
nutrients

Article

Serum Levels of Dihomo-Gamma (γ)-Linolenic Acid (DGLA)
Are Inversely Associated with Linoleic Acid and Total Death in
Elderly Patients with a Recent Myocardial Infarction

Dennis Winston T. Nilsen 1,2,*,†, Peder Langeland Myhre 3,4,†, Are Kalstad 3,5, Erik Berg Schmidt 6,
Harald Arnesen 3,5 and Ingebjørg Seljeflot 3,5

����������
�������

Citation: Nilsen, D.W.T.; Myhre, P.L.;

Kalstad, A.; Schmidt, E.B.; Arnesen,

H.; Seljeflot, I. Serum Levels of

Dihomo-Gamma (γ)-Linolenic Acid

(DGLA) Are Inversely Associated

with Linoleic Acid and Total Death in

Elderly Patients with a Recent

Myocardial Infarction. Nutrients 2021,

13, 3475. https://doi.org/10.3390/

nu13103475

Academic Editor: George Lazaros

Received: 19 August 2021

Accepted: 27 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Cardiology, Stavanger University Hospital, 4068 Stavanger, Norway
2 Department of Clinical Science, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
3 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway;

p.l.myhre@medisin.uio.no (P.L.M.); are.kalstad@medisin.uio.no (A.K.); UXHAAR@ous-hf.no (H.A.);
UXINLJ@ous-hf.no (I.S.)

4 Department of Cardiology, Division of Medicine, Akershus University Hospital, 1474 Lørenskog, Norway
5 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal,

0424 Oslo, Norway
6 Department of Cardiology, Aalborg University Hospital, 9000 Aalborg, Denmark; ebs@dcm.aau.dk
* Correspondence: nide@sus.no
† These authors contributed equally to this work.

Abstract: Dihomo-gamma-linolenic acid (DGLA) is an n-6 polyunsaturated fatty acid (PUFA) derived
from linoleic acid (LA). The LA:DGLA ratio reflects conversion from LA to DGLA. Low levels of
DGLA in serum have been related to poor outcome in myocardial infarction (MI) patients. Aims:
To assess the association of DGLA and LA:DGLA with total death as a primary aim and incident
cardiovascular events as a secondary objective. Methods: Baseline samples from 1002 patients, aged
70 to 82 years, included 2–8 weeks after an MI and followed for 2 years, were used. Major adverse
clinical events (MACE) consisted of nonfatal MI, unscheduled coronary revascularization, stroke,
hospitalization for heart failure or all-cause death. Cox regression analysis was used to relate serum
n-6 PUFA phospholipid levels (%wt) to the risk of MACE, adjusting for the following: (1) age, sex
and body mass index (BMI); (2) adding baseline cod liver oil supplementation; (3) adding prevalent
hypertension, chronic kidney disease and diabetes mellitus. Results: Median DGLA level in serum
phospholipids was 2.89 (Q1–Q3 2.43–3.38) %wt. DGLA was inversely related to LA and LA:DGLA
ratio. There were 208 incident cases of MACE and 55 deaths. In the multivariable analysis, the
hazard ratio (HR) for the total death in the three higher quartiles (Q2–4) of DGLA as compared
to Q1 was 0.54 (0.31–0.95), with p = 0.03 (Model-1), 0.50 (0.28–0.91), with p = 0.02 (Model-2), and
0.47 (0.26–0.84), with p = 0.012 (Model-3), and non-significant for MACE. Risk of MACE (Model 3)
approached borderline significance for LA:DGLA in Q2–4 vs. Q1 [HR 1.42 (1.00–2.04), p = 0.052].
Conclusions: Low levels of DGLA were related to a high LA:DGLA ratio and risk of total death in
elderly patients with recent MI.

Keywords: n-6 fatty acids; dihomo-gamma (γ)-linolenic acid; DGLA; LA:DGLA ratio; delta-6-
desaturase; biomarker; prognosis; myocardial infarction; all-cause mortality

1. Introduction

Studies in primary and secondary prevention, replacing saturated fatty acids with
polyunsaturated fatty acids (PUFA’s) in the diet, have been burdened with design limita-
tions, and whether increased intake of linoleic acid (LA) and its derivatives may provide
a health benefit is, therefore, still being questioned [1]. However, a recent meta-analysis
supports a favorable role for LA in cardiovascular disease (CVD) prevention [2].

