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Abstract

We address numerical solvers for a poromechanics model particularly adapted for soft materials, as it generally respects
hermodynamics principles and energy balance. Considering the multi-physics nature of the problem, which involves solid and
uid species, interacting on the basis of mass balance and momentum conservation, we decide to adopt a solution strategy of

he discrete problem based on iterative splitting schemes. As the model is similar (but not equivalent to) the Biot poromechanics
roblem, we follow the abundant literature for solvers of the latter equations, developing two approaches that resemble the
ell known undrained and fixed-stress splits for the Biot model. A thorough convergence analysis of the proposed schemes

s performed. In particular, the undrained-like split is developed and analyzed in the framework of generalized gradient flows,
hereas the fixed-stress-like split is understood as block-diagonal L2-type stabilization and analyzed by means of a relative

stability analysis. In addition, the application of Anderson acceleration is suggested, improving the robustness of the split
schemes. Finally, we test these methods on different benchmark tests, and we also compare their performance with respect
to a monolithic approach. Together with the theoretical analysis, the numerical examples provide guidelines to appropriately
choose what split scheme shall be used to address realistic applications of the soft material poromechanics model.
c⃝ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Poromechanics of soft materials; Iterative splitting schemes; Undrained split; Fixed-stress split; Convergence analysis

1. Introduction

Poromechanics addresses the behavior of fluid-saturated permeable porous materials, and in particular the inte-
action of their mechanical deformation and the fluid flow. Since its origin in the context of civil engineering [1–4],
ost commonly known as Biot’s theory of poroelasticity, it has been used for countless applications of societal and

ndustrial relevance, e.g., in reservoir geomechanics, hydrology and soil mechanics, and material sciences (see the
eview [5] and the references therein). More recently, it has also captured the attention of researchers interested
n the behavior of highly deformable, soft biological tissues [6–8]; a prominent example is the perfusion of the
eart [9–12].

The classical theory of poroelasticity and resulting models were originally developed for civil engineering
pplications and therefore accordingly often incorporate simplifying assumptions. These are not always met
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in the context of biomedical applications. For instance soft tissues, as the heart, may simultaneously undergo
both large deformations and perfusion with potentially moderate flow rates, larger than in common subsurface
applications, [13–16]. Ultimately, this has called for more general formulations obeying the fundamental principles
of continuum mechanics and thermodynamics [17], which renders these models applicable to a broader range of
scenarios. We also emphasize that several biomedical applications, e.g., in the context of bone poroelasticity [18] or
brain mechanics [19–22], can be addressed by standard models as the Biot equations or their extension to multiple
permeability networks.

Among various advances, we particularly highlight the development of a general, thermodynamically consistent
oromechanics model by Chapelle and Moireau [23], which also serves as basis for this work. The model is based on
thermodynamic derivation combined with thermodynamically consistent constitutive laws. It couples the balance

f linear momentum for the solid and fluid phases including the viscous dissipation governed by the interaction
f both phases due to friction, as well as the conservation of mass. Most importantly, in contrast to the classical
uasi-static Biot consolidation model, the aforementioned model satisfies an energy-dissipation identity, predicting
he dissipation of the combination of the kinetic and Helmholtz free energy. A further difference between the two
pproaches is that the former considers the absolute fluid velocity instead of the relative one.

The analysis of the well-posedness, stability and numerical approximation of this class of poromechanics
odels is still largely open. Among recent advances, we highlight the development and analysis of an implicit

ime discretization preserving the dissipation-energy identity at the discrete level [23]; an energy-preserving
mplicit–explicit time discretization incorporating a (non-iterative) operator splitting, decoupling solid and flow
omputations [24]; an energy-stable space and time discretization for a linearized model with focus on quasi-
ncompressible solids [25]; and finally, a space and time discretization for the same linearized model, exploiting a
eneralized saddle point structure and ultimately suggesting the use of Taylor–Hood type finite elements [26].

Motivated by the success of block-partitioned solvers for the related, classical quasi-static Biot equations, the
ain objective of this work is to develop and analyze for the first time iterative coupling strategies for the general,

hermodynamically consistent poromechanics model proposed in [23]. Similar to previous theoretical works in this
ontext, see for example [25,26], a linearized model is considered for the numerical analysis. The particular structure
f the problem prevents direct application of previous results for the Biot equations and requires new developments
aking into account a more involved coupled nature and the presence of dynamic terms.

In general, solvers decoupling different physics allow the employment of methods tailored to the separate sub-
roblems, as flow and elasticity. However, a sequential-implicit solution requires iterating until convergence at each
ime step. In contrast, fully-implicit approaches, solving the fully-coupled problem at once, yield unconditional
tability but require advanced and efficient preconditioners. Here it is worth to mention that robust iterative coupling
trategies can effectively guide the design of scalable preconditioners for the monolithic solution by Krylov subspace
ethods.
For robust iterative coupling, in general, a problem-specific strategy is required; yet, we can learn from the

ell-studied, related Biot equations. For the latter, solvers based upon a sequential-implicit solution of the flow and
echanics sub-problem have been studied since over two decades [27]. The most popular iterative schemes are

he undrained split [28] and the fixed-stress split [27], both relying on additional stabilization to one of the sub-
roblems. Due to suitable choices of stabilization, both have been shown to be unconditionally stable [29–31]
ith theoretical convergence rates depending on stabilization and model parameters, but independent on mesh
roperties; inf–sup stability of the discretization even allows robust convergence in the fluid-incompressible and
uasi-impermeable regime [32]. Moreover, the fixed-stress split has been successfully generalized to several complex
xtensions of the quasi-static Biot equations. In view of biomedical applications, we emphasize work on large
eformations [33] and multiple-network poroelasticity models often applied in brain applications [20,22]. For
ptimal performance of the iterative solvers, the choice of the stabilization is well-known to be vital. This choice
oes depend on several factors [32] as problem parameters, but also boundary conditions and geometry, which are
ifficult to quantify. To alleviate this, it has been shown in [34] that Anderson acceleration [35] greatly relaxes
he requirement of optimal stabilization. Furthermore, utilizing the fact that stabilized split schemes are equivalent
o a preconditioned Richardson iteration [30], they provide a basis to design efficient block preconditioners for
he fully-implicit approach [36], next to alternative efficient preconditioners [37–41]. In this context, the need for
ptimal stabilization is similarly relaxed. Hence, after all, stabilization parameters derived in theoretical analyses
ffer a practical choice. An interesting alternative approach using a hybridized discontinuous discretization has been
hown to yield a parameter-robust solver [42].
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In this work, we develop and analyze splitting schemes for a linearization of the general poromechanics
odel [23], previously introduced and analyzed in [25,26]. This (linearized) model resembles Biot’s equations,

ut presents fundamental differences, most importantly, new terms in the momentum equations of the fluid and
olid phases due to inertia, and a structurally different saddle-point structure, compared to a double saddle point
tructure of the Biot equations. Still, iterative coupling concepts can be adapted to the new setting. Ultimately,
e present schemes similar to the undrained split and the fixed-stress split. In particular, the undrained-like split is
eveloped and analyzed in the framework of generalized gradient flows and alternating minimization following [43],
hereas the fixed-stress-like split is understood as block-diagonal L2-type stabilization and analyzed by means of
relative stability analysis. In practice, additional application of Anderson acceleration is suggested, motivated by

ssociated works in the literature and the here presented numerical examples.
This work is structured as follows. In Section 2, we present the general model of interest and its linearized

ersion. In Section 3 and Section 4, we present respectively the alternating minimization split and the diagonally
L2-stabilized split. The convergence of both schemes is analyzed in Section 5. In Section 6, an extensive numerical
tudy is presented which validates the theoretical results. Finally, we close with concluding remarks in Section 7.

. The thermodynamically consistent poromechanics model

The purpose of this work is to develop efficient solution strategies for the linearized and discretized version of the
hermodynamically consistent poromechanics model originally developed by Chapelle and Moireau in [23], further
escribed below. Two main steps are essential to reach this objective. One is the discretization of the equations (in
his work we consider finite difference schemes in time and finite elements for the space discretization) and the other
s the linearization of the model through a Newton–Raphson method. It is natural to operate the linearization on
he discrete version of the problem, obtaining a discrete tangent problem to which the solution strategies proposed
ater on will be applied. This can be named the discretize then linearize strategy.

We remark that in the definition of the tangent problem the shape derivatives are neglected, namely the physical
omain Ωt is identified with the reference one Ω0. As in this case the tangent problem depends only on the Fréchét
erivatives of the mathematical operators that govern the nonlinear problem, the discrete tangent problem obtained
y means of the discretize then linearize approach is equivalent to the one that would be derived from the linearize
hen discretize strategy. The latter strategy corresponds to address the linearization of the continuous problem first,
iving rise to a fully continuous tangent problem. Then, we address the numerical discretization of such problem
nd we develop the numerical solvers for it, based on the splitting into several sub-problems. We choose to follow
he latter approach, because it is much simpler as it allows us to work with the strong formulation of the equations.

.1. The general model for finite deformations

The model assumes that two phases, a fluid ( f ) and a solid (s), coexist at each point of the domain of interest.
et us denote by φ the volume fraction of the fluid. We use Lagrangian (reference) and Eulerian (physical)
oordinate frames, denoting by Ω0 the domain in the Lagrangian frame and by Ωt the same domain in the deformed
onfiguration. In the same way, we denote with the subindex (0) the operators defined in the Lagrangian frame. For
xample, given the displacement field in the Lagrangian frame, namely us(x0, t) such that x = x0 + us(x0, t) for
ny x ∈ Ωt , x0 ∈ Ω0, the deformation gradient tensor is F = I + ∇0us and its determinant is J = det F. We also
ntroduce the symbol Js = J (1−φ). One of the primary variables of the model is the added mass m = ρf(Jφ −φ0)
hat is the fluid mass added to the system due to pore deformation. To define the constitutive laws of the model,
e introduce Ψ (F, Js) which is a suitable free energy of the solid.
In view of the linearization of the problem, we formulate the equations on the following abstract form: Find the

elocity of the solid phase vs, the velocity of the fluid phase vf and the added mass (per unit volume) m, such that

S(vs, vf, m) = 0; F(vs, vf, m) = 0; M(vs, vf, m) = 0;

here the operators S(·), F(·), M(·) correspond to the momentum conservation in the solid and fluid phases, and
he mass balance, respectively. More precisely, referring to the strong formulation of the model presented in [25],

he operators S(·), F(·), M(·) correspond to the following sub-problems:

3
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Given vf, m and f in Ω0, find vs in Ω0 such that

S(vs, vf, m) = ρs(1 − φ0)
∂vs

∂t
− ∇0 · Ps + (1 − φ)JF−T

∇0 p − Jφ2k−1
f (vf − vs) − ρs(1 − φ0)f = 0

omplemented by the following constitutive laws

Ps =
∂Ψ (F, Js)

∂F
, p =

∂Ψ (F, Js)
∂ Js

.

Given vs, m and f in Ωt , find vf in Ωt such that

F(vs, vf, m) =
1
J

d
dt

(ρf Jφvf) + ∇ · (ρfφvf ⊗ ρf(vf − vs)) − ∇ · (φσ f ) − θvf + φ∇ p

+ φ2k−1
f (vf − vs) − ρfφf = 0.

iven vs, vf in Ωt find m in Ωt such that

M(vs, vf, m) =
1
J

dm
dt

+ ∇ · (ρfφ(vf − vs)) − θ = 0.

Here, ρs and ρf constitute (spatially and temporally) constant densities of the solid and fluid phases, respectively,
kf denotes the fluid mobility (absolute permeability divided by the fluid viscosity). Potentially, φ0, kf, and κs are
patially varying, and the source f is varying in space and time.

The problem must be complemented by boundary and initial conditions. For the boundary constraints many
ptions are possible, as discussed for example in [25]. For the sake of simplicity, we present here only one of the
ossible variants. Let us split the whole boundary ∂Ωt into two distinct non-intersecting parts, Γ D

t and Γ N
t , where

we enforce Dirichlet and Neumann type conditions, respectively. Let vD
s , vD

f , t, be assigned velocities and traction
for boundary conditions, and let v0

s , v
0
f be the assigned initial values, under the assumption that Ωt = Ω0 at t = 0,

We define the boundary and initial conditions as follows,

vs = vD
s on Γ D

0 × (0, T ),

vf = vD
f on Γ D

t × (0, T ),

(Ps − (1 − φ)pJF−T )n0 = t0 on Γ N
0 × (0, T ),

φ(σf − pI)n = t on Γ N
t × (0, T ),

vs = v0
s in Ω0 × {0},

vf = v0
f in Ω0 × {0},

m = 0 in Ω0 × {0}.

