
Order Reconfiguration Under Width Constraints
Emmanuel Arrighi #

University of Bergen, Norway

Henning Fernau #

University of Trier, Germany

Mateus de Oliveira Oliveira #

University of Bergen, Norway

Petra Wolf # Ñ

University of Trier, Germany

Abstract
In this work, we consider the following order reconfiguration problem: Given a graph G together
with linear orders ω and ω′ of the vertices of G, can one transform ω into ω′ by a sequence of swaps
of adjacent elements in such a way that at each time step the resulting linear order has cutwidth
(pathwidth) at most k? We show that this problem always has an affirmative answer when the
input linear orders ω and ω′ have cutwidth (pathwidth) at most k/2. Using this result, we establish
a connection between two apparently unrelated problems: the reachability problem for two-letter
string rewriting systems and the graph isomorphism problem for graphs of bounded cutwidth. This
opens an avenue for the study of the famous graph isomorphism problem using techniques from
term rewriting theory.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Mathem-
atics of computing → Combinatorial optimization; Theory of computation → Equational logic and
rewriting

Keywords and phrases Parameterized Complexity, Order Reconfiguration, String Rewriting Systems

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.8

Funding Emmanuel Arrighi: Research Council of Norway (274526), IS-DAAD (309319).
Henning Fernau: DAAD PPP (57525246).
Mateus de Oliveira Oliveira: Research Council of Norway (288761), IS-DAAD (309319).
Petra Wolf : DFG project FE 560/9-1, DAAD PPP (57525246).

1 Introduction

In the field of reconfiguration, one is interested in studying relationships among solutions of
a problem instance [17, 24, 27]. Here, by reconfiguration of one solution into another, we
mean a sequence of steps where each step transforms a feasible solution into another. Three
fundamental questions in this context are: (1) Is it the case that any two solutions can be
reconfigured into each other? (2) Can any two solutions be reconfigured into each other in
a polynomial number of steps? (3) Given two feasible solutions X and Y , can one find in
polynomial time a reconfiguration sequence from X to Y ?

In this work, we study the reconfiguration problem in the context of linear arrangements
of the vertices of a given graph G. The space of feasible solutions is the set of all linear
orders of cutwidth (pathwidth) at most k for some given k ∈ N. We say that a linear order
ω can be reconfigured into a linear order ω′ in width k if there is a sequence ω1, . . . , ωm of
linear orders of width at most k such that ω1 = ω, ωm = ω′ and for each i ∈ {2, . . . ,m}, ωi is
obtained from ωi−1 by swapping two adjacent vertices. Our main result (Theorem 3) states
that if ω and ω′ are linear orders of cutwidth at most k, then ω can be reconfigured into ω′

in width at most 2k. Additionally, reconfiguration in width at most 2k can be done using at
most O(n2) swaps. Finally, a reconfiguration sequence can be found in polynomial time.

© Emmanuel Arrighi, Henning Fernau, Mateus de Oliveira Oliveira, and Petra Wolf;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emmanuel.arrighi@uib.no
https://orcid.org/0000-0002-0326-1893
mailto:fernau@uni-trier.de
https://orcid.org/0000-0002-4444-3220
mailto:mateus.oliveira@uib.no
https://orcid.org/0000-0001-7798-7446
mailto:wolfp@informatik.uni-trier.de
https://www.wolfp.net/
https://orcid.org/0000-0003-3097-3906
https://doi.org/10.4230/LIPIcs.MFCS.2021.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Order Reconfiguration Under Width Constraints

Our results on reconfiguration of linear arrangements can be used to establish an interesting
connection between two apparently unrelated computational problems: reachability for two-
letter string rewriting and graph isomorphism.

A two-letter rewriting rule over a given alphabet Σ is a rewriting rule of the form ab → cd

for letters a, b, c, d ∈ Σ. A two-letter string rewriting system is a collection R of two-letter
string rewriting rules. The reachability problem for such a rewriting system R is the problem
of determining whether a given string x ∈ Σn can be transformed into a given string y ∈ Σn

by the application of a sequence of two-letter rewriting rules. On the other hand, in the
graph isomorphism problem, we are given graphs G and G′ and the goal is to determine
whether there exists a bijection φ from the vertex set of G to the vertex set of G′ in such a
way that an edge {u, v} belongs to G if and only if the edge {φ(u), φ(v)} belongs to G′.

In order to describe more precisely the connections between two-letter term rewriting
and graph isomorphism, we briefly discuss the notion of slices and unit decompositions. A
slice is a graph S where the vertices are partitioned into a center C and special in-frontier I
and out-frontier O that can be used for composition. A slice S1 can be glued to a slice S2 if
the out-frontier of S1 can be coherently matched with the in-frontier of S2. In this case, the
gluing gives rise to a bigger slice S1 ◦ S2 which is obtained by matching the out-frontier of S1
with the in-frontier of S2. A unit slice is a slice with a unique vertex in the center. Any slice S
can be decomposed into a sequence of unit slices. More specifically, a unit decomposition
is a sequence U = S1S2 . . .Sn of unit slices with the property that for each i ∈ [n− 1], Si

can be glued to the slice Si+1. The result of gluing the unit slices in U is a slice
◦
U with

n center vertices. Conversely, any slice S with n center vertices can be written as a unit
decomposition U = S1S2 . . .Sn with the property that

◦
U is isomorphic to S.

An important remark connecting unit decompositions and the notion of cutwidth is
that if a slice S has cutwidth k, then S can be decomposed into a unit decomposition
U = S1S2 . . .Sn where for each i ∈ [n], Si has at most k vertices in each frontier. Therefore,
if we let Σ(k) denote the set of all unit slices with frontiers of size at most k, then any
graph G with n vertices of cutwidth at most k can be written as a word (unit decomposition)
of length n over the alphabet Σ(k). In this work, for each k ∈ N, we introduce a suitable
two-letter string rewriting system R(k) over the alphabet Σ(k) with the following property:
if U and U′ are two unit decompositions over Σ(k) and if U can be transformed into U′

using the rewriting rules in R(k), then the graphs
◦
U and

◦
U′ are isomorphic. Our second

main result is a partial converse for this property. More precisely, we show that given two
unit decompositions U and U′ over Σ(k), if the graphs

◦
U and

◦
U′ are isomorphic, then

each of these unit decompositions can be transformed into one another by the application of
rewriting rules from the string rewriting system R(2k) (Theorem 11).

