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Abstract

We define the pAPN-spectrum (which is a measure of how close a function is
to being APN) of an (n, n)-function F and investigate how its size changes when
two of the outputs of a given function F are swapped. We completely characterize
the behavior of the pAPN-spectrum under swapping outputs when F is the inverse
function over F2n . We further theoretically investigate this behavior for functions
from the Gold and Welch monomial APN families, and experimentally determine
the size of the pAPN-spectrum after swapping outputs for representatives from all
infinite monomial APN families up to dimension n = 10; based on our computation
results, we conjecture that the inverse function is the only monomial APN function
for which swapping two its outputs can leave an empty pAPN-spectrum.

Keywords: Boolean functions, almost perfect nonlinear (APN), partial APN, binary
finite fields, equations.
MSC 2020: 06E30, 11T06, 94A60, 94D10.

∗This is a substantially revised and extended version of the article [5] that appeared in the proceedings
of the Sequences and Their Applications – SETA 2020. In particular, the proofs for the Gold and Welch
case, and the computational data given in the appendix, are new.



1 Introduction

Let F2n be the finite field with 2n elements for some positive integer n. We call a function
from F2n to F2 a Boolean function on n variables. We will denote the set of all such
functions by Bn. We shall denote by 1

a or 1/a the multiplicative inverse of a in F2n ,
adopting the usual convention 1

0 = 1/0 = 0.
For a Boolean function f : F2n → F2, we define the Walsh-Hadamard transform to

be the integer valued function

Wf (u) =
∑
x∈F2n

(−1)f(x)+Trn1 (ux),

where Trn1 : F2n → F2 is the absolute trace function, Trn1 (x) =
∑n−1

i=0 x
2i .

A vectorial Boolean function, or (n,m)-function, is a map F : Fn2 → Fm2 , for some
positive integers m and n. When m = n, it can be uniquely represented as a univariate
polynomial over F2n (using the natural identification of the finite field F2n with the
vector space Fn2 , via some basis) of the form

F (x) =

2n−1∑
i=0

aix
i, ai ∈ F2n .

The binary weight w2(i) of a positive integer i is the number of non-zero bits in its
binary expansion, i.e. w2(i) =

∑K
j=0 bj , where i =

∑K
j=0 bj2

j for some positive integer K
and for bj ∈ {0, 1}, where the sums involved are being computed over the integers. The
algebraic degree of F is then the largest binary weight of an exponent i with ai 6= 0. For
an (n, n)-function F and for a, b ∈ F2n , we define the Walsh transform WF (a, b) of F to
be the Walsh-Hadamard transform of its component function Trn1 (bF (x)) at a, that is,

WF (a, b) =
∑
x∈F2n

(−1)Tr
n
1 (bF (x)+ax).

For an (n, n)-function F , and a, b ∈ F2n , we let ∆F (a, b) = |{x ∈ F2n |F (x + a) +
F (x) = b}|. We call the quantity ∆F = max{∆F (a, b) : a, b ∈ F2n , a 6= 0} the differential
uniformity of F . If ∆F = δ, then we say that F is differentially δ-uniform. Since x+ a
is a solution to F (x+ a) + F (x) = b whenever x is, the differential uniformity is always
even and is thus at least 2 for any F . If δ = 2, then F is an almost perfect nonlinear
(APN) function.

For an (n, n)-function F and an element a ∈ F2n , the function DaF (x) = F (a +
x) + F (x) is called the (first-order) derivative of F in direction a. In this way, the
number ∆F (a, b) can be interpreted as the number of solutions x ∈ F2n to the equation
DaF (x) = b. From this point of view, a function F is APN if and only if all of its
derivatives DaF for a 6= 0 are 2-to-1 functions.

APN functions are of significant interest in cryptography for the construction of block
ciphers since they provide optimal resistance to differential cryptanalysis. Furthermore,
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some classes of APN functions correspond to optimal objects in other areas of mathemat-
ics and computer science, such as coding theory, projective geometry, and combinatorial
design theory. Nonetheless, being cryptographically strong functions, APN functions
are by design unpredictable and difficult to construct and analyze. For the purpose of
making their analysis more tractable, a number of characterizations of APN-ness have
been derived and can be found in the literature (see, for instance, [3, 7, 8, 19]). We give
some of them below.

