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ABSTRACT
We present a new data-driven model to reconstruct nonlinear flow from spatially sparse observations. The proposed model is a version of
a Conditional Variational Auto-Encoder (CVAE), which allows for probabilistic reconstruction and thus uncertainty quantification of the
prediction. We show that in our model, conditioning on measurements from the complete flow data leads to a CVAE where only the decoder
depends on the measurements. For this reason, we call the model semi-conditional variational autoencoder. The method, reconstructions,
and associated uncertainty estimates are illustrated on the velocity data from simulations of 2D flow around a cylinder and bottom currents
from a simulation of the southern North Sea by the Bergen Ocean Model. The reconstruction errors are compared to those of the Gappy
proper orthogonal decomposition method.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0025779., s

I. INTRODUCTION

Reconstruction of non-linear dynamic processes from sparse
observations traditionally requires knowledge of the processes and
the governing equations to be able to generalize to a wider area
around, in-between, and beyond the measurements. Alternatively,
it is possible to learn the underlying processes or equations based on
the data itself, the so-called data-driven methods. In geophysics and
environmental monitoring, measurements are often only available at
sparse locations. For instance, within the field of meteorology, atmo-
spheric pressures, temperatures, and wind are only measured at a
limited number of stations. Producing accurate and general weather
predictions requires methods that both forecast for the future and
also reconstruct where no data are available. Within oceanogra-
phy, one faces the same problem that in situ information about the
ocean dynamics is only available at sparse locations such as buoys or
sub-sea sensors.

Both the weather and ocean currents can be approxi-
mated with models that are governed by physical laws, e.g., the
Navier–Stokes equation. However, it is of crucial importance to
incorporate observations in order to obtain accurate reliable recon-
structions and forecasts.

Reconstruction and inference based on sparse observations are
important in numerous applications.1–6 Bolton and Zanna3 used
Convolutional Neural Networks (CNNs) to hindcast ocean mod-
els, and Yeo7 reconstructed time series from nonlinear dynamics
based on sparse observations. Oikonomo et al.8 proposed a method
for filling data gaps in groundwater level observations, and Kong
et al.2 used reconstruction techniques to model the characteristics
of cartridge valves.

The above mentioned applications and methods are just some
of the many examples of reconstruction of a dynamic process based
on limited information. Here, we focus on the reconstruction of
flow. This problem can be formulated as follows: Let w ∈ Rd,

Phys. Fluids 33, 017119 (2021); doi: 10.1063/5.0025779 33, 017119-1

© Author(s) 2021

https://scitation.org/journal/phf
https://doi.org/10.1063/5.0025779
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0025779
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0025779&domain=pdf&date_stamp=2021-January-28
https://doi.org/10.1063/5.0025779
https://orcid.org/0000-0002-3373-0056
https://orcid.org/0000-0002-0848-5706
https://orcid.org/0000-0001-9489-1657
https://orcid.org/0000-0001-5757-4345
mailto:Kristian.Gundersen@uib.no
mailto:Anna.Oleynik@uib.no
mailto:Nello.Blaser@uib.no
mailto:Guttorm.Alendal@uib.no
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0025779


Physics of Fluids ARTICLE scitation.org/journal/phf

d ∈ N, represent a state vector of the flow containing, for exam-
ple, velocity, pressure, and temperature. Here, we will focus on in-
compressible unsteady fluid flows in 2D, so w = (u, v) ∈ R2, where
u and v are the two velocity components. The velocity vector, w, is
typically obtained from computational fluid dynamic simulations on
a meshed spatial domain, P, at discrete times, T = {t1, . . . , tK}.

Let P = {p1, . . . , pN} consist of N grid points pn, n = 1, . . ., N.
Then, the state of the flow, w, evaluated on P at a time ti ∈ T, can be
represented as a vector x(i) ∈ R2N ,

x(i) = (u(p1, ti), . . . , u(pN , ti), v(p1, ti), . . . , v(pN , ti))T . (1)

The collection of x(i), i = 1, . . ., K, constitutes the dataset X. In order
to account for incompressibility, we introduce a discrete divergence
operator Ldiv , which is given by a N × 2N matrix associated with a
finite difference scheme, and

(Ldiv x)k ≈ (∇ ⋅w)(pk) = 0. (2)

Furthermore, we assume that the state is measured only at spe-
cific points in P, that is, at Q = {q1, . . . , qM} ⊂ P with typically M
≪ N. Hence, there is M = {m(i) ∈ R2M : m(i) = C x(i), ∀x(i) ∈ X},
where C ∈ R2M×2N represents a sampling matrix. More specifically,
C is a two block matrix,

C = (
C1/2 O

O C1/2
),

(C1/2)ij =
⎧⎪⎪⎨⎪⎪⎩

1, if qi = pj

0, otherwise
, i = 1, . . . , N j = 1, . . . , M,

and O ∈ RM×N is the zero matrix. The problem of reconstructing
fluid flow x(i) ∈ X from m(i) ∈M is presented as a schematic plot in
Fig. 1.

There have been a wide range of methods for solving the prob-
lem, e.g., Refs. 9–14. In particular, the use of proper orthogonal
decomposition (POD)9 techniques has been popular. It is a tradi-
tional dimensional reduction technique where, based on a dataset,
a number of basis functions are constructed. The key idea is that
linear combinations of these basis functions can reconstruct the
original data within some error margin, efficiently reducing the
dimension of the problem. In a modified version of the POD, the
Gappy POD (GPOD),10 the aim is to fill the gap in-between sparse

FIG. 1. Sketch of reconstruction of x( i ) from m( i ). The dots on the right-hand side
represent the grid P, and those on the left-hand side represent the measurement
locations Q.

measurements. Given a POD basis, one can minimize the L2-error
with the measurements and find a linear combination of the POD-
basis that complements the measurements. If the basis is not known,
an iterative scheme can be formulated to optimize the basis based on
the measurements. The original application of GPOD10 was related
to reconstruction of human faces, and it has later been applied to
fluid flow reconstruction.4,15–17 This motivates us to use this method
for comparison in our study.

A similar approach is the Compressed Sensing (CS) tech-
nique.11 As for the GPOD method, the aim is to solve a linear system;
in the CS case, it will be a under-determined linear system. Hence,
there is a need for additional information about the system to be
able to solve it; typically, this can be a condition/constraint related
to the smoothness of the solution. The core difference between CS
and GPOD is, however, the sparsity constraint. That is, instead of
minimizing the L2-norm, we minimize the L1-norm. Minimizing the
L1-norm favors sparse solutions, i.e., solutions with a small number
of nonzero coefficients.

Another reconstruction approach is Dynamical Mode Decom-
position (DMD).12 Instead of using principal components in the
spatial domain, DMD seeks to find modes or representations that
are associated with a specific frequency in the data, i.e., modes in the
temporal domain. Again, the goal is to find a solution to an undeter-
mined linear system and reconstruct based on the measurements by
minimizing the deviance from the observed values.