2.2. Derivation of the tangent problem

Using the previous abstract form of the problem, we formally derive the tangent problem. To this purpose,
we denote by DuA the derivative of a generic operator A with respect to the field u. The nonlinear problem is
approximated, at the point vs, vf, m, by the following linear problem, called the tangent problem: given vs, vf, m,
such that the boundary and initial conditions of the nonlinear problem are satisfied, calculate δvs, δvf, δm, solution
of the following system of linear equations,⎡⎣ DvsS DvfS DmS

DvsF DvfF DmF
DvsM DvfM DmM

⎤⎦⎡⎣δvs
δvf
δm

⎤⎦ = −

⎡⎣ S(vs, vf, m)
F(vs, vf, m)
M(vs, vf, m)

⎤⎦ ,

where the system must be solved using boundary and initial conditions of the same type of the nonlinear problem,
but with homogeneous (null) data.

We point out that the derivative DuA should account for the classical Fréchét derivative of the operator, combined
with the shape derivatives due to deformations of the domain. For example in classical fluid–structure interaction
problems the term DvsF can be interpreted as the directional derivative of fluid equations with respect to fluid-
domain perturbations, [44], and it is usually the most difficult term to calculate. The central hypothesis in the

definition of the tangent problem, as proposed in [25], is that we neglect the shape derivatives, limiting ourselves to

4
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account for the Fréchét ones. This can be justified observing that in our setting the fluid is constrained within the
ores of the solid phase. As a result, the Reynolds number of the flow is very low. The main effect of the domain
eformation in DvsF is given by the advection term due to the solid velocity (namely (vs ·∇)v f ), after recasting the
uid momentum equation in the reference configuration. This effect is small for low Reynolds numbers, which is

n fact the main hypothesis underlying the porous media equations. For this reason, we conclude that neglecting the
hape derivatives in poromechanics is a less intrusive simplification than for fluid–structure interaction problems in
aemodynamics, [45].

In practice, such hypothesis turns out to identify the physical domain, Ωt , with the reference one, Ω0 (and for
implicity we drop the subindices 0, t , denoting Ωt and Ω0 both by Ω ).

In [25] an approximate yet explicit expression of the tangent problem is provided. More precisely, the nonlinear
roblem is linearized around the configuration at rest, namely vs, vf, m = 0. As a result we have m = 0 and

φ = φ0 ̸= 0. Concerning the fluid phase, Newtonian and incompressible behavior is assumed, which yields
σ f (vf) = 2µfε(vf), being ε(v) =

1
2 (∇v + ∇vT ) the symmetric deformation gradient. As in [25], we denote by

vs, vf, m the increments with respect to such state and use an additive decomposition of the free energy, with a
Saint-Venant Kirchhoff component for the mechanics and a quadratic potential for the volumetric deformation of
the solid phase Js , which reads

Ψ (F, Js) =
λ

2
(tr E)2

+ µE : E +
κs

2

(
Js

1 − φ0
− 1

)2

,

where E =
1
2

(
FT

+ F + FT F
)

denotes the Green–Lagrangian strain tensor, also µ, λ are the Lamé constants and
κs is the bulk modulus. Under small deformations we have that E ≈ ε(us) and J ≈ 1 + ∇ · us, which give

Ps =
∂Ψ

∂F
≈ σs(us) = Cε(us) = λ tr ε(us) + 2µε(us),

p =
∂Ψ

∂ Js
≈

κs

(1 − φ0)2

(
m
ρf

− ∇ · us

)
,

here C is a fourth order constant tensor (symmetric, positive definite), known as Hooke tensor. In the linearized
etting it is possible to reformulate the problem in terms of the (more commonly used) variable p instead of the
dded mass. As a result, the approximate tangent problem for the configuration at rest reads as follows: find us, vf, p
uch that

ρs(1 − φ0)∂t t us − ∇ · σs(us) + (1 − φ0)∇ p − φ2
0 k−1

f (vf − ∂t us) = ρs(1 − φ0) f , (2.1a)

ρfφ0∂tvf − ∇ · (φ0σf(vf)) − θvf + φ0∇ p + φ2
0 k−1

f (vf − ∂t us) = ρfφ0 f , (2.1b)
ρf(1 − φ0)2

κs
∂t p + ∇ · (ρfφ0vf) + ∇ · (ρf (1 − φ0) ∂t us) = θ. (2.1c)

or simplicity, in what follows we assume θ = 0. The system (2.1) is closed with appropriate boundary conditions
aturally following from the ones of the nonlinear problem. For the sake of clarity, we report them here

us = uD
s on Γ D

× (0, T ), (2.2a)

vf = vD on Γ D
× (0, T ), (2.2b)

(Cε(us) − (1 − φ0)pI) n = t on Γ N
× (0, T ), (2.2c)

φ0 (σf(vf) − pI) · n = t on Γ N
× (0, T ), (2.2d)

us = u0
s in Ω × {0}, (2.2e)

∂t us = v0
s in Ω × {0}, (2.2f)

vf = v0
f in Ω × {0}, (2.2g)

p = p0, in Ω × {0}. (2.2h)

.3. Numerical approximation of the tangent problem

We start from the time discretization, based on a simple backward Euler approach. We will discuss later on how
igher order time discretizations are also viable and the resulting discrete problem maintains its fundamental traits,

uch that the numerical solvers developed in what follows will still be applicable.

5
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w
a

We consider a partition of the time interval of interest (0, T ), given by 0 = t0 < t1 < · · · < tn < · · · < tN = T
ith, for simplicity, constant time step size ∆t = tn − tn−1. The temporal derivatives within the model (2.1) are

pproximated by finite differences

∂t us(tn) ≈
un

s − un−1
s

∆t
, ∂t t us(tn) ≈

un
s − 2un−1

s + un−2
s

∆t2 , ∂tvf(tn) ≈
vn

f − vn−1
f

∆t
.

We assume that besides the initial data the first time step has been already determined. From the second time step
the fully dynamic linearized model can then be approximated by the Implicit Euler discretization using the above
finite difference approximations: For n ≥ 2, given un−1

s , un−2
s , pn−1, vn−1

f , find un
s , pn, vn

f such that

ρs(1 − φ0)
un

s − 2un−1
s + un−2

s

∆t2 − ∇ · σs(un
s ) + (1 − φ0)∇ pn

− φ2
0 k−1

f

(
vn

f −
un

s − un−1
s

∆t

)
= ρs(1 − φ0) f n,

(2.3a)

ρfφ0
vn

f − vn−1
f

∆t
− ∇ ·

(
φ0σf(vn

f )
)
+ φ0∇ pn

+ φ2
0 k−1

f

(
vn

f −
un

s − un−1
s

∆t

)
= ρfφ0 f n, (2.3b)

(1 − φ0)2

κs

pn
− pn−1

∆t
+ ∇ ·

(
φ0v

n
f

)
+ ∇ ·

(
(1 − φ0)

un
s − un−1

s

∆t

)
= 0. (2.3c)

Such problem must satisfy the same boundary conditions of (2.1) at each time tn , where f n , uD,n
s etc. denote

suitable approximations of the external problem data at time tn . In what follows we will apply the lifting technique
to non-homogeneous Dirichlet boundary data (in other words, a change of variable is introduced, by subtracting
from the solution a function that is regular enough and equal to the prescribed datum on the boundary, such that
the problem for the new variable is transformed into a standard homogeneous Dirichlet-type problem). In this
way, all the forcing terms of the problem (volume forces and surface forces/data) will be implicitly represented in
the volume term f n without significant loss of generality. Initial conditions are prescribed as in (2.2e)–(2.2h) by
suitably approximating the initial data. Finally, we stress that the mass conservation equation has been divided by
the constant fluid density ρf in order to highlight an apparent symmetry between the equations.

Remark 2.1 (Higher Order Time Discretization). Applying alternative diagonally implicit Runge–Kutta schemes
results in coupled systems of governing equation of similar type as (2.3). Material parameters possibly have to be
scaled appropriately, and the right hand side source terms may then also include further previous data. However,
we stress that the analysis of the splitting in this work does not depend on the choice of the time discretization
similarly as in [46] and it could possibly be used also in the framework of space–time finite elements, used for
example in [47] for the approximation of Biot poroelasticity system.

Let V , W , Q denote suitable function spaces for the solid displacement, fluid velocity, and fluid pressure,
respectively, at discrete time tn , incorporating in particular homogeneous essential boundary conditions on the
relevant boundaries,

V :=
{
u⋆

∈ H1(Ω )d
⏐⏐ (1 − φ0)u⋆

∈ H(div;Ω ), u⋆
= 0 on Γ D} ,

W :=
{
v⋆

∈ H1(Ω )d
⏐⏐φ0v

⋆
∈ H(div;Ω ), v⋆

= 0 on Γ D} ,

Q := L2(Ω ).

Then the canonical weak formulation of (2.1) reads: Find (un
s , v

n
f , pn) ∈ V × W × Q such that for all test functions

(u⋆, v⋆, p⋆) ∈ V × W × Q it holds that⟨
ρs(1 − φ0)

un
s − 2un−1

s + un−2
s

∆t2 , u⋆

⟩
+
⟨
C ε(un

s ), ε(u⋆)
⟩
−
⟨
pn, ∇ ·

(
(1 − φ0)u⋆

)⟩
(2.4a)

−

⟨
φ2

0 k−1
f

(
vn

f −
un

s − un−1
s

)
, u⋆

⟩
=
⟨

f n
s , u⋆

⟩
,

∆t
6
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T
(

⟨
ρfφ0

vn
f − vn−1

f

∆t
, v⋆

⟩
+
⟨
φ02µf ε(vn

f ), ε(v⋆)
⟩
−
⟨
pn, ∇ ·

(
φ0v

⋆
)⟩

(2.4b)

+

⟨
φ2

0 k−1
f

(
vn

f −
un

s − un−1
s

∆t

)
, v⋆

⟩
=
⟨

f n
f , v⋆

⟩
,⟨

(1 − φ0)2

κs

pn
− pn−1

∆t
, p⋆

⟩
+

⟨
∇ ·

(
φ0v

n
f + (1 − φ0)

un
s − un−1

s

∆t

)
, p⋆

⟩
= 0. (2.4c)

Remark 2.2. We note that in the weak formulation the constraints (1−φ)u⋆, φv⋆
∈ H(div;Ω ) are formally required

for the corresponding terms to be well-defined. This is in fact a regularity condition on φ, where it is sufficient to
consider that both φ and 1/φ belong to W s,r (Ω ) with s > d/r and r ≥ 1. More details in [26].

The numerical discretization in space is based on the Galerkin projection of the solution (un
s , v

n
f , pn) ∈ V×W×Q

on suitable discrete finite element spaces Vh, Wh, Qh that for the sake of simplicity are assumed to be conforming,
namely Vh ⊂ V , Wh ⊂ W , Qh ⊂ Q. Also, all the physical parameters of the tangent problem are assumed to be
constant in time and uniformly bounded in space. Under these assumptions, the fully discrete version of the problem
is formally equivalent to (2.4), where the solution (un

s,h, v
n
f,h, pn

h ) is sought in Vh × Wh × Qh and the test functions
re taken in the same discrete spaces. Then, to avoid redundancy of notation, we will identify problem (2.4) with
he fully discrete one and we will omit to specify the subindex h, unless strictly necessary. The finite element spaces
ill be kept generic throughout the derivation of the numerical solution algorithms, until the discussion of suitable
umerical examples that will refer to precise choices of such spaces.

. A two-way split inspired by alternating minimization

In the following, we introduce an iterative splitting for the semi-discrete approximation (2.4), decoupling the
omentum equation for the solid phase and the remaining two equations – the method will be directly applicable

or the fully discrete approximation. The systematic construction (and later analysis) of the decoupling scheme is
ased on the general framework introduced in [43]. The central idea is to first equivalently rewrite the semi-discrete
pproximation as an auxiliary convex minimization problem, and second apply alternating minimization to derive
robust block-partitioned solver. Ultimately, reformulated in terms of (2.4), the final scheme is closely related to

he undrained split for the quasi-static Biot equations [48], adding a div–div stabilization term to the momentum
quation for the solid phase.

In what follows we require the following assumption, which has two modeling consequences: On one side, it
ules out the possibility of considering the incompressible limit (κs → ∞) with this approach, and on the other one

it imposes that the domain cannot be composed only of fluid (φ ̸= 1).

Assumption 1. It holds 1
N :=

(1−φ0)2

κs
> 0 almost everywhere in Ω .