Lemma 1. Let F be an (n, n)-function.

(i) We always have ∑
a,b∈F2n

W4
F (a, b) ≥ 23n+1(3 · 2n−1 − 1),

with equality if and only if F is APN.

(ii) If, in addition, F is APN and satisfies F (0) = 0, then∑
a,b∈F2n

W3
F (a, b) = 22n+1(3 · 2n−1 − 1).

(iii) (Janwa-Wilson-Rodier Condition1) F is APN if and only if all the points x, y, z ∈
F2n satisfying

F (x) + F (y) + F (z) + F (x+ y + z) = 0

belong to the surface (x+ y)(x+ z)(y + z) = 0.

Along with S. Kwon, we introduced in [4] a notion of partial APN-ness in our attempt
to resolve a conjecture on the upper bound on the algebraic degree of APN functions [3].
For a fixed x0 ∈ F2n , we call an (n, n)-function a (partial) x0-APN function (which we
typically refer to as x0-APN, partially APN, or just pAPN, for short) if all points, x, y
satisfying

F (x0) + F (x) + F (y) + F (x0 + x+ y) = 0 (1)

belong to the curve
(x0 + x)(x0 + y)(x+ y) = 0. (2)

We will also refer to (1) as the Janwa-Wilson-Rodier equation; the Janwa-Wilson-Rodier
condition then essentially states that (1) has no solutions x outside of the curve (x0 +
x)(x0 + y)(x+ y) = 0.

We will refer to the set of points x0 ∈ F2n for which a function is x0-APN as the
pAPN-spectrum of the function. Certainly, a function is APN if and only if it is x0-APN
for every point x0; that is, its pAPN-spectrum is F2n .

An alternate way to express the fact that a given function F is x0-APN is to say that
for any a 6= 0 the equation F (x+ a) +F (x) = F (x0 + a) +F (x0) has only two solutions

1We have been calling this the “Rodier condition”, but we realized that it did occur in the literature
prior to Rodier’s work, for power monomials in [11], so we will now call it by the three names.
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x, namely x = x0 and x = x0 + a. An interesting approach is taken in [13], where it was
observed that the partial APN concept is connected to the notion of a partial quadruple
system (an instance of the much more general class of configurations called packings).

Another interpretation (observed by one of our reviewers) of partial APN-ness is the
following: for an (n, n)-function F on F2n , let D be the graph {(x, F (x)) : x ∈ F2n}
of the function F , and let a, b ∈ F2n . Let D + (a, b) denote the shift of D by (a, b).
Then the DDT (difference distribution table) is the array whose (a, b) position is the
intersection size of D ∩ (D+ (a, b)). The vectorial DDT does not just tabulate the sizes
of the intersections, but the set of elements in D ∩ (D + (a, b)). Then, x0 ∈ F2n is an
element in the pAPN-spectrum of F if and only if (x0, F (x0)) ∈ D is not contained in
any of these intersections provided the intersection has size at least 4. So the points in
the pAPN-spectrum are exactly those which are never in the large intersections.

In this paper we show an intriguing property of the inverse, Gold and Welch functions:
swapping two of their output values leads to a reduction in the size of their pAPN-
spectra; in some cases, this reduction is quite significant. This shows that the effect of
swapping two points in a given function can be quite unpredictable: as shown in [21],
swapping two points of an APN function cannot increase the differential uniformity to
more than 4; we note that differentially 4-uniform functions can be seen as a weakening
of APN functions. In this sense, a function obtained from a two-point swap from an APN
function is “close to APN” from the point of view of its differential uniformity. Since
the notion of a partially APN function is itself a relaxation of that of an APN function,
one would naturally expect that swapping two points in an APN function should give a
function that is “close to APN” from the point of view partial APN-ness as well; instead,
we see that the pAPN-spectrum can be reduced from full to empty by such an operation.
Furthermore, Theorems 4, 6, and 8 show that characterizing which elements of the field
belong to the pAPN-spectrum of such a function is, in general, very difficult.

