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A B S T R A C T   

Background: The dorsal anterior cingulate cortex (dACC) plays an important role in the pathophysiology of 
obsessive-compulsive disorder (OCD) due to its role in error processing, cognitive control and emotion regula-
tion. OCD patients have shown altered concentrations in neurometabolites in the dACC, particularly Glx (glu-
tamate+glutamine) and tNAA (N-acetylaspartate+N-acetyl-aspartyl-glutamate). We investigated the immediate 
and prolonged effects of exposure and response prevention (ERP) on these neurometabolites. 
Methods: Glx and tNAA concentrations were measured using magnetic resonance spectroscopy (1H-MRS) in 24 
OCD patients and 23 healthy controls at baseline. Patients received concentrated ERP over four days. A subset 
was re-scanned after one week and three months. 
Results: No Glx and tNAA abnormalities were observed in OCD patients compared to healthy controls before 
treatment or over time. Patients with childhood or adult onset differed in the change over time in tNAA (F(2,40) 
= 7.24, ɳ2

p= 0.27, p = 0.004): concentrations increased between one week after treatment and follow-up in the 
childhood onset group (t(39) = -2.43, d = -0.86, p = 0.020), whereas tNAA concentrations decreased between 
baseline and follow-up in patients with an adult onset (t(42) = 2.78, d = 1.07, p = 0.008). In OCD patients with 
versus without comorbid mood disorders, lower Glx concentrations were detected at baseline (t(38) = -2.28, d =
-1.00, p = 0.028). Glx increased after one week of treatment within OCD patients with comorbid mood disorders 
(t(30) = -3.09, d = -1.21, p = 0.004). 
Limitations: Our OCD sample size allowed the detection of moderate to large effect sizes only. 
Conclusion: ERP induced changes in neurometabolites in OCD seem to be dependent on mood disorder comor-
bidity and disease stage rather than OCD itself.   

1. Introduction 

Obsessive-compulsive disorder (OCD) is a psychiatric disorder 
characterized by obsessions (intrusive, persistent thoughts) and com-
pulsions (repetitive and excessive/unrealistic ritualistic behaviors) 

(Stein et al., 2019). OCD is associated with abnormal function within 
and between the parallel cortico-striato-thalamo-cortical, fronto-par-
ietal and fronto-limbic circuits (Pauls et al., 2014; Stein et al., 2019; van 
den Heuvel et al., 2016). Within these circuits the dorsal anterior 
cingulate cortex (dACC) serves an important role in cognitive control, 
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action monitoring, emotion regulation, and conflict processing. Aber-
rant dACC functioning could therefore result in cognitive inflexibility 
and difficulty stopping obsessive thoughts and compulsive behaviors in 
OCD (Maltby et al., 2005; Marsh et al., 2014; McGovern and Sheth, 
2017; Thorsen et al., 2018). Indeed, the dACC has been implicated in 
OCD using both functional and structural neuroimaging, showing hy-
peractivity in the dACC of OCD patients during functional magnetic 
resonance imaging (fMRI) using cognitive and emotional paradigms, 
resting-state fMRI, and positron emission tomography (Cheng et al., 
2013; Fitzgerald et al., 2005; McGovern and Sheth, 2017; Pico-Perez 
et al., 2020; van den Heuvel et al., 2005). Additionally, the dACC of OCD 
patients is shown to have a lower gray matter volume and a thinner 
cortex (Goodkind et al., 2015; Radua et al., 2010). 

Using proton magnetic resonance spectroscopy (1H-MRS), regional 
abnormalities in neurometabolite concentrations have also been re-
ported in OCD patients, although results are mixed (see (Vester et al., 
2020) for a review). Glutamate, the most important excitatory neuro-
transmitter in the brain (Petroff, 2002), plays an important role in the 
balance between the direct and indirect pathways of the parallel CSTC 
circuits involved in emotional and cognitive processes underlying the 
symptoms in OCD (Pittenger et al., 2011; Stein et al., 2019). The role of 
glutamate in OCD is also supported by genome-wide linkage studies and 
candidate gene association studies showing possible relations between 
OCD and genes encoding for postsynaptic glutamate transporters or 
glutamate receptor subunits (Bloch and Pittenger, 2010; Pittenger, 
2015). 