3.1. Problem formulation as convex minimization

We choose un
s and vn

f as primary variables. Under Assumption 1, the mass conservation equation can be inverted
with respect to the pressure, such that

pn
= N

(
∆t gn

p − ∆t ∇ ·
(
φ0v

n
f

)
− ∇ ·

(
(1 − φ0) un

s

))
, (3.1)

where

gn
p :=

(1 − φ0)2

κs

1
∆t

pn−1
+

1
∆t

∇ ·
(
(1 − φ0) un−1

s

)
.

his allows to formally reduce (2.4) as a two-field formulation for the solid displacement and fluid velocity: Find
un

s , v
n
f ) ∈ V × W such that for all test functions (u⋆, v⋆) ∈ V × W it holds that⟨

ρs(1 − φ0)
∆t2 un

s , u⋆

⟩
+
⟨
C ε(un

s ), ε(u⋆)
⟩
−

⟨
φ2

0 k−1
f

(
vn

f −
1
∆t

un
s

)
, u⋆

⟩
(3.2a)

+ N
⟨
−∆t gn

+ ∆t ∇ ·
(
φ vn)

+ ∇ ·
(

1 − φ un) , ∇ ·
(
(1 − φ )u⋆

)⟩ ⟨ n ⋆
⟩

p 0 f ( 0) s 0 = gs , u ,

7
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A
k
e

⟨
φ0v

n
f , v⋆

⟩
+ ∆t

⟨
φ02µf ε(vn

f ), ε(v⋆)
⟩
+ ∆t

⟨
φ2

0 k−1
f

(
vn

f −
1
∆t

un
s

)
, v⋆

⟩
(3.2b)

+ N
⟨
−∆t gn

p + ∆t ∇ ·
(
φ0v

n
f

)
+ ∇ ·

(
(1 − φ0) un

s

)
,∆t∇ ·

(
φ0v

⋆
)⟩

= ∆t
⟨
gn

f , v⋆
⟩
,

where the momentum equation for the fluid has been scaled by ∆t , and gn
s ∈ V ⋆ and gn

f ∈ W ⋆ are defined by⟨
gn

s , u⋆
⟩
:=
⟨

f n
s , u⋆

⟩
+

⟨
ρs(1 − φ0)

∆t2

(
2un−1

s − un−2
s

)
, u⋆

⟩
+

⟨
φ2

0 k−1
f

∆t
un−1

s , u⋆

⟩
, u⋆

∈ V ,⟨
gn

f , v⋆
⟩
:=
⟨

f n
f , v⋆

⟩
+
⟨
φ0v

n−1
f , v⋆

⟩
−
⟨
φ2

0 k−1
f un−1

s , v⋆
⟩
, v⋆

∈ W .

The symmetry and uniform coercivity of the governing equations (3.2) identify those as the optimality conditions
of a block-separable convex minimization problem. Namely it holds

(un
s , v

n
f ) = arg min

(us,vf)∈V×W
J (us, vf), (3.3)

with the energy given by

J (us, vf) :=
1
2

⟨
ρs(1 − φ0)

∆t2 us, us

⟩
+

1
2

⟨C ε(us), ε(us)⟩ +
1
2

⟨ρfφ0vf, vf⟩ +
∆t
2

⟨φ02µf ε(vf), ε(vf)⟩ (3.4)

+
N
2

∆t gn
p − ∆t ∇ · (φ0vf) − ∇ · ((1 − φ0) us)

2
+

∆t
2

⟨
φ2

0 k−1
f

(
vf −

1
∆t

us

)
,

(
vf −

1
∆t

us

)⟩
−
⟨
gn

s , us
⟩
− ∆t

⟨
gn

f , vf
⟩
.

The formulation (3.3)–(3.4) serves as basis for the succeeding construction of a robust split scheme for (2.4).

3.2. Robust splitting via alternating minimization

Following the approach of [43], we propose an iterative block-partitioned solver for the problem (2.4). In particu-
lar, the fundamental alternating minimization algorithm is applied to the equivalent variational formulation (3.3), cf.
Alg. 1 for the definition of a single iteration with index k. By construction, the approximate solution consecutively
minimizes the system energy J .
Algorithm 1: Iteration k ≥ 1 of the alternating minimization applied to Eq. (3.3)

1 Input: (un,k−1
s , v

n,k−1
f ) ∈ V × W

2 Determine un,k
s := argminus∈V J (us, v

n,k−1
f )

3 Determine v
n,k
f := argminvf∈W J (un,k

s , vf)

By introducing a pressure iterate, pn,k , analogously to (3.1)

pn,k
:= N

(
∆t gn

p − ∆t ∇ ·

(
φ0v

n,k
f

)
− ∇ ·

(
(1 − φ0) un,k

s

))
, k ≥ 0,

lgorithm 1 can be equivalently reformulated in the context of the three-field formulation (2.4). In particular, the
th iteration of the iterative splitting scheme decouples in two steps. In the first step, a div–div stabilized momentum
quation for the solid phase is solved: given (vn,k−1

f , pn,k−1) ∈ W × Q, find un,k
s ∈ V satisfying for all u⋆

∈ V⟨
ρs(1−φ0)

un,k
s −2un−1

s + un−2
s

∆t2 , u⋆

⟩
+
⟨
C ε(un,k

s ), ε(u⋆)
⟩
+ N

⟨
∇ ·

(
(1 − φ0)(un,k

s − un,k−1
s )

)
, ∇ ·

(
(1−φ0)u⋆

)⟩
−
⟨
pn,k−1, ∇ ·

(
(1 − φ0)u⋆

)⟩
−

⟨
φ2

0 k−1
f

(
v

n,k−1
f −

un,k
s − un−1

s

∆t

)
, u⋆

⟩
=
⟨

f n
s , u⋆

⟩
. (3.5)

In the second step, the mass conservation and fluid momentum equations are solved: given un,k
s ∈ V , find

(vn,k
f , pn,k) ∈ W × Q, satisfying for all (v⋆, p⋆) ∈ W × Q⟨

ρfφ0
v

n,k
f − vn−1

f

∆t
, v⋆

⟩
+

⟨
φ02µf ε(vn,k

f ), ε(v⋆)
⟩
−
⟨
pn,k, ∇ ·

(
φ0v

⋆
)⟩

(3.6a)
8
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n
g

4

s
c
c
s
l
e

T

+

⟨
φ2

0 k−1
f

(
v

n,k
f −

un,k
s − un−1

s

∆t

)
, v⋆

⟩
=
⟨

f n
f , v⋆

⟩
,⟨

(1 − φ0)2

κs

pn,k
− pn−1

∆t
, p⋆

⟩
+

⟨
∇ ·

(
φ0v

n,k
f + (1 − φ0)

un,k
s − un−1

s

∆t

)
, p⋆

⟩
= 0, (3.6b)

In the remainder of this paper, we refer to the scheme (3.5)–(3.6) as the alternating minimization split.
In Eq. (3.5) the term

N
⟨
∇ ·

(
(1 − φ0)(un,k

s − un,k−1
s )

)
, ∇ ·

(
(1 − φ0)u⋆

)⟩
aturally emerges to stabilize, namely control, the increment of un

s at each iteration, such that convergence is
uaranteed. This will be proved in more detail in Section 5.1.

. Diagonally L2-stabilized two-way split

Another prominent class of block-partitioned solvers for coupled problems with saddle-point structure are
L2-stabilized splits, which have been successful especially in the context of coupled flow and mechanics. The
o-called fixed-stress split for the quasi-static Biot equations [48,49], for instance, decouples solid and flow
omputations and employs simple L2-stabilization of the mass conservation equation, resulting in unconditional
onvergence [29,31]. It is worth mentioning that in practice the fixed-stress split often is superior to the undrained
plit [49], also motivating further investigation in the context of this work. Moreover, in the context of thermoporoe-
asticity diagonal L2-stabilization has been recently investigated for coupled systems consisting of more than two
quations [50]. In particular, it has been observed that adding stabilization to multiple equations can be beneficial.

In the following, we present a diagonally L2-stabilized two-way split for (2.4). At first, we allow for stabilization
of any of the three equations, introducing three stabilization parameters: βs (tensor-valued), βf (tensor-valued), βp

(scalar-valued), potentially varying in space.
A single iteration of the splitting scheme is composed of two steps. Let k ≥ 1 denote the iteration index.

Following the idea of the fixed-stress approach, the stabilized fluid flow problem is solved first; this is not required
for convergence. The L2-stabilized fluid flow step reads: given un,k−1

s ∈ V , find (vn,k
f , pn,k) ∈ W × Q, satisfying

for all (v⋆, p⋆) ∈ W × Q⟨
ρfφ0

v
n,k
f − vn−1

f

∆t
, v⋆

⟩
+

⟨
φ02µf ε(vn,k

f ), ε(v⋆)
⟩
+

⟨
βf(v

n,k
f − v

n,k−1
f ), v⋆

⟩
(4.1a)

−
⟨
pn,k, ∇ ·

(
φ0v

⋆
)⟩

+

⟨
φ2

0 k−1
f

(
v

n,k
f −

un,k−1
s − un−1

s

∆t

)
, v⋆

⟩
=
⟨

f n
f , v⋆

⟩
,⟨

(1 − φ0)2

κs

pn,k
− pn−1

∆t
, p⋆

⟩
+
⟨
βp(pn,k

− pn,k−1), p⋆
⟩

+

⟨
∇ ·

(
φ0v

n,k
f

)
, p⋆

⟩
+

⟨
∇ ·

(
(1 − φ0)

un,k−1
s − un−1

s

∆t

)
, p⋆

⟩
= 0, (4.1b)

he second (L2-stabilized solid mechanics) step reads: given (vn,k
f , pn,k) ∈ W × Q, find un,k

s ∈ V satisfying for all
u⋆

∈ V⟨
ρs(1 − φ0)

un,k
s − 2un−1

s + un−2
s

∆t2 , u⋆

⟩
+
⟨
C ε(un,k

s ), ε(u⋆)
⟩
+
⟨
βs(un,k

s − un,k−1
s ), u⋆

⟩
(4.2)

−
⟨
pn,k, ∇ ·

(
(1 − φ0)u⋆

)⟩
−

⟨
φ2

0 k−1
f

(
v

n,k
f −

un,k
s − un−1

s

∆t

)
, u⋆

⟩
=
⟨

f n
s , u⋆

⟩
.

For unconditional robustness, the stabilization parameters βs, βf, βp have to be chosen appropriately – sufficiently
large but not too large. In view of previously successful approaches, physically motivated choices as for the original
fixed-stress split [48] are difficult to obtain. This is mainly due to the presence of the dynamic contributions in the
momentum equations, while merely the volumetric strain is present in the pressure equation. This more involved
structure, compared to quasi-static extensions of the Biot equations [43], also complicates the identification of
the stabilization parameters by utilizing the inherent gradient flow/minimization interpretation (3.3). The approach
9
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b
(

m

of deriving a dual optimization problem using Fenchel duality and applying alternating minimization has been
successful for quasi-static models [43], resulting in a systematic derivation and analysis of fixed-stress like splits
similar to (4.1)–(4.2); however, the mixed scaling due to the dynamic contributions impedes deriving a dual
formulation of the minimization problem (3.3) via Fenchel duality theory. In addition, it is not obvious whether
physically meaningful stress-like variables turn out to be suitable mathematical dual variables. These are required
for the formulation of the dual energy of (3.4) via the Legendre transformation.

In this work, we justify suitable stabilization parameters through a convergence analysis of the schemes. A
etter intuition can be obtained by looking at the (skew-)symmetries of the governing equations (2.4) and the
partial) Schur complements; in particular, the skew-symmetry of the us–p coupling motivates positive stabilization

of the mass conservation equation, and the symmetry of the us–vf coupling suggests negative stabilization of the
omentum equation of the solid phase. Since after all the us–(vf, p) coupling is neither symmetric nor skew-

symmetric, these observations merely lead to inaccurate insight. Instead, a succeeding convergence analysis in
Section 5.2 is going to suggest practical, potentially vanishing values for the parameters, which eventually lead
to unconditional stability.