The structure of the paper is as follows: in Section 2, we recall the conditions on
the existence of solutions for quadratic and cubic equations over binary finite fields, we
describe the Janwa-Wilson-Rodier equation for the swapping of two points, and prove
that, for a function F satisfying ∆F (a, b) 6= 2 for any a, b ∈ F2n , both F and any function
obtained by swapping two of its outputs, have an empty pAPN-spectrum. In Section 3,
we discuss the pAPN property for the inverse function swapped at two outputs, and we
completely characterize the cases in which the resulting function has an empty pAPN-
spectrum. In Sections 4 and 5, we discuss the pAPN property for the Gold and Welch
function swapped at two outputs. Finally, in Appendix A, we give computational results
for each of the infinite APN monomial families over F2n (except for the inverse, since it
is characterized in Section 3) for 4 ≤ n ≤ 10. As discussed there, and according to these
experimental results, it appears that the inverse APN function is the only monomial
APN function whose pAPN-spectrum can be reduced to the empty set by a two-point
swap.
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2 Considerations and useful remarks

Throughout the paper, we shall be using the following result from [1, 20], which describes
the existence of solutions for quadratic and cubic equations over binary finite fields.

Theorem 2. Let n be a natural number, and consider the finite field F2n.

(1) The equation x2 + ax + b = 0, with a, b ∈ F2n, a 6= 0, has solutions in F2n if and
only if Trn1

(
b
a2

)
= 0. Otherwise, its two solutions are in F22n.

(2) The equation x3 + ax+ b = 0, with a, b ∈ F2n, b 6= 0, has, denoting by t1, t2 for the
roots of t2 + bt+ a3 = 0 (note that these are in F2n or F22n, see above):

(i) three solutions in F2n if and only if Trn1 (a3/b2) = Trn1 (1) and t1, t2 are cubes
in F2n for n even, and in F22n for n odd ;

(ii) a unique solution in F2n if and only if Trn1 (a3/b2) 6= Trn1 (1);

(iii) no solutions in F2n if and only if Trn1 (a3/b2) = Trn1 (1) and t1, t2 are not cubes
in F2n for n even, respectively, F22n for n odd.

A construction proposed in [21] designed to construct differentially 4-uniform per-
mutations that involves swapping two outputs of a given (n, n)-function, has been the
subject of many papers since then (see [6, 16, 17, 18, 22], to cite just a few works; a
generalization allowing the modification of any two output values, of which swapping
is a special case, is investigated in [12]). This naturally leads to the question of how
swapping two outputs of a given function F would affect its pAPN-spectrum. We now
describe the Janwa-Wilson-Rodier equation for an (n, n)-function F with two output
points swapped. More precisely, given two points x0 6= x1 in F2n , we let Gx0x1 be the
{x0, x1}-swapping of F defined by

Gx0x1(x) = F (x) +
(
(x+ x0)

2n−1 + (x+ x1)
2n−1) (y0 + y1), (3)

where y0 = F (x0), y1 = F (x1). We will sometimes denote Gx0x1 simply by G if there is
no danger of confusion.

Note that x2
n−1 = 1 in F2n unless x = 0, and so for any x, y ∈ F2n , the expression

(x+ y)2
n−1 is equal to 1 if x 6= y and is equal to 0 if x = y.

The Janwa-Wilson-Rodier equation of G = Gx0x1 at ζ ∈ F2n becomes

0 = G(ζ) +G(x) +G(y) +G(x+ y + ζ) = F (ζ) + F (x) + F (y) + F (x+ y + ζ)

+
(
(ζ + x0)

2n−1 + (ζ + x1)
2n−1 + (x+ x0)

2n−1 + (x+ x1)
2n−1 + (y + x0)

2n−1

+(y + x1)
2n−1 + (x+ y + ζ + x0)

2n−1 + (x+ y + ζ + x1)
2n−1) (y0 + y1).

