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Abstract

There is currently an increasing interest in developing efficient solvers for variational phase-field models of brittle fracture.
he governing equations for this problem originate from a constrained minimization of a non-convex energy functional, and

he most commonly used solver is a staggered solution scheme. This is known to be robust compared to the monolithic Newton
ethod, however, the staggered scheme often requires many iterations to converge when cracks are evolving. The focus of our
ork is to accelerate the solver through a scheme that sequentially applies Anderson acceleration and over-relaxation, switching
ack and forth depending on the residual evolution, and thereby ensuring a decreasing tendency. The resulting scheme takes
dvantage of the complementary strengths of Anderson acceleration and over-relaxation to make a robust and accelerating
ethod for this problem. The new method is applied as a post-processing technique to the increments of the solver. Hence,

he implementation merely requires minor modifications to already available software. Moreover, the cost of the acceleration
cheme is negligible. The robustness and efficiency of the method are demonstrated through numerical examples.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Variational brittle fracture; Phase-field modeling; Staggered scheme; Anderson acceleration; Relaxation; Nonlinear solver

1. Introduction

Mathematical modeling of brittle fracture propagation is an important and challenging topic in engineering
ciences. The main difficulty arises in the transition between the distinct material properties in the fracture and
he bulk domain. In this paper, we consider a variational phase-field model, as introduced by Bourdin, Francfort,
nd Marigo [1,2]. A smooth indicator that marks the broken and unbroken parts of the material regularizes the sharp
rack topology. This enables modeling of fractures without conforming meshes or path-tracking algorithms (as in
FEM [3]). However, fine meshes are needed to resolve the regularized region between the fracture and the bulk
omain.

The system is modeled by minimizing its energy as a function of material displacement and the indicator function
nder a non-healing constraint. This leads to a system of coupled, nonlinear equations which is challenging to
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solve. The most common technique, due to its robust nature, is a staggered scheme. This method decouples the
system and sequentially updates the displacement and indicator variable by solving their respective subproblems.
However, the convergence properties are at times very bad, and iterating to satisfactory precision can result in
large numbers of iterations [4,5]. The monolithic Newton method, on the other hand, does not show the same
numerical robustness. Therefore, several attempts have been made to find a method that is both fast and robust.
A monolithic, modified Newton method was proposed in [6], a monolithic quasi-Newton method of Broyden–
Fletcher–Goldfarb–Shanno type was applied in [7] and [8], a monolithic line-search Newton method (dependent on
the system energy) was applied in [4], and the truncated nonsmooth Newton multigrid method was proposed in [9].
In [10], the L-scheme [11,12] was applied in the context of an augmented Lagrangian solver, and a combination of
an over-relaxed staggered scheme and the monolithic Newton method was applied in [5].

In this paper, we propose a novel strategy to accelerate the classical staggered solution scheme solely utilizing two
echniques for post-processing increments: Anderson acceleration and over-relaxation. In addition to accelerating
he staggered scheme without sacrificing robustness, the new method allows the use of already available staggered
cheme solvers with minor modifications to the implementation.

Anderson acceleration was first developed in [13] for integral equations. Since then, it has seen many applications,
ncluding electronic structure computations [14] and flow in deformable porous media [15]. It is a multi-secant,
uasi-Newton method that has been related to a preconditioned GMRES [16]. Moreover, the method post-processes
he increments of the solver by approximating the inverse of the Jacobian of the system by reusing previous
terations. It can, therefore, easily be applied in combination with splitting techniques such as the staggered scheme
hile maintaining the decoupled nature of the scheme.
In [17], the authors show theoretically that the Anderson acceleration improves the convergence rate of linearly

onvergent schemes, which is the case of the staggered scheme. However, as proved in [18], the convergence is
nly local. In the case of phase-field modeling of brittle fracture, this is a challenge; when fractures are initiated
r propagating, the system state usually jumps drastically between consecutive loading steps. Therefore, a “naive”
pplication of Anderson acceleration is not suitable for this application, as will be demonstrated in the numerical
xamples of this work. Recently, there has been an increasing interest in modified Anderson acceleration methods
o overcome issues of local convergence. In [19] a safeguard, based on the residual norm of the problem, is applied
o restart Anderson acceleration, and in [20] a periodically restarted Anderson acceleration is applied within a
ichardson fixed-point iteration to accelerate the convergence of iterative solvers for large sparse linear systems.

Relaxation was applied to the staggered scheme on a phase-field model of brittle fracture in [5]. It is a post-
rocessing method that updates each iterate by relaxing (scaling) its increment. For the purpose of this work,
ver-relaxation (a scaling larger than one) is of particular interest. This is because the staggered scheme steadily
oves towards the final configuration of each loading step, and over-relaxation might move the iterates further

uring each iteration, potentially accelerating the convergence. For the particular loading steps in which fractures
re propagating, the gain can be quite substantial. There is, however, a drawback with over-relaxation: Near the
olution of each loading step one might end up over- and undershooting the solution sequentially leading to poor
erformance.