5. A priori convergence analysis of the proposed two-way splits

In this section, we address the a priori convergence analysis of both the alternating minimization split (3.5)–(3.6)
and the diagonally L2-stabilized two-way split (4.1)–(4.2), proposed in Section 3 and Section 4, respectively.
The two primary goals are to (i) prove the linear convergence of the alternating minimization split, and (ii)
determine ranges and specific practical values for the stabilization parameters employed within the diagonally
L2-stabilized two-way split ensuring convergence. The two goals will be achieved using different techniques. For
item (i) the interpretation of the alternating minimization split as alternating minimization applied to a strongly
convex minimization problem is extensively exploited, allowing for the systematic application of sharp abstract
convergence results from the literature; for item (ii) a slightly more technical approach is chosen due to the fact
that the two-way split (4.1)–(4.2) does not fully conform with any (skew-)symmetry. In particular, we relax the
classical (quotient) convergence criterion by means of the root convergence criterion, briefly called r-convergence,
see for example [51]. More precisely, we formulate a general convergence criterion (based on relative stability) that
turns out to be a sufficient condition for the r-convergence of the proposed iterative method. We stress that q-linear
convergence can be also proved with techniques as used in [31,33,34]; however, due to the non-conformity with any
(skew-)symmetry, off-diagonal terms do not cancel in the analysis. They require instead crude bounds, such that the
resulting analysis finally suggests larger stabilization constants than observed in practice. The chosen approach in
this work circumvents this on the cost of a slightly weaker convergence-type but providing more suitable suggestions
for the stabilization parameters.

5.1. Convergence analysis of the alternating minimization split for the tangent model

Guaranteed linear convergence of the alternating minimization split (3.5)–(3.6) is a direct consequence of its
interpretation as alternating minimization applied to a (strongly) convex optimization problem, cf., Section 3.2 and
e.g., [52]. Furthermore, using simple yet largely sharp abstract convergence results for alternating minimization in
a Banach space setting, cf. [53], an upper bound of the rate of convergence can be provided. In the aforementioned
work, it is showed that in each of the two steps of the alternating minimization, the energy values of the iterates are
sequentially decreased with the decrease merely governed by convexity and continuity properties of the restricted
minimization problems. Since the energy J is quadratic, energy differences relative to the optimum will directly
translate to distances to the solution, measured in the problem-specific norm induced by the Hessian of the energy
(at an arbitrary point). We define | · | on V × W for (u⋆, v⋆) ∈ V × W by⏐⏐(u⋆, v⋆)

⏐⏐2 :=

⟨
ρs(1 − φ0)

∆t2 u⋆, u⋆

⟩
+
⟨
Cε(u⋆), ε(u⋆)

⟩
+
⟨
ρfφ0v

⋆, v⋆
⟩
+ ∆t

⟨
φ02µfε(v⋆), ε(v⋆)

⟩
+ N

∆t∇ ·
(
φ0v

⋆
)
+ ∇ ·

(
(1 − φ0)u⋆

)2
+ ∆t

⟨
φ2

0 k−1
f

(
v⋆

−
1
∆t

u⋆

)
,

(
v⋆

−
1
∆t

u⋆

)⟩
.

In order to estimate the rate of convergence, we introduce a technical, a priori material constant γ ≥ 0, given by

γ := min
{

max {γ (ζ, η, ϑ), γ (ζ, η, ϑ)}
⏐⏐⏐ ζ > 0, η ∈ [0, 1], ϑ ∈ [0, 1]

}
, (5.1)
1 2

10



J.W. Both, N.A. Barnafi, F.A. Radu et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114183

s
L

where

γ1(ζ, η, ϑ) :=(1 + ζ−1)ηN∆t2

 |∇φ0|
2

ρs(1 − φ0)


L∞(Ω)

+ ϑ∆t
 φ2

0κ
−1
m

ρs(1 − φ0)


L∞(Ω)

, (5.2a)

γ2(ζ, η, ϑ) :=(1 + ζ )
N

Kdr,φ0,min
+ (1 + ζ−1)(1 − η)NCKorn,1 + (1 − ϑ)

CKorn,2

∆t
, (5.2b)

with κm > 0 denoting the smallest eigenvalue of the permeability tensor kf, Kdr,φ0,min > 0 being a porosity dependent
bulk modulus type constant given by

K −1
dr,φ0,min :=

(1 − φ0)2I : C−1
: I


L∞(Ω) , (5.3)

and CKorn,1, CKorn,2 > 0 taking on the role of generalized Korn/Poincaré constants, defined as the minimum positive
numbers such that⟨

∇φ⊤

0 ∇φ0u⋆, u⋆
⟩
≤ CKorn,1

⟨
Cε(u⋆), ε(u⋆)

⟩
, for all u⋆

∈ V , (5.4)⟨
φ2

0 k−1
f u⋆, u⋆

⟩
≤ CKorn,2

⟨
Cε(u⋆), ε(u⋆)

⟩
, for all u⋆

∈ V . (5.5)

It is fair to assume that CKorn,1 and CKorn,2 are closely related to the inverse of the drained bulk modulus Kdr :=

Kdr,0,min.
Finally, focusing only on the fully transient model, the linear convergence result for the alternating minimization

split scheme reads as follows.

Theorem 5.1 (Linear Convergence of the Alternating Minimization Split). Let (un
s , v

n
f ) ∈ V × W , n ≥ 2, denote the

olution to (3.3), and let (un,k
s , v

n,k
f ) ∈ V × W , k ≥ 1, denote the corresponding approximation defined by Alg. 1.

et γ ≥ 0 be the material constant defined as in (5.1). Then, for all k ≥ 1, it holds that⏐⏐⏐(un,k
s − un

s , v
n,k
f − vn

f )
⏐⏐⏐2 ≤

(
1 −

1
1 + γ

)2 ⏐⏐⏐(un,k−1
s − un

s , v
n,k−1
f − vn

f )
⏐⏐⏐2 .

The convergence result is similar as for the undrained split for the quasi-static Biot equations, cf. [29]. In
particular, the theoretical result suggests degenerating convergence for nearly incompressible and impermeable
media; compared to the fixed stress split [32] mere inf–sup stability cannot overcome this issue as already the optimal
stabilization arising from the Schur complement is singular on the continuous level. Alternative discretizations
as mixed formulations should then be considered, also to reduce locking phenomena if required. Furthermore, in
contrast to the quasi-static Biot equations, porosity heterogeneities may also affect the performance of the splitting
scheme, as the material constants γ1 and γ2 depend on the spatial gradients of φ0. However, a numerical test in
Section 6.3 does only show a weak influence.

The proof of Theorem 5.1 is a plain application of the following abstract convergence result for the alternating
minimization, here specifically formulated in terms of Alg. 1.

Lemma 5.2 (Convergence of Alternating Minimization [53]). Let | · |, | · |s, and | · |f denote semi-norms on V × W ,
V , and W , respectively, such that:

(A1) There exist βs, βf ≥ 0, such that for all (u⋆, v⋆) ∈ V × W it holds that

|(u⋆, v⋆)|2 ≥ βs|u⋆
|
2
s and |(u⋆, v⋆)|2 ≥ βf|v

⋆
|
2
f

Let J : V × W → R be Frechét differentiable with DJ denoting its derivative such that:

(A2) The energy J is strongly convex wrt. | · | with modulus σ > 0, i.e., for all us, ūs ∈ V and vf, v̄f ∈ W it holds
that

J (ūs, v̄f) ≥ J (us, vf) +
⟨
DJ (us, vf), (ūs − us, v̄f − vf)

⟩
+

σ

2
|(ūs − us, v̄f − vf)|2.

(A3) The partial functional derivatives DusJ and DvfJ are uniformly Lipschitz continuous wrt. | · |s and | · |f with
Lipschitz constants Ls and L f, respectively, i.e., for all (us, vf) ∈ V × W and (u⋆, v⋆) ∈ V × W it holds that

J (us + u⋆, vf) ≤ J (us, vf) +
⟨
Du J (us, vf), u⋆

⟩
+

Ls ⏐⏐u⋆
⏐⏐2 ,
s 2 s

11
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(

F

I
ζ

S

B
γ

a

J (us, vf + v⋆) ≤ J (us, vf) +

⟨
DvfJ (us, vf), v⋆

⟩
+

L f

2

⏐⏐v⋆
⏐⏐2
f .

Let (un
s , v

n
f ) ∈ V × W denote the unique solution to (3.3), and let (un,k

s , v
n,k
f ) ∈ V × W denote the corresponding

approximation defined by Alg. 1. Then, for all k ≥ 1 it follows that

J (un,k
s , v

n,k
f ) − J (un

s , v
n
f ) ≤

(
1 −

βsσ

Ls

)(
1 −

βfσ

L f

) (
J (un,k−1

s , v
n,k−1
f ) − J (un

s , v
n
f )
)

.

With this, we are able to prove Theorem 5.1.

Proof of Theorem 5.1. In order to apply Lemma 5.2, we verify the conditions (A1)–(A3). First of all, we note that
the energy J is quadratic. Since | · | is induced by the Hessian of J , i.e.,⏐⏐(u⋆, v⋆)

⏐⏐2 :=
⟨
D2J (us, vf)(u⋆, v⋆), (u⋆, v⋆)

⟩
, (u⋆, v⋆) ∈ V × W , (5.6)

(for arbitrary (us, vf) ∈ V × W ), the convexity property (A2) is satisfied with σ = 1.
Similarly, by defining | · |s and | · |f on V and W , respectively, as partial Hessians of J⏐⏐u⋆

⏐⏐2
s :=

⟨
D2

us
J (us, vf)u⋆, u⋆

⟩
, u⋆

∈ V ,⏐⏐v⋆
⏐⏐2
f :=

⟨
D2

vf
J (us, vf)v⋆, v⋆

⟩
, v⋆

∈ W ,

for arbitrary (us, vf) ∈ V × W ), the smoothness property (A3) is satisfied with Ls = L f = 1.
It remains to examine (A1). In the following, we show that one can choose βs = βf = (1 + γ )−1, i.e., it holds

|u⋆
|
2
s ≤ (1 + γ )|(u⋆, v⋆)|2, for all (u⋆, v⋆) ∈ V × W , (5.7a)

|v⋆
|
2
f ≤ (1 + γ )|(u⋆, v⋆)|2, for all (u⋆, v⋆) ∈ V × W . (5.7b)

or both estimates, the following inequality will be of help

T ⋆
:= N

∇ ·
(
(1 − φ0)u⋆

)2  
=:T1

+
1
∆t

⟨
φ2

0 k−1
f u⋆, u⋆

⟩  
=:T2

≤ γ

(⟨
ρs(1 − φ0)

∆t2 u⋆, u⋆

⟩
+
⟨
Cε(u⋆), ε(u⋆)

⟩)
. (5.8)

ndeed, for T1, using the product rule, the Cauchy–Schwarz inequality and Young’s inequality, we obtain for all
> 0

T1 ≤ (1 + ζ )
(1 − φ0)∇ · u⋆

2  
=:T ′

1

+(1 + ζ−1)
∇φ0 · u⋆

2  
=:T ′′

1

. (5.9)

Further, employing the definitions of Kdr,φ0,min and CKorn,1, see (5.3) and (5.4), it follows that

T ′

1 ≤
1

Kdr,φ0,min

⟨
Cε(u⋆), ε(u⋆)

⟩
, (5.10a)

T ′′

1 ≤ ∆t2
 ∇φ⊤

0 ∇φ0

ρs(1 − φ0)


L∞(Ω)

⟨
ρs(1 − φ0)

∆t2 u⋆, u⋆

⟩
, (5.10b)

T ′′

1 ≤ CKorn,1
⟨
Cε(u⋆), ε(u⋆)

⟩
. (5.10c)

imilarly, employing the definitions of κm, the smallest eigenvalue of kf, and CKorn,2, see (5.5), for T2 it holds

T2 ≤ ∆t2
 φ2

0κ
−1
m

ρs(1 − φ0)


L∞(Ω)

⟨
ρs(1 − φ0)

∆t2 u⋆, u⋆

⟩
, (5.11a)

T2 ≤ CKorn,2
⟨
Cε(u⋆), ε(u⋆)

⟩
. (5.11b)

y combining (5.9)–(5.11), balancing the different upper bounds for T ′′

1 and T2, and employing the definitions of
1 and γ2, cf. (5.2), we obtain for all ζ > 0, η ∈ [0, 1] and θ ∈ [0, 1]

T1 + T2 ≤ γ1(ζ, η, θ )
⟨
ρs(1 − φ0)

∆t2 u⋆, u⋆

⟩
+ γ2(ζ, η, θ )

⟨
Cε(u⋆), ε(u⋆)

⟩
,

nd thereby (5.8) follows.
12
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Finally, we show (5.7). By definition of | · |s it holds that⏐⏐u⋆
⏐⏐2
s =

⟨
ρs(1 − φ0)

∆t2 u⋆, u⋆

⟩
+
⟨
Cε(u⋆), ε(u⋆)

⟩
+ T ⋆.

ence, (5.7a) follows from (5.8). By (i) definition of | · |f, (ii) suitable addition with zero, and application of the
auchy–Schwarz and Young’s inequalities, and (iii) (5.8), it holds⏐⏐v⋆

⏐⏐2
f =

(i)

⟨
ρfφ0v

⋆, v⋆
⟩
+ ∆t

⟨
φ02µfε(v⋆), ε(v⋆)

⟩
+ N

∆t∇ ·
(
φ0v

⋆
)2

+ ∆t
⟨
φ2

0 k−1
f v⋆, v⋆

⟩
≤
(i i)

⟨
ρfφ0v

⋆, v⋆
⟩
+ ∆t

⟨
φ02µfε(v⋆), ε(v⋆)

⟩
+ (1 + γ ) N

∆t∇ ·
(
φ0v

⋆
)
+ ∇ ·

(
(1 − φ0)u⋆

)2

+ (1 + γ ) ∆t
⟨
φ2

0 k−1
f

(
v⋆

−
1
∆t

u⋆

)
,

(
v⋆

−
1
∆t

u⋆

)⟩
+
(
1 + γ −1) T ⋆

≤
(i i i)

(1 + γ )|(u⋆, v⋆)|2.

ence, we obtain (5.7b), and thereby (A1).
Ultimately, the assumptions of Lemma 5.2 are satisfied, and it follows for all k ≥ 1 that

J (un,k
s , v

n,k
f ) − J (un

s , v
n
f ) ≤

(
1 − (1 + γ )−1)2

(
J (un,k−1

s , v
n,k−1
f ) − J (un

s , v
n
f )
)

.