(4)

We consider several cases depending on the value of ζ:

• If ζ = x0, then (4) becomes (for x 6= ζ 6= y 6= x)

0 = F (x0) + F (x) + F (y) + F (x+ y + x0)

+
(
(x+ x1)

2n−1 + (y + x1)
2n−1 + (x+ y + x0 + x1)

2n−1) (y0 + y1).
(5)
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• If ζ = x1, then (4) becomes (for x 6= ζ 6= y 6= x)

0 = F (x1) + F (x) + F (y) + F (x+ y + x1)

+
(
(x+ x0)

2n−1 + (y + x0)
2n−1 + (x+ y + x0 + x1)

2n−1) (y0 + y1).
(6)

• If x0 6= ζ 6= x1, then (4) becomes (for x 6= ζ 6= y 6= x)

0 = F (ζ) + F (x) + F (y) + F (x+ y + ζ)

+
(
(x+ x0)

2n−1 + (x+ x1)
2n−1 + (y + x0)

2n−1

+(y + x1)
2n−1 + (x+ y + ζ + x0)

2n−1 + (x+ y + ζ + x1)
2n−1) (y0 + y1).

(7)

We shall be referring to Equations (5)–(7) throughout the paper.
When studying how swapping outputs affects the pAPN-spectrum, we do not restrict

ourselves to APN functions and often drop the conditions on the parameters in the
definition of the infinite families; for example, in our experimental results for the Gold
functions in Table 6, we consider all functions of the form x2

i+1 over F2n regardless of
the value of gcd(i, n). In a number of cases, the functions in question are not APN,
but are still differentially two-valued, i.e., there is a positive integer s > 1 such that all
non-zero derivatives of these functions are 2s-to-1. While such a function is clearly not
ζ-APN for any ζ ∈ F2n , it is also easy to see that swapping two of its outputs will always
result in an empty pAPN-spectrum. The following proposition therefore allows us to
eliminate some trivial cases.

Proposition 3. Let F : F2n → F2n be such that ∆F (a, b) ≥ 4 whenever ∆F (a, b) 6= 0.
Then F has an empty pAPN-spectrum. Furthermore, for any x0, x1 ∈ F2n, the pAPN-
spectrum of the {x0, x1}-swapping Gx0x1, as defined in (3), is also empty.

Proof. We use the fact that a function F is ζ-APN if and only if the equation DaF (ζ) =
DaF (x) only has the trivial solutions x = ζ and x = a + ζ for any a ∈ F∗2n . Since
∆F (a,DaF (ζ)) ≥ 4 for any a ∈ F∗2n and any ζ ∈ F2n by the hypothesis, it is clear that
F cannot be ζ-APN for any ζ.

Suppose now that x0, x1 ∈ F2n , and G = Gx0x1 is obtained by swapping the outputs
of F at x0 and x1. Consider some ζ ∈ F2n . Let a, b ∈ F2n be such that x0 = ζ + a and
x1 = ζ + b. First, suppose that ab = 0, say a = 0. Then

DbG(ζ) = G(ζ) +G(ζ + b) = F (ζ + b) + F (ζ) = DbF (ζ).

Since ∆F (b,DbF (ζ)) ≥ 4, there must be some w ∈ F2n such that DbF (w) = DbF (ζ) and
w 6= ζ, ζ + b. Thus {x0, x1} ∩ {w, b+ w} = ∅ and hence

DbG(w) = DbF (w) = DbF (ζ) = DbG(ζ),

showing that G is not ζ-APN.
Suppose now that ab 6= 0, and let c = a+ b. We then have

DcG(ζ) = G(ζ) +G(ζ + a+ b) = F (ζ) + F (ζ + a+ b) = DcF (ζ)
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due to {x0, x1} ∩ {ζ, ζ + a + b} = ∅. Since ∆F (c,DcF (ζ)) ≥ 4, we can find w ∈ F2n

with DcF (w) = DcF (ζ) and w 6= ζ, ζ + a+ b. Suppose now that x0 = ζ + a = w. Then
x1 = ζ + b = w + a + b = w + c. Thus, {x0, x1} and {w,w + c} are either identical or
disjoint. In both cases, we have

DcG(w) = DcF (w) = DcF (ζ) = DcG(ζ),

witnessing that G is not ζ-APN.