Both higher (Naaijen et al., 2017) and lower (Rosenberg et al., 2004) 
Glx (sum of glutamate and glutamine) concentrations have been re-
ported in the dACC of pediatric OCD patients compared to healthy 
controls. In adult OCD, one study found lower Glx concentrations in the 
dACC of female patients (Yucel et al., 2008), whereas most studies did 
not find abnormal glutamate or Glx concentrations in the dACC of adult 
OCD patients in comparison with healthy controls (Bedard and Chantal, 
2011; Fan et al., 2017; O’Neill et al., 2016; Starck et al., 2008; Vester 
et al., 2020; Wang et al., 2017; Zhang et al., 2016). Previous research has 
also investigated N-acetylaspartate (NAA) and total NAA (tNAA; a 
combination of NAA and N-acetyl-aspartyl-glutamate) concentrations in 
OCD patients. Although its role in OCD is less clear, lower tNAA con-
centrations are thought to reflect less neuronal integrity and viability 
(Aoki et al., 2012; Moffett et al., 2014). Multiple studies detected lower 
NAA and tNAA concentrations in the (d)ACC of OCD patients compared 
to controls (Gnanavel et al., 2014; Jang et al., 2006; O’Neill et al., 2013; 
Tukel et al., 2014). A meta-analysis by Aioki et al. showed a negative 
relation between NAA levels in the medial prefrontal cortex of OCD 
patients and symptom severity (Aoki et al., 2012). 

Cognitive behavioral therapy (CBT) with exposure and response 
prevention (ERP) is an effective treatment strategy for OCD (Ost et al., 
2015), even when delivered in a very short time period, such as over four 
consecutive days in the Bergen 4-Day Treatment format (B4DT) (Han-
sen et al., 2018, 2019; Havnen et al., 2017; Launes et al., 2019). Studies 
on the effects of CBT on neurometabolite concentrations in OCD patients 
have not provided consistent results (Vester et al., 2020). Some found 
decreases in Glx in the left dACC of adult OCD patients after intensive 
CBT (O’Neill et al., 2013) or in the pregenual ACC of pediatric patients 
after three months of CBT (O’Neill et al., 2017), while others showed 
CBT-induced increases in tNAA in the caudate nucleus (Whiteside et al., 
2012) or right pregenual ACC (O’Neill et al., 2013). However, this was 
not found in the rostral ACC (Zurowski et al., 2012). Inconsistent find-
ings on the effects of CBT on neurometabolites might be explained by 
factors such as medication status (O’Neill et al., 2016; Yucel et al., 
2007), comorbid depression or anxiety disorders (Bedard and Chantal, 
2011; Fan et al., 2017), age, age at OCD onset or disease duration (Ortiz 
et al., 2015), or the amount of time between pre- and post-treatment 
imaging. 

The current study aimed to investigate both immediate and pro-
longed effects of concentrated ERP on neurometabolite concentrations 

in the dACC of patients with OCD. As described in our preregistered 
analysis plan at the Open Science Framework (https://osf.io/w34rn/), 
we expected that Glx concentrations in OCD patients would be similar to 
controls at baseline, while tNAA concentrations would be lower in OCD 
patients. We also expected, in line with previous literature, a treatment- 
induced reduction in Glx concentrations, with a further decrease after 
three months. Regarding tNAA, we expected to see an increase in tNAA 
concentration in OCD patients after treatment. As tNAA is thought to 
reflect slow processes such as changes in neuronal viability and plas-
ticity (Moffett et al., 2014), we expected to see this change mainly at 
three months follow-up. Furthermore, we hypothesized that 
treatment-induced changes in both Glx and tNAA would be related to 
changes in symptom severity after treatment. Regarding age at disease 
onset, we expected to see lower tNAA at baseline and less clinical 
response to treatment in the childhood onset group (Jakubovski et al., 
2013). In exploratory analyses, we investigated the effects of medication 
status and comorbidity. 

2. Materials and methods 

2.1. Participants 

Thirty-three (33) OCD patients (12 males, 21 females; age: 30.3 ±
8.9 years) were recruited from the Haukeland University Hospital in 
Bergen, Norway. All patients received the B4DT by the OCD team as part 
of the standard public health care (see below). Also, 31 healthy control 
participants (12 males, 19 females; age: 30.9 ± 10.4 years) were 
included from the surrounding community. OCD patients and healthy 
controls were matched according to sex, handedness, age, and years of 
education (table S1 for full sample demographics). Patients were 
included if they were diagnosed with OCD according to the Diagnostic 
and Statistical Manual of Mental Disorders (DSM-4-TR) according to the 
Structured Clinical Interview for DSM-4 (SCID-IV) (First et al., 2002), 
and scored ≥16 on the Yale-Brown Obsessive Compulsive scale 
(Y-BOCS) (Goodman et al., 1989). Exclusion criteria were predominant 
hoarding symptoms, substance dependence, bipolar disorder or psy-
chosis, suicidal ideation, mental retardation, and unwillingness to 
refrain from alcohol and benzodiazepines during the treatment. Healthy 
control participants had no lifetime history of a mental disorder ac-
cording to the SCID-IV. All patients had to be between 18 and 65 years 
old and had to be fluent in Norwegian. Participants were excluded if 
they had any contraindications for MRI. The study was approved by the 
Regional Ethics Committee for South-Eastern Norway and all partici-
pants provided written informed consent before participating in accor-
dance with the declaration of Helsinki. 