Moreover, since J is quadratic, (un
s , v

n
f ) is a local minimum of J , and | · | is induced by the functional Hessian of

J via (5.6), we have that

J (un,k
s , v

n,k
f ) − J (un

s , v
n
f ) = 2

⏐⏐⏐(un,k
s − un

s , v
n,k
f − vn

f )
⏐⏐⏐2

or all k ≥ 0. Thereby, the assertion follows. □

.2. Convergence analysis of the diagonally L2-stabilized split for the tangent model

The essence of the diagonally L2-stabilized split (4.1)–(4.2) is the decoupling of the mechanical displacement
rom the remaining variables (fluid pressure and velocity). Such a split does neither fully conform with a symmetry
or a saddle point structure of the governing equations. In view of a convergence analysis aiming at employing
ome contraction argument or similar, it therefore cannot be expected that all coupling terms can be simultaneously
anceled by suitable testing as often done, cf., e.g., [31]. To mitigate this complication, the concept of relative
tability will be exploited instead, allowing for a simpler discussion of the coupling terms. In the following, the
nalysis is presented in two steps: (i) a central abstract convergence result for positive real-valued sequences
atisfying a relative stability property is introduced; (ii) the result is applied to the diagonally L2-stabilized
plit (4.1)–(4.2) to show a priori convergence.

.2.1. Abstract convergence criterion based on relative stability
Consider a real-valued (positive) sequence {xk}k ⊂ R+ satisfying the stability property:

There exists a constant c ∈ (0, ∞) such that c
∞∑

i=1

xk+i ≤ xk for all k ∈ N, (5.12)

without any additional requirement for the stability constant c. We call this property the relative stability criterion
for the sequence {xk}k ⊂ R+. This criterion ensures r-linear convergence for subsequences (still wrt. the original
sequence), a weaker form of standard r-linear convergence, covering both contractive and certain non-contractive
sequences.

Lemma 5.3 (r-linear Convergence for Subsequences). Let {xk}k ⊂ R+ and c ∈ (0, ∞) satisfy (5.12). Then there
exists a subsequence {xkl }l with 1 ≤ kl+1 − kl ≤ arg min

m∈N
(cm)−

1
m , which converges r-linearly with

xkl ≤

(
min
m∈N

(
1

cm

) 1
m
)kl

x0.
13
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For the proof of Lemma 5.3, we state the following auxiliary result.

emma 5.4. Let {xk}k ⊂ R+ and c > 0 satisfying (5.12). Then for any k ∈ N and ε > 0 there exists some
n ∈ {0, 1, . . . ,

⌈ 1
cε

⌉
} such that xk+n ≤ εxk .

Proof. Let k ∈ N and ε > 0 be arbitrary but fixed. Assume without loss of generality that xk > 0. Then the
ssertion follows by contradiction: Assume it holds xk+i > εxk , for all i = 1, . . . ,

⌈ 1
cε

⌉
; we conclude that it holds

c
∞∑

i=1

xk+i ≥ c

⌈
1
cε

⌉∑
i=1

xk+i > cε
⌈

1
cε

⌉
xk ≥ xk,

hich contradicts (5.12). □

roof of Lemma 5.3. The idea of the proof is to employ Lemma 5.4 and construct a subsequence of {xk}k , which is
linearly (first order) quotient converging, and then conclude r-linear convergence wrt. the original sequence. Assume
without loss of generality that x0 > 0. Let m ∈ N such that cm > 1, and let ε :=

1
cm < 1, such that

⌈ 1
cε

⌉
= m. By

Lemma 5.4 there exists some n1 ∈ {1, . . . , m} such that it holds xn1 ≤ εx0. Analogously, for any i = 2, . . ., there
exists some ni ∈ {1, . . . , m}, satisfying x∑i−1

j=1 n j +ni
≤ εx∑i−1

j=1 n j
.

Next, we define {kl}l ⊂ N by setting kl :=
∑l

j=1 n j for all l ∈ N. Since ε < 1 and n j ≤ m for all j , it holds

ε
l

kl = ε
l∑
j=1

l
n j

≤ ε
l

l m =

(
1

cm

) 1
m

.

or {xkl }l , we conclude

xkl ≤ εl x0 =

(
ε

l
kl

)kl

x0 ≤

((
1

cm

) 1
m
)kl

x0

for, so far, arbitrary m ∈ N. Minimizing the right hand side wrt. m ultimately yields the assertion. □

5.2.2. Convergence analysis of the diagonally L2-stabilized split based on the concept of relative stability
In the following, we establish linear convergence of the diagonally L2-stabilized two-way split (4.1)–(4.2). The

primary aim of the analysis is to determine ranges for the stabilization parameters βs, βf and βp, which a priori
guarantee convergence; in addition, we are going to suggest a practical (for simplicity of the presentation not
necessarily optimally tuned) set of values. The reader interested in the analysis of optimal convergence rate is
referred to analogous studies of the fixed-stress split for the quasi-static Biot equations [32].

For the convergence analysis, the concept of relative stability and r-linear convergence for subsequences
introduced in the previous section is applied. Ultimately, the final result states that it is sufficient to stabilize the
mass conservation equation along the lines of the fixed-stress split for the quasi-static Biot equations [31,32,48,49],
in order to guarantee convergence. Additional destabilization, i.e., negative stabilization, of the momentum equation
for the solid phase theoretically improves the convergence speed. Fluid (de-)stabilization does not further improve
the convergence rate.

To ease the presentation of the analysis, we introduce two notations:

N1) Weighted squares ⟨⟨·⟩⟩
2
A, defined by ⟨⟨ω⟩⟩

2
A := ⟨Aω, ω⟩, where ω can be a tensor-, vector- or scalar-valued

function on Ω , and the weight A is a (potentially non-positive definite) function on Ω with adequate
dimensionality such that the above definition is well-defined.

N2) Weighted L2 norms ∥ · ∥A for uniformly positive definite A, defined by ∥ · ∥
2
A := ⟨⟨·⟩⟩

2
A.

Finally, we state the convergence result for the diagonally L2-stabilized split (4.1)–(4.2).

Theorem 5.5 (Relative Stability and Convergence of the Diagonally L2-Stabilized Two-way Split). Let dk
u :=

n,k n,k−1 k n,k n,k−1 k n,k n,k−1
us − us , dv := vf − vf , and dp := p − p denote increments for k ≥ 1. Furthermore, let Kdr,φ0,min

14
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and CKorn,1 as defined in (5.3) and (5.4), resp.; let δ1 > 0 and δ2 ∈ (0, 2) be tuning parameters; and let the
tabilization parameters satisfy

βs ⪰ −
φ2

0 k−1
f

2∆t
, βf ⪰ 0, βp ≥

1
δ2 ∆t

(
C1/2

Korn,1 + K −1/2
dr,φ0,min

)2
, (5.13)

where A ⪰ B for tensor-valued maps A and B on Ω iff. A − B is uniformly positive definite. Then the
scheme (4.1)–(4.2) satisfies a relative stability criterion of type (5.12), namely

∞∑
k=m+1

[
1

∆t2 ∥dk
u∥

2
ρs(1−φ0) +

(
1 −

δ2

2

)ε(dk
u)
2
C

]
+

∞∑
k=m+1

[
∥dk

v∥
2
ρfφ0

+ ∆t
ε(dk

v )
2

φ02µf
+
dk

p

2
(1−φ0)2

κs

]
(5.14)

≤
1
2

dm
u
2

β̂s
+

δ1 + δ2

2

ε(dm
u )
2
C +

∆t
2

dm
v

2
βf

+
∆t
2

dm
p

2
β̂p

, for all m ∈ N,

where β̂s and β̂p denote augmented stabilization parameters (introduced for simpler presentation)

β̂s := βs +
φ2

0 k−1
f

2∆t
, β̂p := βp +

1
δ1 ∆t

(
C1/2

Korn,1 + K −1/2
dr,φ0,min

)2
.

f (1−φ0)2

κs
is uniformly positive, subsequences of dk

u, dk
v , dk

p r-linearly converge to zero, in the sense of Lemma 5.3.

roof. The proof is organized in five steps, starting with governing equations for increments.

ncrement equations. By subtracting (4.1)–(4.2) at iteration k and k − 1, k ≥ 2, we obtain⟨
ρs(1 − φ0)

dk
u

∆t2 , u⋆

⟩
+
⟨
C ε(dk

u), ε(u⋆)
⟩
+
⟨
βs(dk

u − dk−1
u ), u⋆

⟩
(5.15a)

−
⟨
dk

p, ∇ ·
(
(1 − φ0)u⋆

)⟩
−

⟨
φ2

0 k−1
f

(
dk

v −
dk

u

∆t

)
, u⋆

⟩
= 0,⟨

ρfφ0
dk

v

∆t
, v⋆

⟩
+
⟨
φ02µf ε(dk

v ), ε(v⋆)
⟩
+
⟨
βf(dk

v − dk−1
v ), v⋆

⟩
(5.15b)

−
⟨
dk

p, ∇ ·
(
φ0v

⋆
)⟩

+

⟨
φ2

0 k−1
f

(
dk

v −
dk−1

u

∆t

)
, v⋆

⟩
= 0,⟨

(1 − φ0)2

κs

dk
p

∆t
, p⋆

⟩
+
⟨
βp(dk

p − dk−1
p ), p⋆

⟩
(5.15c)

+
⟨
∇ ·

(
φ0dk

v

)
, p⋆

⟩
+

⟨
∇ ·

(
(1 − φ0)

dk−1
u

∆t

)
, p⋆

⟩
= 0.

