4.34) implies that all

norms in (4.31) also tend to 0. Especially,
∑

i

∥∥∥K1/2
i ∇en,kpi

∥∥∥2

→ 0, and by using

this in (4.33), we have that the individual pressure errors converge to 0. When it

comes to the displacement error, we do the same analysis as was done on en,ku in

Section 3.5. This shows that also the approximated displacement converges. We

conclude this sections with

pn,ki → pni and un,k → un,

where (pn,ki ,un,k) and (pni ,u
n) result from the fixed-stress splitting scheme (4.21)-

(4.22) and the monolithic scheme (4.11)-(4.12), respectively.



CHAPTER 4. THE MPET MODEL 55

4.4 Convergence analysis of the undrained split

for the MPET model - Proof strategy A re-

visited and Proof strategy C

We begin this section by demonstrating how modifying the proof used for Biot’s

model does not necessarily extend to work in the convergence analysis of the

MPET model. Recall the variational forms (4.15)-(4.16). The same steps as pre-

sented in Section 3.5 are modified to MPET by summing the flow error equations

before adding the mechanics error equations. We demonstrate this by skipping

to Step 4 in Section 3.5. At the beginning of this step, after rearranging, we have

0 ≥ 2µ
∥∥ε(en,ku )

∥∥2
+ λ

∥∥∇ · en,ku

∥∥2

+
1

2

(
L− δ

∑
i

αi

)∥∥∇ · (en,ku − en,k−1
u )

∥∥2
+
L

2

[ ∥∥∇ · en,ku

∥∥2 −
∥∥∇ · en,k−1

u

∥∥2
]

+
1

4

∑
i

cpi
∥∥en,kpi + en,k−1

pi

∥∥2
+

1

2

∑
i

(
3

2
cpi −

αi
δ

)∥∥en,kpi − en,k−1
pi

∥∥2

+
τ

4

∑
i

(∥∥∥K1/2
i ∇(en,kp + en,k−1

p )
∥∥∥2

+ 3
∥∥∥K1/2

i ∇(en,kp − en,k−1
p )

∥∥∥2
)

+ β-terms.

We now shift our focus to the β-terms which will result in this proof strategy

being inconclusive. The β-terms are as follow

β-terms = τ
∑
i

〈∑
j 6=i

βij(e
n,k
pi
− en,kpj ), en,k−1

pi

〉
+ τ

∑
i

〈∑
j 6=i

βij
(
en,kpi − e

n,k
pj
− (en,k−1

pi
− en,k−1

pj
)
)
, (en,kpi − e

n,k−1
pi

)

〉
.

To show that the undrained splitting scheme is a contraction, we first need to

show that the β-terms are non-negative. They can be rewritten as

β-terms = −τ
∑
i

〈∑
j 6=i

βij(e
n,k−1
pi

− en,k−1
pj

), en,kpi

〉
+ τ

∑
i

〈∑
j 6=i

βij(e
n,k
pi
− en,kpj ), en,kpi

〉
+ τ

∑
i

〈∑
j 6=i

βij(e
n,k−1
pi

− en,k−1
pj

), en,k−1
pi

〉
.

We note that the two last terms are non-negative by (2.37). It remains to show

that the first right hand side term consisting of different iteration levels (k − 1

and k) is non-negative, i.e.,

0 ≤ −τ
∑
i

〈∑
j 6=i

βij(e
n,k−1
pi

− en,k−1
pj

), en,kpi

〉
. (4.35)
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This condition we cannot guarantee and consequently, this is where the proof falls

short. A similar issue arises when adapting the strategy from the previous section.

We then need that 0 ≤ −τ
∑

i

〈∑
j 6=i βij(e

n,k
pi
−en,kpj ), en,k−1

pi

〉
, which possibly does

not hold. It is when involving an inner product of β-terms combined at different

iteration levels (k − 1 and k), that the techniques from Section 3.5 and Section

4.3 become insufficient. We therefore change the strategy to proving that the

function mapping a composite of errors is a contraction.