2.2. Bergen 4-Day treatment 

Groups of 3–6 OCD patients received the B4DT over four consecutive 
days (Havnen et al., 2014). Day 1 consisted of a three-hour group session 
with psychoeducation and planning exposure tasks. Day 2–3 consisted of 
therapist-assisted ERP with a 1:1 ratio of patients and therapists for 
8–10 h a day. Relatives and friends were also invited to attend a lecture 
on OCD and the therapy. Day 4 focused on summarizing the treatment 
and relapse prevention, along with planning self-exposure for the next 
three weeks. After three months, the patients participated in a follow-up 
session summarizing their progress and future plans (See (Launes et al., 
2019) for details). 

2.3. Clinical assessments 

Independent clinical assessments were obtained at all three time 
points. Symptom severity of OCD was measured using the Y-BOCS at 
baseline, directly after treatment, and at follow-up. Response to treat-
ment was defined by a minimum reduction of 35% in Y-BOCS score, 
whereas patients were considered in remission when they also scored 
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≤12 (Mataix-Cols et al., 2016). Both the OCD patients and healthy 
controls filled out the Obsessive Compulsive Inventory-Revised (OCI-R) 
(Foa et al., 2002) as a self-report measure of OCD symptom severity, the 
Patient Health questionnaire 9 (PHQ-9) (Kroenke et al., 2001) for 
depressive symptoms, and the Generalized Anxiety disorder 7 (GAD-7) 
(Spitzer et al., 2006) for symptoms of anxiety. 

The presence of mood and anxiety comorbidity were defined using 
the SCID-IV. Patients with either comorbid major depressive disorder or 
dysthymia were grouped together in the mood comorbidity group 
(regardless of comorbid anxiety disorders). While patients with comor-
bid social anxiety disorder and or, generalized anxiety disorder, specific 
phobia, panic disorder, agoraphobia, posttraumatic stress disorder were 
grouped together in the anxiety group (regardless of comorbid mood 
disorders). For analyses related to OCD onset, we relied on retrospective 
self-reports of onset which were dichotomized to adult (>18 years) or 
childhood (<18 years) onset groups. 

2.4. MR acquisition 

All MRI scans were performed on a 3T General Electric Discovery 
MR750 (GE Healthcare, Milwaukee, Wisconsin, USA) using an eight- 
channel head coil. The scanning protocol included a whole-brain 
structural T1-weighted image for brain tissue segmentation and the in-
dividual localization of the MRS voxel in each participant. The T1- 
weighted image was acquired using a 256×256 matrix, 192 slices, 
isotropic voxel size=1mm3, echo time (TE) = 3000 ms, repetition time 
(TR) = 7000 ms, flip angle=12◦, field of view (FoV) = 256 mm. Single 
voxel MRS was obtained using a point resolved spectroscopy (PRESS) 
sequence (TR=1500 ms, TE=35 ms, number of averages=128, voxel size 
(RLxAPxSI) = 16×24×20 mm3, number of data points=4096, 
bandwidth=5 kHz). The MRS voxel was placed parallel to the frontal 
part of the midline corpus callosum on the dACC by an experienced MRI 
radiographer, using placement in prior sessions as reference for the 
second and third scan (see Fig. 2A). 

MRS scans were acquired the day before treatment (i.e. baseline; T0), 

three days directly after treatment (i.e. 1 week after baseline; T1) and 
three months post-treatment (T2). Subjective units of distress (SUDS) 
scores ranging from 0 to 100 were acquired directly after imaging. 

2.5. Spectral quantification and quality control 

1H-MRS spectra were fitted using Linear Combination Model 
(LCModel) version 6.3–0 L (Provencher, 2001) with the GE basis set. An 
example of a representative MRS spectrum is shown in Fig. 2B. After 
eddy current correction, water scaling was applied to estimate raw Glx 
and tNAA concentrations, as well as other neurometabolites including 
glutamate (Glu), glutamine (Gln), NAA, N-acetyl-aspartyl-glutamate 
(NAAG), creatine and phosphocreatine (Cr), choline-containing com-
pounds (Cho), and myo-inositol (Ins) for exploratory analysis. We used 
FMRIB’s Software Library (FSL) version 5.0.10 for preprocessing the 
structural scans (Jenkinson et al., 2012) that encompassed skull strip-
ping (Smith, 2002) and tissue segmentation into gray matter (GM), 
white matter (WM), and cerebral spinal fluid (CSF) to perform partial 
volume correction using FSL FAST (Zhang et al., 2001). Raw neuro-
metabolite concentrations were corrected for partial volume effects ac-
cording to the LCModel guidelines (Provencher, 1993), and expressed in 
institutional units (IU). 