Nutrients 2021, 13, 3475. https://doi.org/10.3390/nu13103475 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-4071-3358
https://doi.org/10.3390/nu13103475
https://doi.org/10.3390/nu13103475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13103475
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13103475?type=check_update&version=2


Nutrients 2021, 13, 3475 2 of 13

LA is an essential n-6 PUFA and is primarily derived from vegetable oils, such as
corn, sunflower, safflower and soy [1]. Its intake has increased from 1 to 2% before the
1930s, to more than 7% of daily calories, corresponding with an average daily ingestion of
15 g in Western populations [1,3]. In line with this, the ratio between n-6 and n-3 PUFA
has changed from 4:1 to 20:1 [3,4]. As shown in Figure 1, LA (18:2n-6) can be desaturated
to gamma-linolenic acid (GLA; 18:3n-6), which in turn is elongated into dihomo-gamma-
linolenic acid (DGLA; 20:3n-6), from which arachidonic acid (AA; 20:4n-6) may be formed
upon further desaturation [5]. Despite the increased consumption of LA, its elongation-
desaturation product, AA, and products of the essential n-3 PUFA, have remained relatively
constant at <1% energy since the early 1900s [3].
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Previous reports suggest a cardioprotective effect of high intakes of LA [2,6] and high
packed erythrocyte concentrations of LA [7], and AA in a meta-analysis [8] was associated
with a lower risk of CVD. The degree of conversion of LA to AA is very low and about
0.2% [9]. Approximately 0.15 g of AA is ingested per day from meat, eggs and some fish [1],
whereas GLA and DGLA are consumed in even smaller amounts and their levels are nearly
exclusively derived from metabolism from LA.

The first step in the metabolism of LA (Figure 1) is by delta-6-desaturation to gamma-
linolenic acid (GLA). This is a slow and rate-limiting process, whereas the elongation to
DGLA by delta-6-elongase is rapid. Thus, conversion to DGLA can be expressed by the
ratio of LA to DGLA (LA:DGLA) [10]. The generation of DGLA is inversely associated
with age, due to a decline in the rate-limiting step of delta-6 desaturation [11].

In addition to being a precursor of AA, DGLA may display anti-inflammatory and an-
tiproliferative properties [9]. Cyclooxygenase (COX) 1 and 2 convert DGLA into prostaglandins
of the 1-series (PGE-1), and the action of 15-lipoxygenase (LOX) provides 15-(S)-hydroxy-
8,11,13-eicosatrenoic acid (15-HETrE) [12,13]. These metabolic products of DGLA are gener-
ally considered to have anti-inflammatory, antiproliferative and antithrombotic properties,
whereas the 2-series prostaglandins (PGE2) and leukotrienes derived from AA may promote
inflammation and thrombosis [5,13–15]. This is illustrated in Figure 1.

Smaller studies have investigated the biochemical effects of supplementation with
GLA, which is rapidly converted to DGLA by the action of elongase-6, increasing plasma
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levels of DGLA [16,17]. It is, however, still unknown to what extent downstream metabolic
products of DGLA are further formed. That also applies to their relevance to CVD. However,
as a first step, risk assessment according to DGLA levels may lead to further insight.

In a previous prospective observational study of patients presenting with an acute
coronary syndrome, higher concentrations of DGLA in packed red blood cells were in-
dependently associated with reduced all-cause mortality [HR 0.55 (95% CI, 0.35–0.88),
p = 0.012] during a median of 7 years of follow-up [18].

To further explore whether DGLA or other n-6 PUFAs provide prognostic information,
we have studied their utility as predictors of outcome, when measured in serum phos-
pholipids obtained from patients included in the OMEMI (Omega-3 Fatty acids in Elderly
with Myocardial Infarction) trial [19,20]. Furthermore, we have related the LA:DGLA ratio,
reflecting delta-6-desaturase activity, to serum levels of DGLA and to clinical outcomes.

2. Methods

The OMEMI trial [19] was a multicenter, placebo-controlled, double-blind clinical trial,
evaluating the effect of a daily intake of 1.8 g n-3 PUFA vs. a corresponding amount of corn
oil (placebo) on combined major adverse clinical events (MACE), i.e., myocardial infarction
(MI), unscheduled coronary revascularization, stroke, hospitalization for heart failure or all-
cause death in elderly post-MI patients. In total, 1027 participants aged 70–82 were included
2 to 8 weeks after their index MI. The study was organized by the Center for Clinical
Heart Research, Department of Cardiology, Oslo University Hospital, Oslo, Norway, and
was conducted by independent investigators at four Norwegian hospitals according to
Good Clinical Practice (GCP) rules and in compliance with the declaration of Helsinki,
following the approval by the Regional Committee for Medical and Health Research
Ethics. All participants provided written informed consent and the trial was registered
at ClinicalTrials.gov (NCT01841944), posted 29 April 2013. Design and methods have
previously been published [20]. Mean follow-up was 313 ± 207 days. Patients were seen by
a study physician at baseline visit and after 3, 12 and 24 months, or contacted by telephone
if they were unable to attend. All information was recorded in a Case Report Form (CRF)
and adverse events were assessed by a Data and Safety Monitoring Board (DSMB). One
child spoon of cod liver oil was allowed as continuation of a regular supplementation, used
by many participants. A flow chart is shown in Supplementary Figure S1. Blood samples
were available from 1002 patients and were obtained in fasting state between 8:00 and
11:30 a.m. Serum was prepared and frozen at −80 ◦C for analyses of fatty acid composition
in serum phospholipids, performed at the Lipid Research Laboratory (Aalborg University
Hospital, Aalborg, Denmark) by gas chromatography. The relative proportion of each fatty
acid was expressed as percent weight (%wt) of total fatty acids [19,21,22]. The coefficients
of variation for the relevant fatty acids were: LA 0.40%, DGLA 0.75%, GLA 5.37% and
AA 0.60%.