The proof of Theorem 11 is heavily based on Theorem 3. An important feature of this
proof is that, given an isomorphism from

◦
U to

◦
U′, one can construct a sequence of rewriting

steps transforming U into U′. Conversely, given any such a sequence, we are able to construct
an isomorphism from

◦
U to

◦
U′. This result, together with the fact that unit decompositions

of minimum cutwidth can be approximated in FPT time, implies that the graph isomorphism
problem for graphs of cutwidth at most k is FPT-equivalent to the reachability problem for
R(2k) (Theorem 13).

Related Work. The reachability problem for a given string rewriting system R consists
in determining whether a given string x can be transformed into a given string y by the
application of rewriting rules from R. Reachability is a central problem in the field of string
rewriting [6] and can also be studied under the light of term rewriting theory [19, 5, 1, 6].

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 8:3

The complexity of the reachability problem is highly dependent on the rewriting system R.
For general rewriting systems, the problem becomes undecidable [6]. In the case of two-letter
rewriting, reachability can be solved in PSPACE since in this case, strings never grow in
size. It is also not difficult to design two-letter rewriting systems for which the reachability
problem is PSPACE-complete. Nevertheless, our results imply that for each k ∈ N, the
R(2 · k)-reachability problem for unit decompositions of length n and width at most k is
reducible to the graph isomorphism problem. Therefore, it can be solved in time npolylog(n),
independently of k, using Babai’s quasi-polynomial time algorithm for graph isomorphism [2].
An interesting question we leave unsolved is the complexity of R(α · k)-reachability for
unit decompositions of width at most k when α is a rational number with 1 ≤ α < 2. In
particular, we do not know if there is such an α for which the reachability problem becomes
PSPACE-hard.

In the field of parameterized complexity theory [7, 6], a computational problem is said to
be fixed-parameter tractable (FPT) with respect to a parameter k if it can be solved in time
f(k) · nO(1) on inputs of size n. Here f : N → N is a computable function depending only on
the parameter k, but not on the size n of the input. The Graph Isomorphism problem (GI
for short) has been shown to be solvable in time f(k) · nO(1) (that is, FPT time) whenever
the parameter k stands for eigenvalue multiplicity [3], treewidth [21], feedback vertex-set
number [20], or size of the largest color class [9] of the involved graphs. On the other hand,
GI can be solved in time f1(k) · nf2(k) (that is, in XP time), whenever the parameter k
stands for genus [23], rankwidth [15], maximum degree [22], size of an excluded topological
subgraph [12], or size of an excluded minor [11]. We note that, in particular, Babai’s algorithm
and techniques have been recently used to improve the fastest FPT algorithm for graphs of
treewidth at most k from 2O(k5·log k) · nO(1) [21] to 2O(k·polylog(k)) · nO(1) [14], and for graphs
of maximum degree d, the fastest XP-algorithm has been improved from nO(d/ log d) [4] to
npolylog(d) [13]. In particular, it is worth noting that graphs of cutwidth k have maximum
degree at most k and treewidth O(k). Therefore, isomorphism of graphs of cutwidth k can be
solved in time 2O(k·polylog(k)) ·nO(1) [14]. This implies that R(2 ·k)-reachability can be solved
in 2O(k·polylog(k)) · nO(1) time when restricted to unit decompositions of width at most k.
Showing that isomorphism for graphs of cutwidth k can be solved in time 2O(k) · nO(1) is
still an open problem.

Another width parameter for linear orders that has been studied in the context of graph
theory is the vertex separation number of a graph [8]. This parameter may be seen as a order
theoretic interpretation of the notion of pathwidth. The techniques used to prove Theorem 3
can be generalized to prove that reconfiguration of linear orders of vertex separation number k
can always be achieved in width at most 2 · k (Theorem 16). While we do not provide a
string-rewriting interpretation of this result, we do state it formally in Section 5 since this
result may be of independent interest in the field of reconfiguration.

2 Preliminaries

Basics. We let N denote the set of natural numbers, including 0, and N+ denote the set of
positive natural numbers. For each n ∈ N+, we let [n] = {1, . . . , n}. As a degenerate case,
we let [0] = ∅. Given a finite set S, we let P(S) be the set of all subsets of S. For each k ∈ N,
we let P(S, k) and P(S,≤ k) be the sets of subsets of S of size exactly k and at most k,
respectively.

MFCS 2021

8:4 Order Reconfiguration Under Width Constraints

Graphs. In this work, graphs are simple and undirected. Given a graph G we let V (G)
denote the vertex set of G and E(G) denote the edge set of G. Given a subset S ⊆ V (G), we
let G[S] be the subgraph of G induced by S. More precisely, V (G[S]) = S and E(G[S]) =
E(G)∩P(S, 2). An isomorphism from a graphG to a graphG′ is a bijection φ : V (G) → V (G′)
such that for each v, u ∈ V (G), {v, u} ∈ E(G) if and only if {φ(v), φ(u)} ∈ E(G′). If such
an isomorphism exists, we say that G is isomorphic to G′.

Order. Let V be a set with |V | = n. A linear order on V is a bijection ω : [n] → V .
Intuitively, for each j ∈ [n] and v ∈ V , ω(j) = v indicates that v is the j-th element of ω.
If S ⊆ [n], then we let ω(S) = {ω(j) : j ∈ S} be the image of S under ω. Given linear
orders ω, ω′ : [n] → V of V and a number i ∈ [n− 1], we write ω i−→ ω′ to indicate that ω′ is
obtained from ω by swapping the order of the vertices at positions i and i+ 1. More precisely,
ω′(j) = ω(j) for every j ∈ [n] \ {i, i+ 1}, ω′(i) = ω(i+ 1), and ω′(i+ 1) = ω(i).

Let ω : [n] → V be a linear order on a set V . Let S ⊆ V . We let ωS : [|S|] → S be the
linear order induced by ω on S. More precisely, if we write the elements of S in increasing
order according to ω, then for each i ∈ [|S|], ωS(i) is the i-th element in this sequence.

Order Reconfiguration. We say that ω can be reconfigured into ω′ in one swap, and denote
this fact by ω → ω′, if there exists some i ∈ [n] such that ω i−→ ω′. We say that ω can
be reconfigured into ω′ in at most r swaps, and denote this fact by ω →r ω

′, if there are
numbers r′ ∈ [r], i1, . . . ir′ ∈ [n], and linear orders ω0, . . . , ωr′ such that

ω = ω0
i1−→ ω1

i2−→ . . .
ir′−−→ ωr′ = ω′.

We call this sequence a reconfiguration sequence from ω to ω′. The mere existence of a
(possibly empty) reconfiguration sequence from ω to ω′ is also written as ω →∗ ω′.