The MRS spectra were fitted between 3.67 and 1.0 ppm to prevent 
influence of spoiling artefacts, while including the resonance of Ins. 
Spectra were excluded when at least one of the following criteria was 
met: full width half maximum (FWHM) ≥ 0.1 ppm, Cramer-Rao lower 
bounds of at least one of the main metabolites Glx, tNAA, Cr, Cho, and 
Ins were >20%, and the signal to noise ratio (SNR) < 14 (see flowchart 
in Fig. 1). Consistency of voxel placement was visually inspected at all 
time points by registering the structural scans and corresponding voxels 
to standard space (MNI) for each participant (Jenkinson et al., 2002; 
Jenkinson and Smith, 2001). 

Fig. 1. Number of participants and reasons for exclusion are provided between each time point. Furthermore, quality of MRS spectra was assessed at every time 
point. MRS spectra were excluded when the signal to noise ratio was below 14, or after visual inspection. It is therefore possible that subjects that were included at T0 
are not included at subsequent time points or vice versa. At baseline (T0), 33 OCD patients and 31 healthy controls were scanned. However, after applying spectral 
criteria, 24 patients and 23 controls were included for analyses at this time point. After one week (T1), 30 OCD patients and 22 controls were scanned but after 
quality assessment 22 patients and 15 healthy controls were included for analyses. Twenty-seven OCD patients and 22 controls were scanned at follow-up (T2), but 
20 patients and 18 healthy controls were included for analyses. 1Excluded due to reading disability that interfered with cognitive testing. 2One control participant 
was excluded due to technical error at T1, but this participant was again included at T2. 
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2.6. Statistical analyses 

Statistical analyses were performed with IBM SPSS Statistics 22. Sex 
and handedness were compared between OCD patients and healthy 
controls using chi-squared tests. Group comparisons of age, years of 
education, and clinical variables were tested using independent t-tests at 
each time point. Differences in Glx and tNAA concentrations between 
OCD patients and healthy controls were also assessed at each time point 
using independent t-tests with False Discovery Rate (FDR) correction for 
multiple comparisons (α=0.05) (Benjamini and Hochberg, 1995). 

A linear mixed model (LMM) design (with group and time as fixed 
effects and intercept for subjects as random effect) with FDR correction 
(α=0.05) was used for group by time analyses as this model allows for 
using all available data without imputation or listwise deletion, leading 
to increased power (Gallop and Tasca, 2009; Tasca and Gallop, 2009). 
Different covariance structures were used to take into account the cor-
relation of neurometabolite concentrations between time points and to 
ensure best model fit (Littell et al., 2000). To do so, the variance across 
and correlation between time points was assessed and the best fitting 
appropriate covariance structure was selected based on the chi-squared 
likelihood ratio tests. We used a compound symmetry covariance 
structure for tNAA, and an AR(1) (autoregressive) structure for Glx an-
alyses. These structures were used to investigate all tNAA and Glx effects 
over time, including analyses on medication, comorbidity, and age of 
onset. AR(1) structure was also used for exploratory analyses of Glu, Gln, 
NAA, NAAG, Cr, Cho and Ins. Medication status was a priori added to the 
model to assess its influence on the model fit. Post-hoc t-tests were 
performed on the estimated values when the main effect was significant 
after FDR correction. Therefore, we did not use additional multiple 
comparison corrections for these tests. LMMs with a scaled identity 
covariance structure were used to investigate the association between 
changes in metabolite levels and changes in clinical variables (i.e., 
Y-BOCS, PHQ-9, GAD-7 and OCI-R scores) over time in OCD patients. 
For OCD patients, we used exploratory correlational analyses to see 
whether Glx and tNAA concentrations were related to pre-treatment 
Y-BOCS, PHQ-9, GAD-7, and OCI-R scores. 

3. Results 

3.1. Demographics and clinical scores 

After applying MRS quality criteria, the sample for MRS analyses 
consisted of 24 controls and 23 OCD patients at baseline (T0), including 
eight patients that were using medication (see Table 1). Medication 
status did not change during the time of the study. See the flowchart in 
Fig. 1 for exclusions and drop-out. For longitudinal MRS analyses data 
from 22 OCD patients and 15 controls were available at T1 and 20 OCD 
patients and 18 controls at T2. 