The most important observation of this paper is the complementary strengths of these two acceleration techniques;
nderson acceleration accelerates close to the solution, while over-relaxation accelerates during loading steps with

arge jumps in the solution (e.g., during crack propagation). We propose an acceleration algorithm that switches
etween Anderson acceleration and over-relaxation during each loading-step ensuring convergence at an accelerated
ate. This scheme is related to the one in [5] where the authors switch between over-relaxation and monolithic
ewton. However, for the new acceleration scheme, proposed in this paper, both of the combined acceleration
ethods function as post-processes to the increments of the standard staggered scheme. In other words, the

ew acceleration method can be implemented with minor modifications to already available software. Moreover,
witching between the two acceleration techniques does not change the sparsity of the underlying linear systems.
he switch criterion is based on the history of the residual norms of the staggered solution steps.

To summarize, the main contributions in this paper are:

• Presentation of the difficulties encountered with the application of plain Anderson acceleration and over-

relaxation applied to the staggered solution scheme for variational phase-field modeling of brittle fracture.
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• A new acceleration algorithm that exploits the complementary strengths of Anderson acceleration and
over-relaxation, utilizing residual norm evolution as a rule for switching between the methods.

• The performance of the proposed acceleration scheme is demonstrated through thorough numerical examples
including classical benchmark problems.

The paper is structured as follows: The mathematical model and numerical discretization are presented in
ection 2. Here, we introduce the energy functional which is subject to minimization together with the discretization.
n Section 3, the staggered scheme and the acceleration techniques are presented. Both Anderson acceleration and
elaxation are described before the combined acceleration scheme is presented together with the inexact Newton
odification. Section 4 contains the numerical study of the accelerations applied to the staggered scheme. We test

he staggered scheme both with and without the combinations of Anderson acceleration and relaxation. Moreover,
he optimal depth of Anderson acceleration and the choice of relaxation parameter is discussed. Finally, some
oncluding remarks are made in Section 5.

. Mathematical problem

In this section, the mathematical problem that is considered throughout the paper is presented. An elastic medium,
epresented by the domain Ω ⊂ ℝd with d = 2 (or 3), is subject to loading through traction forces, t , along ΓN
nd displacement, uD , along ΓD to the extent that it might break. Here, ΓN ∪ΓD = ∂Ω are subsets of the boundary
f the domain, Ω , and ΓD has nonzero measure. The state of the material is modeled by Griffith’s criterion [21],
ith constant Gc, and a smooth indicator function (the phase-field variable) ϕ : Ω → [0, 1] describes the state of

the damage to the material. The phase-field is defined to take the value 0 whenever the material is unbroken, and
1 when the material is broken, and a model parameter ℓ determines the width of the regularized zone where the
phase-field transitions from 0 to 1.

2.1. The energy of the system

Following the work of [1,22], we can express the total energy of the system as a sum of the medium’s elastic
energy, the surface energy dissipation associated with the broken parts of the material and external work related to
traction. Now, let u : Ω → ℝd denote the material displacement and define the total energy functional as

E(u, ϕ) :=

∫
Ω

Ec(ϕ) + Em(u, ϕ) dx −

∫
ΓN

t · u ds (1)

where

Ec(ϕ) :=
Gc

2

(
ϕ2

ℓ
+ ℓ∇ϕ · ∇ϕ

)
, (2)

nd

Em(u, ϕ) := g(ϕ)Ψ+(ε) + Ψ−(ε) − b · u. (3)

ere, we have applied the degradation function

g(ϕ) := (1 − κ)(1 − ϕ)2
+ κ,

here κ is a “small” constant. Other choices have been proposed in [23]. Moreover, the material is assumed to be
omogeneous and isotropic, and the elastic strain energy functional

Ψ (ε) :=
1
2
ε :ℂ :ε = µ(ε :ε) +

λtr (ε)2

2
, (4)

here ε =
∇u+∇u⊤

2 is the linearized elastic strain tensor and µ and λ are the Lamé parameters, has been decomposed
into “tensile”, Ψ+, and “compressive”, Ψ−, parts. The additive spectral decomposition

Ψ± (ε) := µ(ε± :ε±) +
λ⟨tr (ε)⟩2

±

2
,

proposed in [24] has been employed. Here, ⟨a⟩± :=
1
2 (a ± |a|) and ε± :=

∑
i ⟨εi ⟩±ni ⊗ ni where {εi }i and {ni }i are

the principal strains and principal strain directions, respectively. Additionally, the material is unable to heal, and

the constraint ∂tϕ ≥ 0 is applied accordingly.