3 The pAPN property for the inverse function swapped at
two outputs

In this section, we discuss the pAPN property for the inverse function swapped at two
outputs, and we completely characterize the cases in which the resulting function has
an empty pAPN-spectrum. We recall that the inverse function is APN over F2n for odd
values of n, and is differentially 4-uniform for even values of n [15]; by Proposition 3, it
then has an empty pAPN-spectrum in the even case.

Theorem 4. Let F (x) = x2
n−2 be the inverse function on F2n and let Gx0x1 be the

{x0, x1}-swapping of F for some x0, x1 ∈ F2n with x0 6= x1. If n is odd, then:

(i) If x0x1 = 0, then Gx0x1 is not ζ-APN for any ζ ∈ F2n.

(ii) If x0x1 6= 0, then Gx0x1 is not ζ-APN for ζ ∈ {x0, x1}, and is 0-APN if and only if

Trn1

(
x0
x1

)
= Trn1

(
x1
x0

)
= 1. Furthermore, if Trn1

(
x1
x0

)
= 0, Gx0x1 is not ζ-APN for

the solutions of ζ2 +x0ζ+x0x1 = 0, and, if Trn1

(
x0
x1

)
= 0, Gx0x1 is not ζ-APN for

the solutions of the equation ζ2 +x1ζ +x0x1 = 0 (note that, if the trace is 1, there

are no solutions). Furthermore, Gx0x1 is not ζ-APN if Trn1

(
(x0+x1)ζ2

(x1+ζ)(x0+ζ)2

)
= 0, or

Trn1

(
(x0+x1)ζ2

(x0+ζ)(x1+ζ)2

)
= 0. Otherwise, Gx0x1 is ζ-APN.

If n is even (we let ω is a primitive element of F4), then:

(i) If x0 = 0, then G0x1 is not x1-APN, and, for ζ 6= x1, G0x1 is ζ-APN if and only

if Trn1

(
x1
x1+ζ

)(
= Trn1

(
ζ

x1+ζ

))
= 1 and ζ 6= x1ω, x1ω

2.

(ii) If x0x1 6= 0, then, Gx0x1 is not ζ-APN for ζ 6∈ {ωx0, ωx1, ω2x0, ω
2x1}. Further-

more, for those values of ζ, Gx0x1 is not ζ-APN if Trn1

(
(x0+x1)ζ2

(x1+ζ)(x0+ζ)2

)
= 0, or

Trn1

(
(x0+x1)ζ2

(x0+ζ)(x1+ζ)2

)
= 0. Otherwise, Gx0x1 is ζ-APN.

Proof. In the following, we will write G as shorthand for Gx0,x1 .
We first examine the case when x0 = 0. Let ζ be an arbitrary element of F2n , and

consider the Janwa-Wilson-Rodier equation for G at ζ. We distinguish three subcases,
namely ζ = 0, ζ = x1, and ζ 6= 0, x1, which we treat next.

7



Suppose first that ζ = 0. We then work under the assumption xy(x + y) 6= 0, and
obtain from (5)

0 =F (x) + F (y) + F (x+ y) +
(
(x+ x1)

2n−1 + (y + x1)
2n−1 + (x+ y + x1)

2n−1) y1
= x2

n−2 + y2
n−2 + (x+ y)2

n−2

+
(
(x+ x1)

2n−1 + (y + x1)
2n−1 + (x+ y + x1)

2n−1) y1.
Taking x such that x 6= 0, x1 and letting y = x+x1, we get x2

n−2+(x+x1)
2n−2+x2

n−2
1 =

0. Multiplying both sides by x1x(x+x1) renders x2+xx1+x21 = 0, which, by Theorem 2,
has two solutions if and only if Trn1 (x21/x

2
1) = Trn1 (1) = 0, and that is true if and only

if n is even. These solutions are x = ωx1, ω
2x1 (where ω be a primitive element of F4),

which are always nontrivial. Therefore, G cannot be 0-APN when n is even.
If n is odd, then we take x, y ∈ F2n such that x 6= 0, y, x1, x1 + y and y 6= x1, and