Composition of Linear Orders. Let i ∈ {0, . . . , n}, and ω, ω′ : [n] → V . We let ω ⊕i ω
′ :

[n] → V be the linear order that orders the vertices in the subset ω([i]) ⊆ V according to
ω followed by the vertices in the subset V \ ω([i]), ordered according to ω′. More precisely,
ω ⊕i ω

′ is defined as follows for each j ∈ [n].

ω ⊕i ω
′(j) =

{
ω(j) if j ≤ i,

ω′V \ω([i])(j − i) if j > i.
(1)

We note that in particular, ω ⊕0 ω
′ = ω′ and ω ⊕n ω

′ = ω.

String Rewriting. A two-letter string rewriting systems is a pair (Σ, R) where Σ is a finite,
non-empty set of symbols (an alphabet), and R ⊆ Σ2 × Σ2 is a set of rewriting rules of the
form ab → cd. Let x and y be strings in Σn and i ∈ [n−1]. We say that x can be transformed
into y by applying a rewriting rule ab → cd at position i if xixi+1 = ab, yiyi+1 = cd and
xj = yj for j /∈ {i, i+ 1}. We write x i−→ y to denote that x can be transformed into y by the
application of some rewriting rule at position i. We write x → y to denote that x can be
transformed into y by the application of some rewriting rule at some position i ∈ [n− 1]. We
say that y is reachable from x if there is a sequence of strings x = x0, x1, . . . , xm = y such
that xi−1 → xi for each i ∈ [m]. We write x →∗ y to denote that y is reachable from x. We
say that x and y are R-equivalent if x →∗ y and y →∗ x.

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 8:5

3 Linear Order Reconfiguration

Let G be an n-vertex graph. Given sets S, S′ ⊆ V (G), we let E(G,S, S′) = {{u, v} ∈ E(G) :
u ∈ S, v ∈ S′} be the set of edges with one endpoint in S and the other endpoint in S′.
As a special case, we define E(G,S) = E(G,S, V (G) \ S). We will often make use of the
following monotonicity property without explicit mentioning: If T ⊆ S and T ′ ⊆ S′, then
|E(G,T, T ′)| ≤ |E(G,S, S′)|.

▶ Definition 1 (Cutwidth). Let G be an n-vertex undirected graph. Let ω : [n] → V (G) be a
linear order on the vertices of G. For each p ∈ [n], we let cw(G,ω, p) = |E(G,ω([p− 1]))| be
the number of edges that have one endpoint in the first p− 1 vertices of the linear order ω
and the other endpoint in the remaining vertices. The cutwidth of the linear order ω is
defined as cw(G,ω) = maxp∈[n] cw(G,ω, p). The cutwidth of the graph G is defined as
cw(G) = minω cw(G,ω) , where ω ranges over all linear orders on the vertex set V (G).

For each k ∈ N, and each n-vertex graph G, we let CW(G, k) = {ω : [n] → V (G) :
cw(G,ω) ≤ k} be the set of linear orders of V (G) of cutwidth at most k. We say that ω can
be reconfigured into ω′ in cutwidth at most k if there is a reconfiguration sequence

ω = ω0
i1−→ ω1

i2−→ · · · ir−→ ωr = ω′

such that for each j ∈ {0, . . . , r}, ωj ∈ CW(G, k).

▶ Problem 2 (Bounded Cutwidth Order Reconfiguration). Let G be an n-vertex graph, ω, ω′ :
[n] → V (G) be linear orders on the vertex set of G, and k ∈ N. Is it true that ω can be
reconfigured into ω′ in cutwidth at most k?

It should be clear that if k is smaller than the cutwidth of the graph G, then the answer
for Problem 2 is trivially no since in this case neither ω nor ω′ are in CW(G, k). On the
other hand, we will show in Theorem 3 below that the answer is always yes if k is at least
twice the cutwidth of the thickest input linear order.

▶ Theorem 3. Let G be an n-vertex graph and ω, ω′ : [n] → V (G) be linear orders of
V (G) of cutwidth at most k. Then, ω can be reconfigured into ω′ in cutwidth at most
cw(G,ω) + cw(G,ω′) ≤ 2k.

To prove this theorem, we need the following three lemmas.

▶ Lemma 4. Let G be an n-vertex graph, S ⊆ V (G) and ω : [n] → V (G) be a linear order
on V (G). Then, ωS is a linear order on V (G[S]). Additionally, cw(G[S], ωS) ≤ cw(G,ω).

Proof. As S = V (G[S]), ωS is a linear order on V (G[S]). Let p ∈ [|S|] and let p′ ∈ [n] be
the unique number such that ωS(p) = ω(p′). Then,

cw(G[S], ωS , p) = |E(G[S], ωS([p− 1]))|
= |E(G[S], ωS([p− 1]), {ωS(r) : r ≥ p})|
= |E(G,ωS([p− 1]), {ωS(r) : r ≥ p})|
≤ |E(G,ω([p′ − 1]))|
= cw(G,ω, p′)
≤ cw(G,ω) ,

as ωS([p−1]) ⊆ ω([p′ −1]) and {ωS(r) : r ≥ p} ⊆ {ω(r′) : r′ ≥ p′} = V (G)\ω([p′ −1]). ◀

MFCS 2021

8:6 Order Reconfiguration Under Width Constraints

▶ Lemma 5. Let G be an n-vertex graph and ω, ω′ : [n] → V (G) be linear orders of
V (G) with cutwidth of at most k. Then, for each i ∈ [n], ω ⊕i ω

′ has cutwidth at most
cw(G,ω) + cw(G,ω′) ≤ 2k.

Proof. Let i, p ∈ [n]. There are two cases to be analyzed. By definition, we have that

cw(G,ω⊕iω
′, p) = |E(G,ω⊕iω

′([p−1]))| = |E(G,ω⊕iω
′([p−1]), V (G)\ω⊕iω

′([p−1]))| .

First, if p ≤ i, then we have

cw(G,ω ⊕i ω
′, p) = |E(G,ω([p− 1]), V (G) \ ω([p− 1]))| = cw(G,ω, p) ≤ cw(G,ω) .

Secondly, if p > i, then we have

cw(G,ω ⊕i ω
′, p) = |E(G,ω ⊕i ω

′([p− 1]), V (G) \ ω ⊕i ω
′([p− 1]))|

(a)= |E(G, (ω ⊕i ω
′([p− 1])) ∩ ω([i]), V (G) \ ω ⊕i ω

′([p− 1]))|
+ |E(G, (ω ⊕i ω

′([p− 1])) \ ω([i]), V (G) \ ω ⊕i ω
′([p− 1]))|

(b)
≤ cw(G,ω, i+ 1) + cw(G[V (G) \ ω([i])], ω′V (G)\ω([i]), p− i)
≤ cw(G,ω) + cw(G,ω′).