3
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2.2. Time discretized, continuous-in-space equations

The loading procedure is discretized by the implicit Euler scheme, giving the non-healing constraint at loading
tep n ≥ 1:

ϕn(x) − ϕn−1(x) ≥ 0 ∀x ∈ Ω . (5)

ow, we define the displacement solution space V n
=

{
v ∈

(
H 1(Ω )

)d ⏐⏐ v|ΓD = un
D

}
, the displacement test space

V 0
=

{
v ∈

(
H 1(Ω )

)d ⏐⏐ v|ΓD = 0
}

, and the phase-field solution and test space Q = H 1(Ω ). Then, the solution
un, ϕn) ∈ V n

× Q at loading step n ≥ 1 is given by

(un, ϕn) := arg min
u,ϕ

{
E(u, ϕ, tn) | u ∈ V n, ϕ ∈ Q

}
. (6)

etting ⟨·, ·⟩X denote the usual L2 inner product over the domain X and denoting

σ±(u) :=
∂Ψ± (ε(u))

∂ε(u)
,

we find the variation of the energy (1) with respect to u and ϕ respectively:

Eδu(u, ϕ, v) =
⟨(

g(ϕ)σ+(u) + σ−(u)
)
, ε(v)

⟩
Ω

− ⟨b, v⟩Ω − ⟨t, v⟩ΓN (7)

Eδϕ(u, ϕ, q) =
⟨
g′(ϕ)Ψ+(ε), q

⟩
Ω

+
Gc

ℓ

(
⟨ϕ, q⟩Ω + ℓ2

⟨∇ϕ, ∇q⟩Ω

)
. (8)

t is now easy to see that the solution to (6), (un, ϕn), satisfies the system of equations

Eδu(un, ϕn, v) = 0 (9)
Eδϕ(un, ϕn, q) = 0 (10)

or all v ∈ V 0 and q ∈ Q.
The inequality (5) still requires some special treatment, and in this paper, we follow the approach of [24], where

on-healing for the phase-field is enforced by never allowing Ψ+ (ε) to decrease in Eq. (10). To achieve this, we
ntroduce a history variable;

Hn
:= max

k≤n
Ψ+

(
ε

(
uk)) , (11)

nd define a modified version of the variation with respect to ϕ by

Ẽδϕ(un, ϕn, q) =
⟨
g′(ϕn)Hn, q

⟩
Ω

+
Gc

ℓ

(⟨
ϕn, q

⟩
Ω

+ ℓ2 ⟨
∇ϕn, ∇q

⟩
Ω

)
. (12)

he solution at loading step n will be defined as the pair (un, ϕn) ∈ V n
× Q that satisfies

Eδu(un, ϕn, v) = 0 (13)
Ẽδϕ(un, ϕn, q) = 0 (14)

or all v ∈ V 0 and q ∈ Q. Other methods such as penalization [25] and the augmented Lagrangian method [26]
ave also been applied in this context. It is worth noting that the use of a global constraint such as (5) to impose
rreversibility of diffuse fractures has been called into question previously, on the grounds that it may not lead to the
orrect profile of the phase-field for a fully evolved crack [27]. Within the context of a history variable approach,
his issue can be addressed by updating H only when the phase-field exceeds a certain threshold as done in [23,28]
o enforce a localized constraint. In the current work, we have chosen to implement (11) as written in order to
acilitate a clearer comparison with other solution schemes that utilize a history variable approach according to the
efinition given in [24].

.3. Spatial discretization

To solve (13)–(14) we apply conforming linear finite elements [2,4,5,23], both for the phase-field variable and
h

{ }
he displacement. Let TΩ = Tk k be a decomposition of the domain Ω into simplices, Tk , and define, at loading

4
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step n ≥ 1, the spaces

V n
h =

{
vh ∈ (H 1(Ω ))d

⏐⏐ vh |Tk ∈ (P1(Tk))d
∀ Tk ∈ TΩ , vh |ΓD = un

D

}
,

Qh =
{
qh ∈ H 1(Ω )

⏐⏐ qh |Tk ∈ P1(Tk) ∀ Tk ∈ TΩ
}
,

nd V 0
h accordingly with zero trace. The system of equations to be solved is then: Find (un

h, ϕ
n
h ) ∈ V n

h × Qh such
hat

Eδu(un
h, ϕ

n
h , vh) = 0 (15)

Ẽδϕ(un
h, ϕ

n
h , qh) = 0 (16)

or all vh ∈ V 0
h and qh ∈ Qh . We emphasize that this problem is challenging not just due to the coupling between

he equation for mechanics and the evolution of the phase-field, but in particular due to the non-linearities associated
ith this coupling through the terms g(ϕn)Hn , g(ϕn)σ+(un), and σ−(un).
Following standard procedures, the system (15)–(16) naturally translates to the algebraic residual equations

Resu
(
un

h, ϕ
n
h

)
= 0 (17)

Resϕ

(
un

h, ϕ
n
h

)
= 0, (18)

here Resu and Resϕ denote the algebraic residuals corresponding to (15) and (16), respectively.