Equation (5) becomes

F (x1) + F (x) + F (y) + F (x+ y) = 0,

that is,
x2y + xy2 + x1y

2 + x1x
2 + xyx1 = 0,

and taking an arbitrary a 6= 0, 1, we see that the pair x = x1

(
1 + 1

a2+a

)
, y = x1

(
a+ 1

a+1

)
is a solution to the above equation. We now argue that xy 6= 0 and x 6= y. Both of
these conditions are equivalent to the equation a2 +a+1 = 0 having no solutions in F2n ,
which is true since n is odd and a2 + a = 1 would imply Trn1 (a2 + a) = Trn1 (1). Next, we
verify that y 6= x+x1. Assuming that y = x+x1 leads to a3 +a2 +a+ 1 = (a+ 1)3 = 0,
which is impossible by the choice of a. Thus, G is not 0-APN when n is odd.

We now consider the case of x0 = 0, ζ = x1 (for any n, odd or even). Equation (6)
transforms into

0 = F (x1) +F (x) +F (y) +F (x+ y+ x1) +
(
x2

n−1 + y2
n−1 + (x+ y + x1)

2n−1) y1. (8)

Let x, y, a ∈ F2n be such that x 6= y = ax 6= 0 (thus, a 6= 0, 1) and x 6= x1(a + 1)−1 (so
that y 6= x+ x1). Then (8) becomes

0 = x2
n−2

1 + x2
n−2 + y2

n−2 + (x+ y + x1)
2n−2 + y1

= x2
n−2 + y2

n−2 + (x+ y + x1)
2n−2,

which is equivalent to 0 = x2 + y2 + xy + x1(x + y) = x2(a2 + a + 1) + x1x(a + 1),
rendering the solution x = x1(a + 1)(a2 + a + 1)−1 (taking a 6= ω, ω2 for n even, with
no restrictions for n odd as we have a2 + a+ 1 6= 0) . It is easy to see that neither x nor
ax can be equal to x1, and so G is not x1-APN.
Finally, given x0 = 0, we consider the case of ζ 6= 0, x1. Then, equation (7) becomes

0 = F (ζ) + F (x) + F (y) + F (x+ y + ζ)

+
(
x2

n−1 + (x+ x1)
2n−1 + y2

n−1 + (y + x1)
2n−1 (9)
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+(x+ y + ζ)2
n−1 + (x+ y + ζ + x1)

2n−1) y1.
We now assume that G is ζ-APN, and so (9) has only trivial solutions. Take y = 0 and
x1 + ζ 6= x 6= x1 in (9). We get ζ−1 + x−1 + (x + ζ)−1 + y1 = 0, which is equivalent to

x2(1 + y1ζ) + xζ(1 + y1ζ) + ζ2 = 0, and moreover (with y1 = 1/x1), x
2 + xζ + ζ2x1

x1+ζ
= 0.

By Theorem 2 this equation has no solutions if and only if

Trn1

 ζ2x1
x1+ζ

ζ2

 = Trn1

(
x1

x1 + ζ

)
= 1. (10)

Now, take 0 6= y = x1 6= x 6= 0 in (9), as well as x 6= x1 + ζ, x 6= ζ. We get ζ−1 + x−1 +
(x+ x1 + ζ)−1 = 0, which is equivalent to x2 + x(x1 + ζ) + x1ζ + ζ2 = 0, which has no
solutions if and only if

Trn1

(
ζ(x1 + ζ)

(x1 + ζ)2

)
= Trn1

(
ζ

x1 + ζ

)
= 1. (11)

Now, put together the conditions from equations (10) and (11). We obtain

0 = Trn1

(
x1

x1 + ζ

)
+ Trn1

(
ζ

x1 + ζ

)
= Trn1 (1).

When n is odd, we have Trn1 (1) = 1. We obtain a contradiction, and therefore, G cannot
be ζ-APN for n odd.