For Equality (a), observe that {(ω ⊕i ω
′([p − 1])) ∩ ω([i]), (ω ⊕i ω

′([p − 1])) \ ω([i])} is a
partition of ω ⊕i ω

′([p − 1]). To understand Inequality (b), we need two arguments. As
ω([i]) ⊆ ω ⊕i ω

′([p− 1]),

E(G, (ω ⊕i ω
′([p− 1])) ∩ ω([i]), V (G) \ (ω ⊕i ω

′([p− 1]))) ⊆ E(G,ω([i]), V (G) \ ω([i])) ,

which shows that the cardinality of the first set is upper-bounded by cw(G,ω, i+ 1). As the
edges in E(G, (ω ⊕i ω

′([p− 1])) \ ω([i]), V (G) \ (ω ⊕i ω
′([p− 1])) only connect vertices with

positions beyond i within ω ⊕i ω
′, after an index shift, we see that only the linear order ω′

really matters, which explains the inequality

|E(G, (ω ⊕i ω′([p−1]))\ω([i]), V (G)\ (ω ⊕i ω′([p−1]))| ≤ cw(G[V (G)\ω([i])], ω′V (G)\ω([i]), p− i) .

For the last inequality, apply Lemma 4 to derive cw(G[V (G) \ ω([i])], ω′V (G)\ω([i])) ≤
cw(G,ω′). As p is arbitrary, cw(G,ω ⊕i ω

′) ≤ cw(G,ω) + cw(G,ω′) ≤ 2k follows for each
i ∈ [n]. ◀

▶ Lemma 6. Let G be an n-vertex graph, ω, ω′ : [n] → V (G) be linear orders on V (G) of
cutwidth at most k and i ∈ {0, . . . , n− 1} be an integer. Then, ω ⊕i ω

′ can be reconfigured
into ω ⊕i+1 ω

′ in cutwidth at most cw(G,ω) + cw(G,ω′) ≤ 2k.

Proof. By Lemma 5, ω⊕iω
′ and ω⊕i+1ω

′ have cutwidth at most cw(G,ω)+cw(G,ω′) ≤ 2k.
Let j ∈ [n] such that ω⊕i ω

′(j) = ω(i+ 1), i.e., j is the position of ω(i+ 1) in ω⊕i ω
′. As for

each p ∈ [i], ω ⊕i ω
′(p) = ω ⊕i+1 ω

′(p) = ω(p), we have j > i. Let us consider the following
sequence of swaps:

ω ⊕i ω
′ = ω0

j−1−−→ ω1
j−2−−→ · · · i+1−−→ ωj−i−1 = ω ⊕i+1 ω

′.

If j = i+ 1, this sequence is empty and ω ⊕i ω
′ = ω ⊕i+1 ω

′. At each step of this sequence,
we swap ω(i+ 1) with its left neighbor. This brings ω(i+ 1) from position j to position i+ 1.
By doing this, we transform ω ⊕i ω

′ into ω ⊕i+1 ω
′.

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 8:7

ωt = ω(1) ω(2) · · · ω(i) ω′′(1) · · · ω(i+ 1) · · ·

p = j − t+ 1

Figure 1 Illustration of the key part in Lemma 6. In this figure ω′′ = ω′V \ω([i+1]). The red part
of the linear order follows the linear order ω for the first i + 1 elements, and the blue part of the
linear order follows ω′ for the remaining elements. Then, the set of edges crossing the cut at position
p = j − t + 1 can be split in two, the set of edges that start from the red part and the set of edge
that start from the green part. The number of red edges is bounded by the cutwidth of ω and the
number of green edges is bounded by the cutwidth of ω′.

Inductively, we show that each element ωt in the sequence has cutwidth upper-bounded
by cw(G,ω) + cw(G,ω′) ≤ 2k. By Lemma 5, cw(G,ω0) = cw(G,ω ⊕i ω

′) ≤ cw(G,ω) +
cw(G,ω′) ≤ 2k, which proves the induction basis. Let t ∈ [j−i−1] and p ∈ [n] be two integers.
As induction hypothesis, we have cw(G,ωt−1) ≤ cw(G,ω) + cw(G,ω′) ≤ 2k. If p ≤ j − t or
p > j − t+ 1, then we have ωt−1([p− 1]) = ωt([p− 1]), so cw(G,ωt, p) = cw(G,ωt−1, p) ≤
cw(G,ω) + cw(G,ω′) ≤ 2k by induction hypothesis. Otherwise, p = j − t + 1 ∈ {i, . . . , j}
(Figure 1) and we have

cw(G,ωt, p) = |E(G,ωt([p− 1]))|
= |E(G,ωt([p− 1]), {ωt(r) : r ≥ p})|
= |E(G,ωt([i] ∪ {p− 1}), {ωt(r) : r ≥ p})|

+ |E(G, {ωt(l) : i < l < p− 1}, {ωt(r) : r ≥ p})|.

By definition of ωt and p, we have ωt(p − 1) = ωt(j − t) = ω(i + 1). Therefore, we have
|E(G,ωt([i]∪{p−1}), {ωt(r) : r ≥ p})| = |E(G,ω([i+1]), {ωt(r) : r ≥ j−t+1})|. As we are
swapping ω(i+ 1) leftwards, {ωt(r) : r ≥ j− t+ 1} ⊆ {ω(r) : r ≥ i+ 2} = V (G) \ω([i+ 1]).
Again by definition of ωt and p, the elements in {ωt(l) : i < l < p − 1} are ordered
according to ω′, which is also true for {ωt(r) : r ≥ p}. More formally, {ωt(l) : i < l <

p − 1} = {ω ⊕i ω
′(l) : i + 1 ≤ l ≤ p − 2} = {ω′V (G)\ω([i+1])(l′) : l′ ≤ p − 2 − i} and

{ωt(r) : r ≥ p} = {ω ⊕i ω
′(r) : r ≥ p} = {ω′V (G)\ω([i+1])(r′) : r′ ≥ p− i− 1}. Therefore,

cw(G,ωt, p) ≤ cw(G,ω, i+ 2) + cw(G[V (G) \ ω([i+ 1])], ω′V (G)\ω([i+1]), p− i− 1)

≤ cw(G,ω) + cw(G[V (G) \ ω([i+ 1])], ω′V (G)\ω([i+1]))
≤ cw(G,ω) + cw(G,ω′)
≤ 2k.