The demographics and clinical characteristics of the full sample are 
described in table S1. At baseline there were no differences between 
OCD patients and healthy controls concerning age, sex, handedness, and 
years of education. OCD patients scored significantly higher on the PHQ- 
9, GAD-7, and OCI-R questionnaires at each time point. For the SUDS, 
OCD patients scored higher after treatment and at follow-up compared 
to control participants (Table S1). LMM analyses in OCD patients 
showed significant decreases over time on the PHQ-9 (F(2,48) = 4.19, 
partial eta-squared (ɳ2

p) = 0.15, p = 0.021), GAD-7 (F(2,50) = 19.14, 
ɳ2

p = 0.43, p < 0.001), and OCI-R (F(2,48) = 33.29, ɳ2
p = 0.59, p <

0.001) (see Table S2). 
The clinical response to the B4DT showed that n = 26 (87%) 

responded, of whom n = 18 (60%) reached remission after four days of 
treatment. At three months follow-up, n = 25 (83%) were considered 
responders, of whom n = 21 (70% of all patients) maintained remission. 
Information of two patients was missing at this time point due to the fact 
that one patient dropped-out and one patient was unavailable for the Y- 
BOCS interview. The Y-BOCS showed a significant effect of time in the 

OCD patients (F(2,61) = 137.53, ɳ2
p = 0.82, p < 0.001). Post-hoc ana-

lyses revealed a significant decrease in Y-BOCS scores between T0 and 
T1 (t(60) = − 14.29, Cohen’s d (d) = − 5.61, p < 0.001), whereas Y-BOCS 

Table 1 
Demographics and clinical characteristics of OCD patients and healthy control 
participants at baseline and overtime for the clinical measures for sample after 
spectral quality control.  

Characteristic OCD patients Healthy controls p  
N = 24 N = 23  

Age (mean years ± SD) 29.1 ± 8.4 29.7 ± 9.3 0.84a 

Sex    
Female, N (%) 17 (71) 15 (65) 0.76b 

Handedness    
Right, N (%) 23 (96) 21 (91) 0.48b 

Years of education (mean ±
SD) 

14.4 ± 2.2 14.3 ± 2.3 0.82a 

PHQ-9 (mean ± SD)    
T0 12.1 ± 6.2 (N =

22) 
2.7 ± 1.7 (N = 22) <0.001a 

T1 9.1 ± 6.2 (N =
19) 

2.6 ± 2.0 (N = 14) <0.001a 

T2 8.5 ± 5.9 (N =
15) 

2.2 ± 1.6 (N = 17) <0.001a 

GAD-7 (mean ± SD)    
T0 12.7 ± 5.2 (N =

22) 
2.8 ± 2.5 (N = 22) <0.001a 

T1 8.7 ± 5.1 (N =
19) 

2.1 ± 2.0 (N = 14) <0.001a 

T2 6.9 ± 5.0 (N =
16) 

1.9 ± 2.2 (N = 17) <0.001a 

OCI-R (mean ± SD)    
T0 26.2 ± 9.6 (N =

22) 
6.9 ± 7.5 (N = 22) <0.001a 

T1 12.2 ± 8.5 (N =
19) 

6.8 ± 8.5 (N = 14) 0.08a 

T2 13.1 ± 9.9 (N =
15) 

4.6 ± 5.9 (N = 17) 0.004a 

SUDS (0–100) (mean ± SD)    
T0 15.0 ± 13.3 (N =

23) 
12.0 ± 16.5 (N =
23) 

0.5a 

T1 20.0 ± 21.1 (N =
22) 

8.1 ± 11.7 (N =
15) 

0.035a 

T2 13.9 ± 15.6 (N =
20) 

4.0 ± 4.3 (N = 17) 0.013a 

Y-BOCS (mean ± SD)    
T0 26.0 ± 4.0 (N =

24) 
– – 

T1 10.7 ± 7.0 (N =
22) 

– – 

T2 10.0 ± 6.7 (N =
20) 

– – 

Comorbidities (at T0), N (%)    
Anxietyc 11 (46) – – 
Moodd 8 (33) – – 
ADHD 1 (4) – – 
Somatization disorder 1 (4) – – 
Pain disorder 1 (4) – – 

Onset, N (%)    
Childhood onset 12 (50) – – 
Adult onset 12 (50) – – 

Medication use, N (%)    
SRI 6 (25) – – 
SRI + antipsychotic 1 (4) – – 
Methylphenidate 1 (4) – – 

Abbreviations: ADHD, Attention Deficit Hyperactivity Disorder; GAD-7, Gener-
alized Anxiety disorder 7; OCI-R, Obsessive Compulsive Inventory-Revised; 
PHQ-9, Patient Health questionnaire 9; SRI, serotonin reuptake inhibitor; 
SUDS, Subjective Units of Distress Scale; T0, baseline; T1, directly after treat-
ment; T2, three months after treatment; Y-BOCS, Yale-Brown Obsessive 
Compulsive scale. 