For n even, the conditions from equations (10) and (11) are equivalent, since Trn1 (1) =

0, and x1
x1+ζ

+ ζ
x1+ζ

= 1. Therefore, when n is even and Trn1

(
x1
x1+ζ

)
= 0, the function

G is not ζ-APN. Assume now ζ 6= 0, x1, and Trn1

(
x1
x1+ζ

)
= Trn1

(
ζ

x1+ζ

)
= 1. Let first

y = 0. Then, Equation (9) becomes

0 = ζ−1 + x−1 + (x+ ζ)−1 +
(
(x+ x1)

2n−1 + 1 + (x+ ζ + x1)
2n−1) y1.

Taking x = x1 or x = ζ + x1, we obtain the equation

0 = ζ−1 + x−11 + (x1 + ζ)−1, that is, 0 = ζ2 + x1ζ + x21,

and so we can see that G is not ζ-APN for the two solutions of ζ2+x1ζ+x21 = 0, namely
ζ0 = x1ω and ζ1 = x1ω

2, where ω is a primitive element of F4. In these two cases, if

n ≡ 0 (mod 4), then Trn1

(
x1
x1+ζ

)
= 0, leading to a contradiction. If n ≡ 2 (mod 4), then

Trn1

(
x1
x1+ζ

)
= 1, and thus these are valid solutions of Equation (9). Combining these

facts, we see that G is not ζ-APN in this case if ζ = x1ω or ζ = x1ω
2.

Taking x 6= x1, ζ + x1, we obtain the equation

0 = ζ−1 + x−1 + (x+ ζ)−1 + x−11 , that is, 0 = x2 + ζx+
ζ2x1
x1 + ζ

,

9



which does not have solutions since Trn1

(
x1
x1+ζ

)
= 1.

Let now xy 6= 0. Assume that ζ 6∈ {0, x1, x1ω, x1ω2}, and Trn1

(
x1
x1+ζ

)
= Trn1

(
ζ

x1+ζ

)
=

1, since in the other cases we have shown that G is not ζ-APN. Equation (9) becomes

0 = ζ−1 + x−1 + y−1 + F (x+ y + ζ) +
(
(x+ x1)

2n−1 + (y + x1)
2n−1

+(x+ y + ζ)2
n−1 + (x+ y + ζ + x1)

2n−1) y1.
If y = x + ζ, and excluding the trivial solutions x, y = ζ, we see that, in the cases
x = x1, x1 + ζ, we obtain the equation

0 = ζ−1 + x−11 + (x1 + ζ)−1,

which has only the solutions ζ0 = x1ω and ζ1 = x1ω
2, which we have excluded.

If x 6= x1, ζ + x1, we obtain the equation

0 = ζ−1 + x−1 + (x+ ζ)−1 + x−11 ,

which has as we have seen no solutions since Trn1

(
x1
x1+ζ

)
= 1.

If y 6= x+ζ, we consider the following cases: if x = x1 or x = y+ζ+x1, the equation
above becomes

0 = ζ−1 + y−1 + (x1 + y + ζ)−1,

which is equivalent to
0 = y2 + y(x1 + ζ) + ζ(ζ + x1),

which has no solutions since Trn1

(
ζ

x1+ζ

)
= 1. If x 6= x1, y + ζ + x1 (y 6= x1, x+ ζ + x1),

the equation above becomes

0 = ζ−1 + x−1 + y−1 + (x+ y + ζ)−1,

which, taking y = x+ a, a 6= 0, ζ + x1, is equivalent to

0 = x2 + ax+ ζ(a+ ζ),

which only has the trivial solutions x = ζ, x = ζ + a.

Therefore, G is ζ-APN if and only if Trn1

(
x1
x1+ζ

)(
= Trn1

(
ζ

x1+ζ

))
= 1.

We now turn to the case when x0x1 6= 0. We first assume that ζ = 0. Then, suppose
x = x0. Equation (7) becomes

0 = x−10 + y−1 + (y + x0)
−1 +

(
1 + (y + x1)

2n−1 + (y + x0 + x1)
2n−1

) (
x−10 + x−11

)
.

If y = x1, this equation becomes x−10 + x−11 + (x1 + x0)
−1 = 0, which is equivalent to

x21 + x0x1 + x20 = 0, and this has solutions if and only if Trn1

(
x20
x20

)
= Trn1 (1) = 0, which

holds if n is even. Note that these solutions are x1 = ωx1, ω
2x0, so, in these two cases,

G is not 0-APN.
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If x = x0, y 6= x1, we have the options y = x0 + x1, which gives the same equation
as y = x1, or y 6= x0 + x1, which renders

0 = y−1 + (y + x0)
−1 + x−11 .