During the past decade, data-driven methods have become
popular, partly because of the growth and availability of data, but
also driven by new technology and improved hardware. Modeling
non-linear relationships with linear approximations is one of the
fundamental limitation of the DMD, CS, and GPOD methods. There
have been efforts that involve neural networks and other machine
learning methods to solve the flow reconstruction and decomposi-
tion problem. For example, Pawar and San18 used data assimilation
to correct a physics-based model coupled with a neural network as
a surrogate to resolved flow dynamics in multiscale systems. Other
examples include the work of Erichson et al.19 that used shallow
neural networks to learn the input-to-output mapping between sen-
sor measurements and flow fields for a deterministic reconstruc-
tion of the data and that of Pérez et al.20 that reconstructed three-
dimensional flow fields from two-dimensional data through higher
order dynamic mode decomposition,21 while Gao et al.22 used an
attentional generative adversarial neural network to reconstruct and
interpolate air pollution data from Beijing. Probabilistic reconstruc-
tion of flow fields is not that widespread; however, Maulik et al.23

recently developed a probabilistic neural network for fluid flow sur-
rogate modeling and data recovery through Mixture Density Net-
works (MDN). MDNs can account for complex multi-modal con-
ditional distributions but are, in general, difficult to optimize. In
addition, MDNs have tendency to overfit the training data and are
prone to mode collapse.24 These are examples of recent initiatives
that seek to either reconstruct or decompose flow fields based on the
input from limited information with data-driven methods.

Another promising and interesting method where the neural
networks are informed with a physical law, the so-called Physic-
Informed Neural Networks (PINNs),14 has been developed during
the past few years. In PINNs, the reconstruction is typically informed
by a Partial Differential Equation (PDE) (e.g., Navier Stokes equa-
tion for fluid flow), and thus, the neural network can learn to fill
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the gap between measurements that are in compliance with this
equation. This is what Raissi et al.25 have shown for the benchmark
examples such as flow around a 2D and 3D cylinder.

Although PINNs are showing encouraging results, we have
yet to see applications to complex systems such as atmospheric or
oceanographic systems, where other aspects have to be accounted for
in large scale oceanic circulation models that are driven by forcing,
such as tides, bathymetry, and river-influx. That being said, these
problems may be resolved through PINNs in the future.

Popular non-linear data-driven approaches for reconstruction
of fluid flow are different variations of autoencoders.13,26,27 An
autoencoder28 is a special configuration of an artificial neural net-
work that first encodes the data by gradually decreasing the size of
the hidden layers. Through this process, the data are represented
in a lower dimensional space. A second neural network then takes
the output of the encoder as the input and decodes the representa-
tion back to its original shape. These two neural networks together
constitute an autoencoder.

Principal Component Analysis (PCA)29 also represent the data
in a different and more compact space. However, PCA reduces
the dimension of the data by finding orthogonal basis functions
or principal components through singular value decomposition. In
fact, it has been showed with a linear activation function, PCA and
autoencoders produce the same basis functions.30 The probabilis-
tic version of the autoencoder is called Variational Auto-Encoder
(VAE).31 Conditional Variational Auto-Encoders (CVAEs)32 are
conditional probabilistic autoencoders, that is, the model is depen-
dent on some additional information such that it is possible to create
representations that are dependent on this information.

Here, we address the mentioned problem from a probabilistic
point of view. Let x : P→ R2N and m : Q→ R2M be two multivariate
random variables associated with the flow on P and Q, respectively.
Then, the datasets X and M consist of the realizations of x and m,
respectively. Using X and M, we intend to approximate the proba-
bility distribution p(x|m). This would allow us not only to predict x(i)

given m(i) but also to estimate an associated uncertainty. We use a
variational autoencoder to approximate p(x|m). The method we use
is a Bayesian Neural Network (BNN)33 approximated through vari-
ational inference,34,35 which we have called Semi-Conditional Varia-
tional Auto-Encoder (SCVAE). A detailed description of the SCVAE
method for reconstruction and associated uncertainty quantification
is given in Sec. III B.

Here, we focus on fluid flow, being the main driving mech-
anism behind transport and dilution of tracers in marine waters.
The world’s oceans are under tremendous stress,36 UN has declared
2021–2030 as the ocean decade,80 and an ecosystem based Marine
Spatial Planning initiative has been launched by the Intergovern-
mental Oceanographic Commission of UNESCO (IOC).37

Local and regional current conditions determine transport of
tracers in the ocean.38,39 Examples are accidental release of radioac-
tive, biological, or chemical substances from industrial complexes,
e.g., organic waste from fish farms in Norwegian fjords,40 plastic,41

or other contaminants that might have adverse effects on marine
ecosystems.42

The ability to predict the environmental impact of a release,
i.e., concentrations as a function of distance and direction from
the source, requires reliable current conditions.43,44 Subsequently,
these transport predictions support design of marine environmental

monitoring programs.45–48 The aim here is to model current con-
ditions in a probabilistic manner using SCVAEs. This allows for
predicting footprints in a Monte Carlo framework, providing sim-
ulated data for training networks used for analyzing environmental
time series.49

We will compare results with the GPOD method.50 We are
aware that there are recent methods (e.g., PINNS and traditional
autoencoder) that may perform better on the specific datasets than
the GPOD; however, the simplicity, versatility, and, not least, popu-
larity of GPOD5,51,52 make it a great method for comparison.

The reminder of this manuscript is outlined as follows: Sec. II
presents a motivating example for the SCVAE-method in compari-
son with the GPOD-method. In Sec. III, we review both the VAE and
CVAE methods and present the SCVAE. Results from experiments
on two different datasets are presented in Sec. IV. Section V sum-
marizes and discusses the method, experiments, drawbacks, benefits,
potential extensions, and further work.

II. A MOTIVATING EXAMPLE
Here, we illustrate the performance of the proposed method

vs the GPOD method in order to give a motivation for this study.
We use data from simulations of a two dimensional viscous flow
around a cylinder at the Reynolds number of 160 obtained from
Ref. 53. The simulations were performed by Weinkauf and Theisel54

with the Gerris Flow Solver software.55 The dataset consists of a two
velocity components, u and v, on an uniform 400 × 50 × 1001 grid
of the [−0.5, 7.5] × [−0.5, 0.5] × [15, 23] spatial–temporal domain.
The simulations are run from t = 0 to t = 23, but velocities are only
extracted from t = 15 to t = 23. In particular, we have 400 points in
the horizontal direction, 50 points in the vertical direction, and 1001
points in time. The cylinder has a diameter of 0.125 and is centered
at the origin (see Fig. 2).

The left vertical boundary (inlet) has the Dirichlet boundary
condition, u = 1 and v = 0. The homogeneous Neumann boundary
condition is imposed at the right boundary (outlet) and with homo-
geneous Dirichlet conditions on the remaining boundaries. At the
start of the simulation, t = 0, both velocities were equal to zero. We
plot a snapshot of the velocities in Fig. 2.

In the experiment below, we extract the data downstream from
the cylinder, that is, from grid points 40–200 in the horizontal direc-
tion, and keep all grid points in the vertical direction. Hence, P
contains N = 8000 points, 160 points in the horizontal direction, and
50 in the vertical direction. The temporal resolution is kept as before,
that is, the number of time steps in T is K = 1001.

For validation purposes, the dataset was split into a train, val-
idation, and test dataset. For both the SCVAE and the GPOD, the
goal was to minimize the L2 error between the true and the mod-
eled flow state. The restriction of the GPOD is that the number of
components r can be at most 2M. To deal with this problem and to
account for the flow incompressibility, we added the regularization
term λ∥Ldivx(i)∥, λ > 0, to the objective function (see Appendix A).
For the GPOD method, the parameters r and λ are optimized on the
validation dataset in order to have the smallest mean error. We give
more details about objective functions for the SCVAE in Sec. III B.
For now, we mention that there are two versions, where one ver-
sion uses an additional divergence regularization term similar to
GPOD.
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FIG. 2. A spatial snapshot at the time t ≈ 19 (a time step of 500) of the flow field from the original 2D flow around a cylinder dataset53 with u and v components presented in
the upper and lower panels, respectively.