c social anxiety disorder and or, generalized anxiety disorder, specific phobia, 
panic disorder, agoraphobia, posttraumatic stress disorder. 

d major depressive disorder or dysthymia. 
a Independent t-test. 
b Fisher’s Exact Test. 
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scores did not change between T1 and T2 (t(61) = − 0.53, Cohen’s d (d) 
=− 0.22, p = 0.60). No effect of medication, age of onset and anxiety 
comorbidity on Y-BOCS scores were seen. However, adding mood co-
morbidity to the model showed a significant effect of group (F(1,32) =
5.50, ɳ2

p =0.15, p = 0.025), where patients with a comorbid mood 
disorder scored higher on the Y-BOCS at T1 compared to patients 
without a comorbid mood disorder (t(73) = 2.47, d = 0.98, p = 0.016). 

3.3. Spectral quality 

Exclusion of participants with low quality spectra did not affect 
demographical characteristics (see Table 1). There were no group dif-
ferences in SNR and %CRLB for Glx and tNAA at any of the time points 
(see Table S3) and voxel placement was consistent over time and be-
tween groups (see Fig. 2A). 

3.4. Glx concentrations 

No differences in Glx concentrations were seen at the three time 
points between OCD patients and healthy controls (see Table 2). The 
LMM analyses between OCD patients and control participants did not 
show significant time (F(2,66) = 1.08, ɳ2

p = 0.03, p = 0.35), group (F 
(1,46) = 0.98, ɳ2

p = 0.02, p = 0.33) or time by group (F(2,66) = 0.75, 
ɳ2

p = 0.02, p = 0.48) effects. We also did not observe any main or 
interaction effects when comparing child and adult-onset OCD patients. 
Within OCD patients, there was no association between Y-BOCS score 
and Glx concentrations at any time point and no association between 
changes in Glx and changes in Y-BOCS over time (see Table S2). 

3.5. tNAA concentrations 

No differences in tNAA concentrations were seen between OCD pa-
tients and healthy controls at any of the time point (see Table 2). The 
LMM analyses between patients and healthy control did not reveal sig-
nificant time (F(2,76) = 0.34, ɳ2

p = 0.01, p = 0.72), group (F(1,47) =
0.68, ɳ2

p = 0.1, p = 0.43) or time by group effects (F(2,76) = 0.03, ɳ2
p <

0.01, p = 0.98). Comparing childhood-onset with adult-onset OCD pa-
tients revealed a significant interaction between time and onset (F(2,28) 
= 7.24, ɳ2

p = 0.27, p = 0.004). Post-hoc tests showed that, compared to 
OCD patients with adult onset, patients with childhood onset had lower 
tNAA concentrations at both T0 (t(49) = − 2.94, d = − 1,25, p = 0.005) 
and T1 (t(51) = − 2.08, d = − 0.93, p = 0.043). Within the childhood 
onset group, a significant increase in tNAA was seen between T1 and T2 
(t(39) = 2.43, d = − 0.86, p = 0.020), and T0 and T2 (t(39) = − 2.31, d =
− 0.82, p = 0.026). Conversely, tNAA concentration decreased between 
T0 and T2 in adult onset patients, (t(42) = 2.78, d = 1.07, p = 0.008) (see 
Fig. 3B and Table S5). Patients with childhood onset OCD were signifi-
cantly younger compared to patients with adult OCD onset (t(22) =
3.17, d = 1.35, p = 0.007). However, the onset by time effect in OCD 
patients remained significant when adjusting for age (F(2,40) = 7.28, 
ɳ2

p = 0.27, p = 0.004). For demographic information on the childhood 
and adult onset group (see Table S7). 

Y-BOCS score was not related to tNAA concentrations at any of the 
time points and tNAA changes did not correlate to changes in Y-BOCS 
score over time (see Table S2). 

3.6. Exploratory analyses 

Additionally, we looked into the effect of comorbid mood and anx-
iety disorders on neurometabolite levels. When comparing Glx 

Fig. 2. (A) Placement of magnetic resonance spectroscopy (MRS) voxels on the dorsal anterior cingulate cortex (dACC), with yellow indicating greater overlap 
between participants. (B) Representative MRS spectrum fitted by LCModel with SNR = 20 and linewidth (FWHM) = 0.029 ppm. Neurometabolites include: Ins, myo- 
inositol; Cho, choline; Cr, creatine; Gln, glutamine; Glu, glutamate; NAAG, N-acetyl-aspartyl-glutamate; NAA, N-acetylaspartate. Glu and Gln are measured together 
as Glx, NAAG and NAA are measured together as tNAA. 