Now, we define the errors as the difference between two consecutive itera-

tions. That is,

δun,k := un,k − un,k−1 and δpn,ki := pn,ki − p
n,k−1
i . (4.36)

The convergence result of this section is formulated in the following theorem:

Theorem 5. Let the assumptions in the list from Section 4.1 hold true. If ε ∈
(L,L + 2λ] and L ≥ nαminαmax

2cp
, then the undrained splitting scheme for MPET

model (4.15)-(4.16) is a contraction which satisfies the estimate

4µ

L

∥∥ε(δun,k)∥∥2
+

(
2

L

(
λ+L− ε

2

)
−1

)∥∥∇ · δun,k∥∥2
+

2αmax

Lαmin

τ
∑
i

∥∥∥K1/2
i ∇δp

n,k
i

∥∥∥2

+

(
2cp
nαmin

αmax

L
−
(αmax

L

)2
)∥∥∥∥∥∑

i

δpn,ki

∥∥∥∥∥
2

+
∑
i

〈∑
j 6=i

βij(δp
n,k
i − δp

n,k
j ), δpn,ki

〉

+

∥∥∥∥∥∇ · δun,k +
αmax

L

∑
i

δpn,ki

∥∥∥∥∥
2

≤ γ2

∥∥∥∥∥∇ · δun,k−1 +
αmax

L

∑
i

δpn,k−1
i

∥∥∥∥∥
2

(4.37)

where γ2 = L
ε
, αmin = mini αi, αmax = maxi αi, L = mini Li, cp = mini cpi. The

errors are those in (4.36). Consequently, the solutions (pn,k,un,k) converge to the

solutions (pn,un) that satisfy the variational forms (4.11)-(4.12).

Proof. The goal is to show that the sequence function mapping a∇ · δun,k−1 +

b
∑

i δp
n,k−1
i 7→ a∇ · δun,k + b

∑
i δp

n,k
i is a contraction for some constants a and

b. The proof consists of the following 3 steps:

1. Subtract the mechanics error equation at iteration level k− 1 from the one

at iteration level k. Then test with v = δun,k and find a bound of the form

C1

∥∥∇ · δun,k∥∥2 − C2

∥∥∥∥∥a∇ · δun,k−1 + b
∑
i

δpn,k−1
i

∥∥∥∥∥
2

≤ 0

with C1, C2 > 0.
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2. Obtain the i-th pressure error equation for iteration level k and k − 1.

Subtract the latter from the former equation and test with with qi = δpn,ki .

Then sum over all N systems. Scale, complete the square and rewrite to

reach an estimate of the form∥∥∥∥∥a∇ · δun,k + b
∑
i

δpn,ki

∥∥∥∥∥
2

− a2
∥∥∇ · δun,k∥∥2

+
(
C3 − b2

) ∥∥∥∥∥∑
i

δpn,ki

∥∥∥∥∥
2

≤ 0

with C3 > 0.

3. Add the resulting inequalities from the previous two steps. Show a con-

traction by determining ε > 0 and the stabilization parameter L that allow

rewriting to the estimate∥∥∥∥∥a∇ · δun,k + b
∑
i

δpn,ki

∥∥∥∥∥
2

≤ γ2

∥∥∥∥∥a∇ · δun,k−1 + b
∑
i

δpn,k−1
i

∥∥∥∥∥
2

,

where γ2 ∈ (0, 1).

In the following proof a = 1 and b = αmax

L
. We start with the non-discrete

variational forms

2µ〈ε(un,k), ε(v)〉+ λ〈∇ · un,k,∇ · v〉 −
〈∑

i

αip
n,k−1
i ,∇ · v

〉
+ L〈∇ · (un,k − un,k−1),∇ · v〉 = 〈f ,v〉 (4.38)

〈αi∇ · un,k, qi〉+ 〈cpip
n,k
i , qi〉+ τ〈Ki∇pn,ki ,∇qi〉

+ τ

〈∑
j 6=i

βij(p
n,k
i − p

n,k
j ), qi

〉
= 〈ψi, qi〉. (4.39)

Recall the definition and notation of the k-th errors at time level n. We subtract

(4.38) at iteration level k − 1 from k to obtain the mechanics error equation

2µ〈ε(δun,k), ε(v)〉+ λ〈∇ · δun,k,∇ · v〉 −
〈∑

i

αiδp
n,k−1
i ,∇ · v

〉
+ L〈∇ · (δun,k − δun,k−1),∇ · v〉 = 0.

Then we test the equation above with δun,k and rearrange. After defining αmax :=

maxi αi and applying Cauchy-Schwarz inequality and Young’s inequality, we ob-

tain the estimate

2µ
∥∥ε(δun,k)∥∥2

+ (λ+ L)
∥∥∇ · δun,k∥∥2

− 1

2ε

∥∥∥∥∥L∇ · δun,k−1 + αmax

∑
i

δpn,k−1
i

∥∥∥∥∥
2

− ε

2

∥∥∇ · δun,k∥∥2 ≤ 0, ∀ ε > 0.
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We multiply this inequality by 2
L

and rearrange

4µ

L

∥∥ε(δun,k)∥∥2
+

2

L

(
λ+ L− ε

2

)∥∥∇ · δun,k∥∥2

+
L

ε

∥∥∥∥∥∇ · δun,k−1 +
αmax

L

∑
i

δpn,k−1
i

∥∥∥∥∥
2

≤ 0, ∀ ε > 0. (4.40)

This completes the first step with the constants C1 = 2
L

(
λ+L− ε

2

)
and C2 = L

ε
.