3. Statistical Analyses

Normally distributed continuous variables are given as means ± SD. Skewed variables
are given as median values with interquartile range (IQR). ANOVA was used for normally
distributed continuous variables, the Kruskal–Wallis test for non-normally distributed
variables and the chi-square test for categorical variables. Clinical characteristics are
presented by quartiles of baseline DGLA concentrations and quartiles of LA:DGLA ratio,
respectively, and compared for trend across quartiles (Q) by linear and logistic regression.
Continuous values and quartiles of predictor variables at inclusion were subjected to Cox
regression analyses for time-to-event analysis. Treatment interactions, as well as violation of
the proportional hazard assumption were tested in relation to outcome. A cubic spline was
introduced to show the relationship between DGLA and total death. A set of potentially
confounding variables was selected a priori and included in the adjusted regression models.
Three models were employed in the multivariable analysis, correcting for: (1) age, sex and
body mass index (BMI); (2) adding regular intake of cod liver oil at baseline; (3) adding
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hypertension, chronic kidney disease and diabetes mellitus. We also tested whether DGLA
and LA:DGLA ratio, respectively, were treated independent of circulating lipids that were
not adjusted for in the multivariable analysis.

The hazard ratio (HR) according to quartiles relative to the lowest quartile is presented
with the 95% confidence interval (CI). The chi-square test was applied when comparing
proportions for qualitative variables among quartiles at baseline. The statistical analyses
were performed with Stata Software (version 16, Stata Corp., College Station, TX, USA).
Tests were applied with a two-sided significance level of 5%.

4. Results

As the overall OMEMI study [19] was neutral, we used the entire population to assess
the prognostic utility of n-6 PUFA levels in relation to clinical outcome, after testing for
treatment interaction in relation to MACE (p = 0.40).

Serum levels of LA, GLA, DGLA and AA were available in 1002 of the 1027 patients.
The total number of the composite endpoint of first occurring event (MACE) was 208, which
included 40 deaths as the first event. The total number of non-survivors was 55. The base-
line distribution of DGLA measured in serum phospholipids is shown in Supplementary
Figure S2 and the median value and range of DGLA was 2.89 (IQR 2.43–3.38) %wt.

Baseline characteristics related to DGLA quartiles are given in Table 1. Age was
slightly higher in the lowest quartile of DGLA, but less than one year compared to the
other quartiles (p = 0.019). There was a gradual increase in BMI (p < 0.001) with increasing
quartiles of DGLA, and a higher proportion of hypertensive subjects in the highest as
compared to the lowest quartile (p = 0.05).

Table 1. Baseline characteristics by serum phospholipid quartiles (Q) of DGLA.

DGLA DGLA DGLA DGLA Q 4

p-Value for TrendQ1 Q2 Q3 Q4

No. of Patients n = 251 n = 251 n = 251 n = 249

DGLA, %wt 2.1 ± 0.3 2.7 ± 0.1 3.1 ± 0.1 3.8 ± 0.4
DGLA, %wt range 0.90–2.43 2.44–2.89 2.90–3.38 3.39–5.84
Age, years 75.3 ± 3.7 74.4 ± 3.5 74.9 ± 3.6 74.5 ± 3.5 0.019
Sex (females) n (%) 73 (29.1%) 73 (29.1%) 68 (27.1%) 73 (29.3%) 0.94
Smoking history 0.17
Current smoker n (%) 27 (10.8%) 41 (16.3%) 25 (10.0%) 25 (10.0%)
Previous smoker n (%) 118 (47.0%) 122 (48.6%) 131 (52.2%) 120 (48.2%)
Never smoker n (%) 106 (42.2%) 88 (35.1%) 95 (37.8%) 104 (41.8%)
BMI kg/m2 25.6 ± 3.8 26.1 ± 3.7 27.7 ± 9.8 27.6 ± 4.4 <0.001
SBP mmHg 138.2 ± 19.8 136.7 ± 20.1 136.7 ± 19.1 136.8 ± 20.2 0.78
LVEF % 49.0 ± 8.6 50.8 ± 8.7 50.3 ± 8.4 50.0 ± 8.3 0.29
Diabetes mellitus n (%) 56 (22.3%) 44 (17.5%) 52 (20.7%) 56 (22.5%) 0.49
Hyperlipidemia n (%) 114 (45.4%) 120 (47.8%) 120 (47.8%) 109 (43.8%) 0.76
Hypertension n (%) 144 (57.4%) 152 (60.6%) 140 (55.8%) 167 (67.1%) 0.05
CKD n (%) 10 (4.0%) 11 (4.4%) 12 (4.8%) 12 (4.8%) 0.97
Heart failure n (%) 13 (5.2%) 18 (7.2%) 17 (6.8%) 16 (6.4%) 0.82
LDL chol. mmol/L 2.0 ± 0.7 2.0 ± 0.7 2.0 ± 0.6 1.9 ± 0.6 0.35
HDL chol. mmol/L 1.4 ± 0.4 1.3 ± 0.4 1.2 ± 0.4 1.1 ± 0.3 <0.001
Triglycerides mmol/L 1.0 ± 0.4 1.2 ± 0.6 1.3 ± 0.6 1.5 ± 1.0 <0.001
Cod liver oil n (%) 144 (57.6%) 107 (43.0%) 92 (37.2%) 69 (27.8%) <0.001
LA 18:2(n-6) %wt 19.3 ± 3.3 18.8 ± 3.0 18.3 ± 2.6 18.0 ± 2.5 <0.001
GLA 18:3(n-6) %wt 0.06 ± 0.03 0.07 ± 0.03 0.09 ± 0.03 0.10 ± 0.04 <0.001
AA 20:4(n-6) %wt 9.3 ± 2.3 10.3 ± 2.3 10.4 ± 2.2 10.3 ± 2.1 <0.001
LA:DGLA ratio 9.4 ± 2.7 7.0 ± 1.2 5.9 ± 0.9 4.7 ± 0.8 <0.001