To achieve the penultimate inequality, we again apply Lemma 4. ◀

Proof of Theorem 3. Consider the following sequence: ω = ω′ ⊕0 ω →∗ ω′ ⊕1 ω →∗ · · · →∗

ω′ ⊕n ω = ω′. By Lemma 6, one can realize each step in cutwidth at most cw(G,ω) +
cw(G,ω′) ≤ 2k, which then also upper-bounds the whole reconfiguration sequence. ◀

MFCS 2021

8:8 Order Reconfiguration Under Width Constraints

4 Slice Rewriting System

Slices. Let I = {[a] : a ∈ N} denote the set of intervals of the form [a] = {1, . . . , a} for
a ∈ N (recall that [0] = ∅). We let I0 = {{0} × [a] : [a] ∈ I}, and I1 = {{1} × [a] : [a] ∈ I}.
A slice S = (I, C,O,E) is a (multi-)graph where the vertex set V = I ∪̇ C ∪̇ O is partitioned
into an in-frontier I ∈ I0, a center C ∈ I and an out-frontier O ∈ I1, and E is a multiset of
unordered pairs from I ∪ C ∪O in such a way that vertices of I ∪O have degree exactly 1,
there is no edge between any two vertices in I, and no edge between any two edges in
O. We depict slices as in Figure 2. We define slices using multigraphs, as the gluing
operation, defined below, can take slices which are simple graphs, and create a slice which is
a multigraph (see Figure 5). Given a slice S, we define I(S) as the in-frontier of S, O(S) as
the out-frontier of S, and C(S) as the center vertices of S. The width of a slice S is defined
as w(S) = max(|I(S)|, |O(S)|).

S
1

2
3

1
2
3
1

2 4

Figure 2 Slices are drawn as tiles. This figure depicts the slice S = (I, C, O, E) where I =
{(0, 1), (0, 2)}, C = {1, 2, 3}, O = {(1, 1), (1, 2), (1, 3), (1, 4)} and E = {{(0, 1), 1}, {(0, 2), 3}, {1, 2},

{2, 3}, {1, (1, 1)}, {2, (1, 2)}, {2, (1, 3)}, {3, (1, 4)}}. We omit the first element of the pair for frontier
vertices and use the following convention. The in-frontier vertices are on the left of the tile and the
out-frontier vertices are on the right of the tile. If the frontier vertices are not explicitly mentioned
in the drawing, we assume that frontier vertices are ordered from top to bottom as in this drawing.

Gluing Slices. A slice S1 = (I1, C1, O1, E1) can be glued to S2 = (I2, C2, O2, E2) if for some
interval [a] ∈ I, O1 = {1}×[a] and I2 = {0}×[a]. In this case, the gluing gives rise to the slice
S1 ◦ S2 = (I1, C1 ∪ (|C1| ⊕C2), O2, E) where |C1| ⊕C2 = {|C1| + 1, |C1| + 2, . . . , |C1| + |C2|},

E ={{x, y} ∈ E1 : x, y ∈ I1 ∪ C1}
∪ {{x, y} ∈ E2 : x, y ∈ O2}
∪ {{x, y + |C1|} : {x, y} ∈ E2 ∧ x ∈ O2 ∧ y ∈ C2}
∪ {{x+ |C1|, y + |C1|} : {x, y} ∈ E2 ∧ x, y ∈ C2}
∪ {{x, y} : ∃i, {x, (1, i)} ∈ E1 ∧ y ∈ O2 ∧ {(0, i), y} ∈ E2}
∪ {{x, y} : ∃i, {x, (1, i)} ∈ E1 ∧ y ∈ |C1| ⊕ C2 ∧ {(0, i), y − |C1|} ∈ E2}.

Note that the gluing operation is associative. Therefore, we will not write parentheses for
the gluing of more than two slices. Figure 3 illustrates the gluing of two slices.

Unit Slices and Unit Decompositions. We say that a slice is a unit slice if it has a unique
vertex in its center. A unit decomposition is a sequence U = S1S2 . . .Sn, where Si are
unit slices and Si ◦ Si+1 is well defined for each i ∈ [n− 1]. The slice associated to a unit
decomposition U is defined as

◦
U= S1 ◦ S2 ◦ . . . ◦ Sn (Figure 4). Note that if the in-frontier

of S1 and the out-frontier of Sn are empty, then
◦
U is just a multigraph with vertex set [n]

(Figure 5). For each k ∈ N, we define the alphabet Σ(k) as the set of all unit slices of width
at most k. We let Σ(k)⊛ denote the set of all unit decompositions over Σ(k).

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 8:9

S1

11

2

1
2
3
◦

S2

13 2
2
1 1=

S1 ◦ S2

11 1

22 2

Figure 3 Gluing of two slices S1 and S2. The gluing operation is a way to merge two slices into
one. In this example, the edge from the center vertex 1 from S1 to the out-frontier vertex (1, 2) is
stitched to the edge from the in-frontier vertex (0, 2) to the center vertex 1 from S2 to form the
edge between the center vertices 1 and 2 in S1 ◦ S2. The stitching of edges is done following the
order of the frontier vertices.

S1

1
◦

S2

1 ◦
S3

1
=

◦
U

1
2

3

Figure 4 Slice associated to the unit decomposition U = S1S2S3. The gluing operation is
associative, therefore parentheses are not needed.

The order of the unit slices in a unit decomposition U = S1S2 . . .Sn induces a linear
order ωU on the vertices of the slice

◦
U. This linear order sets ωU(i) = (0, i) for each

(0, i) ∈ I(S1), ωU(|I(S1)| + i) = i for each i ∈ {1, . . . , n} and ωU(|I(S1)| + n+ i) = (1, i) for
each (1, i) ∈ O(Sn).

Given a unit decomposition U = S1S2 . . .Sn in Σ(k)⊛, we let w(U) = maxi∈[n] w(Si).

▶ Proposition 7. Let k ∈ N, and U = S1S2 . . .Sn be a unit decomposition in Σ(k)⊛, and
ωU be the linear order induced by U on

◦
U. Then, cw(

◦
U, ωU) = w(U).

Proof. This follows by noticing that for each vertex p in {1, . . . , |I(S1)|}, cw(
◦
U, ωU, p) ≤

|I(S1)|, for each p in {|I(S1)| + n, . . . , |I(S1)| + n + |O(Sn)|}, cw(
◦
U, ωU, p) ≤ O(Sn), and

for each p ∈ {|I(S1)| + 1, . . . , |I(S1)| + n}, cw(
◦
U, ωU, p) ≤ w(Si−|I(S1)|). ◀

▶ Proposition 8. Let G be an n-vertex graph and ω be a linear order on the vertices of G of
cutwidth k. Then, we can construct in time O(kn) a unit decomposition U such that ω = ωU.