In Fig. 3, we plot the mean of the relative L2 error calcu-
lated on the test data for both methods with and without the div-
regularization (in-compressible fluid). The results are presented for
three, four, and five measurement locations, that is, M = 3, 4, 5. For
each of these three cases, we selected 20 randomly different config-
urations of M. In particular, we created 20 subgrids Q, each con-
taining five randomly sampled spatial grid points. Next, we removed
one and then two points from each of the 20 subgrids Q to create
new subgrids of 4 and 3 measurements, respectively. The figure is a
box-and-whisker plot of these 20 configurations, where outliers are
defined as data points that are outside 1.5 times the inter quartile
range from the upper and lower quantiles.

As shown in Fig. 3, both methods perform well with 5 mea-
surements. The resulting relative errors have comparable mean and
variance. When reducing the number of observations, the SCVAE
method maintains low errors, while the GPOD error increases. The

FIG. 3. The mean relative error for two reconstruction methods. The orange and
blue label correspond to the SCVAE with (div-on) and without (div-off) additional
divergence regularization. The green and red labels correspond to the GPOD
method. The figure is a box-and-whisker plot of the 20 configurations, where out-
liers are defined as data points that are outside 1.5 times the interquartile range
from the upper and lower quantiles (25/75).

SCVAE seems to benefit from the additional regularization of min-
imizing the divergence in terms of lower error and less variation
in the error estimates. The effect is more profound with fewer
measurements.

The key benefit of the SCVAE is that its predictions are opti-
mal for the given measurement locations. In contrast, the POD based
approaches and particularly the GPOD create a set of basis functions
(principal components) based on the training data independently of
the measurements. While this has an obvious computational advan-
tage, the number of principle components for complex flows can be
high and, as a result, many more measurements are needed.6,50,56

There are a number of algorithms that aim to optimize the measure-
ment locations to achieve the best performance of the POD based
methods (see Refs. 17, 50, and 51). In practice, however, the loca-
tions are often fixed and other approaches are needed. The results in
Fig. 3 suggest that the SCVAE could be one of these approaches.

III. METHODS
Before we introduce the model used for reconstruction of flows,

we give a brief introduction to VAEs and CVAEs. For a detailed
introduction, see Ref. 57. VAEs are neural network models that has
been used for learning structured representations in a wide vari-
ety of applications, e.g., image generation,58 interpolation between
sentences,59 and compressed sensing.26

A. Variational auto-encoders (VAE)
Let us assume that the dataset X is generated by a random

process that involves an unobserved continuous random variable z.
The process consists of two steps: (i) a value z(i) is sampled from
a prior pθ∗(z) and (ii) x(i) is generated from a conditional dis-
tribution, pθ∗(x∣z). In the case of flow reconstruction, z could be
unknown boundary or initial conditions, tidal and wind forcing, etc.
However, generally, z is just a convenient construct to represent X,
rather than a physically explained phenomena. Hence, it is, for con-
venience, assumed that pθ∗(z) and pθ∗(x∣z) come from parametric
families of distributions pθ(z) and pθ(x|z), and their density func-
tions are differentiable almost everywhere with respect to both z and
θ. A probabilistic autoencoder is a neural network that is trained to
represent its input X as pθ(x) via latent representation z ∼ pθ(z), that
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is,
pθ(x) = ∫ pθ(x, z)dz = ∫ pθ(x∣z)pθ(z)dz. (3)

As pθ(z) is unknown and observations z(i) are not accessible,
we must use X in order to generate z ∼ pθ(z|x). That is, the net-
work can be viewed as consisting of two parts: an encoder pθ(z|x)
and a decoder pθ(x|z). Typically, the true posterior distribution
pθ(z|x) is intractable but could be approximated with variational
inference.34,35 That is, we define the so-called recognition model
qϕ(z|x) with variational parameters ϕ, which aims to approximate
pθ(z|x). The recognition model is often parameterized as a Gaus-
sian. Thus, the problem of estimating pθ(z|x) is reduced to finding
the best possible estimate for ϕ, effectively turning the problem into
an optimization problem.

An autoencoder that uses a recognition model is called Vari-
ational Auto-Encoder (VAE). In order to get good prediction, we
need to estimate the parameters ϕ and θ. The marginal likelihood
is equal to the sum over the marginal likelihoods of the individual
samples, that is, ∑K

i=1 log pθ(x(i)). Therefore, we further on present
estimates for an individual sample. The Kullback–Leibler diver-
gence between two probability distributions qϕ(z|x(i)) and pθ(z|x(i)),
defined as

DKL[qϕ(z∣x(i))∥pθ(z∣x(i))]

= ∫ qϕ(z∣x(i)) log
⎛
⎜
⎝

qϕ(z∣x(i))
pθ(z∣x(i))

⎞
⎟
⎠

dz,

can be interpreted as a measure of distinctiveness between these two
distributions.60 It can be shown (see Ref. 57) that

log pθ(x(i)) = DKL[qϕ(z∣x(i))∥pθ(z∣x(i))] + L(θ,ϕ; x(i)), (4)

where

L(θ,ϕ; x(i)) = Eqϕ(z∣x(i))[− log qϕ(z∣x(i)) + log pθ(x(i), z)].

Since KL-divergence is non-negative, we have log pθ(x(i))
≥ L(θ,ϕ; x(i)) and L(θ,ϕ; x(i)) is called Evidence Lower Bound
(ELBO) for the marginal likelihood log pθ(x(i)). Thus, instead of
maximizing the marginal probability, one can instead maximize its
variational lower bound to which we also refer to as an objective
function. It can be further shown that the ELBO can be written as

L(θ,ϕ; x(i)) = Eqϕ(z∣x(i))[log pθ(x(i)∣z)]

−DKL[qϕ(z∣x(i))∥pθ(z)]. (5)

Reformulating the traditional VAE framework as a constraint opti-
mization problem, it is possible to obtain the β-VAE61 objective
function if pθ(z) = N(0, I),

L(θ,ϕ; x(i)) = Eqϕ(z∣x(i))[log pθ(x(i)∣z)]

− βDKL[qϕ(z∣x(i))∥pθ(z)], (6)

where β > 0. Here, β is a regularization coefficient that constrains the
capacity of the latent representation z. The Eqϕ(z∣x(i))[log pθ(x(i)∣z)]

can be interpreted as the reconstruction term, while the KL-term can
be interpreted βDKL[qϕ(z|x(i))∥pθ(z)] as a regularization term.

Conditional Variational Auto-Encoders32 (CVAE) are similar
to VAEs but differ by conditioning on an additional property of the
data (e.g., a label or class), here denoted c. Conditioning both the
recognition model and the true posteriori on both x(i) and c results
in the CVAE ELBO,

L(θ,ϕ; x(i), c) = Eqϕ(z∣x(i) ,c)[log pθ(x(i)∣z, c)]

−DKL[q(z∣x(i), c)∥pθ(z∣c)]. (7)

In the decoding phase, CVAE allows for conditional probabilistic
reconstruction and permits sampling from the conditional distribu-
tion pθ(z|c), which has been useful for generative modeling of data
with known labels (see Ref. 32). Here, we investigate a special case
of the CVAE when c is a partial observation of x. We call this the
Semi-Conditional Variational Auto-Encoder (SCVAE).

B. Semi-conditional variational auto-encoder
The SCVAE takes the input data X, conditioned on M, and

approximates the probability distribution pθ(x|z, m). Then, we can
generate x(i) based on the observations m(i) and latent representa-
tion z. As m(i) = Cx(i), where C is a non-stochastic sampling matrix,
we have

pθ(z∣x(i),m(i)) = pθ(z∣x(i)), and qϕ(z∣x(i),m(i)) = qϕ(z∣x(i)).