Abbreviations: DGLA = dihomo-gamma (γ)-linolenic acid (20:3w6). BMI = Body Mass Index. SBP = Systolic Blood Pressure. LVEF = Left
Ventricular Ejection Fraction. CKD = Chronic Kidney Disease. chol. = cholesterol. LDL = Low-Density Lipoprotein. HDL = High-Density
Lipoprotein. LA = Linoleic Acid (LA). GLA = Gamma (γ)-Linolenic Acid (GLA). AA = Arachidonic Acid. p-Values for trends across
the quartiles.
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HDL-cholesterol concentrations were lower and triglyceride concentrations higher
(p < 0.001 for both) with increasing quartiles of DGLA, whereas LDL-cholesterol concentra-
tions were rather similar (p = 0.35). LA was inversely and significantly (p < 0.001) related to
DGLA, whereas GLA, although to a modest extent, showed a parallel relationship to the
content of DGLA in serum phospholipids (p < 0.001). There was a steady decrease in the
LA:DGLA ratio across the quartiles of DGLA, with a ratio twice as high in the lowest than
in the highest quartile of DGLA.

The distribution of variables through the quartiles of the LA:DGLA ratio was inversely
related to that of the DGLA quartiles (Table 2).

Table 2. Baseline characteristics by quartiles (Q) of LA:DGLA.

LA:DGLA LA:DGLA LA:DGLA LA:DGLA Q 4

p-Value for TrendQ1 Q2 Q3 Q4

No. of Patients n = 251 n = 251 n = 251 n = 249

LA/DGLA ratio <5.24 5.24–6.32 6.32–7.77 >7.77
Age years 74.4 ± 3.5 74.7 ± 3.6 74.6 ± 3.5 75.3 ± 3.7 p = 0.033
Sex (females) n (%) 87 (34.3%) 63 (24.8%) 68 (26.8%) 74 (29.2%) p = 0.10
Smoking history p = 0.64
Current smoker n (%) 30 (11.8%) 30 (11.8%) 29 (11.4%) 32 (12.6%)
Previous smoker n (%) 123 (48.4%) 137 (53.9%) 117 (46.1%) 122 (48.2%)
Never smoker n (%) 101 (39.8%) 87 (34.3%) 108 (42.5%) 99 (39.1%)
BMI kg/m2 27.9 ± 4.4 27.5 ± 9.7 26.4 ± 3.8 25.3 ± 3.6 p < 0.001
SBP mmHg 137.9 ± 19.9 136.9 ± 20.4 136.1 ± 19.6 137.4 ± 19.1 p = 0.76
LVEF % 50.2 ± 8.4 50.3 ± 8.3 50.6 ± 8.8 48.4 ± 8.9 p = 0.10
Diabetes mellitu n (%)s 58 (22.8%) 47 (18.5%) 53 (20.9%) 53 (20.9%) p = 0.69
Hyperlipidemia n (%) 116 (45.7%) 116 (45.7%) 115 (45.3%) 121 (47.8%) p = 0.94
Hypertension n (%) 179 (70.5%) 148 (58.3%) 142 (55.9%) 143 (56.5%) p = 0.002
CKD n (%) 8 (3.1%) 16 (6.3%) 8 (3.1%) 13 (5.1%) p = 0.23
Heart failure n (%) 13 (5.1%) 23 (9.1%) 12 (4.7%) 17 (6.7%) p = 0.18
LDL chol. mmol/L 1.9 ± 0.6 1.9 ± 0.6 2.0 ± 0.7 2.1 ± 0.7 p = 0.017
HDL chol. mmol/L 1.2 ± 0.3 1.2 ± 0.4 1.3 ± 0.4 1.4 ± 0.4 p < 0.001
Triglycerides mmol/L 1.5 ± 1.0 1.3 ± 0.6 1.2 ± 0.6 1.1 ± 0.5 p < 0.001
Cod liver oil n (%) 79 (31.5%) 97 (38.3%) 109 (43.3%) 131 (52.2%) p < 0.001
LA 18:2(n-6) %wt 16.4 ± 2.2 17.8 ± 2.1 19.1 ± 2.3 21.0 ± 2.8 p < 0.001
GLA 18:3(n-6) %wt 0.11 ± 0.04 0.09 ± 0.03 0.07 ± 0.03 0.05 ± 0.02 p < 0.001
DGLA 20:3(n-6) %wt 3.7 ± 0.5 3.1 ± 0.4 2.7 ± 0.3 2.2 ± 0.4 p < 0.001
AA 20:4(n-6) %wt 10.9 ± 2.1 10.4 ± 2.2 10.1 ± 2.2 8.9 ± 2.1 p < 0.001