Proof. We will do this construction by first drawing the graph G in the plane. G does not
need to be planar for this construction to work. First, we will place the vertices of G on a
straight line L isomorphic to R. The ith vertex of G with respect to the linear order ω is placed
at the coordinate i on the line. Then edges are drawn as curves between their endpoints. Now,
we will draw n+1 lines perpendicular to L at coordinates {−0.5, 0.5, 1.5, . . . , n−0.5, n+ 0.5}.
We call these lines cut-lines. The cutwidth of ω is k, therefore each cut-line intersects at
most k edges in the drawing of G. We put a vertex at the intersection of a cut-line and an
edge. The graph between two consecutive cut-lines defines a unit slice of width at most k.
Taking all those slices in the order induced by ω on the line L gives a unit decomposition U
of width k such that ω = ωU. Figure 6 illustrates this construction. ◀

Equivalence of Slices. Let S1 = (I1, C1, O1, E1) and S2 = (I2, C2, O2, E2) be two slices.
We say that S1 is equivalent to S2, denoted by S1 ∼ S2, if and only if I1 = I2, O1 = O2,
C1 = C2, and there is an isomorphism ϕ from S1 to S2 such that the restriction of ϕ to I1
and O1 is the identity function. In other words, S1 and S2 are equivalent if they are equal
up to the renaming of the center vertices.

MFCS 2021

8:10 Order Reconfiguration Under Width Constraints

(a)

S1

1 ◦
S2

1
◦

S3

1 =

◦
U

1
2

3

Figure 5 Slice associated to the unit decomposition U = S1S2S3. The resulting slice does not
have any vertex in its frontier. It can therefore be seen as a multigraph on 3 vertices.

(b) 1 2 3 ⇒
S1

1

S2

1

S3

1

Figure 6 Slicing of the graph G on the left into a unit decomposition U on the right.

We let R(k) ⊆ Σ(k)2×Σ(k)2 be the set of all rewriting rules of the form S1S2 → S′
1S′

2 such
that S1 ◦ S2 ∼ S′

1 ◦ S′
2. Call two unit decompositions U,U′ ∈ Σ(k)⊛ locally R(k)-equivalent,

and denote this fact by U k∼ U′, if there exist W,W′ ∈ Σ(k)⊛ and S1,S′
1,S2,S′

2 ∈ Σ(k)
with S1 ◦ S2 ∼ S′

1 ◦ S′
2 such that U = WS1S2W′ and U′ = WS′

1S′
2W′ (Figure 7).

S1

1

S2

1
∼

S′
1

1

S′
2

1

Figure 7 Local Equivalence. S1S2 is (locally) R(4)-equivalent to S′
1S′

2.

We let k≡ ⊆ Σ(k)⊛ × Σ(k)⊛ be the equivalence relation defined on unit decompositions
by taking the reflexive, symmetric and transitive closure of k∼. If U k≡ U′, then we say that
U′ is R(k)-equivalent to U. We note that there may exist unit decompositions in Σ(k)⊛

that are not R(k)-equivalent but that are R(k′)-equivalent for some k′ > k.

▶ Lemma 9. Let k ∈ N and U and U′ be unit decompositions in Σ(k)⊛. If U is R(k)-
equivalent to U′, then

◦
U is isomorphic to

◦
U′.

Proof. It is enough to show that that if U can be transformed into U′ in one R(k)-rewriting
step then

◦
U is isomorphic to

◦
U′. Therefore, assume that U → U′. Then there exist unit

decompositions W,W′ ∈ Σ(k)⊛ and a rewriting rule S1S2 → S′
1S′

2 in R(k) such that
U = WS1S2W′ and U′ = WS′

1S′
2W′. Since S1 ◦ S2 ∼ S′

1 ◦ S′
2, we have an isomorphism φ

from S1 ◦ S2 to S′
1 ◦ S′

2 that acts as the identity map on frontier vertices. This implies that
◦
U=

◦
W ◦ S1 ◦ S2 ◦

◦
W′ is isomorphic to

◦
U′=

◦
W ◦ S′

1 ◦ S′
2 ◦

◦
W′. ◀

Twisting. Let U = S1S2 · · · Sn and U′ = S′
1S′

2 · · · S′
n be two unit decompositions. We say

that U is a twisting of U′ if
◦
U=

◦
U′. Note that we are not equating slices up to isomorphism.

In other words, we are really requiring that the slices
◦
U and

◦
U′ are syntactically identical.

Let S1 and S2 be unit slices in Σ(k) such that the out-frontier of S1 and the in-frontier
of S2 have k′ vertices for some k′ ≤ k. Given a permutation π : [k′] → [k′], let Sπ

1 be the
slice obtained by renaming each vertex (1, i) in the out-frontier of S1 to (1, π(i)), and let πS2

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 8:11

S1

1 ◦
S2

1
◦

S3

1 =

◦
U=

◦
U′

1
2

3 =

S′
1

1 ◦
S′

2

1 ◦
S′

3

1

Figure 8 The unit decomposition U = S1S2S3 is a twisting of the unit decomposition U′ =
S′

1S′
2S′

3. Note that S2 ◦ S3 = S′
2 ◦ S′

3. Note that if we let π be the permutation that sets π(1) = 2,
π(2) = 3 and π(3) = 1, then S′

2 is obtained by permuting the out-frontier of S2 according to π and
S′

3 is obtained by permuting the in-frontier of S3 according to π.

be the slice obtained by renaming each vertex (0, i) in the in-fronter of S2 to (0, π(i)). Then
it should be clear that S1 ◦ S2 = Sπ

1 ◦ πS2. Additionally, for each two unit slices S′
1 and S′

2
such that S1 ◦ S2 = S′

1 ◦ S′
2, it should be clear that there is some permutation π such that

S′
1 = Sπ

1 and S′
2 = πS2. Note also that for each two such slices S′

1 and S′
2, the rewriting rule

S1S2 → S′
1S′

2 belongs to R(k). This implies that if a unit decomposition U = S1S2 . . .Sn is
a twisting of a unit decomposition U′ = S′

1S′
2 . . .S′

n, then U and U′ are R(k)-equivalent and
can be transformed into each other by applying a sequence of rewriting rules that “twists”
for each i ∈ [n − 1] the out-frontier of Si and the in-frontier of Si+1 according to some
permutation πi. This process is illustrated in Figure 8.