Therefore, from Eq. (7), the ELBO for SCVAE is

log pθ(x(i)∣m(i)) ≥ L(θ,ϕ; x(i),m(i))

= Eqϕ(z∣x(i))[log pθ(x(i)∣z,m(i))]

−DKL[qϕ(z∣x(i))∥pθ(z∣m(i))], (8)

where pθ(z∣m(i)) = N(0, I). Similarly, as for the β-VAE,61 we can
obtain a relaxed version of Eq. (8) by maximizing the parameters
{ϕ, θ} of the expected log-likelihood Eqϕ(⋅)[log pθ(x(i)∣m(i), z)]) and
treat it as a constrained optimization problem,

max
ϕ,θ

Eqϕ(⋅)[log pθ(x(i)∣m(i), z)] subject to

DKL(qϕ(z∣m(i), x(i))∥pθ(z∣m(i))) ≤ ϵ,
(9)

where ϵ > 0 is small. The subscript qϕ(⋅) is short for qϕ(z|m(i), x(i)).
Since m(i) is dependent on x(i), we have qϕ(z|m(i), x(i)) = qϕ(z|x(i)).
Equation (9) can be expressed as a Lagrangian under the Karush–
Kuhn–Tucker (KKT) conditions.62,63 Hence,

F(θ,ϕ,β,α, x(i),m(i)) = Eqϕ(⋅)[log pθ(x(i)∣m(i), z)]

+ β(DKL(qϕ(z∣x(i))∥pθ(z∣m(i)) − ϵ)).
(10)
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According to the complementary slackness KKT condition β ≥ 0, we
can rewrite Eq. (10) as

F(θ,ϕ,β, x(i),m(i)) ≥ L(θ,ϕ, x(i),m(i))

= Eqϕ(⋅)[log pθ(x(i)∣m(i), z)]

+ βDKL(qϕ(z∣x(i))∥pθ(z∣m(i))). (11)

The objective functions in Eqs. (8) and (11), later in Eq. (13), show
that if conditioning on a feature that is a known function of the orig-
inal data, such as measurements, we do not need to account for them
in the encoding phase. The measurements are then coupled with the
encoded data in the decoder. We sketch the main components of the
SCVAE in Fig. 4.

In order to preserve some physical properties of the data
X, we can condition yet on another feature. Here, we utilize the
incompressibility property of the fluid, i.e., d(i) = Ldivx(i) ≈ 0 [see
Eq. (2)]. We intend to maximize a log-likelihood under an additional
constrain d(i) compared to Eq. (9). That is,

max
ϕ,θ

Eqϕ(⋅)[log pθ(x(i)∣m(i), z)]

subject to

DKL(qϕ(z∣x(i))∥pθ(z∣m(i),d(i))) ≤ ϵ

and

− Eqϕ(⋅)[log pθ(d(i)∣m(i), z)] ≤ δ, (12)

where ϵ, δ > 0 are small. Equation (12) can expressed as a Lagrangian
under the Karush–Kuhn–Tucker (KKT) conditions as before, and as
a consequence of the complementary slackness condition λ, β ≥ 0, we
can obtain the objective function

FIG. 4. The figure shows a sketch of the model used to estimate pθ(x|m( i )).

F(θ,ϕ,β,α, x(i),m(i),d(i))

≥ L(θ,ϕ, x(i),m(i),d(i))

= Eqϕ(⋅)[log pθ(x(i)∣m(i), z)]

+ λEqϕ(⋅)[log pθ(d(i)∣m(i), z)]

− βDKL(qϕ(z∣x(i))∥pθ(z∣m(i),d(i))), (13)

where p(z∣m(i),d(i)) = N(0, I). For convenience of notation, we
refer to the objective function [Eq. (11)] as the case with λ = 0 and
the objective function [Eq. (13)] as the case with λ > 0. Observe that
under the Gaussian assumptions on the priors, Eq. (13) is equivalent
to Eq. (11) if λ = 0. Thus, from now on, we will refer to it as a spe-
cial case of Eq. (13) and denote as L0. Optimizing Eq. (13) can be
interpreted as a multi task learning,64 i.e., we optimize the network
to solve more than one task at a time. Multitask learning reduces the
risk of overfitting65 and produces more consistent results.64

Similar to Ref. 31, we obtain qϕ(z∣x(i)) = N(μ(i), diag(σ(i))2),
that is, ϕ = {μ(i), σ(i)}. This allows us to express the KL-
divergence terms in a closed form and avoid issues related to
differentiability of the ELBOs. Under these assumptions, the KL-
divergence terms can be integrated analytically, while the terms
Eqϕ(z∣x(i))[log pθ(x(i)∣z,m(i))] and Eqϕ(z∣x(i))[log pθ(d(i)∣z,m(i))]
require estimation by sampling,

Eqϕ(z∣x(i))[log pθ(x(i)∣z,m(i))] ≈ 1
L

L

∑
l=1

log pθ(x(i)∣z(i,l),m(i)),

Eqϕ(z∣x(i))[log pθ(d(i)∣z,m(i))] ≈ 1
L

L

∑
l=1

log pθ(d(i)∣z(i,l),m(i)),

where
z(i,l) = gϕ(ϵ(i,l), x(i)), ϵl ∼ p(ϵ). (14)

Here, ϵl is an auxiliary (noise) variable with independent marginal
p(ϵ), and gϕ(⋅) is a differentiable transformation of ϵ, parametrized
by ϕ (see Ref. 31 for details). We denote Lλ, λ ≥ 0 [Eq. (13)], with the
approximation above as L̂λ, that is,

L̂λ(θ,ϕ, x(i),m(i),d(i)) = 1
L

L

∑
l=1

log pθ(x(i)∣z(i,l),m(i))

+ λ
1
L

L

∑
l=1

log pθ(d(i)∣z(i,l),m(i))

− βDKL[qϕ(z∣x(i))∥pθ(z∣m(i),d(i))].
(15)

The objective function L̂λ can be maximized by gradient descent.
Since the gradient ∇θ,ϕ L̂λ cannot be calculated for large datasets,
Stochastic gradient descent methods (see Refs. 66 and 67) are typi-
cally used where

L̂λ(θ,ϕ;X,M,D) ≈ L̂R(θ,ϕ;XR,MR,DR)

= K
R

R

∑
r=1

L̂λ(θ,ϕ; x(ir),m(ir),d(ir)), λ ≥ 0. (16)
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Here, XR = {x(ir)}
R

r=1
, R < K is a mini-batch consisting of randomly

sampled datapoints, MR = {m(ir)}
R

r=1
, and DR = {d(ir)}

R

r=1
. After

the network is optimized, a posterior predictive distribution pθ(x|m,
d) can be approximated with a Monte Carlo estimator.