Testing with current increments. Testing and summing (5.15) with u⋆
= dk

u, v⋆
= ∆t dk

v , and p⋆
= ∆t dk

p, and
nally summing over indices k = m + 1, . . . , M , for arbitrary m < M , yields

M∑
k=m+1

[
1

∆t2 ∥dk
u∥

2
ρs(1−φ0) +

ε(dk
u)
2
C + ∥dk

v∥
2
ρfφ0

+ ∆t
ε(dk

v )
2

φ02µf
+
dk

p

2
(1−φ0)2

κs

]
+ T1 = T2 + T3 (5.16)

(employing notation (N2) and) with

T1 =

M∑
k=m+1

[⟨
βs(dk

u − dk−1
u ), dk

u
⟩
+ ∆t

⟨
βf(dk

v − dk−1
v ), dk

v

⟩
+ ∆t

⟨
βp(dk

p − dk−1
p ), dk

p

⟩]
,

T2 =

M∑
k=m+1

⟨
dk

p, ∇ ·
(
(1 − φ0)(dk

u − dk−1
u )

)⟩
,

T3 = ∆t
M∑ [⟨

φ2
0 k−1

f

(
dk

v −
dk

u

∆t

)
,

dk
u

∆t

⟩
−

⟨
φ2

0 k−1
f

(
dk

v −
dk−1

u

∆t

)
, dk

v

⟩]
.

k=m+1

15
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We discuss the terms T1, T2 and T3 separately. For the stabilization term T1, we apply binomial identities of type
(a − b)a =

1
2

(
a2

− b2
+ (a − b)2

)
and telescope sums, resulting in

T1 =
1
2

[⟨⟨
d M

u
⟩⟩2
βs

−
⟨⟨
dm

u
⟩⟩2
βs

+

M∑
k=m+1

⟨⟨
dk

u − dk−1
u
⟩⟩2
βs

]
+

∆t
2

[⟨⟨
d M

v

⟩⟩2
βf

−
⟨⟨
dm

v

⟩⟩2
βf

+

M∑
k=m+1

⟨⟨
dk

v − dk−1
v

⟩⟩2
βf

]

+
∆t
2

[⟨⟨
d M

p

⟩⟩2
βp

−
⟨⟨
dm

p

⟩⟩2
βp

+

M∑
k=m+1

⟨⟨
dk

p − dk−1
p

⟩⟩2
βp

]
. (5.17)

employing notation (N1)). For the coupling term T2 we apply summation by parts, leading to

T2 =
⟨
d M

p , ∇ ·
(
(1 − φ0)d M

u
)⟩

−
⟨
dm

p , ∇ ·
(
(1 − φ0)dm

u
)⟩

−

M∑
k=m+1

⟨
dk

p − dk−1
p , ∇ ·

(
(1 − φ0)dk−1

u
)⟩

. (5.18)

or the coupling term T3, simple expansion and reformulation, aiming at constructing quadratic terms present on
he left hand side of (5.16), and gathering those, respectively, results in

T3 = −∆t
M∑

k=m+1

dk
v −

dk
u + dk−1

u

2∆t

2

φ2
0 k−1

f

−
1

2∆t

d M
u
2

φ2
0 k−1

f
+

1
2∆t

dm
u
2

φ2
0 k−1

f
−

1
4∆t

M∑
k=m+1

dk
u − dk−1

u
2

φ2
0 k−1

f
.

(5.19)

nserting (5.17)–(5.19) into (5.16) and re-ordering terms, yields
M∑

k=m+1

[
1

∆t2 ∥dk
u∥

2
ρs(1−φ0) +

ε(dk
u)
2
C + ∥dk

v∥
2
ρfφ0

+ ∆t
ε(dk

v )
2

φ02µf
+
dk

p

2
(1−φ0)2

κs

]

+
1
2

[⟨⟨
d M

u
⟩⟩2
βs

+

M∑
k=m+1

⟨⟨
dk

u − dk−1
u
⟩⟩2
βs

]
+

∆t
2

[⟨⟨
d M

v

⟩⟩2
βf

+

M∑
k=m+1

⟨⟨
dk

v − dk−1
v

⟩⟩2
βf

]

+
∆t
2

[⟨⟨
d M

p

⟩⟩2
βp

+

M∑
k=m+1

⟨⟨
dk

p − dk−1
p

⟩⟩2
βp

]
+ ∆t

M∑
k=m+1

dk
v −

dk
u + dk−1

u

2∆t

2

φ2
0 k−1

f

+
1

2∆t

d M
u
2

φ2
0 k−1

f
+

1
4∆t

M∑
k=m+1

dk
u − dk−1

u
2

φ2
0 k−1

f
−
⟨
d M

p , ∇ ·
(
(1 − φ0)d M

u
)⟩  

=:T4

= −
⟨
dm

p , ∇ ·
(
(1 − φ0)dm

u
)⟩  

=:T5a

−

M∑
k=m+1

⟨
dk

p − dk−1
p , ∇ ·

(
(1 − φ0)dk−1

u
)⟩

  
=:T5b

+
1

2∆t

dm
u
2

φ2
0 k−1

f
+

1
2

⟨⟨
dm

u
⟩⟩2
βs

+
∆t
2

⟨⟨
dm

v

⟩⟩2
βf

+
∆t
2

⟨⟨
dm

p

⟩⟩2
βp

. (5.20)

We discuss the coupling terms T4, T5a and T5b separately in the two following steps.

evisiting the increment equation for the solid for the last iteration. The coupling term T4 combined with terms
in (5.20), involving d M

u , constitutes a positive contribution. Indeed, (i) revisiting (5.15a) tested with u⋆
= d M

u ,
(ii) suitable expansion and reformulation, and ultimately (iii) discarding some positive terms and employing the
definition of β̂s, yields for all terms of (5.20) involving d M

u

1
∆t2 ∥d M

u ∥
2
ρs(1−φ0) +

ε(d M
u )
2
C +

1
2

⟨⟨
d M

u
⟩⟩2
βs

+
1
2

⟨⟨
d M

u − d M−1
u

⟩⟩2
βs

− T4

+ ∆t
d M

v −
d M

u + d M−1
u

2∆t

2

φ2
0 k−1

f

+
1

2∆t

d M
u
2

φ2
0 k−1

f
+

1
4∆t

d M
u − d M−1

u
2

φ2
0 k−1

f

=
1 ⟨⟨

d M−1
u

⟩⟩2
β

+ ∆t
⟨
φ2

0 k−1
f

(
d M

v −
d M

u
)

,
d M

u
⟩

(i) 2 s ∆t ∆t
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+
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d M
u
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0 k−1

f
+

1
4∆t
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(i i)

1
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⟩⟩2
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+
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2∆t
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0 k−1
f
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u

2∆t
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+
∆t
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v
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0 k−1
f

≥
(i i i)

1
2

⟨⟨
d M−1

u
⟩⟩2
β̂s

. (5.21)

Bounding coupling terms T5a and T5b. We employ (i) the product rule, (ii) the definitions of Kdr,φ0,min and CKorn,1,
cf. (5.3) and (5.4), and (iii) the Cauchy–Schwarz and Young’s inequalities. After all, for any δ1 > 0, we bound T5a

T5a =
(i)

⟨
dm

p , ∇φ0 · dm
u
⟩
−
⟨
dm

p , (1 − φ0)∇ · dm
u
⟩

≤
(i i)

dm
p

 (C1/2
Korn,1 + K −1/2

dr,φ0,min

) ε(dm
u )

C

≤
(i i i)

δ1

2

ε(dm
u )
2
C +

1
2δ1

(
C1/2

Korn,1 + K −1/2
dr,φ0,min

)2 dm
p

2
. (5.22)

imilarly for T5b, we obtain for any δ2 > 0

T5b ≤
(i)−(i i i)

δ2

2

M−1∑
k=m

ε(dk
u)
2
C +

1
2δ2

(
C1/2

Korn,1 + Kdr,φ0,min−1/2
)2 M∑

k=m+1

dk
p − dk−1

p

2
. (5.23)

onclusion of relative stability. Inserting (5.21)–(5.23) into (5.20) and employing β̂p, yields

M−1∑
k=m+1

[
1

∆t2 ∥dk
u∥

2
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(
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2
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⟩⟩2
β̂s

+
1
2

M−1∑
k=m+1

⟨⟨
dk

u − dk−1
u
⟩⟩2
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. (5.24)

Finally, after choosing βs, βf and βp satisfying (5.13) (in particular translating to β̂s ⪰ 0), and dropping several
positive terms in (5.24), we obtain the stability result

M−1∑
k=m+1

[
1

∆t2 ∥dk
u∥

2
ρs(1−φ0) +

(
1 −
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2

)ε(dk
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2
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2
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ε(dk

v )
2

φ02µf
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dk

p

2
(1−φ0)2

κs

]
≤

1
2

dm
u
2

β̂s
+

δ1 + δ2

2

ε(dm
u )
2
C +

∆t
2

dm
v

2
βf

+
∆t
2

dm
p

2
β̂p

.

After all, relative stability in the sense of (5.12) can be deduced for any choice for δ1 > 0 and δ2 ∈ (0, 2), since m
and M have been chosen arbitrary. By this the assertion follows. □

Remark 5.6 (Incompressible Media). We note that in contrast to the alternating minimization split (3.5)–(3.6), the
diagonally L2-stabilized two-way split (4.1)–(4.2) remains well defined in the extreme case of (quasi-)incompressible
solid material, i.e., (1−φ0)2

κs
= 0. According to the above theory, convergence is not guaranteed anymore, yet still

may be possible in practice, see also examples in Section 6.

We close this section with suggesting a practical set of stabilization parameters guided by the previous
convergence analysis. We emphasize that one could optimize the effective stability constant in (5.14) wrt. δ , δ ,
1 2
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βs, βf, βp; however, theoretical optimality does not necessarily result in practical optimality, cf. [32] for an
applicable discussion.

Remark 5.7 (A Practical Set of Stabilization Parameters). We assume heterogeneities of the porosity are not crucial
and pretend the porosity is constant. Then it is CKorn,1 = 0 and K −1

dr,φ0,min =
(1−φ0)2

Kdr
, where Kdr = Kdr,0,min denotes

the standard drained bulk modulus. Moreover, we choose the values δ1 = δ2 = 1 in order to balance similar terms
on both sides of (5.14) and follow the suggestion of the stability property to choose the stabilization parameters as
“small” as possible. This results in the set

βs = −
φ2

0 k−1
f

2∆t
, βf = 0, βp =

(1 − φ0)2

Kdr ∆t
,

which leads to destabilization of the momentum equation of the solid. However, we also highlight that merely
utilizing pressure stabilization and setting βs = βf = 0 does also result in guaranteed convergence, in the style of
he fixed-stress split for the quasi-static Biot equations.

. Numerical tests for the convergence of the proposed splitting schemes

The aim of this section is to assess the performance of the proposed splitting schemes, the alternating
inimization split, cf. Section 3, and the diagonally L2-stabilized two-way split, cf. Section 4, and to compare

t with the theoretical convergence results in Section 5. In particular, we consider three test cases and perform
n extensive parametric study for various choices of model parameters and stabilization values based on the above
nalyses, in addition to similar ad-hoc choices motivated by the analyses or experience of the closely related splitting
chemes for the Biot equations.

As test problems, we use two classic problems, the swelling [24,25,54] and footing [32,41,55] problems. In
ddition, we consider a perfusion-like problem as a reference for biomedical applications. We note that each problem
s loaded on a different equation: the swelling on the fluid, the footing on the solid and the perfusion on the mass
alance.

We first present a sensitivity study with respect to the physical parameters for both alternating minimization and
L2-stabilized splits independently based on the swelling test. Then, we provide a detailed comparison between both

ethods in all the described test problems in combination with Anderson acceleration. At the end of this section, we
lso compare the performance of the split scheme that results most effective, with a monolithic solution approach
or the linearized problem, which may be considered to be the gold standard solution strategy. This final test sheds
ight on the competitiveness of the proposed schemes when used for realistic scenarios.

All numerical examples have been performed using the FEniCS project [56,57], and convergence is measured
n terms of the relative residual (for larger certainty absolute residuals are not considered). Let us denote by Xk

h(Ω )
the Lagrangian kth order finite element space defined on a quasi-uniform mesh of Ω of characteristic size h.

The choice of the finite element scheme to be used for the discretization is affected by a trade-off between the
omputational efficiency and the robustness of the scheme. The application of equal-order families of finite elements
s feasible as the inf–sup stability becomes relevant only when (1 − φ)2/κs ≈ 0. Nevertheless, the contribution of
nf–sup stability to parameter-robust numerical schemes for this model has not yet been studied.

On this basis, finite element spaces used in the numerical experiments are: first order Lagrangian elements for
he solid, Vh = X1

h(Ω ) and Taylor–Hood elements for the fluid-pressure system, Wh × Qh = X2
h(Ω )× X1

h(Ω ), which
epresent an effective choice for the low porosity regime [26]. We name this choice of elements with the shorthand
otation P1/P2/P1.