. Staggered scheme and acceleration

The discrete governing Eqs. (15)–(16) are strongly nonlinear and coupled. In this paper, we apply the staggered
cheme [5,29,23] to solve them, decoupling the equations. We let i ≥ 1 be the iteration index and define the
taggered scheme as: Given ϕ

n,i−1
h ∈ Qh , find (un,i

h , ϕ
n,i
h ) ∈ V n

h × Qh such that

Eδu(un,i
h , ϕ

n,i−1
h , vh) = 0 (19)

Ẽδϕ(un,i
h , ϕ

n,i
h , qh) = 0 (20)

or all (vh, qh) ∈ V 0
h × Qh and ϕ

n,0
h := ϕn−1

h . The iterations are terminated when either the absolute (21)–(22) or
he relative (23)–(24) stopping criteria are reached:Resu

(
un,i

h , ϕ
n,i
h

)
2

≤ TolRes,Abs, (21)un,i
h − un,i−1

h


L2(Ω)

+

ϕ
n,i
h − ϕ

n,i−1
h


L2(Ω)

≤ TolInc,Abs, (22)Resu

(
un,i

h , ϕ
n,i
h

)
2Resu

(
un,1

h , ϕ
n,0
h

)
2

≤ TolRes,Rel, (23)

un,i
h − un,i−1

h


L2(Ω)un,1

h


L2(Ω)

+

ϕ
n,i
h − ϕ

n,i−1
h


L2(Ω)ϕ

n,0
h


L2(Ω)

≤ TolInc,Rel, (24)

for given tolerances TolRes,Abs, TolRes,Rel, TolInc,Abs and TolInc,Rel. Notice that controlling the residuals corresponding
to the phase-field equation (20) is redundant due to it being solved second in the staggered scheme by an exact
linear solver.

To solve the nonlinear equation (19) we apply the Newton method with the relative stopping criterionResu

(
un,i, j

h , ϕ
n,i−1
h

)
2Resu

(
un,1

h , ϕ
n,0
h

)
2

≤ Tolinner. (25)

ere, j ≥ 1 is the iteration index for the Newton method and the initial guess is chosen as the previous staggered
teration un,i,0

h := un,i−1
h .

The staggered scheme (19)–(20) is closely related to the alternate minimization method (it differs in the

pplication of the history variable (11)) and is known to be a robust solution method [30]. However, it might require

5
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a large number of iterations to reach satisfactory tolerances [4,8,5]. We aim to accelerate this slow convergence and
propose a combination of Anderson acceleration and over-relaxation. We note that the staggered solution scheme
can be written as the fixed-point iteration

xn,i
h := S(xn,i−1

h ) = xn,i−1
h + ∆S(xn,i−1

h ) (26)

where S is the staggered solution scheme operator, ∆S is the increment of the staggered scheme and xn,i
h is the

vector
(

un,i
h

ϕ
n,i
h

)
.

Now, we present both the Anderson acceleration and the relaxed staggered scheme and describe their strengths
and weaknesses. Then, taking advantage of the strengths of both schemes, a combined scheme is presented.

3.1. Anderson acceleration

Anderson acceleration is a multi-secant method that mimics the monolithic Newton method. The acceleration acts
as a post-processing procedure that updates the current iterate by a linear combination of the m previous iterates,
according to their respective increments. The value of m is free to be chosen and is known as the depth of the
cceleration. At loading step n, the Anderson accelerated staggered scheme of depth m reads:

Algorithm 1: Anderson acceleration

1 Given x0;
2 for i = 1, 2, . . . until convergence do
3 Set depth mi = min{m, i − 1};

4 Define Fi
:=

[
∆S

(
xn,i−mi −1

h

)
, . . . ,∆S

(
xn,i−1

h

)]
;

5 Let αi
=

[
αi

0, . . . , α
i
mi

]⊤

∈ ℝmi +1 be the minimizer of
Fiαi


2 subject to

∑
k αi

k = 1;

6 Define the accelerated iterate xi
h :=

∑mi
k=0 αkS

(
xn,k+i−mi −1

h

)
Algorithm 1 is independent of the underlying fixed-point iteration, but is presented for the application to the

taggered scheme here. An important feature of Anderson acceleration is that it preserves the decoupled nature of
he staggered scheme, hence, the subproblem solvers are unaffected by it.

It is demonstrated in the numerical section that Anderson acceleration improves the convergence when close
o the solution. However, the acceleration might deteriorate otherwise. In particular, we have observed that this
appens for brutal crack propagation, where the method sometimes fails to converge at all. Therefore, we do
ot expect a staggered scheme that is merely enhanced by the Anderson acceleration to be a good choice. On
he other hand, we provide a remedy to this in Section 3.3, where Anderson acceleration is combined with
ver-relaxation.

.2. Over-relaxation

Relaxation applied to each subproblem of the staggered solution scheme was described and applied in [5]. The
ethod first calculates the increment ∆un,i−1

h obtained by solving Eq. (19), before defining the updated iterate
s

un,i
h := un,i−1

h + ω∆un,i−1
h ,

here ω ∈ (0, 2) is a parameter. This new iterate un,i
h is now passed on to Eq. (20) and the same procedure is

xecuted for the phase-field resulting in the updated iterate ϕ
n,i
h . Following standard literature on iterative methods,

e refer to the choice ω ∈ (1, 2) as over-relaxation and ω ∈ (0, 1) as under-relaxation. At the nth loading step the

elaxed staggered scheme reads:

6
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Fig. 1. Asymmetrical bending test: Relative residual evolution (see Eq. (23)) over the simulation. See Section 4.3 for an explanation of
the test case. Similar behavior is experienced for all proposed test cases.