1. Uncertainty quantification
Let θ̂ and ϕ̂ be an estimation of generative and variational

parameters, as described in Sec. III B. Then, the decoder can be used
to predict the posterior as

pθ̂(x∣m
∗,d∗) ≈ 1

NMC

NMC

∑
j=1

pθ̂(x∣z
(j),m∗,d∗)

∫ÐÐÐÐ→
NMC→∞

pθ̂(x∣z,m∗,d∗)pθ̂(z∣m
∗,d∗)dz. (17)

While sampling from the latent space has been viewed typically
as an approach for generating new samples with similar properties,
here, we use it to estimate the prediction uncertainty of the trained
model. From Eq. (17), we are able to estimate the mean prediction x̂∗

and empirical covariance matrix Σ̂ using a Monte Carlo estimator.
We get

x̂∗ = 1
NMC

NMC

∑
j=1

x(j)

and

Σ̂ = 1
NMC − 1

NMC

∑
j=1
(x(j) − x̂∗)(x(j) − x̂∗)

T
, (18)

where x(j) ∼ pθ̂(x∣m
∗,d∗). The empirical standard deviation is then

σ̂ =
√

diag(Σ̂). To estimate the confidence region, we assume that
the predicted pθ̂(x∣m

∗,d∗) is well approximated by a normal distri-
bution N(μ, Σ). Given that x̂∗ and Σ̂ are approximations of μ and Σ,
obtained from NMC samples as above, a confidence region estimate
for a prediction x∗ can be given as

{x(i) ∈ R2N : (x(i) − x̂∗)
T
Σ̂+(x(i) − x̂∗) ≤ χ2

k(p)}, (19)

where χ2
k(p) is the quantile function for probability p of the chi-

squared distribution with k = min{NMC, 2N} degrees of freedom and
Σ̂+

is the pseudoinverse of Σ̂. Using the singular value decomposi-
tion, Σ̂ = USUT , the corresponding interval for (x∗)n, n = 1, . . ., 2N,
is

[(x̂∗)n −
√

χ2
k(p) ∥u

T
n S1/2∥2, (x̂∗)n +

√
χ2

k(p) ∥u
T
n S1/2∥2], (20)

where uT
n is nth row of the matrix U .

IV. EXPERIMENTS
We will present the SCVAE method on two different datasets.

The first one is the 2D flow around a cylinder described in Sec. II,
and the second is ocean currents on the seafloor created by the
Bergen Ocean Model (BOM).68 The data X consist of the two dimen-
sional velocities w = (u, v). To illustrate the results, we will plot u
and v components of x(i) ∈X [see Eq. (1)]. For validation of the mod-
els, the data X are split into train, test, and validation subsets, which

are subscripted accordingly, if necessary. The datasets, spitting, and
preprocessing for each case are described in Secs. IV A and IV B.

We use a schematically simple architecture to explore the
SCVAE. The main ingredient of the encoder is the convolutional
neural network (CNN),69,70 and for the decoder, we use transposed
CNN-layers.71 The SCVAE has a slightly different architecture in
each case, which we present in Appendix C.

The SCVAE is trained to maximize the objective function in
Eq. (16) with the backpropagation algorithm72 and the Adam algo-
rithm.73 We use an adaptive approach of weighing the reconstruc-
tion term with KL-divergence and/or divergence terms,74 that is,
finding the regularization parameters β and λ. Specifically, we cal-
culate the proportion of contribution of each term to the total
value of the objective function and scale the terms accordingly.
This approach prevents posterior collapse. Posteriori collapse occurs
if the KL-divergence term becomes too close to zero, resulting
in a non-probabilistic reconstruction. The approach of weigh-
ing the terms proportionally iteratively adjusts the weight of the
KL-divergence term, β, such that posterior collapse is mitigated. For
the result shown here, we trained the SCVAEs with early stopping
criteria of 50 epochs, i.e., the optimization is stopped if we do not
see any improvement after 50 epochs and returns the best model.
We use a two-dimensional Gaussian distribution for pθ(z|m(i), d(i))
in all the experiments.

Let the test data Xtest consist of n instances x(i), i = 1, . . ., n, and
x̂(i) denote a prediction of the true x(i) given m(i). In the case of the
SCVAE, x̂(i) is the mean prediction obtained as in Eq. (18). For the
GPOD method, x̂(i) is a deterministic output of the optimization
problem (see Appendix A). In order to compare the SCVAE results
with the results of the GPOD method, we introduce the mean of the
relative error for the prediction,

E = 1
n

n

∑
i=1

∥x̂(i) − x(i)∥2

∥x(i)∥2
, (21)

and the mean of the absolute error for the divergence,

Ediv =
1
n

n

∑
i=1
∥Ldiv x

(i)∥2. (22)

A. 2D flow around a cylinder
Here, we return to the example in Sec. II. In the following, we

give some additional details of the data preprocessing and model
implementation.

1. Preprocessing
The data are reduced, as described in Sec. II. We assess the

SCVAE with a sequential split for train, test, and validation: the last
15% of the data is used for test, the last 30% of the remaining data is
used for validation, and the first 70% is used for training. To improve
the conditioning of the optimization problem, we scale the data as
described in Appendix B. The errors, E [Eq. (21)] and Ediv [Eq. (22)],
are calculated after re-scaling the data back. The input to the SVAE
x(i) was reshaped as an array with dimension (160 × 50 × 2) in order
to apply convolutional layers. Here, we use five, four, three, and two
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fixed spatial measurements, that is, four different subgrids Q,

Q5 = {(12, 76), (47, 8), (30, 40), (153, 34), (16, 10)},

Q4 = {(12, 76), (47, 8), (30, 40), (153, 34)},

Q3 = {(12, 76), (47, 8), (30, 40)},

Q2 = {(12, 76), (47, 8)}.

(23)

The flow state at these specific locations constitutes M.

2. Model
A schematic description of the model is given in Appendix C.

The first layer of the encoder is a zero-padding layer that expands the
horizontal and vertical dimensions by adding zeros on the bound-
aries, a stencil of four in the horizontal direction and three in the ver-
tical direction. The subsequent layers consist of two convolutional
layers, where the first and second layers have 160 and 200 filters,
respectively. We use a kernel size and strides of 2 in both convolu-
tional layers and ReLu activation functions. This design compresses
the data into a (42× 14× 200) shape. The compressed representation
from the convolutional layers is flattened and is further compressed
into a 64 dimensional vector through a traditional dense layer. Two
outputs layers are defined to represent the mean and log-variance

of the latent representation z. The reparameterization trick is real-
ized in a third layer, the so-called lambda layer, which takes the
mean and log-variance as an input and generates z. The output of
the encoder are the samples z(i) and the mean and the log-variance
of z(i).

The decoder takes the latent representation z(i) and the mea-
surements m(i) as the input. The input m(i) is flattened and then
concatenated with z(i). The next layer is a dense layer with shape
(42 × 14 × 200). Afterward, there are two transposed convolutional
layers with filters of 200 and 160. The strides and the kernel size
are the same as those for the encoder. The final layer is a trans-
posed convolutional layer with the same dimension as the input to
the encoder, the dimension of x(i). A linear activation function is
used for this output layer. The last layer of the model is a lambda
layer that removes the zero-padding. In Sec. IV A 3, we show statis-
tics of the probabilistic reconstruction and compare with the GPOD
method.

3. Results
In Fig. 5, we have plotted the reconstructed velocity fields and

associated statistics. The observations placements are shown as stars
(black and white). The SCVAE with the objective function L̂0 [see
Eq. (7)] was used for this prediction. To generate the posterior pre-
dictive distributions [Eq. (17)], we sample 100 realizations from

FIG. 5. (a) and (b) represent u-velocities and (e)–(h) represent v-velocities and associated statistical measures, respectively. The results are based on a model trained with λ
= 0 and Q3 measurement locations. [(a) and (e)] True solutions. [(b) and (f)] Reconstructed solutions. [(c) and (g)] Standard deviations. [(d) and (h)] Absolute errors.
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z ∼ N(0, I), which allows for calculation mean prediction and
uncertainty estimates [see Eq. (18)].