Abbreviations: LA = Linoleic acid. DGLA = dihomo-gamma (γ)-linolenic acid (20:3w6). BMI = Body Mass Index. SBP = Systolic
Blood Pressure. LVEF = Left Ventricular Ejection Fraction. CKD = Chronic Kidney Disease. chol. = cholesterol. LDL = Low-Density
Lipoprotein. HDL = High-Density Lipoprotein. LA = Linoleic Acid (LA). GLA = Gamma (γ)-Linolenic Acid (GLA). AA = Arachidonic
Acid. suppl = supplements. p-Values for trends across the quartiles.

After testing for violation of the proportional hazards assumption for DGLA in relation
to MACE (p = 0.14), further statistical analysis was performed.

4.1. DGLA as Predictor of Adverse Outcome

Table 3 shows the distribution of endpoints across quartiles of DGLA. Statistically, no
significant differences were observed, but there were almost twice as many total deaths
in the lowest as compared to the higher quartiles, with a borderline trend across quartiles
(p = 0.06).

Univariate analysis of the prognostic utility of continuous DGLA values for MACE
revealed an HR of 0.89 (0.72–1.08) per %wt increase in DGLA, p = 0.24. When comparing
Q2–4 to Q1, an HR of 0.76 (0.56–1.02), p = 0.067, was obtained. These associations remained
essentially unchanged and statistically non-significant in the multivariable Cox regression
models (Table 4).
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Table 3. Endpoints/adverse events by quartiles of DGLA.

Total Pat. No. DGLA Quartile 1 DGLA Quartile 2 DGLA Quartile 3 DGLA Quartile 4
p-Value for Trend

n = 1002 n = 251 n = 251 n = 251 n = 249

MACE 61 (24.3%) 52 (20.7%) 46 (18.3%) 49 (19.7%) 0.16
AMI 18 (7.2%) 18 (7.2%) 18 (7.2%) 24 (9.6%) 0.33
Revasc. 16 (6.4%) 24 (9.6%) 16 (6.4%) 21 (8.4%) 0.69
Stroke 12 (4.8%) 9 (3.6%) 5 (2.0%) 6 (2.4%) 0.08
Heart failure 15 (6.0%) 9 (3.6%) 10 (4.0%) 11 (4.4%) 0.46

Total death 21 (8.4%) 12 (4.8%) 11 (4.4%) 11 (4.4%) 0.06

DGLA = dihomo-gamma (γ)-linolenic acid. MACE = Major Adverse Clinical Events (nonfatal MI, unscheduled coronary revascularization,
stroke, all-cause death, or hospitalization for new or worsened heart failure). AMI = Acute Myocardial Infarction. Revasc. = Revasculariza-
tion (percutaneous coronary intervention or coronary artery bypass grafting). HF = Heart Failure. suppl = supplements. p-Values for trends
across the quartiles.

Table 4. Univariate and Multivariable Cox regression model applying continuous values and comparison of Quartiles 2–4
(Q2–4) vs. Q1.

DGLA DGLA LA:DGLA LA:DGLA

MACE during 24 mo. Total Death during 24 mo. MACE during 24 mo. Total Death during 24 mo.

HR(95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

Univariate

Cont. values 0.89
(0.72–1.08) 0.24 0.72

(0.48–1.07) 0.11

Q2–4 vs. Q1 0.76
(0.56–1.02) 0.067 0.51

(0.30–0.88) 0.016 1.42
(1.09–1.99) 0.046 1.73

(0.85–3.84) 0.13

Multivarable

Model 1 0.78
(0.58–1.06) 0.12 0.54

(0.31–0.95) 0.03 1.34
(0.94–1.99) 0.11 1.65

(0.77–3.54) 0.20

Model 2 0.76
(0.56–1.04) 0.09 0.50

(0.28–0.91) 0.02 1.36
(0.95–1.94) 0.09 1.66

(0.77–3.58) 0.20

Model 3 0.75
(0.55–1.02) 0.07 0.47

(0.26–0.84) 0.012 1.42
(1.00–2.04) 0.052 1.80

(0.83–3.92) 0.14

Abbreviations: MACE = Major Adverse Clinical Events. Model 1: Adjusting for age, sex and BMI. Model 2: Adding cod liver oil
supplementation at baseline to the model. Model 3: Adding hypertension, chronic kidney disease (CKD) and diabetes mellitus to the
former models.