Table 2 
Comparison of Glx and tNAA concentrations at baseline (T0), directly after treatment (T1) and three months post-treatment (T2) between OCD patients and healthy 
controls in the dACC. Glx and tNAA concentrations are expressed in Institutional Units (IU; mean ± SD), p-values are FDR corrected.  

Time point OCD patients Healthy controls df t p Cohen’s d 

Glx       
T0 27.29 ± 2.62 28.41 ± 2.18 45 − 1.58 0.36 − 0.47 
T1 28.26 ± 2.60 28.13 ± 2.38 35 0.16 0.88 0.05 
T2 27.11 ± 2.20 27.87 ± 3.06 36 − 0.88 0.58 − 0.29 

tNAA       
T0 18.06 ± 1.18 17.87 ± 1.02 45 0.61 0.76 0.18 
T1 17.86 ± 0.82 17.76 ± 1.07 35 0.31 0.76 0.11 
T2 17.96 ± 0.92 17.80 ± 1.37 36 0.43 0.76 0.14 

Abbreviations: Glx, combination of glutamate and glutamine; tNAA, combination of N-acetylaspartate and N-acetyl-aspartyl-glutamate; T0, baseline; T1, directly after 
treatment; T2, three months after treatment. 
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concentrations in patients with and without mood comorbidity (while 
adjusting for medication status), no effects of time (F(2,29) = 2.50, ɳ2

p 
= 0.30, p = 0.30) or group were observed (F(1,20) = 0.07, ɳ2

p < 0.01, p 
= 0.88). We did, however, observe a significant group by time interac-
tion (F(2,29) = 5.16, ɳ2

p = 0.26, p = 0.036), with post-hoc analyses 
showing that patients with a comorbid mood disorder had lower Glx 
concentrations at baseline compared to patients without a comorbid 
mood disorder (t(38) = − 2.28, d = − 1.02, p = 0.028). The lower con-
centrations at baseline in patients with a comorbid mood disorder 
increased between T0 and T1 (t(33) = − 3.09, d = − 1.28, p = 0.004) (see 
Fig. 3A, Table S5, and Table S6 for the demographics). For both Glx and 
tNAA, we did not observe any main or interaction effects between 
medicated versus non-medicated OCD patients or patients with and 
without a comorbid anxiety disorder (see Table S4). 

LMM analyses did not reveal any differences in Glu, Gln, NAA, 
NAAG, Cr, Cho, and Ins concentration between OCD patients and 
healthy controls at baseline or over time. Also, no correlations were 
found between pre-treatment Glx and tNAA and PHQ-9, GAD-7, and 
OCI-R questionnaire scores at baseline. 

4. Discussion 

The current study investigated neurometabolite concentrations in 
the dACC in adult OCD patients compared to healthy controls at base-
line, and changes directly after concentrated ERP and three months post- 
treatment. No Glx or tNAA differences between OCD patients and con-
trols were found at baseline. In general, Glx and tNAA concentrations 
did not change over time and no correlations were found between Glx or 
tNAA concentrations and symptom improvement. When comparing 
patients with childhood onset and adult OCD onset of disease, childhood 
onset cases had lower tNAA concentrations at baseline, which increased 
three months after treatment. We also observed that OCD patients with a 
comorbid mood disorders had lower Glx concentrations at baseline and 
showed an increase in Glx directly after treatment. Conversely, Glx 
concentrations did not change following treatment in patients without a 
comorbid mood disorder. 

Our results showed differences in tNAA concentrations between 
childhood and adult OCD onset groups. NAA is thought to be a marker 
for neuronal integrity and reductions of NAA might indicate neuronal 
loss (Moffett et al., 2014). The neurochemistry of adult patients with 
childhood onset OCD, and thus a very chronic course of disease, might 

exhibit more severe abnormalities in neuronal integrity, a hypothesis 
that fits with the finding that OCD patients show smaller ACC volumes 
(de Wit et al., 2014), and that longer illness duration is inversely 
correlated to total GM volume in OCD (Pujol et al., 2004). Interestingly, 
the increase and normalization of tNAA following treatment in the 
childhood onset group could indicate that the effect of chronicity on 
neuronal integrity is potentially reversible following treatment (Jang 
et al., 2006; Whiteside et al., 2012). 

Previous studies did not find correlations between illness duration 
and (t)NAA concentrations in the ACC of OCD patients (Hatchondo 
et al., 2017; Jang et al., 2006). We relied on retrospective self-reports of 
onset which were dichotomized to adult (>18 years) or childhood (<18 
years) onset as some patients were unable to report precisely when their 
OCD first developed. A recent study found that it takes a median of 7 
years for subclinical symptoms to develop into a diagnosis of OCD 
(Thompson et al., 2020). This suggest that analyses on illness onset and 
duration should be interpreted with caution, as retrospective biases and 
gradual development might hinder a reliable estimation of onset. 