We emphasize again that the SCVAEs with L̂0 and L̂λ, λ > 0, are
two different models. For the sake of notation, we here refer to λ = 0
when we mean the model with the objective function in Eq. (7) and
to λ > 0 when in Eq. (13). The same holds for the GPOD method (see
Appendix B). When λ = 0, the number of the principle components
r is less, 2M. The number r is chosen such that the prediction on the
validation data has the smallest possible error on average. If λ > 0, no
restrictions on r are imposed. In this case, both λ and r are estimated
from the validation data.

The results show that the SCVAE reconstructs the data well
with the associated low uncertainty. This can be explained by the
periodicity in the data. In particular, the training and validation
datasets represent the test data well enough.

In Fig. 6, we have plotted four time series of the reconstructed
test data at two specific grid points, together with the confidence
regions constructed as in Eq. (20) with p = 0.95. Figures 6(a) and 6(c)
represent the reconstruction at the grid point (6, 31), and Figs. 6(b)
and 6(d) represent that at (101, 25) for u and v, respectively. The
SCVAE reconstruction is significantly better than the GPOD and
close to the true solution for all time steps.

Figure 7 shows the difference between the true values and the
model prediction in time for the same two locations. This figure
has to be seen in context with Fig. 5. The difference marginals are
obtained based on the confidence region in Fig. 11. In Table I, we
display the relative errors [Eq. (21)] for the SCVAE and the GPOD

method, both with and without divergence regularization, for five,
four, three, and two measurement locations given in Eq. (23).

The results of the SCVAE depend on two stochastic inputs,
which are (i) randomness in the initialization of the prior weights
and (ii) random mini-batch sampling. We have trained the model
with each measurement configuration ten times and chose the model
that performs the best on the validation dataset. Ideally, we would
run test cases where we used all the values as measurements, i.e., M
= X, and test how well the model would reconstruct in this case. This
would then give us the lower bound of the best reconstruction that is
possible for this specific architecture and hyper-parameter settings.
However, this scenario was not possible to test due to limitations in
the memory in the GPU. Therefore, we have used a large enough M,
which still allowed us to run the model. In particular, we used every
fifth and second pixel in the horizontal and vertical directions, which
resulted in a total of (32 × 25) measurement locations, or M = 800.
We believe that training the model with these settings gave us a good
indication of the lower bound of the reconstruction error. The error
observed was of the magnitude of 10−3.

This lower bound has been reached for all measurement con-
figurations [see Eq. (23)]. However, a larger computational cost was
needed to reach the lower bound for fewer measurement locations.
Figure 8 shows the number of epochs as a boxplot diagram. For
each measurement configuration and regularization technique, the
model is run ten times. The variation of the number of epochs for
each measurement locations is due to different priors of the weights
and random mini-batch sampling. In comparison with GPOD, the

FIG. 6. Velocities u [(a) and (c)] and v [(b) and (d)] at grid points (6, 31) and (101, 25) with associated confidence regions, respectively. The estimates are based on a model
trained with λ = 0 and Q3 measurement locations.
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FIG. 7. The difference between the true and predicted u [(a) and (c)] and v [(b) and (d)] at grid points (6, 31) and (101, 25) with associated difference marginals, respectively.
The estimates are based on a model trained with λ = 0 and Q3 measurement locations.

TABLE I. The mean relative error E [Eq. (21)] for the SCVAE prediction and the GPOD prediction with or without
div-regularization and different number of measurements.

Measurement locations

Method Regularization 5 4 3 2

SCVAE λ = 0 0.30× 10−2 0.33× 10−2 0.26× 10−2 0.28× 10−2

λ > 0 0.31× 10−2 0.32× 10−2 0.30× 10−2 0.28× 10−2

GPOD λ = 0 2.35× 10−2 2.49× 10−2 3.38× 10−2 17.38× 10−2

λ > 0 2.12× 10−2 2.33× 10−2 3.15× 10−2 16.38× 10−2

SCVAE error is ten times lower than the GPOD-error, and this dif-
ference becomes larger with fewer measurements. Note that adding
regularization did not have much effect on the relative error. From
the motivating example, we observed that regularizing with λ > 0 is
better in terms of a more consistent and low variable error estima-
tion. Here, we selected from the ten trained models the one that per-
formed best on the validation dataset. This model selection approach
shows that there are no significant differences between the two regu-
larization techniques. The associated errors in the divergence of the
velocity fields are reported in Table II.

B. Current data from Bergen ocean model
We tested the SCVAE on simulations from the Bergen Ocean

Model (BOM).68 The BOM is a three-dimensional terrain-following

nonhydrostatic ocean circulation model with capabilities of resolv-
ing mesoscale to large-scale processes. Here, we use velocities sim-
ulated by Ali et al.43 The simulations were conducted on the entire
North Sea with 800 m horizontal and vertical grid resolution and 41
layers for the period from 1 January 2012 to 15 January 2012. Forc-
ing of the model consists of wind, atmospheric pressure, harmonic
tides, rivers, and initial fields for salinity and temperature. For details
of the setup of the model, forcing, and the simulations, we refer to
Ref. 43.

Here, the horizontal velocities in the bottom layer of an excerpt
of the model domain, with dimensions 25.6 × 25.6 km2 in the south-
ern North Sea [center at (58.36○N, 1.91○E)] are used as the dataset
for reconstruction. In Fig. 9, we have plotted time series of the mean
and extreme values of the two velocity components, u and v, for each
time t in T.
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FIG. 8. Number of epochs trained depending on the number of measurements.

TABLE II. Comparison of the divergence error Ediv as calculated in Eq. (22) for the
different methods and regularization techniques. The true divergence error on the
entire test dataset is 0.1058.

Measurement locations

Method Regularization 5 4 3 2

SCVAE λ = 0 0.1439 0.1580 0.1383 0.143 2
λ > 0 0.1533 0.1408 0.1468 0.141 0

GPOD λ = 0 0.1052 0.1047 0.0943 0.088 66
λ > 0 0.1039 0.1051 0.0966 0.066 9

1. Preprocessing
We extract the 32 × 32 central grid from the bottom layer veloc-

ity data. Hence,P contains N = 1024 points. The temporal resolution
is originally 105 000, and the time between each time step is 1 min.
We downsample the temporal dimension of the original data uni-
formly such that the number of time steps in T is K = 8500. We train
and validate the SCVAE with two different data splits: randomized
and sequential in time. For the sequential split, we have used the last
15% for the test, the last 30% of the remaining data is used for valida-
tion, and the fist 70% for training. In Fig. 9, the red and blue vertical
lines indicate the data split for this case. For the random split, the
instances x(i) are drawn randomly from X with the same percentage.
The data were scaled as described in Appendix B. The input x(i) to
the SCVAE was shaped as (32 × 32 × 2) in order to apply convolu-
tional layers. We use nine, five, and three fixed spatial measurement
locations. In particular, the subgrid Q is given as

Q9 = {(6, 6), (6, 17), (6, 27), (17, 17), (17, 27),

(17, 6), (27, 6), (27, 17), (27, 27)},

Q5 = {(6, 6), (17, 17), (27, 27), (6, 27), (27, 6)},

Q3 = {(6, 27), (17, 17), (27, 6)}. (24)

As before, the values of u and v at these specific locations constitute
the measurements m(i) ∈M.

2. Model
A schematic description of the model is given in Appendixes

C 3 and C 4. The first two layers of the encoder are convolutional
layers with 64 and 128 filters with strides and a kernel size of 2 and
ReLu activation functions. This compresses the data into a shape of
(8 × 8 × 128). The next layers are flattening and dense layers, where
the latter have 16 filters and ReLu activation. The subsequent lay-
ers define the mean and log-variance of the latent representation z,
which is input to a lambda layer for realization of the reparameteri-
zation trick. The encoder outputs the samples z(i), the mean, and the
log-variance of z(i).