.1. Definition of the test cases

he swelling test. This test consists of a 2D slab Ω = (0, L)2, L = 10−2, in absence of volume forces and
imulated in the time interval (0, 1), with time step ∆t = 0.1. It is subject to an inflow φ0 (2µfε(vf) − p I) n =

pextn, pext(t) = 103(1−exp(4t2)) on the left and null stress on the right, whereas above and below it uses a no-slip
oundary condition vf = 0. The boundary conditions for the solid are sliding on the bottom and left sides, whereas
he rest of the boundary is of null traction type (see Fig. 1(a)). We note that these conditions are not physical

ecause the fluid boundary pressure should act as force on the solid as well, but we keep the proposed scenario to
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Fig. 1. Boundary conditions used in the numerical tests and the corresponding solution.

have this test being loaded only on the fluid equation. We have indeed tested this and observed that it presents no
impact on the following study. The following default parameters (from [25]) are used (unless otherwise specified):
ρf = ρs = 1000, µf = 0.035, λs = 711, µs = 4066, κs = 103, kf = 10−7 I, φ0 = 0.1, all in SI units; in addition

is discretized using 10 elements per side. Finally, a relative tolerance of 10−8 was used with respect to the ℓ∞

orm of the residual, where all sub-problems are solved using GMRES with a relative tolerance of 10−8 as well,
reconditioned with an incomplete LU (ILU) factorization with 3 levels of depth (ILU(3) [58]).

he footing test. This test (from [41]) also consists of a 2D slab Ω = (0, L)2, L = 64, simulated in the

ime interval (0, 1), with time step ∆t = 0.01 in absence of volume forces where half of the boundary on top
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Γfoot = (16, 48) × {64} is subject to an increasing load. More precisely, the fluid phase is subject to a no-slip
ondition on Γfoot and null pressure in ∂Ω \Γfoot. The boundary conditions for the solid are given by an increasing
oad t(x, t) = (0, −105t) on Γfoot, homogeneous Dirichlet conditions on the bottom us = 0 and null Neumann
onditions everywhere else (see Fig. 1(b)). The parameters used are given by: ρf = 1000, ρs = 500, µf = 10−3, E =

· 104, ν = 0.2, λs = Eν/((1 + ν)(1 − 2ν)), µs = E/(2(1 + ν)), κs = 106, kf = 10−7 I, φ0 = 10−3, all in SI units,
iscretized using 10 elements per side, with two simple refinements performed near the footing boundary. Finally,
relative tolerance of 10−6 is used with respect to the ℓ∞ norm of the residual.

he perfusion test. This test also consists of a 2D slab Ω = (0, L)2, L = 0.01 simulated in the time interval (0, 1),
ith time step ∆t = 0.1. Both fluid and solid phases are subject to homogeneous Dirichlet boundary conditions on

he left and homogeneous Neumann conditions elsewhere (see Fig. 1(c)). We set the scalar source term θ = 500,
nd the problem parameters are given by: ρf = 1000, ρs = 1000, µf = 0.03, E = 3 · 104, λs = 5 · 104, R =

E2 + 9λ2
s + 2Eλs, µs = 0.25 (E − 3λs + R), κs = 106, kf = 10−9 I, φ0 = 0.05, all referring to in SI units. These

mechanical parameters are obtained from [59], the remaining ones from [60]. A relative tolerance of 10−8 is used
with respect to the ℓ∞ norm of the residual.

6.2. Anderson acceleration

One key aspect of both proposed schemes is that they can be interpreted as fixed point iterations. Although
they feature in general lower convergence rates than Newton methods, they have acquired higher interest recently,
also due to the development of acceleration schemes. In particular, we focus on the Anderson acceleration, which
can be interpreted as a multisecant scheme, or as a preconditioned GMRES iterative method [35]. As shown later
on in Tables 8–10, acceleration techniques greatly improve the performance of the proposed split schemes, by
increasing their robustness with respect to varying loading conditions and significantly reducing the iteration count.
In practice, using Anderson acceleration is a necessary choice to effectively use the described split schemes in
demanding scenarios.

In general, consider a vector-valued function g : RN
→ RN and the sequence

xk+1 = g(xk).

By defining fk = g(xk) − xk , Anderson acceleration of order m, abbreviated by AA(m), is given as follows: For
iteration k, set mk = min{m, k} and Fk = ( fk−mk , . . . , fk). Compute αk

= (αk
0, . . . , α

k
mk

) that minimizes

min
α=(α0,...,αmk )

∥Fα∥2 s.t.
mk∑
i=0

αi = 1, (6.1)

and then compute the next element as

xk+1 =

mk∑
i=0

αk
i g(xk−mk+i ).

The order m of the scheme is usually referred to as depth, due to the use of m previous iterations. We implement
this method by recasting (6.1) as an unconstrained least-squares problem, and then invert its optimality conditions
using the QR factorization to avoid possible ill-conditioning of the normal equations [58].

6.3. Numerical tests for the alternating minimization split

In this section we present three numerical tests on the alternating minimization split (named Alt-min in the tables),
with the aim of verifying the robustness of the scheme with respect to the parameters N =

κs
(1−φ0)2 , kf and highly

scillatory porosities given by φ0 = 0.1+0.5 sin2(ℓπx/L). As test case we adopt the swelling test described above.
e consider three varying parameters

κs ∈ {10k
}

5
k=2; κf ∈ {10−k

}
12
k=9; φ0 = 0.1 + 0.5 sin2(ℓπx/L), ℓ = 2, . . . , 8;

here L = 10−2 is the side length, and the permeability is treated as a scalar for simplicity, namely kf = κfI.
or each parameter aside of default parameters otherwise, we present the average number of splitting iterations
20
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A
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Table 1
Alt-min for the swelling test: Average iteration count for varying (a) Bulk modulus (b) Permeability and (c) Porosity. Non-convergence
denoted with ’–’ after 200 iterations for bulk modulus and 500 iterations for permeability.

κs # avg. iters. κf # avg. iters. ℓ # avg. iters.

102 8.55 10−9 17.64 2 23.91
103 15.91 10−10 73.72 4 54.64
104 64.09 10−11 399.96 6 103.09
105 – 10−12 – 8 170.64

(a) Bulk modulus. (b) Permeability. (c) Porosity.

Table 2
Considered stabilization settings in the context of the diagonally L2-stabilized split.

ID β̄s β̄f β̄p Description Covered by Theorem Theorem 5.5

L2 S0,0,0 0 0 0 Unstabilized split ✗

L2 S0,0,1 0 0 1 L2 S with fixed-stress-type p-stabilization ✓

L2 S−0.5,0,1 −
1
2 0 1 L2 S with conservative us-destabilization ✓

L2 S−1,0,1 −1 0 1 L2 S with aggressive us-destabilization ✗

throughout the simulation required for convergence in Table 1. We observe that the performance of the alternating
minimization split is particularly sensitive to the bulk modulus κs, and small permeabilities make the problem much
more difficult to solve. Instead, the dependence on oscillating porosity is moderate. The results are in accordance
to Theorem 5.1.

6.4. Numerical tests for the diagonally L2-stabilized split

In this section, we study the sensitivity of the performance of the diagonally L2-stabilized split (named L2S in
the tables) with respect to different combinations of physical parameters. Precisely, we use the swelling test with
default coefficients, and we vary the following ones

κs ∈ {10k
}

8
k=2; κf ∈ {10−k

}
12
k=7; ρs = ρf ∈ {10k

}
8
k=2.

dditional tests address the influence of the ratio between the elasticity and the permeability. For this, we fix the
ermeability and increase the drained bulk modulus Kdr = λ +

2µ

d , d = 2 by scaling both Lamé parameters by the
same factor.

The analysis in Section 5.2 yields the interesting fact that the solid momentum equation can be destabilized.
Therefore, we compare different stabilization parameters, also ones excluded by the theory in order to investigate
the theoretically suggested parameter ranges. In particular, we apply the L2 stabilized two-way split (4.1)–(4.2)
using stabilization parameters of type

βs = β̄s
φ2

0 k−1
f

∆t
, βf = β̄fφ

2
0 k−1

f , βp = β̄p
(1 − φ0)2

∆t Kdr

with different scaling factors β̄s, β̄f, β̄p, from now on denoted by L2Sβ̄s,β̄f,β̄p . Considered scaling factors are
listed in Table 2. Splitting iterations are terminated via the tolerance tolres = 10−8. As in the previous test,
performance is measured in terms of the average number of splitting iterations throughout the entire simulation,
with non-convergence established whenever a solver requires more than 200 iterations.

Although the analysis, cf. Theorem 5.5, does not reveal any dependence on the particular discretization, it is
developed under the underlying assumption that the discrete problems are uniquely solvable. To investigate potential
effects of stability of the function spaces onto the stability of the splitting, we consider progressively unstable

approximation spaces, namely P1/P2/P1 and P1/P1/P1 elements for displacement, velocity and pressure, respectively.
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Table 3
Average iteration count of the L2-stabilized solvers for a varying κs in the swelling test. Non-convergence denoted by ’–’.

P1/P1/P1 elements P1/P2/P1 elements

κs L2 S0,0,0 L2 S0,0,1 L2 S−0.5,0,1 L2 S−1,0,1 L2 S0,0,0 L2 S0,0,1 L2 S−0.5,0,1 L2 S−1,0,1

102 6.73 6.0 5.91 5.82 6.73 6.73 6.36 6.36
104 13.27 22.81 22.82 22.91 13.18 7.0 6.73 6.91
106 – – – – 14.0 7.09 6.82 7.0
108 – – – – 14.09 7.09 6.82 7.0

Table 4
Average iteration count of the L2-stabilized solvers for a varying kf in the swelling test. Non-convergence denoted by ’–’ (more than 500
terations in this case).

P1/P1/P1 elements P1/P2/P1 elements

κf L2 S0,0,0 L2 S0,0,1 L2 S−0.5,0,1 L2 S−1,0,1 L2 S0,0,0 L2 S0,0,1 L2 S−0.5,0,1 L2 S−1,0,1

10−7 10 8.18 8.18 8.36 10 6.36 6.27 6.64
10−8 12 9.91 9.82 9.91 11.91 9 8.45 8
10−9 15.09 15.09 12.36 11.18 15.45 15.36 12.55 9.55
10−10 67.18 67.28 40 55 74.64 74.73 44.27 19.27
10−11 347.55 348.18 194 – 419.64 420.45 232 –
10−12 – – – – – – – –

6.4.1. Dependence on solid bulk
In Table 3, the iteration counts for varying κs are displayed. We observe that for P1/P1/P1 elements no set of

tabilization parameters enables convergence for larger κs; we note that for increasing κs, the uniform stability of the
uid-pressure system is lost. In contrast, the use of P1/P2/P1 elements adds uniform stability to the discretization
nd finally also uniform robustness to any of the stabilized splittings. For a non-dominating us − vf coupling,
estabilization of the solid momentum equation does not make a big difference.

.4.2. Dependence on permeability
In Table 4, the iteration counts for varying kf = κf I are displayed. Here, a maximal count of 500 splitting

terations is used for better understanding the dependence on the permeability. Lower permeability makes the
roblem more difficult to solve. The reasons for this are: (i) decreasing the permeability leads to ill-conditioning of
he us–vf block; and (ii) for lower permeabilities the ellipticity of the us–vf block loses its dominance, and instead
he L2-type contribution has a much bigger influence.

Destabilization of us seems to effectively address the first issue. In fact, it results in significantly improving the
erformance, compared to mere p-stabilization, which alone fails to lead to unconditional robustness. This, on the
ne hand, nicely verifies the theory in Theorem 5.5. On the other hand, it indicates that suitable destabilization
uccessfully imitates approximating the Schur complement of the L2-type contribution of the us–vf block; the
omparison of conservative and aggressive destabilization illustrates the potential gain but also sensitivity of
estabilization. Since L2-stabilization of the mass conservation equation does not address the L2-type contribution
f the us–vf block at all, unconditional robustness cannot be expected without an additional differently scaled
tabilization approach, ultimately mitigating the second issue. We highlight the possibility to include diffusion-type
tabilization of the pressure equation [61] which may result in a remedy.

Comparing the results for the P1/P1/P1 and P1/P2/P1 discretizations, we note that inf–sup stability in the fluid
llows for a significant improvement on the performance. Also, in contrast to the unstable case, destabilizing the

us equations greatly improves performance.
We note that this method is very sensitive to low permeabilities. In previous studies, e.g. [34], Anderson

cceleration has been shown to successfully increase robustness of stabilized iterative solvers. So we present the
teration counts for the same test but using Anderson acceleration with a depth of 5 in Table 5. We note that
ot only there is a significant decrease in the number of splitting iterations required (up to ca. 80% for very low
ermeabilities), but it also enables the convergence of configurations which have previously not converge, again
erifying previous observations. As long as the permeability is not too low, again aggressive us stabilization leads

o the best performance.
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Table 5
Average iteration count of the L2-stabilized solvers for a varying kf in the swelling test using Anderson acceleration with depth 5.

on-convergence denoted by ’–’ (more than 500 iterations in this case).

P1/P1/P1 elements P1/P2/P1 elements

κf L2 S0,0,0 L2 S0,0,1 L2 S−0.5,0,1 L2 S−1,0,1 L2 S0,0,0 L2 S0,0,1 L2 S−0.5,0,1 L2 S−1,0,1

10−7 5.9 5.73 6 6 5.73 4.91 4.91 4.91
10−8 7 7.27 7.27 7.09 6.91 6.91 6.64 5.91
10−9 10.36 10 8.91 8.91 10.45 10 9 7.09
10−10 18.91 18.09 14.91 12 18 20.09 15.73 10
10−11 43.55 45.18 33.73 26.18 56.82 53.18 38.91 18.82
10−12 107.09 112.73 121.55 – 140.73 117.36 95.64 280.82

Table 6
Average iteration count of the L2-stabilized solvers for a varying ρs = ρf in the swelling test. Non-convergence
denoted by ’–’.