At the end of the proof, restrictions on ε and L are made.

The next step starts with subtracting the variational form (4.39) at iteration

level k− 1 from iteration level k. We proceed by testing with δpn,ki and summing

over all systems (
∑

i). Defining cp := mini cpi and using identity (2.36) allow

us to rewrite the term containing the storage coefficients cpi . After factorizing

αmin := mini αi out we have〈
∇ · δun,k, αmin

∑
i

δpn,ki

〉
+

1

n
cp

∥∥∥∥∥∑
i

δpn,ki

∥∥∥∥∥
2

+ τ
∑
i

∥∥∥K1/2
i ∇δp

n,k
i

∥∥∥2

+ τ
∑
i

〈∑
j 6=i

βij
(
pn,ki − p

n,k−1
i − (pn,kj − p

n,k−1
j )

)
, δpn,ki

〉
≤ 0. (4.41)

Combining the error notation with tensor notation it can be shown that the terms

containing the β’s are non-negative (see (2.37)). That is,

0 ≤
∑
i

〈∑
j 6=i

βij
(
pn,ki − p

n,k−1
i − (pn,kj − p

n,k−1
j )

)
, δpn,ki

〉
=
∑
i

〈∑
j 6=i

βij(δp
n,k
i − δp

n,k
j ), δpn,ki

〉
,

and we can omit this term in future estimates. We multiply (4.41) by 2αmax

Lαmin
and

get

2

〈
∇ · δun,k, αmax

L

∑
i

δpn,ki

〉

+
2cp
nαmin

αmax

L

∥∥∥∥∥∑
i

δpn,ki

∥∥∥∥∥
2

+
2αmax

Lαmin

τ
∑
i

∥∥∥K1/2
i ∇δp

n,k
i

∥∥∥2

≤ 0.

Completing the squares for the inner product, results in∥∥∥∥∥∇ · δun,k +
αmax

L

∑
i

δpn,ki

∥∥∥∥∥
2

−
∥∥∇ · δun,k∥∥2 −

(αmax

L

)2

∥∥∥∥∥∑
i

δpn,ki

∥∥∥∥∥
2

+
2cp
nαmin

αmax

L

∥∥∥∥∥∑
i

δpn,ki

∥∥∥∥∥
2

+
2αmax

Lαmin

τ
∑
i

∥∥∥K1/2
i ∇δp

n,k
i

∥∥∥2

≤ 0. (4.42)
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We have that C3 = 2cp
nαmin

αmax

L
in the second step.

In the final step, we add inequalities (4.40) and (4.42) to obtain

4µ

L

∥∥ε(δun,k)∥∥2
+

2αmax

Lαmin

τ
∑
i

∥∥∥K1/2
i ∇δp

n,k
i

∥∥∥2

− L

ε

∥∥∥∥∥∇ · δun,k−1 +
αmax

L

∑
i

δpn,k−1
i

∥∥∥∥∥
2

+

∥∥∥∥∥∇ · δun,k +
αmax

L

∑
i

δpn,ki

∥∥∥∥∥
2

+

(
2

L

(
λ+L− ε

2

)
−1

)∥∥∇ · δun,k∥∥2
+

(
2cp
nαmin

αmax

L
−
(αmax

L

)2
)∥∥∥∥∥∑

i

δpn,ki

∥∥∥∥∥
2

≤ 0,

(4.43)

for all ε > 0. As in the proof in Section 4.3, we can omit all non-negative terms

which are not needed in the estimate. By doing so and rearranging, leaves us

with∥∥∥∥∥∇ · δun,k +
αmax

L

∑
i

δpn,ki

∥∥∥∥∥
2

+
2λ+ L− ε

L

∥∥∇ · δun,k∥∥2

+
αmax

αminL2n
(2cpL− nαminαmax)

∥∥∥∥∥∑
i

δpn,ki

∥∥∥∥∥
2

≤ L

ε

∥∥∥∥∥∇ · δun,k−1 +
αmax

L

∑
i

δpn,k−1
i

∥∥∥∥∥
2

, ε > 0. (4.44)

To show that the undrained splitting scheme (4.38)-(4.39) is a contraction, we

need an estimate of the form∥∥∥∥∥∇ · δun,k +
αmax

L

∑
i

δpn,ki

∥∥∥∥∥
2

≤ γ2

∥∥∥∥∥∇ · δun,k−1 +
αmax

L

∑
i

δpn,k−1
i

∥∥∥∥∥
2

(4.45)

with γ2 ∈ (0, 1). In other words, we require that

L, ε > 0

L
ε
< 1

2λ+ L− ε ≥ 0

2cpL− nαminαmax ≥ 0.