▶ Proposition 10 (Twisting). Let U = S1S2 · · · Sn and U′ = S′
1S′

2 · · · S′
n be two unit

decompositions in Σ(k)⊛ such that U is a twisting of U′. Then, U can be transformed
into U′ by the application of n− 1 rewriting rules from R(k).

An interesting question is whether, for each k ∈ N, there is some k′ ∈ N such that any two
unit decompositions U and U′ in Σ(k) are R(k′)-equivalent if and only if

◦
U is isomorphic

to
◦

U′. The answer turns out to be yes, as shown in Theorem 11 below.

▶ Theorem 11. Let U and U′ be unit decompositions in Σ(k)⊛. Then,
◦
U is isomorphic

to
◦

U′ if and only if U and U′ are R(2k)-equivalent.

Proof. Let U = S1S2 · · · Sn and U′ = S′
1S′

2 · · · S′
n. Suppose that U and U′ are R(2k)-

equivalent. Then by Lemma 9,
◦
U is isomorphic to

◦
U′.

For the converse, suppose that
◦
U is isomorphic to

◦
U′ and let φ be an isomorphism from

◦
U to

◦
U′. We show that U and U′ are R(2k)-equivalent.

Given a position i ∈ [n− 1] in the unit decomposition U, a swap between Si and Si+1 is
a rewriting rule in R(k′) for some k′ that rewrites U into the unit decomposition

Ui = S1S2 · · · Si−1S′′
i S′′

i+1Si+2 · · · Sn

such that, the function ψ : [n] → [n] that sets ψ(p) = p for all p /∈ {i, i+ 1}, ψ(i) = i+ 1 and
ψ(i+ 1) = i is an isomorphism from

◦
U to

◦
Ui.

Intuitively, we swap the center vertex of Si with the center vertex of Si+1. Note that
there may be several rewriting rules corresponding to such a swap. Now, a swap in the unit
decomposition U corresponds to a swap in ωU as defined for linear orders in Section 2. The
isomorphism φ defines a transformation of ωU into ωU′ .

By Proposition 7, cw(
◦
U, ωU) ≤ k and cw(

◦
U′, ωU′) ≤ k. Now, our result in Section 3 can

be used for the slice rewriting system R(2k). More precisely, it follows from Theorem 3 that
we can transform ωU into ωU′ by a sequence of O(n2) swaps and at each step, the cutwidth
is at most 2k. By using the rewriting rules from R(2k), we can replicate these swaps into the
unit decomposition U, obtaining in this way a unit decomposition U′′ such that ωU′′ = ωU′ .

MFCS 2021

8:12 Order Reconfiguration Under Width Constraints

Since
◦

U′′=
◦

U′, we have that U′′ is a twisting of U′. Therefore, it follows from Proposition 10
that U′′ can be further transformed into U′ by applying a sequence of n− 1 rewriting rules
from R(k) ⊆ R(2k).

Hence, U can be rewritten into U′′ by applying O(n2) rewriting rules from R(2k). ◀

Theorem 11 allows us to establish connections between the graph isomorphism problem
for graphs of cutwidth at most k and the reachability problem in R(2k).

▶ Theorem 12 ([10]). Let G be an n-vertex graph of cutwidth k. We can compute a linear
order ω of the vertices of G of width k in time 2O(k2) · n.

▶ Theorem 13. Graph isomorphism for n-vertex graphs of cutwidth at most k can be reduced
in time 2O(k2) · n to R(2k)-reachability.

Proof. Given n-vertex graphs G and G′ of cutwidth at most k, we first compute in time
2O(k2) · n linear orders ω and ω′ of the vertex sets of G and G′, respectively, of cutwidth at
most k. Then, from Proposition 8, we construct unit decompositions U and U′ such that
ωU = ω, ωU′ = ω′, G is isomorphic to

◦
U and G′ is isomorphic to

◦
U′. By Proposition 8, those

decompositions belong to Σ(k)⊛. By Theorem 11, we have that
◦
U and

◦
U′ are isomorphic if

and only if U and U′ are R(2k)-equivalent. ◀

5 Order Reconfiguration Parameterized by Vertex Separation Number

In this section, we show that the techniques employed in Section 3 for total orders of bounded
cutwidth can be generalized to the context of orders of bounded vertex-separation number
(Theorem 16). We consider that this generalization may be of independent interest in the
theory of reconfiguration, since vertex separation number is a width measure for graphs that
is strictly more expressive than cutwidth.

Let G be an n-vertex graph. Given sets S, S′ ⊆ V (G), we let V (G,S, S′) = {u ∈ S :
∃v ∈ S′ : {u, v} ∈ E(G)} be the set of vertices in S that are adjacent to some vertex in S′.
As a special case, we define V (G,S) = V (G,S, V (G) \ S). We will often make use of the
following monotonicity property without explicitly mentioning: If T ⊆ S and T ′ ⊆ S′, then
|V (G,T, T ′)| ≤ |V (G,S, S′)|.

▶ Definition 14 (Vertex Separation Number). Let G be an n-vertex undirected graph with
vertex set V (G) and edge set E(G). Let ω : [n] → V (G) be a linear order on the vertices of
G. For each p ∈ [n], we let

vsn(G,ω, p) = |V (G,ω([p− 1]))| = |{l ∈ [p− 1] : ∃r ≥ p such that {ω(l), ω(r)} ∈ E(G)}|.

The vertex separation number of ω is defined as vsn(G,ω) = maxp∈[n] vsn(G,ω, p). The
vertex separation number of G is defined as vsn(G) = minω vsn(G,ω) , where ω ranges over
all linear orders on the vertex set V .

For each k ∈ N and each n-vertex graph G, let VSN(G, k) = {ω : [n] → V (G) : vsn(G,ω) ≤
k} be the set of linear orders of V (G) of vertex separation number at most k. We say that ω
can be reconfigured into ω′ in vertex separation number at most k if there is a reconfiguration
sequence ω = ω0

i1−→ ω1
i2−→ · · · ir−→ ωr = ω′ such that for each j ∈ [r], ωj ∈ VSN(G, k).

▶ Problem 15 (Bounded Vertex Separation Number Reconfiguration). Let G be an n-vertex
graph, ω, ω′ : [n] → V (G) be linear orders on the vertex set of G, and k ∈ N. Is it true that
ω can be reconfigured into ω′ in vertex separation number at most k?

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 8:13

The proof of Theorem 16 below is analogous to the proof of Theorem 3. More precisely,
this proof follows by restating Lemma 4, Lemma 5 and Lemma 6 in terms of the vertex
separation number of a graph instead of cutwidth, and then by using this last restated lemma
to conclude the proof, as done in Theorem 3.