Algorithm 2: Relaxed staggered scheme

1 Given ϕ
n,0
h and ω ∈ (0, 2);

2 for i = 1, 2, . . . until convergence do
3 Find ûn,i

h ∈ V n
h satisfying Eδu(ûn,i

h , ϕ
n,i−1
h , vh) = 0, ∀vh ∈ V 0

h ;
4 Define ∆un,i−1

h := ûn,i
h − un,i−1

h ;
5 Update the iterate un,i

h := un,i−1
h + ω∆un,i−1

h ;
6 Find ϕ̂

n,i
h ∈ Qh satisfying Ẽδϕ(un,i

h , ϕ̂
n,i
h , qh) = 0, ∀qh ∈ Qh ;

7 Define ∆ϕ
n,i−1
h := ϕ̂

n,i
h − ϕ

n,i−1
h ;

8 Update the iterate ϕ
n,i
h := ϕ

n,i−1
h + ω∆ϕ

n,i−1
h ;

Under-relaxation is robust when applied to the staggered scheme, however, it usually slows down the scheme.
ver-relaxation, on the other hand, tends to accelerate the loading steps of the staggered solution scheme where

racks occur, while it might slow down the process for quasi-static loading steps.

.3. Robust and efficient solution by combining Anderson acceleration and over-relaxation

As neither Anderson acceleration nor over-relaxation should be applied naively to the staggered scheme (19)–
20), due to their mentioned weaknesses, we propose a combined robust acceleration scheme. The key observations
hat motivate such a method are:

• Anderson acceleration is locally accelerating, while over-relaxation might struggle close to the solution.
• Anderson acceleration is applied as a post-processing algorithm to the increments of the staggered scheme.

Hence, switching between relaxation and Anderson acceleration merely requires minor modifications to the
implementation.

• During crack propagation the residuals for the staggered scheme show a stagnating, oscillatory behavior, and
during quasi-static steps they are strictly decreasing, see [4] and Fig. 1. Therefore, it is possible to use residual
evolution as a rule for switching between the acceleration techniques.
7
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A new parameter Nω→AA ∈ ℕ, related to the switch from relaxation to Anderson acceleration is defined, and at
oading step n the combined accelerated staggered scheme reads:

1. Apply Anderson acceleration of given depth m.
2. While the norms of the residuals are strictly decreasing, continue with Anderson acceleration until conver-

gence.
3. If the norms of the residuals are not strictly decreasing, switch to relaxation with given parameter ω.
4. When the norms of the Nω→AA previous residuals are strictly decreasing go back to 1, and restart1 Anderson

acceleration.

Below, we give a pseudo-code for the new combined acceleration method. Define the residual norm Resi :=

Resu

(
un,i

h , ϕ
n,i
h

)
2

as in (21), and notice that the application of Anderson acceleration and relaxation in the
seudo-code denotes the i th step of the accelerations (see Algorithms 1 and 2).

Algorithm 3: Combined algorithm

1 Given depth m, relaxation ω, initial guess ϕ
n,0
h , and switch Nω→AA;

2 relaxing := False;
3 for i = 1, 2, . . . until convergence do
4 if not(relaxing) then
5 if i = 1 or Resi ≤ Resi−1 then
6 apply Anderson accelerated staggered scheme, giving (un,i

h , ϕ
n,i
h );

7 else
8 apply relaxed staggered scheme, giving (un,i

h , ϕ
n,i
h );

9 relaxing := True;

10 else
11 if not(Resi ≤ Resi−1 ≤ · · · ≤ Resi−Nω→AA−1) then
12 apply relaxed staggered scheme, giving (un,i

h , ϕ
n,i
h );

13 else
14 restart1 and apply Anderson accelerated staggered scheme, giving (un,i

h , ϕ
n,i
h );

15 relaxing := False;

4. Numerical examples

This section explores the effects of the proposed acceleration methods from Section 3 applied to the staggered
cheme (19)–(20). Both Anderson acceleration (see Fig. 16(b)) and over-relaxation (see Fig. 11(b)) alone are shown
o be infeasible acceleration methods when plainly applied to the staggered scheme, while the combined scheme is
uperior to the unaccelerated scheme for all tests. We consider four different test cases which are widely used for
umerical studies in the literature:

• A domain with a single notch subject to

– tensile load;
– shear load.

• An L-shaped domain subject to monotonic loading.
• Bending of an asymmetrically notched beam with holes.

ll the numerical examples have been implemented using modules from the DUNE project [31], specifically
une-functions [32,33].

1 Restart means that Anderson acceleration should be applied as it is in the first iteration, i.e., using no information of previous increments
and iterates.
8
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M
w

Fig. 2. Domain, boundary conditions, and mesh for the single-edge notch test cases.

The mesh for all numerical examples has been locally refined close to where the crack is expected to propagate.
Choosing uniform fine meshes is naturally another option, and there are several algorithms for adaptive mesh
refinement for these types of problems in the literature, see e.g., [34,35].

4.1. Single notch test

Two of the most commonly found test cases in the literature are both based on the same single notch
geometry [36,37]. They consist of a square domain with a pre-existing crack that penetrates half the domain, see
Fig. 2. The domain is held still at the bottom, and a displacement driven load is applied at the top boundary.