This implies the following restrictions on the stabilization parameter L and the

choice of ε
nαminαmax

2cp
≤ L < ε ≤ L+ 2λ. (4.46)
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That is, the inequality (4.45) with γ2 = L
ε

holds when ε and L satisfy the relation

above. γ2 is smallest when L is smallest and ε is largest possible. Note that the

stabilization term in the undrained splitting scheme for Biot’s equations satisfies

L ≥ Mα2

2
. This follows from the fact that Biot’s model corresponds to the MPET

model with N = 1, αmin = αmax = α and (1/M) = cp.

Analogous to inequality (3.29) Section 3.5, we have∥∥∥∥∥∇ · δun,k +
αmax

L

∑
i

δpn,ki

∥∥∥∥∥ ≤ γk

∥∥∥∥∥∇ · δun,0 +
αmax

L

∑
i

δpn,0i

∥∥∥∥∥ (4.47)

and consequently,

lim
k→∞

(
∇ · δun,k +

αmax

L

∑
i

δpn,ki

)
= 0.

Combining this with inequality (4.43) shows that all the left hand side terms tend

to 0 as k tends to∞. By using the same rewriting techniques as in Section 3.5 we

can show that ∇ · δun,k → 0 and K
1/2
i ∇δp

n,k
i → 0 imply that the displacement

error and the individual pressure errors converge to 0. That is,

lim
k→∞
∇ · δun,k = 0 and lim

k→∞
δpn,ki = 0, i = 1, . . . , N.

Since all the errors converge, so do their linear combinations in the undrained

splitting scheme (4.38)-(4.39). Hence, the approximated solutions from the undrained

splitting scheme for the MPET model converge to solutions satisfying (4.11)-

(4.12).



Chapter 5

Summary

This thesis started with describing flow in porous media leading to Biot’s equa-

tions. The first section included a description of mass conservation, Darcy’s law

and elastic deformation. It was followed by a slightly different approach involving

the variational fluid content and drained bulk modulus. This chapter was ended

with some basic theory from functional analysis and a brief explanation of the

Finite Element Method (FEM) for a monolithic scheme.

The subsequent chapter addressed how to solve Biot’s equations. It started

with deriving the variational formulation and a discretization of the Biot’s system

in both space and time. This was followed by the introduction of two splitting

methods, namely the fixed-stress splitting and the undrained splitting. A nu-

merical example was constructed to demonstrate both these methods. Chapter

3 was completed with a convergence proof for the undrained splitting method.

We proved that the approximated solutions converge to the solutions of the fully

implicit scheme. The function mapping an error to the error of the subsequent it-

eration was proven to be a contraction with zero as a fixed point. Combined with

the Banach fixed point theorem we concluded with convergence for the undrained

splitting method.

In the fourth chapter we studied an extension of Biot’s model by exploring

the Multiple Network Poroelastic Theory (MPET). We revisited the splitting

methods from the previous chapter as well as performed convergence analysis

on the MPET model. In the last section, we realized that we needed to show

a contraction of a composite of errors for the undrained splitting method. This

was due to the trouble with bounding the terms involving the network transfer
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coefficients (which are only part of the extension of Biot’s model).

Future work

As mentioned in Section 3.5, the estimated rate is not optimal. It is reasonable to

assume that this is also the case for the rates from the MPET model. This is of

interest to investigate further. In addition, other boundary conditions should be

included, and numerical examples on more advanced meshes should be produced.

If the latter suggestion is carried out, it would be of advantage that the script

for solving the MPET model is made to run more efficiently (see comment in

Section 4.2.1). The approximation of the displacement convergence rates should

be part of this process because the rates follow from the chosen test case(s).

That is, one should try other test cases. As mentioned in Section 3.4.1, it would

be practical to use more realistic parameters depending on the chosen field of

study. The extension of Biot’s model where a Dirac line source was included, was

demonstrated in [20]. This could also be pursued for the MPET model.
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