The input to the decoder is the output z(i) of the encoder and
the measurement m(i). To concatenate the inputs, m(i) is flattened.
After concatenation of z(i) and m(i), the next layer is a dense layer
with shape (8 × 8 × 128) and ReLu activation. This allows for the use
of transposed convolutional layers to obtain the original shape of the
data. Hence, the following layers are two transposed convolutional
layers with 64 and 128 filters, strides and kernel size of 2, and ReLu
activation. The final layer is a transposed convolutional with linear
activation functions and a filter size of shape (32 × 32 × 2), i.e., the
same shape as x(i).

3. Results
We illustrate the obtained posterior predictive distribution in

terms of the predictive mean and standard deviation for the pre-
diction at a specific time. The SCVAE is compared with the GPOD
method, both with λ > 0 and λ = 0, for measurement locations given
in Eq. (24) for random and sequential split cases. To generate the
posterior predictive distributions [Eq. (17)], we sample 200 realiza-
tions from z ∼ N(0, I), which allows for calculation mean prediction
and uncertainty estimates [see Eq. (18)]. Figure 10 shows the results
of the prediction at time step 1185 for both the u and v components
and associated uncertainty estimates for a trained model with λ = 0
and Q3 measurement locations [see Eq. (24)].

In Fig. 11, we plot the true solution and the predicted mean
velocity [Eq. (18)] with the associated uncertainty [Eq. (20)] for two
grid points. We plot only the first 600 time steps for readability. The
first grid point is (26, 6) and (4, 1). One location is ∼5.1 km from the
nearest observation, and another one is about 16.1 km away.

Figure 12 has to be viewed in context with Fig. 11 and shows
the difference between the true and the predicted solutions with the
associated difference marginal in time for the two locations as in
Fig. 11.

Integrating over the latent space generates a posterior distri-
bution of the reconstruction, as described in Sec. III B 1. It is also
possible to use the latent space to generate new statistically sound
versions of u and v. This is presented in Fig. 13 where it is sampled
uniformly over the two dimensional latent space z ∼ N(0, I), and the
result shows how different variations can be created with the SCVAE
model, given only the sparse measurements.

These sampled velocities could be used for ensemble simula-
tions when estimating uncertainty in a passive tracer transport (see
Ref. 48).
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FIG. 9. Mean velocities u (a) and v (b) for each time t in T and associated extremes for each instance. The horizontal lines indicate the sequential data split. Units on the
x-axis are in minutes.

FIG. 10. (a) and (b) represent u-velocities and (e)–(h) represent v-velocities and associated statistical measures, respectively. The results are based on a model trained with
λ = 0 and Q3 measurement locations. [(a) and (e)] True solutions. [(b) and (f)] Reconstructed solutions. [(c) and (g)] Standard deviations. [(d) and (h)] Absolute errors.
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FIG. 11. Velocities u [(a) and (c)] and v [(b) and (d)] at grid points (26, 6) (5.1 km from the nearest observation) and (4, 1) (16.1 km from the nearest observation) with the
associated confidence regions, respectively. The estimates are based on a model trained with λ = 0 and Q3 measurement locations.

FIG. 12. The difference between the true and predicted u [(a) and (c)] and v [(b) and (d)] at grid points (6, 31) and (101, 25) with the associated difference marginals,
respectively. The estimates are based on a model trained with λ = 0 and Q3 measurement locations.
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FIG. 13. Predictions with uniformly sampling over the latent representation u (a) and v (b) for a sample number of 1185 with the associated true solutions in (c) and (d),
respectively. The predictions are generated from a model with λ = 0 and Q3 measurement locations.

TABLE III. Errors as calculated in Eq. (21) for the different methods, regularization techniques (λ = 0 or λ > 0), split regimes,
and measurements.

Measurement locations

Split Regularization Method 9 5 3

Random
λ = 0 SCVAE 0.1379 0.2097 0.2928

GPOD 0.3300 0.3822 0.4349

λ > 0 SCVAE 0.1403 0.2025 0.3016
GPOD 0.2971 0.3579 0.4039

Time dependent
λ = 0 SCVAE 0.3493 0.3913 0.4155

GPOD 0.3767 0.4031 0.4678

λ > 0 SCVAE 0.3527 0.3889 0.4141
GPOD 0.3362 0.3695 0.4462
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TABLE IV. Divergence errors as calculated in Eq. (22) for the different methods, regularization techniques (λ = 0 or λ > 0),
split regimes, and measurements. The true divergence of the test data is of order 10−4.

Measurement locations

Split Regularization Method 9 5 3

Random
λ = 0 SCVAE 3.75× 10−5 3.62× 10−5 3.42× 10−5

GPOD 6.51× 10−5 5.88× 10−5 5.02× 10−5

λ > 0 SCVAE 3.60× 10−5 3.60× 10−5 3.13× 10−5

GPOD 6.23× 10−5 4.77× 10−5 4.14× 10−5

Time dependent
λ = 0 SCVAE 2.02× 10−5 1.80× 10−5 1.69× 10−5

GPOD 5.09× 10−5 4.03× 10−5 4.15× 10−5

λ > 0 SCVAE 2.05× 10−5 1.99× 10−5 1.85× 10−5

GPOD 4.39× 10−5 3.65× 10−5 2.92× 10−5

The SCVAE results are compared with results of the GPOD
method (see Tables III and IV). The tables show the errors as cal-
culated in Eqs. (21) and (22) of the test dataset for both sequential
and random split. For the sequential splitting, the SCVAE is better
for three measurement locations, while the GPOD method performs
better for nine and five locations. From Fig. 9, we observe that test
dataset seems to arise from a different process than the train and
validation data (especially for v). Thus, the SCVAE generalize worse
than a simpler model such as the GPOD.75 For the three location
case, the number of components in the GPOD is not enough to
compete with the SCVAE.

With random split on the train, test, and validation data, we see
that the SCVAE is significantly better than the GPOD. The training
data and measurements represent the test data and test measure-
ments better with random splitting. This highlights the importance
of large datasets that cover as many outcomes as possible. Demand-
ing that λ > 0 in Eq. (16) does not improve the result. From the

FIG. 14. The figure shows the number of epochs and the number of measurement
locations.

SCVAE models with λ = 0, we learn that the reconstructed repre-
sentations should have low divergence without explicitly demand-
ing it during optimization. However, as discussed in the 2D flow
around cylinder experiment, demanding λ > 0 seems to improve the
conditioning of the optimization problem and give more consistent
results. In Fig. 14, we present a boxplot of the number of epochs
against the number of measurements. For each measurement con-
figuration and regularization technique, the model is optimized ten
times. The variation in the number of epochs for each measurement
and regularization technique is due to different priors of the weights
and mini-batch sampling.

V. DISCUSSION
We have presented the SCVAE method for efficient data recon-

struction based on sparse observations. The derived objective func-
tions for the network optimization show that the encoding is
independent of measurements. This allows for a simpler model
structure with fewer model parameters than a CVAE and results
in an optimization procedure that requires less computational
resources.

We have shown that the SCVAE is suitable for the recon-
struction of fluid flow. The method is showcased on two different
datasets: velocity data from simulations of 2D flow around a cylinder
and bottom currents from the BOM. The fact that the fluids studied
in the experiments are incompressible served as a motivation for
adding an extra constraint to the objective function with λ > 0.