4.1.1. Single notch tensile test case
A tensile load is applied on the top boundary, and at loading step n we have

un
|
ΓTop

=

(
0

ūn

)
,

where the load size ū is given in Table 1 and Γ Top is the top part of the boundary in Fig. 2(a). Due to the load
being strictly tensile, there is no need to split the elastic strain energy functional (4) into tensile and compressive
parts, which would effectively add nonlinearities to the system. Therefore, the first term in (7) is replaced by
⟨g(ϕ)σ (u), ε(v)⟩, for

σ (u) :=
∂ψ(ε(u))

∂ε(u)
. (27)

aterial parameter values are chosen as in e.g., [36], and can be found in Table 1. We employ a triangular mesh,

hich has been locally refined in the region where the crack is expected to propagate, see Fig. 2(a).

9
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Fig. 3. Solution for ϕ for the single notch tensile test case.

In this test case, the crack fully propagates in one single critical loading step, see Fig. 3, in which the crack
gradually expands through the domain with increasing staggered iteration count (not displayed here). Fig. 4(b)
shows that, as expected, the staggered scheme under Anderson acceleration alone struggles as a consequence of
its local convergence. Aside of mitigating the issue and only applying Anderson acceleration in suitable situations,
the combined scheme, in addition, takes advantage of over-relaxation and its ability to move further each iteration
and accelerates this particular loading step significantly. For the remaining loading steps, the combined scheme
accelerates by Anderson acceleration, as its local convergence is sufficient. The total number of iterations (Fig. 5)
for the combined scheme is, therefore, smaller than those of the unaccelerated staggered scheme and the Anderson
accelerated staggered scheme. The figure shows that the combined scheme accelerates by more than 50% for large
relaxation parameters. We also observe that the depth of Anderson acceleration is not influential as long as it is larger
than one. Moreover, there is a trend that more aggressive over-relaxation (higher ω) results in faster computations.
Additionally, the combined acceleration scheme is robust with respect to the tuning parameters, m and ω, and
exhibits convergence for all tested combinations.

The traction vector is defined by

τ = (τx , τy) =

∫
ΓTop

σ · ν d S, (28)

where ν is the outward pointing normal vector, and σ is defined in (27). For this problem, the load in the direction of
interest is τy , and we observe in Fig. 4(a) that the load–displacement curves remain unchanged after the combined
acceleration. This is an important observation that demonstrates that the acceleration method only affects the
convergence properties of the solver, not the quality of the solution. The Anderson accelerated staggered scheme,
however, does not converge in the maximal prescribed iterations for each loading step and we observe that its
load–displacement curve is affected.

Remark 1. Notice that the plots of the number of iterations for depth m = 0 in Figs. 5, 8, 12 and 17 are not
corresponding to plain relaxation. Here, relaxation is switched on and off depending on residual evolution, turning
it into a safeguarded relaxation. The same goes for the plots of plain Anderson acceleration with over-relaxation
parameter ω = 1. These correspond to safeguarded Anderson accelerations, similar to those that are proposed
in [19].
10
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Fig. 4. Single notch tensile test: Load curves and number of iterations per loading step. “AA” is an abbreviation of Anderson acceleration,
and “CS” is the combined acceleration scheme. “Plain AA” means that Anderson acceleration is applied without any form of safeguard or
combination with relaxation.

Fig. 5. Single notch tensile test: Total number of iterations for the combined scheme with different relaxation parameters and Anderson
acceleration depths. “NoAcc” is the unaccelerated staggered scheme.

Table 1
Parameter values for the single notch test cases.

Parameter Symbol Value – Tensile Value – Shear

Lamé’s 1. parameter λ 121.15 kN/mm2 121.15 kN/mm2

Lamé’s 2. parameter µ 80.77 kN/mm2 80.77 kN/mm2

Regularization width ℓ 0.0075 mm 0.0075 mm
Griffith’s constant Gc 2.7 N/mm 2.7 N/mm
Energy regularization κ 10−10 10−10

Tot. # loading steps N 50 150
Load size ū 2 · 10−4 mm 10−4 mm
Fine mesh size h 0.001 mm 0.00375 mm
Min. relax. steps Nω→AA 5 5
Abs. tol. TolRes/Inc,Abs 10−8 10−8

Rel. residual tol. TolRes,Rel 5 · 10−3 5 · 10−3

Rel. increment tol. TolInc,Rel 10−2 10−2

Max. iter. pr. load. step Maxiter 1000 1000
Inner Newton tol. TolInner 10−4 10−4
11
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Fig. 6. Solution for ϕ for the single notch shear test case.

4.1.2. Single notch shear case
In this test case, a shear load is applied on the top boundary of a unit square domain with a prescribed crack

that halfway penetrates the domain. The displacement boundary condition

un
|
ΓTop

=

(
ūn
0

)
is applied at loading step n. The load size ū is presented in Table 1, and the top part of the boundary Γ Top is
displayed together with more details on the domain and boundary conditions in Fig. 2(b). The material properties
are taken from [36] and displayed in Table 1. A triangular mesh, which is refined according to where the crack is
expected to propagate, has been employed, see Fig. 2(b).