Univariate analysis of the prognostic utility of continuous DGLA values for total
death revealed an HR of 0.72 (0.48–1.07) per %wt increase in DGLA, p = 0.11, whereas an
HR of 0.51 (0.30–0.88), p = 0.016, was obtained when comparing Q2–4 with Q1 of DGLA.
A restricted cubic spline showing the relationship between DGLA (x-axis) and all-cause
mortality (y-axis) is displayed in Supplementary Figure S3.

DGLA remained an independent predictor of total death after adjusting for poten-
tial confounders in Model 1, 2 and 3, as shown in Table 4, with an HR in Model 3 of
0.47 (0.26–0.84), p = 0.012.

The Kaplan–Meier plot of time to death and MACE within 2 years by quartiles of the
DGLA ratio are given in Figure 2.

4.2. LA:DGLA Ratio as Predictor of Outcomes

Events by quartiles of the LA:DGLA ratio are shown in Table 5. There was an increase
in number of events from Q1 to Q4 (p = 0.049), mainly driven by stroke (p = 0.05) and total
death (p = 0.09).

The univariate association for MACE in Q4 of LA:DGLA compared to the lowest
quartile (Q1) was HR 1.49 (1.00–2.23), p = 0.005, but after fully adjustment in Model 3,
the HR for Q4 was weakened [1.45 (0.95–2.22), p = 0.083]. The HR for Q2–4 combined as
compared to Q1 was significant in the univariate analysis [1.42 (1.09–1.99), p = 0.046], but
became borderline significant after adjusting for the variables in Model 3 [1.42 (1.00–2.04),
p = 0.052], as shown in Table 4.
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Table 5. Endpoints/adverse events by quartiles of LA:DGLA.

Total Pat. No. LA:DGLA
Quartile 1

LA:DGLA
Quartile 2

LA:DGLA
Quartile 3

LA:DGLA
Quartile 4 p-Value for Trend

n = 1002 n = 251 n = 250 n = 251 n = 250

MACE 42 (16.7%) 50 (20.0%) 58 (23.1%) 58 (23.2%) 0.049
AMI 20 (8.0%) 21 (8.4%) 21 (8.4%) 16 (6.4%) 0.53
Revasc. 16 (6.4%) 20 (8.0%) 26 (10.4%) 15 (6.0%) 0.87
Stroke 6 (2.4%) 5 (2.0%) 8 (3.2%) 13 (5.2%) 0.05
Heart failure 9 (3.6%) 10 (4.0%) 14 (5.6%) 12 (4.8%) 0.37

Total death 10 (4.0%) 14 (5.6%) 11 (4.4%) 20 (8.0%) 0.09

LA = linoleic acid. MACE = Major Adverse Clinical Events (nonfatal MI, unscheduled coronary revascularization, stroke, all-cause death
or hospitalization for new or worsened heart failure). AMI = Acute Myocardial Infarction. Revasc. = Revascularization (percutaneous
coronary intervention or coronary artery bypass grafting). HF = Heart Failure. p-values for trends across the quartiles.
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The number of total deaths were more than two-fold higher in Q4 as compared to
Q1 [HR 2.30 (1.04–5.06), p = 0.038], and became borderline significant in the fully adjusted
model [HR 2.39 (1.00–5.77), p = 0.051]. When comparing Q2–4 combined to Q1 after
adjusting for the variables in Model 3, statistical significance was not obtained [HR 1.80
(0.83–3.92), p = 0.14].

The Kaplan–Meier plot of time to death and MACE within 2 years by quartiles of
LA:DGLA ratio are shown in Figure 3.
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4.3. LA, GLA and AA as Predictors of Total Death and MACE

The distribution of events through quartiles of LA, GLA and AA is shown in Supple-
mentary Tables S1–S3, respectively. Serum phospholipid levels of LA were not associated
with outcome, whereas the number of strokes showed a gradual and significant reduction
from the lowest to the highest quartile of GLA (p = 0.005), more pronounced than the
trend obtained across the DGLA quartiles. The univariate HR for continuous AA values in
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relation to MACE and total death was 0.89 (0.72–1.08), with p = 0.24, and 0.96 (0.85–1.08),
with p = 0.48, respectively.

5. Discussion

In elderly patients with a recent MI, low baseline values of DGLA in serum phospho-
lipids were independently associated with increased mortality, after adjusting for age, sex,
BMI, baseline n-3 supplementation, hypertension, chronic kidney disease and diabetes
mellitus. Baseline concentrations of the other measured n-6 PUFAs (LA, GLA and AA)
were not associated with clinical endpoints.

Our findings related to total deaths are in line with the results obtained in the Risk
Markers of Acute Coronary Syndromes (RACS) registry, a 7-year follow-up of predom-
inantly older patients experiencing symptoms consistent with an acute coronary syn-
drome [18]. In that study, DGLA was measured in red blood cells, and was found to
independently predict total mortality, and a combination of total death, MI or stroke.