Our investigation of additional regularization showed that the
mean reconstruction errors over all models were lower with λ > 0
compared to the model where λ = 0, but the best reconstruction
errors were similar for λ = 0 and λ > 0.

The SCVAE is a probabilistic model, which allows us to make
predictions, estimate their uncertainty, and draw multiple sam-
ples from the predictive distribution. The last two properties make
the SCVAE a useful method especially when the predictions are
used as a component in a larger application, i.e., ensemble sim-
ulations of tracer transport. Motivated by Ref. 17, we compared
the SCVAE predictions with the predictions of a modified GPOD
method.
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Unlike the GPOD method, a benefit with the SCVAE method
is that it scales well to larger datasets. Another aspect and as sug-
gested by the experiments in Sec. IV, the GPOD seems more sen-
sitive to the number of measurement locations than the SCVAE.
On the other hand, the experiments suggested that GPOD is bet-
ter than SCVAE with a larger number of measurement locations
if the training data and the test data are too different. Essentially,
the SCVAE is overfit to the training data and, as a result, per-
forms poorly on the test dataset. This fact shows the importance
of training the SCVAE on large datasets, which covers as many

potential flow patterns as possible. Furthermore, the results show
that the GPOD is more sensitive to the measurement location choice
than the SCVAE, and the GPOD method is not expected to per-
form well on a complex flow with very few fixed measurement
locations.

VAEs have been used for generating data in computer vision,31

and autoencoders are natural choices in reconstruction tasks.13

Many reconstruction approaches, including the GPOD approach,
first create a basis and then use the basis and minimize the error
of the observations.50,76 This makes the GPOD suitable for fast

FIG. 15. Schematic overview and details of the encoder used in the CW-data experiment.
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FIG. 16. Schematic overview and details of the decoder used in the CW-data experiment.
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optimization of measurement locations that minimize the recon-
struction error. On the other hand, the SCVAE optimizes the basis
function given the measurements, i.e., they are known and fixed.
This makes it challenging to use the framework for optimizing sen-
sor layout. However, if the measurement locations are fixed and
large amounts of training data are available, the SCVAE outper-
forms the GPOD for reconstruction. SCVAE optimizes the latent
representation and the neural network model parameters and vari-
ational and generative parameters, given the measurements. This
ensures that the reconstruction is adapted to the specific configu-
ration of measurements.

A limitation of our experiments is that we used only 100
and 200 samples and constructed the confidence region under fur-
ther simplifying assumptions. The uncertainty estimate could be

improved by increasing the sample size and better model for the
confidence region.

Natural applications for the SCVAE are related to environmen-
tal data, where we often have sparse measurements. It is possible
to optimize the sensor layout to the best possible one for detecting
unintentional discharges in the marine environment by using a sim-
ple transport model, forced by given flow fields, to predict the area
of influence (see the work of Oleynik et al).48 The SCVAE can be
used to improve such an approach by efficiently generating realis-
tic flow fields in a Monte Carlo framework. The incompressibility
constraint is important in this case, and it assures conservation of
mass in the transport model. Such a framework may be important as
the input to design, environmental risk assessments, and emergency
preparedness plans.

FIG. 17. Schematic overview and details of the encoder used in the BOM-data experiment.
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We have highlighted the SCVAE through the reconstruction
of currents and flow field reconstruction; however, the SCVAE
method is not limited to fluid flow problems. For instance, the
same principles could be used in computer vision to generate a

new picture based on sparse pixel representations or in time series
reconstruction.

A survey paper on Bayesian networks that accounts for time
dependence in the model itself, the so-called dynamical BNNs, was

FIG. 18. Schematic overview and details of the decoder used in the BOM-data experiment.
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recently published.77 A variety of recurrent neural networks are pre-
sented, applicable for spatial and temporal data without explicitly
addressing the flow reconstruction problem. A natural extension of
the SCVAE can be to implement it as a dynamical BNN, i.e., to
predict the current state pθ(xt|mt , xt−1), given the measurements
and the reconstruction from the previous time step. This could
potentially improve the reconstruction further.
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APPENDIX A: GPOD METHOD WITH DIVERGENCE
REGULARIZATION

Let the vectors x(i) in X be organized as a snapshots matrix
Xh ∈ R2N×K . Here, we consider that the latent space be given by the r
principal components of the matrix Xh, assuming that r≪ N. Thus,
Xh ≈ ΦAh, where Φ is the 2N × r matrix of principal components
and Ah = Φ+Xh is the r × K representation of Xh.

Let x∗ ∈ R2N be an unknown state that we need to reconstruct
from M spatial measurements m∗ = Cx∗. We assume that there is an
a such that x∗ = Φa, and we search for a solution of CΦa = m∗. Even
if the system CΦa = m∗ is overdetermined, the matrix CΦ could
be ill-conditioned or rank-deficient. However, since the number of
sensors is usually small, 2M < r, the system is underdetermined and
regularization is required.

Assuming that the flow is incompressible, the natural regular-
ization is to penalize the divergence error of a solution. That is, we
solve

a∗ = argmina∥CΦa −m∗∥2
2 + λ∥LdivΦa∥2

2, (A1)

where Ldiv : R2N → RN is a linear operator approximating the diver-
gence and λ > 0 is a regularization constant. Finally, we decode x∗

from the measurements m∗ as x∗ = Φa∗.

APPENDIX B: SCALING OF DATA
Let Ttrain contain the times tli , i = 1, . . ., n, corresponding to the

training data. We define

umax = max
p,t

u(p, t) and umin = min
p,t

u(p, t)

and

vmax = max
p,t

v(p, t) and vmin = min
p,t

v(p, t)

as the largest and smallest values of u and v on P and Ttrain. Then,
the middle points are given as

uc =
umax + umin

2
, vc =

vmax + vmin

2
,

and the half lengths are given as

du =
umax − umin

2
, dv =

vmax − vmin

2
.

Then, the whole data are scaled as

ũ = u − uc

du
, ṽ = v − vc

dv
,

and the divergence operator Ldiv is scaled accordingly.
After the optimization is completed, the data are scaled back,

i.e.,
u = duũ + uc, v = dv ṽ + vc.

The relative errors in Eq. (21) are calculated on the scaled data.
The divergence errors [Eq. (22)] are unaffected by the scaling.

APPENDIX C: DETAILS ON THE EXPERIMENTS
We use Keras79 in the implementation of the SCVAE for all

experiments. Here, we present details on the architecture of the
decoders and encoders for the different experiments (Figs. 15–18).
We have optimized the SCVAE models with different number of
measurements. That is, the shape of the input layer to the decoder
will be dependent on the measurements (sensor-input layer). Here,
we present details on the architecture of the encoders and decoders
with the largest number of measurements for SCVAE models for
both experiments. There is one extra dimension in the figures show-
ing the encoders and decoders. Here, this dimension is one, but the
framework is implemented to allow for more dimensions in time.

1. Encoder for 2D flow around cylinder data
experiment
2. Decoder for 2D flow around cylinder experiment
3. Encoder for BOM data experiment
4. Decoder for BOM data experiment
DATA AVAILABILITY

The 2D flow around a cylinder dataset is simulated by
Weinkauf 54 using the Free Software Gerris Flow Solver.55 The data
that support the findings of this study are openly available in
http://tinoweinkauf.net/notes/cylinder2d.html.53 The BOM dataset
is simulated by Alfatih Ali and contains time series of CO2 concen-
tration, velocity components, time, and position in longitude and
latitude. The data that support the findings of this study are openly
available in Zenodo at http://doi.org/10.5281/zenodo.806088.78
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