Contrary to the tensile test case, the crack propagation happens gradually over the course of many loading steps,
see Fig. 6. Therefore, solutions at subsequent loading steps do not differ as significantly as for the brutal crack
growth in the tensile test case. We expect that the Anderson acceleration is a more suitable choice for accelerating
the staggered scheme. Indeed, Fig. 7(b) shows that even with the plain Anderson acceleration the staggered scheme is
quite significantly accelerated. Moreover, the combined scheme is even better, and we see that it reaches convergence
in every single loading step.

In the load–displacement curves, Fig. 7(a), the load τx as defined in (28) is displayed for each loading step. The
plot shows minor differences towards the end of the displacement. This is due to the scheme not converging in its
given maximal iterations per loading step (see Table 1) for both the unaccelerated staggered scheme and the plain
Anderson accelerated scheme in all the loading steps. This is similar to the tensile case where the load–displacement
curves, Fig. 4(a), also are affected.

In Fig. 8, we see the total iteration count for several acceleration depths in combination with over-relaxation. It
can be observed that the staggered scheme is accelerated significantly for all combinations of Anderson acceleration
and over-relaxation as long as the depth is greater than one. In fact, we have more than 80% reduction in the total
number of iterations when choosing a high relaxation parameter. Moreover, for this test case the plain Anderson
acceleration is in itself a suitable alternative to the unaccelerated staggered scheme. Notice the difference between
plain Anderson acceleration and Anderson acceleration combined with over-relaxation of depth one described
in Remark 1. Additionally, the total time in seconds to complete the simulations is plotted in Fig. 9, in a similar
fashion as for the total number of iterations. We observe that the trend of what we save in computational time is
equal to that of the total iteration count. This does, indeed, hold true for all of the test cases.

4.2. L-shaped domain subject to loading

An L-shaped domain with a displacement boundary condition applied on the right part of the boundary is
considered, see Fig. 10(a) for details. The displacement is uniformly increased on the boundary segment over 800
loading steps. As a result, a crack occurs in the inner corner, propagating into the domain, see Fig. 10(b). A uniform
quadrilateral mesh with a mesh diameter of 125

32 mm is employed. See Table 2 for material and computational
parameters.

Here, the crack propagation has a character somewhere between the single notch tensile test and the single notch
shear test. Crack initiation shows similar behavior as brutal crack propagation, but not as extreme as for the single
12
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i

Fig. 7. Single notch shear test: Load curves and number of iterations per loading step. “AA” is an abbreviation of Anderson acceleration,
and “CS” is the combined acceleration scheme. “Plain AA” means that Anderson acceleration is applied without any form of safeguard or
combination with relaxation.

Fig. 8. Single notch shear test: Total number of iterations for different relaxation parameters and Anderson acceleration depths. “NoAcc”
s the unaccelerated staggered scheme, and “Plain AA” is Anderson acceleration without the combination with relaxation.

Fig. 9. Single notch shear test: Total time in seconds for different relaxation parameters and Anderson acceleration depths. “NoAcc” is
the unaccelerated staggered scheme.

notch tensile test. A large peak in the number of iterations is experienced when the crack initiates, see Fig. 11(a).
We observe that both the combined scheme and plain Anderson acceleration with depth m = 1 accelerate for all
loading steps. Moreover, the only difference between the combined acceleration and Anderson acceleration is in
the large peak where the combined scheme outperforms Anderson acceleration. For the rest of the simulation, the
13
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Fig. 10. Domain with boundary conditions and solution for the L-shaped test.

staggered scheme converges in relatively few iterations, but the accelerated method converges faster in almost every
loading step.

Fig. 11(b) displays the total number of iterations for plain over-relaxation with several relaxation parameters.
A parabolic dependence on the relaxation parameter is observed, and choosing it to be too large results in more
than three times the number of iterations that are required by the unaccelerated staggered scheme. This is due to
over-relaxation struggling near the solution of the loading steps resulting in successive over- and undershooting of
the solution. Therefore, a plain application of over-relaxation is not recommended. The total number of iterations
required by the combined acceleration, however, is significantly smaller than those of the unaccelerated staggered
scheme (and the optimally over-relaxed scheme), as observed in Fig. 12. Although the reduction in the number
of iterations is not as good as for the single notch shear test case the combined scheme accelerates robustly with
respect to the tuning parameters. It is clear that any combination of Anderson acceleration and over-relaxation is
superior to the unaccelerated staggered scheme, accelerating by approximately 40%.

The load–displacement curve for this test case is displayed in Fig. 13(a). Here, the traction vector, see Eq. (28), is
calculated on the bottom boundary and the vertical component τy is considered. We observe that, as all acceleration
schemes converge within each loading step, the curves are completely overlapping.