In the present OMEMI substudy, low levels of DGLA independently predicted all-
cause mortality, but we were not able to demonstrate an association with the predefined
MACE in the main OMEMI study [19], as previously noted in the RACS registry [18]. This
may be due to a shorter follow-up time and fewer cardiovascular events in the OMEMI
study, despite the fact that OMEMI included 2.5 times as many patients. However, baseline
characteristics differ substantially between the two studies with respect to prophylactic
vascular medical treatment, and furthermore, more than twice as many patients in the
OMEMI trial had been revascularized prior to inclusion.

Our results are also largely consistent with those of Ouchi et al. [23], who recently
found an association between serum PUFA levels and long-term mortality. In that study,
DGLA and AA levels were significantly lower in non-survivors as compared to survivors.
In contrast, AA did not predict total death in the present OMEMI substudy.

Members of the n-6 series of FAs did not affect variables related to biochemistry
and blood pressure in a meta-analysis of four randomized primary prevention studies,
which included 660 individuals followed for 24 weeks [24]. Moreover, Harris et al. [25]
examined cardiovascular outcomes and death after a median of 7 years of follow-up of
2500 individuals with a mean age of 66 years in the Framingham Heart Study Offspring
cohort without prevalent CVD, and found no association between the content of n-6 FAs
in erythrocytes and total deaths, and no association with cardiovascular events. Reasons
for heterogeneity in the results between these studies may be the clinical setting (primary
versus secondary prevention) and age difference, and perhaps, also different diets.

Randomized, controlled studies in primary and secondary prophylaxis, replacing
saturated fatty acids with PUFAs in the diet, have been burdened with design limitations,
such as lack of blinding and ambiguity related to whether addition of one or removal of
another fatty acid constituent may have exerted an effect [1]. However, a meta-analysis [6]
including six such trials indicated that PUFAs may lower the risk of coronary events by
24% in patients with established coronary heart disease.

Although DGLA levels increase by GLA supplementation [16,17], a more recent review
of the literature [26], focusing on cardiovascular effects of randomized n-6 FA intervention
in both primary and secondary prevention, did not reveal any clinical benefit of these fatty
acids, except for the occurrence of MI. Thus, no benefit was noted for all-cause mortality,
cardiovascular (CVD) mortality, CVD events and risk factors (blood lipids, adiposity, blood
pressure). This meta-analysis [26] included 19 randomized trials with a total of 6461
participants with or without CVD who were followed for one to eight years. Seven of the
included trials in this meta-analysis assessed the effects of supplemental GLA and twelve
of LA, whereas none included supplements with DGLA or AA. However, hypothetically,
one can assume that DGLA would be present in sufficient quantities to exert a beneficial
effect in those studies in which subjects were treated with GLA supplements. However,
the number of participants was low and a meta-analysis with this cohort size would not
have the power to show any clinical benefit on cardiovascular endpoints.
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Contrary to previous observations in red blood cells [18], where LA showed a non-
significant trend in the same direction as DGLA, we found that in serum phospholipids,
levels of LA were inversely related to DGLA, and did not confer any prognostic information
in relation to MACE and total death in the OMEMI substudy. The metabolic pattern of these
fatty acids may differ in serum phospholipids as compared to that of red blood cells, in
which they are incorporated into cellular membranes, rendering them less interchangeable
and less exposed to enzymatic turnover. In serum phospholipids, the inverse relationship
between DGLA and LA may better express delta-6-desaturase activity.

As described in further detail by Fan and Chapkin [14], LA is metabolized in a variety
of tissues by delta-6-desaturase to form GLA, which rapidly elongates by the action of
delta-6-elongase to DGLA, as demonstrated by the rapid turnover of supplements of GLA
to DGLA, by which delta-6-desaturase is bypassed [16]. This is consistent with our findings
showing very low levels of GLA as compared to DGLA.

As reduced levels of DGLA may result from reduced enzymatic conversion of its
precursor LA, the major n-6 PUFA in the diet, an increase in the ratio of LA to DGLA
(LA:DGLA) has been shown to reflect reduced delta-6-desaturase activity [11], the rate-
limiting enzyme responsible for the conversion from LA to gamma linolenic acid (GLA).
In the present study, we found that high levels of LA:DGLA ratio were statistically sig-
nificantly associated with MACE in univariate analysis, with borderline significance after
adjustment in the multivariable analysis, whereas statistical significance was not obtained
when relating LA:DGLA to total mortality. However, our findings suggest that reduced
delta-6-desaturase activity may be responsible for low DGLA levels. This may result in a
reduction in levels of the 1-series of thromboxanes and prostanoids, and the 15-hydroxyl
derivative that counteract the 2-series of prostanoids and leukotrienes, respectively, derived
from AA [9,13].

Overall, our results point in the opposite direction to those obtained by
Warensjø et al. [27], who noted an increased risk of mortality associated with a high esti-
mated delta-6-desaturase activity in a community-based prospective sample of 50-year-old
men followed for a maximum of 33.7 years. Interestingly, as for LA, results obtained
for DGLA and delta-6-desaturase in secondary prevention do not seem to apply in pri-
mary prevention.