Our findings are in line with previous studies that have demonstrated 
lower Glx concentrations in the ACC and anterior prefrontal regions in 
patients with major depressive disorder (MDD) (Hasler et al., 2007; 
Luykx et al., 2012; Rosenberg et al., 2005; Tadayonnejad et al., 2018), 
along with normalization after recovery (Hasler et al., 2005; Taylor 
et al., 2009). The possible effect of comorbid disorders on neuro-
metabolite concentrations in OCD is further supported by studies 
reporting that NAA (Bedard and Chantal, 2011), Ins, and Cho concen-
trations (O’Neill et al., 2013, 2016) in the dACC are related to comorbid 
anxiety and depression in OCD patients. Other studies, however, did not 
report this association (Naaijen et al., 2017; Starck et al., 2008). 

In general, the considerable variation in methods of MRS studies in 
OCD limits the comparison of the current findings with previous liter-
ature (Vester et al., 2020). Heterogeneity regarding medication status, 
comorbidity, and illness duration (Brennan et al., 2013), as well as the 
measurement and quality control of neurometabolites might result in 
different findings (Li et al., 2003). Nevertheless, the timing of the 
observed changes in Glx and tNAA concentrations after treatment are in 
line with our preregistered hypotheses. Changes in Glx after treatment in 
patients with mood comorbidity occurred swiftly (i.e. after one week), 
corresponding to the hypothesis that Glx concentrations regulate 
neuronal activity and might therefore change quickly over time 
(Govindaraju et al., 2000). The changes in tNAA were only observed 

Fig. 3. Neurometabolite concentrations at baseline (T0), directly after treatment (T1) and three months after treatment (T2). (A) Glx concentration differences 
between OCD patients with mood comorbidity and patients without mood comorbidity over time. A significant increase in Glx was seen between T0-T1 in patients 
with mood comorbidity. At T0, patients with mood comorbidity had significantly lower Glx concentrations compared to patients without mood comorbidity. (B) 
tNAA concentration differences between patients with childhood and adult OCD onset. A significant increase in tNAA was seen between T1-T2 and T0-T2 in patients 
with childhood OCD onset. At T1 and T2, patients with childhood onset had significantly lower tNAA concentrations compared to patients with adult onset OCD. 
* p < 0.05. 
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after three months post-treatment, possibly indicating slower processes 
such as changes in neuronal integrity and plasticity (Moffett et al., 
2014). 

4.1. Limitations 

The current study has some limitations. The limited size of our OCD 
sample only enabled the detection moderate or large effect sizes (Button 
et al., 2013). The effect of medication status on metabolite concentra-
tions remains unclear as we did not have extensive information on 
dosage and duration of medication use during and prior to the study 
(O’Neill et al., 2016; Yucel et al., 2007). However, even when this in-
formation was available for the current sample it remains difficult to 
reliably interpret medication effects given the limited size of the medi-
cated subsample. 

Besides this study’s specific limitations, the field of 1H-MRS is sub-
ject to more general technical limitations, such as the difficulty to 
separate Glu and Gln at low field strengths due to overlapping resonance 
signals, resulting in the use of the pooled measure: Glx (Zhang and Shen, 
2016). Although Glu and Gln are both involved in glutamatergic syn-
thesis and neurotransmission, they fulfill different roles and interactions 
within this cycle. As a result, combining them into Glx causes loss of 
valuable information on Glu/Gln ratios which could potentially be 
informative (Yuksel and Ongur, 2010). Also, 1H-MRS at lower field 
strengths is limited to static measurements thereby losing information 
on underlying metabolite dynamics, whereas differences in metabolite 
concentrations between OCD patients and controls might be more 
strongly apparent during certain behavioural or pathological states. 
Both problems addressed above could potentially be solved with the use 
of ultra-high field 7T MR systems, possibly in combination with 
behavioural paradigms (Bednarik et al., 2015; Ip et al., 2017; Stanley 
and Raz, 2018). 

5. Conclusions 

To our knowledge, this is the first study investigating both direct 
(post-treatment) and delayed (follow-up) changes in neurometabolite 
concentrations after concentrated ERP in OCD patients. OCD patients 
with comorbid mood disorders showed lower Glx concentrations at 
baseline with an immediate increase after one week of concentrated 
ERP. Also onset of disease (childhood versus adult onset) was associated 
with differences tNAA changes over time. These heterogeneity effects, if 
replicated, should be take into account in future MRS studies, e.g. using 
(dynamic) metabolite measures at ultra-high field. 
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