P1/P1/P1 elements

ρs = ρf L2 S0,0,0 L2 S0,0,1 L2 S−0.5,0,1 L2 S−1,0,1

102 – 4.0 3.9 4.0
104 – 4.0 3.9 4.0
106 – 4.0 4.0 4.0
108 – 18.4 18.7 19.4

Table 7
Average iteration count of the L2-stabilized solvers for a varying Kdr in the swelling test. Non-convergence denoted by ’–’.

P1/P1/P1 elements P1/P2/P1 elements

Kdr L2 S0,0,0 L2 S0,0,1 L2 S−0.5,0,1 L2 S−1,0,1 L2 S0,0,0 L2 S0,0,1 L2 S−0.5,0,1 L2 S−1,0,1

47.77 – – – – – 26 19.18 16.64
477.7 – 30 30 30 – 10.82 9.91 9.91
4777 10 8.18 8.18 8.36 10.27 6.73 6.73 6.27
47770 5.82 4.82 4.91 5.18 6.73 5.73 5.73 5.64

6.4.3. Dependence on densities
In Table 6, the iteration counts for varying ρs = ρf are displayed. We observe that for very large densities

he problem starts to become more difficult to solve. To explain, increasing densities (merely) raise the second
ssue mentioned in Section 6.4.2; in particular, as expected, destabilizing the solid equation does not yield any
mprovement, in contrast to the previous test. Iteration counts are identical for P1/P1/P1 and P1/P2/P1 elements.
hus, only the former is presented.

.4.4. Dependence on drained bulk modulus
In Table 7, the iteration counts for varying Kdr (with same Poisson ratio) are displayed. We observe that lower

rained bulk modulus is associated to higher iteration counts. This can be explained along the lines of the discussion
f the dependence on the permeability, cf. Section 6.4.2, since a lower drained bulk modulus leads to dominance
f the L2-type contribution of the us–vf block. Therefore, as expected, (aggressive) destabilization is beneficial.
dditionally, a lower drained bulk modulus leads to a stronger coupling strength, and in accordance to Theorem 5.5,

o a deteriorating convergence rate. Again, inf–sup stability of the discretization of the fluid-pressure coupling
nables slightly improved results, especially for low bulk modulus.

.5. Comparison of the alternating minimization and L2-stabilized splits

The previous two sections allow for a first comparison of the two proposed schemes. In particular, two conclu-
ions on the respective limitations can be made: (i) for increasing solid bulk modulus, the alternating minimization
plit quickly deteriorates, whereas the L2-stabilized split remains robust; and (ii) for lower permeabilities, the
23
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Table 8
Average iteration count for all tested scenarios in the swelling test, averaged over 5 time steps for κs ∈ {104, 108

}.
None stands for the plain splits; AA(m) stands for additional application of Anderson acceleration with depth m.

P1/P2/P1 P2/P2/P1

Method κs None AA(1) AA(5) None AA(1) AA(5)

Alt-min 104 64.09 38.27 21 66.82 39.64 21.82
L2 S−0.5,0,1 104 6.73 5.0 4.9 6.55 4.0 4.9
Alt-min 108 – – – – – –
L2 S−0.5,0,1 108 6.82 5.09 4.91 6.64 5.0 4.91

Table 9
Average iteration count for all tested scenarios in the footing test. None stands for the plain splits; AA(m) stands
for additional application of Anderson acceleration with depth m.

P1/P2/P1 P2/P2/P1

Method None AA(1) AA(5) None AA(1) AA(5)

Alt-min 17.92 8.96 7.4 73.44 25.4 16.9
L2 S−0.5,0,1 – – 28.98 – – 52.42

performance of both schemes deteriorates, but the alternating minimization split in fact better handles the limit
of very low permeabilities.

In this section, we continue the comparison of the two proposed schemes, now based on all the three suggested
est cases with the parameters given in their description, enjoying different problem characteristics. The focus of
he following study will also be to assess the impact of actual inf–sup stability, given for a Taylor–Hood like
2/P2/P1 discretization, opposed to the previously considered P1/P2/P1 discretization. Moreover, having observed

he improving effect of Anderson acceleration in Section 6.4.2, we follow this lead and also investigate the
erformance of the accelerated splits, this time also for the alternating-minimization. We also consider only the

L2S−0.5,0,1 as it is the one suggested by the analysis and it exhibits an overall more robust performance.
For the swelling test, we additionally consider two bulk moduli, κs ∈ {104, 108

}. Results are presented in Table 8.
We observe that the inf–sup stability of the displacement plays no role, and the diagonally L2-stabilized split proves
very robust in all the tested scenarios, performing significantly better than the alternating minimization split. For
the first, Anderson acceleration barely leads to improvement due to already low iteration counts; for the latter
convergence can be significantly accelerated for the lower bulk modulus. For high bulk modulus, not even Anderson
acceleration enables convergence.

We present the results of the footing test in Table 9. We note that in this test the alternating minimization scheme
exhibits lower iteration counts. Its success can be explained by the lower bulk modulus used, and instead the initial
failure of the L2-stabilized scheme is due to the permeability, which is very low. This case presents localized
displacements at Γfoot, which are more affected by numerical locking, which justifies the increased iteration count
in the case of the P2/P2/P1 discretization.

The results of the perfusion test are presented in Table 10. The behavior of this test is similar to the swelling one,
with the L2-stabilized split exhibiting a robust performance, which is further improved by the use of acceleration.
The alternating minimization split instead presents difficulties in attaining convergence without acceleration, which
can be explained by the use of a large bulk modulus. Similarly to the swelling test, the inf–sup stability of the
displacement effectively plays no role.

6.6. Comparison of splitting versus monolithic approaches

In this section we present a comparison, in terms of computational time, between the proposed splitting schemes
and a monolithic approach. We consider the swelling test in 2 and 3 dimensions, and we choose the L2S−0.5,0,1
(labeled L2S) as it yields the best performance for this problem. All matrices are inverted inexactly with a GMRES

method, and in both monolithic and iterative approaches we used an incomplete LU preconditioner (ILU). In
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Table 10
Average iteration count for all tested scenarios in the perfusion test. None stands for the plain splits; AA(m)
stands for additional application of Anderson acceleration with depth m.

P1/P2/P1 P2/P2/P1

Method None AA(1) AA(5) None AA(1) AA(5)

Alt-min – 111.64 51.45 – 134.36 50.18
L2 S−0.5,0,1 18.36 10.27 9 14.64 9.36 8.09

Table 11
Wall time [s] of the different approaches for increasing number of degrees of freedom in 2D.

Elements per side dofs L2 S [s] Monolithic [s] ratio (L2 S / Mono.)

50 28205 3.08 1.92 1.6042
100 111405 11.62 15.61 0.7444
150 249605 31.94 46.57 0.6858
200 442805 61.79 128.49 0.4809
250 691005 125.04 254.93 0.4905
300 994205 196.97 569.36 0.3459

Table 12
Wall time [s] of the different approaches for increasing number of degrees of freedom in 3D.
OOM stands for Out Of Memory.

Elements per side dofs L2 S [s] Monolithic [s] ratio (L2 S / Mono.)

20 243807 49.43 30.53 1.62
30 800107 209.2 163.4 1.28
40 1870007 543.4 651.8 0.83
45 2650057 925.2 1131.8 0.81
50 3621507 1466 OOM –

our tests we have observed that in 2D the monolithic scheme requires more levels of fill-in of the ILU than the
splitting schemes, which is consistent with the monolithic problem being more complex than the block sub-problems.
Nevertheless, for the sake of a fair comparison, we use the same 3 levels of fill-in for both formulations in 2D. For
the 3D case, the default ILU(1) was sufficient. The default stopping criterion for GMRES iterations is adopted for
the monolithic scheme, with a relative tolerance equal to 10−8. For the splitting scheme, the convergence tests for
he linear system solved at each iteration is slightly relaxed, up to 10−6, but the (relative) tolerance of the stopping

criterion for the iterative splitting scheme is also set to 10−8, on the ℓ∞ norm of the residual. We compare the
omputational cost, measured by the average wall time per time step, calculated on a sequence of five consecutive
ime steps. Both formulations are solved using P1/P2/P1 finite elements, and the number of degrees of freedom is
ontrolled by the number of nodes on each side of the domain.

The results of the comparison are reported in Tables 11 and 12 for the 2D and 3D problems, respectively.
he iterative schemes exhibit a better scaling with respect to the number of degrees of freedom. In particular, for
roblems with roughly over 105 and 106 degrees of freedom (given by using 100 or more elements per side on
he square domain and 40 elements per side or more on the cubic domain) the wall time of the split scheme is
onsistently lower than the one of the monolithic approach. Also, the ratio between both solution times decreases
onotonically with respect to the degrees of freedom as shown in the last column of the table, meaning that in

his test case the superiority of iterative splitting schemes increases with the discrete problem size, which makes
hem a competitive solution strategy for addressing realistic scenarios, especially when considering tailored, possibly
calable preconditioners for the single subproblems. We note that in the largest 3D problem the monolithic solver
equires more memory than available and so it returns an Out of Memory error (OOM). Conversely, the splitting
cheme requires the construction of preconditioners only for the diagonal blocks, which results in a lower memory

ootprint. This is an additional advantage of these methods.
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7. Discussion and conclusions

In this work we have developed splitting schemes for the linearized poromechanics problem studied in [25,26],
amely the alternating minimization split and the diagonally L2-stabilized split. As the choice of a splitting scheme
trongly depends on the application of interest, due to the strong dependence that the performance of each scheme
as on the parameters, we tested the proposed methods on several benchmark problems.

The conclusions of this work arise from both theoretical analysis and numerical experiments. From the standpoint
f theoretical convergence properties, we observe that the effectiveness of a splitting scheme hinges on the
ssumptions used for the convergence analysis and the corresponding stabilization, if necessary. For instance, the
lternating minimization scheme requires the algebraic inversion of the pressure, so it can be expected for it to
eteriorate whenever this operation is not admissible ((1 − φ)/κs → ∞). The diagonally L2-stabilized split can
e interpreted as an approximate Schur complement method, where the L2-type contributions are not considered.
his implies that it can be expected for such L2-stabilized schemes to present difficulties converging whenever the

L2-type contributions are dominant, meaning small permeability or large densities. The analysis also provides the
nteresting possibility of destabilizing the solid momentum equation in the diagonally L2-stabilized scheme.

Such trends are confirmed by numerical experiments. The alternating minimization scheme performs very
ell in compressible scenarios but its convergence rate quickly deteriorates as the bulk modulus increases. The
iagonally L2-stabilized split instead is robust with respect to the bulk modulus, so it should be preferred in (quasi-
incompressible regimes. The numerical experiments also confirm that the destabilization of the solid momentum
quation yields good improvements of the convergence rate.

Neither of the schemes is capable of satisfyingly handling large densities or small permeabilities (without
nderson acceleration) – enhanced splitting schemes which successfully incorporate the L2-type contribution in the
isplacement–fluid velocity block are a topic of future research. Here, we emphasize the theory of parameter-robust
perator preconditioning appears to be a natural framework [62], having been also able to provide parameter-robust
reconditioners for the Biot equations with a double-saddle point structure [63,64]; we however expect that results
s in [61] cannot be directly translated due to the heterogeneous character of the coupled displacement–fluid velocity
lock. Still, an improvement for the low permeability scenario can be seen by using inf–sup stable elements for the
uid-pressure block. This is an interesting property to be investigated, as it does not emerge in the analysis.

We have strengthened our splitting schemes with Anderson acceleration, which is a general method to improve
he convergence of fixed-point iterations. It does not only improve the convergence of all methods tested, but it
lso enables convergence in scenarios in which it previously would not converge. Another feature of Anderson
cceleration, particularly relevant in this framework, is that it reduces the influence of the stabilization parameters.
his is indeed a fundamental aspect, as the user-defined choice and tuning of parameters represent a drawback of

he presented methods.
Finally, we have compared the diagonally L2-stabilized split with a monolithic approach applied to the

inearized problem. This study shows that for a sufficiently large size of the discrete problem, the iterative splitting
pproach is a competitive choice. Such methods may then be rightfully considered as effective options for solving
ealistic poromechanics problems applied to soft materials. Further investigations considering practical biomedical
pplications will be performed in the future.
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