4.3. Asymmetrical bending test

This test case considers a rectangular domain with three holes, slightly to the left, and a notch in the lower left
part of the domain. It is subject to symmetrical displacement loading on the top boundary,

un
|ΓTop =

(
0

ūn

)
. (29)

The beam is simply supported as shown in Fig. 14(a). See Fig. 14(a) or [38] for details on boundary conditions
and domain. Experimental results from [39] have shown that the crack path should hit the second hole, and we see
from the numerical solution, Fig. 15, that this also happens here. The mesh has been refined in the region where
the crack is expected to propagate, see Fig. 14(b). The problem parameters are chosen similarly to [10,36,37], and
are presented in Table 2.
14
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u

o

Fig. 11. L-shaped test: number of iterations per loading step and total iterations for several over-relaxation parameters.

Fig. 12. L-shaped test: Total number of iterations for different relaxation parameters and Anderson acceleration depths. “NoAcc” is the
naccelerated staggered scheme.

Fig. 13. “CS” is the combined acceleration scheme. “Plain AA” means that Anderson acceleration is applied without any form of safeguard
r combination with relaxation.
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Table 2
Parameter values for the L-shaped and asymmetrical bending tests.

Parameter Symbol L-shaped Bend. test

Lamé’s 1. parameter λ 6.16 kN/mm2 8 kN/mm2

Lamé’s 2. parameter µ 10.95 kN/mm2 12 kN/mm2

Regularization width ℓ 10 mm 0.1 mm
Griffith’s constant Gc 9.5 · 10−5 kN/mm 10−3 kN/mm
Energy regularization κ 10−10 10−10

Load size ū 10−3 mm −10−2e−
(x−10)2

100 mm
Fine mesh size h 125

32 mm 0.05 mm
Min. relax. steps Nω→AA 5 5
Abs. tol. TolRes/Inc,Abs 10−8 10−8

Rel. residual tol. TolRes,Rel 5 · 10−3 5 · 10−3

Rel. increment tol. TolInc,Rel 10−2 10−2

Max. iter. pr. load. step Maxiter 1000 1000
Inner Newton tol. TolInner 10−4 10−4

Fig. 14. Domain with boundary conditions and mesh for the asymmetrical bending test case.

Here, we have two “critical” loading steps, in which the crack evolves and a large number of iterations is required,
ee Fig. 16(a). For these loading steps, we see that the plain Anderson acceleration does not accelerate, while the
ombined acceleration performs very well.

In Fig. 16(b) the total number of iterations for the plain Anderson acceleration is displayed for several depths.
e clearly observe that the staggered scheme is significantly decelerated for depths larger than one. In other words,
nderson acceleration is not a robust method in itself for this problem. The combined scheme, on the other hand,

educes the total number of iterations for all combinations of over-relaxation and Anderson acceleration, see Fig. 17.
here is, however, a tendency that larger relaxation parameters accelerate more, which is expected due to the brutal
ature of the crack propagation in loading step 12, see Fig. 15.

The traction vector (28) is here calculated on the top boundary and the component of interest is τy . In Fig. 13(b),
the load–displacement curves are displayed, and the displacement is calculated at the left corner of the top boundary.
They are, as expected, overlapping as there are no loading steps for any configurations in which the convergence
is not achieved in the given maximal amount of iterations.

5. Conclusion

The staggered solution scheme is, due to its robustness, a popular method for solving variational phase-field

models of brittle fracture. As it often requires a large number of iterations to converge we have proposed a
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Fig. 15. Solution for ϕ for the asymmetrical bending test case.

Fig. 16. Asymmetrical bending test: Number of iterations per loading step, and total number of iterations for several depths of Anderson
acceleration. “CS” is the combined acceleration scheme. “Plain AA” means that Anderson acceleration is applied without any form of
safeguard or combination with relaxation.

Fig. 17. Asymmetrical bending test: Total number of iterations for different relaxation parameters and Anderson acceleration depths.
“NoAcc” is the unaccelerated staggered scheme.

method to accelerate it that exploits the complementary advantages of Anderson acceleration and over-relaxation.
The acceleration method alternates between Anderson acceleration and over-relaxation according to a switch that
depends on the norms of the previous residuals of the scheme. For problems without brutal crack growth, Anderson
acceleration is quite efficient. It is, however, unstable for problems with brutal crack growth, and therefore, not a
17
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technique that can be applied without modifications. Over-relaxation, on the other hand, works well within regimes
of brutal crack propagation, but might struggle when the iterates get close to the solution within a single loading step.
The scheme shows robustness with respect to the tuning parameters, Anderson acceleration depth and relaxation
parameter, and converges for all combinations. Moreover, there is a tendency that choosing Anderson acceleration
depth larger than one is insignificant, and that over-relaxation with parameters of at least 1.6 are the best choices.
Therefore, we propose to apply the method with depth one and over-relaxation 1.6, although one might gain some
speed in tuning these parameters to specific problems, or choose them adaptively. The success of the proposed
combined scheme builds upon the following problem-specific phenomena:

• The observation that for fixed loading steps, fractures gradually propagate towards their final configuration
by the staggered scheme. This suggests a suitable application of over-relaxation where fractures are forced to
grow further each iteration.

• A characteristic residual history for the staggered scheme, motivated by experience from phase-field models
for brittle fracture, suggests the residual-based strategy for the switch between Anderson acceleration and
over-relaxation.

It is therefore expected that the success of the proposed scheme will be seen for other variational models for brittle
fracture propagation as well.
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