In the study by Warensjø et al. [27], an inverse relation between delta-5-desaturase and
mortality was also noted. As the level of AA is mainly determined by diet and to a lesser
degree dependent on the level of its precursors [3], estimating the conversion of DGLA to
AA was not an issue in the current study. However, the importance of the counteracting
effects of DGLA and its derivatives to the unfavorable metabolites of AA should be kept
in mind. According to Johnson et al. [16], DGLA but not AA, accumulates in neutrophil
glycerolipids after 3 and 6 g daily GLA supplementation, suggesting that the increase in
DGLA relative to AA within inflammatory cells may represent a mechanism by which
dietary GLA exerts an anti-inflammatory effect.

Focusing on DGLA as a risk marker in patients with established CVD, there are several
issues that need to be discussed. It has been shown that GLA supplementation is associated
with minor conversion to AA, resulting in an accumulation of DGLA [14,16]. Furthermore,
as preliminary data [24] indicate that high DGLA levels after GLA supplementation do not
improve CVD outcome, it is tempting to postulate a threshold level beyond which DGLA
will not exert additional clinical benefits. Its place as a risk marker may be limited to a
nutritional range below this threshold, as shown by the distribution of events through the
quartiles of DGLA in our study, in line with that of n-3 fatty acids [28].

It may not only be DGLA per se, but rather its role as a precursor for anti-inflammatory,
antiproliferative [13] and antithrombotic substances [15] that may favorably influence prog-
nosis. As minor amounts of DGLA are converted to AA during GLA supplementation, the
accumulation of DGLA may have exceeded the capacity to further increase the formation
of physiologically beneficial substances, consisting of prostaglandins of the 1-series (PGE-1)
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and 15-(S)-hydroxy-8,11,13-eicosatrenoic acid (15-HETrE). This would theoretically also
support a threshold related to a beneficial effect of DGLA.

As the conversion of DGLA to AA is of less importance as compared to AA provided
in the diet, an additional ratio between DGLA and AA would not be a reliable measure
for delta-5-desaturation. Furthermore, looking at AA separately did not confer prognostic
information, neither did LA, despite an inverse linear relationship with DGLA, and our
current data would infer a prognostic potential essentially related to DGLA (and GLA),
and ultimately to delta-6-desaturase.

Limitations

Our data would suggest an association between reduced levels of delta-6-desaturase
activity and MACE, which is largely driven by all-cause mortality, mostly of cardiovascu-
lar origin.

The LA:DGLA ratio will to some degree reflect the dietary intake of LA in addition to
enzymatic conversion. Furthermore, the risk related to the LA:DGLA ratio may also depend
on a threshold, as observed for DGLA. Therefore, this ratio was analyzed in quartiles and
not as a continuous variable.

It may be argued that the ratio of LA to GLA or vice versa [29] may serve as a better
indicator for delta-6-desaturase activity. However, levels of GLA are more than 30 times
lower than levels of DGLA, with a CV of 5.37% as compared to 0.75% for DGLA, and also
taking into account that GLA is rapidly elongated to DGLA, the latter was chosen as a
denominator, to ensure reliable reproducibility.

Referring to AA, we cannot preclude the possibility that the high median combined
baseline levels of eicosapentenoic acid (EPA) and docoshexaenoic acid (DHA) in the RACS
registry (6.4% in packed red blood cells) [18] and in serum phospholipids in the OMEMI
trial (8.5%), respectively, may have attenuated an association of AA with outcome. How-
ever, high levels of AA were not associated with higher cardiovascular mortality, incident
CVD, incident CHD or incident stroke in a pooled biomarker analysis of 30 prospective
studies [2].

In our multivariable model, we adjusted for BMI, as information on waist circumfer-
ence, which is considered to be more relevant to survival and CVD outcomes [30], was
not available. We also adjusted for codliver oil supplementation at baseline, as there was
a gradual decrease in the use of fish oil supplementation across the quartiles, from Q1 to
Q4, p for trend <0.001. Moreover, we have no information related to lifestyle and genetic
variations of fatty acid desaturases. We also adjusted for age, sex, hypertension, chronic
kidney disease and diabetes mellitus. Whereas the total number of patients in our study
was high as compared to similar studies, the number of total deaths (n = 55) was low.

6. Conclusions

In this OMEMI substudy, low levels of serum phospholipid DGLA were associated
with increased risk of total death in elderly patients with a recent MI. Further studies are
needed to confirm and extend our findings.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13103475/s1, Figure S1: CONSORT 2010 Flow Diagram. Figure S2: Histogram showing
the baseline distribution of DGLA measured in serum phospholipids, reported as percent of total
fatty acids in 1002 in OMEMI. Figure S3: Restricted cubic spline showing the relationship between
DGLA (x-axis) and all-cause mortality (y-axis). P for non-linearity = 0.59. Table S1: Endpoints by
quartiles of linoleic acid (LA). Table S2: Endpoints by quartiles of gamma linolenic acid (GLA). Table
S3: Endpoints by quartiles of arachidonic acid (AA).
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