▶ Theorem 16. Let G be an n-vertex graph and ω, ω′ : [n] → V (G) be linear orders of
V (G) of vertex separation number at most k. Then, ω can be reconfigured into ω′ in vertex
separation number at most vsn(G,ω) + vsn(G,ω′) ≤ 2k.

6 Conclusion

In this work, we have studied the order reconfiguration problem under the framework of the
theory of fixed-parameter tractability. In particular, in our main technical result, we have
shown that the order reconfiguration problem for orders of cutwidth at most k can always
be achieved in cutwidth at most 2k (Theorem 3). Using this result, we have established
new connections between the graph isomorphism problem and the reachability problem for a
special two-letter string rewriting system operating on unit slices. In particular, we have
proven that unit decompositions U and U′ of width k are R(2k)-equivalent if and only if the
graphs U and U′ are isomorphic (Theorem 11).

Theorem 11 opens up the possibility of studying the graph isomorphism problem under
the perspective of term rewriting theory. The most immediate question in this direction
is the complexity of deciding R(2k)-reachability for unit decompositions of width k. By
a reduction to isomorphism of graphs of cutwidth k, this problem can be solved in time
2O(k·polylogk)nO(1) using the results from [14]. Can techniques that are intrinsic to string/term
rewriting theory be used to improve this running time? Can such techniques be used to
obtain algorithms running in time f(k) · nO(1) for some computable function f : N → N?
Note that a positive answer to this question would be conceptually relevant even if the
function f(k) is substantially worse than the current 2O(k·polylog(k)), since techniques based
on rewriting may carry over to contexts where group theoretic techniques do not. One
interesting line of attack for this question would be to study connections between R(2k) and
techniques related to Knuth-Bendix completion and their generalizations [25, 26, 18, 16].

A natural question that arises in the context of reconfiguration of linear orders is the
following: given two linear orders ω and ω′, what is the minimum cutwidth of a linear order
ω′′ occurring in a reconfiguration sequence from ω to ω′? Is this problem NP-hard, or hard
to approximate? Is it solvable in FPT-time for certain parameters? We thank one of the
reviewers for bringing these interesting questions to our attention.

References

1 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1999.

2 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel
Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, pages 684–697. ACM, 2016.

3 László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of graphs with bounded
eigenvalue multiplicity. In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and
Lawrence H. Landweber, editors, Proceedings of the 14th Annual ACM Symposium on Theory
of Computing, STOC ’82, pages 310–324. ACM, 1982.

MFCS 2021

8:14 Order Reconfiguration Under Width Constraints

4 László Babai, William M. Kantor, and Eugene M. Luks. Computational complexity and the
classification of finite simple groups. In 24th Annual Symposium on Foundations of Computer
Science, FOCS ’83, pages 162–171. IEEE, 1983.

5 Erik Barendsen. Term Rewriting Systems. Cambridge University Press, 2003.
6 Ronald V. Book and Friedrich Otto. String-rewriting systems. In String-Rewriting Systems,

pages 35–64. Springer, 1993.
7 Rodney G. Downey and Michael R. Fellows. Fundamentals of Paramterized Complexity.

Springer, 2013.
8 John A. Ellis, Ivan H. Sudborough, and Jonathan S. Turner. The vertex separation and search

number of a graph. Information and Computation, 113(1):50–79, 1994.
9 Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algorithms for

permutation groups. In 21st Annual Symposium on Foundations of Computer Science, FOCS
’80, pages 36–41. IEEE Computer Society, 1980.

10 Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos,
and Marcin Wrochna. Cutwidth: obstructions and algorithmic aspects. Algorithmica, 81(2):557–
588, 2019.

11 Martin Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
Journal of the ACM, 59(5):27, 2012.

12 Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. SIAM Journal on Computing, 44(1):114–159, 2015.

13 Martin Grohe, Daniel Neuen, and Pascal Schweitzer. A faster isomorphism test for graphs of
small degree. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, pages 89–100. IEEE, 2018.

14 Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An improved isomorph-
ism test for bounded-tree-width graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, pages 67:1–67:14, 2018.

15 Martin Grohe and Pascal Schweitzer. Isomorphism testing for graphs of bounded rank width.
In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, pages 1010–1029. IEEE, 2015.

16 Nao Hirokawa, Aart Middeldorp, Christian Sternagel, and Sarah Winkler. Abstract completion,
formalized. Logical Methods in Computer Science, 15(3), 2019.

17 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theoretical Computer Science, 412(12-14):1054–1065, 2011.

18 Deepak Kapur and Paliath Narendran. The Knuth-Bendix completion procedure and Thue
systems. SIAM Journal on Computing, 14(4):1052–1072, 1985.

19 Jan Willem Klop. Term Rewriting Systems. Centrum voor Wiskunde en Informatica, 1990.
20 Stefan Kratsch and Pascal Schweitzer. Isomorphism for graphs of bounded feedback vertex

set number. In Haim Kaplan, editor, Algorithm Theory - SWAT 2010, 12th Scandinavian
Symposium and Workshops on Algorithm Theory, volume 6139 of Lecture Notes in Computer
Science, pages 81–92. Springer, 2010.

21 Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, pages 186–195. IEEE,
2014.

22 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of Computer and System Sciences, 25(1):42–65, 1982.

23 Gary Miller. Isomorphism testing for graphs of bounded genus. In Raymond E. Miller, Seymour
Ginsburg, Walter A. Burkhard, and Richard J. Lipton, editors, Proceedings of the 12th Annual
ACM Symposium on Theory of Computing, STOC ’80, pages 225–235. ACM, 1980.

24 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.

E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf 8:15

25 Christian Sternagel and René Thiemann. Formalizing Knuth-Bendix orders and Knuth-
Bendix completion. In Femke van Raamsdonk, editor, 24th International Conference on
Rewriting Techniques and Applications, RTA 2013, volume 21 of LIPIcs. Schloss Dagstuhl,
Leibniz-Zentrum für Informatik, 2013.

26 Ian Wehrman, Aaron Stump, and Edwin Westbrook. Slothrop: Knuth-Bendix completion with
a modern termination checker. In Frank Pfenning, editor, Term Rewriting and Applications,
17th International Conference, RTA 2006, volume 4098 of Lecture Notes in Computer Science,
pages 287–296. Springer, 2006.

27 Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. Journal of Computer
and System Sciences, 93:1–10, 2018.

MFCS 2021

	1 Introduction
	2 Preliminaries
	3 Linear Order Reconfiguration
	4 Slice Rewriting System
	5 Order Reconfiguration Parameterized by Vertex Separation Number
	6 Conclusion