This equation is equivalent to y2 + x0y + x0x1 = 0, which has solutions y if and only if

Trn1

(
x1
x0

)
= 0.

The case x = x1 is symmetrical. Now, suppose x, y 6= x0, x1. Take y 6= x+x0, x+x1.
Then, (5) becomes

x−1 + y−1 + (x+ y)−1 = 0

which is equivalent (taking y = αx, α 6= 0, 1) to

x(1 + α+ α2) = 0

which has a solution if and only if n is even (note that the existence of solutions is
independent of the values of x0 and x1, and that we can choose x so that the conditions
x, y 6= x0, x1 and y 6= x+ x0, x+ x1 are satisfied). Hence, G is never 0-APN if n is even.

It only remains to investigate the cases y 6= x+ x0 or y = x+ x1 (with x, y 6= x0, x1)

for n odd. However, these cases yield the same conditions Trn1

(
x0
x1

)
= Trn1

(
x1
x0

)
= 1.

Hence, G is 0-APN in the odd case if and only if Trn1

(
x0
x1

)
= Trn1

(
x1
x0

)
= 1, and is

never 0-APN in the even case.
Let now ζ 6= 0. We examine two subcases, depending on whether ζ is one of x0, x1

or not.
We first assume that ζ = x0 (the case when ζ = x1 is treated in a similar manner).

Then equation (5) becomes

0 = x2
n−2

0 + x2
n−2 + y2

n−2 + (x+ y + x0)
2n−2

+
(

(x+ x1)
2n−1 + (y + x1)

2n−1 + (x+ y + x0 + x1)
2n−1

) (
x2

n−2
0 + x2

n−2
1

)
.

(12)

Note that, if one of the terms in the parenthesized expression equals 1, then (dis-
carding the cases corresponding to trivial solutions) the latter vanishes. We consider the
following cases:

• y = x1 and x = x0 immediately implies the trivial solution x = ζ.

• y = x1 and x 6= x0. Equation (12), taking x 6= 0, x0 + x1, reduces to 0 = x2
n−2

0 +
x2

n−2+x2
n−2

1 +(x+x1+x0)
2n−2, which is equivalent to x2+(x0+x1)x+x0x1 = 0,

leading to the trivial solutions x = x0, x1. If we take x = 0 or x = x0 + x1, the
equation x−10 + x−11 + (x0 + x1)

−1 = 0, which is equivalent to x20 + x0x1 + x21 = 0,
which has solutions x1 = ωx0, ω

2x1 if n is even, and no solutions if n is odd. So,
if n is even, and x1 = ωx0, ω

2x1, G is not x0-APN.

• y = x0 and x 6= x1. Equivalent to the previous case.

11



• y = x0 and x = x1 immediately implies the trivial solution y = ζ.

• x, y 6= x0, x1 but y = x+ x0 + x1. Equation (12), taking x 6= 0, x0 + x1, reduces to

0 = x2
n−2

0 + x2
n−2 + (x+ x0 + x1)

2n−2 + x2
n−2

1 ,

which is equivalent to x20 + (x0 +x1)x+x0x1 = 0, which only has trivial solutions.
Taking x = 0 or x = x0 + x1, we obtain as before that, if n is even, and x1 =
ωx0, ω

2x1, G is not x0-APN.

• x, y 6= x0, x1, y 6= x+ x0 + x1. The equation above is then

0 = x2
n−2

0 + x2
n−2 + y2

n−2 + (x+ y + x0)
2n−2 + x2

n−2
0 + x2

n−2
1

= x2
n−2 + y2

n−2 + (x+ y + x0)
2n−2 + x2

n−2
1 . (13)

Taking x = 0, equation (13) reduces to

0 = y2
n−2 + (y + x0)

2n−2 + x2
n−2

1 ,

which is equivalent to y2 + yx0 + x0x1 = 0, which has solutions in y if and only if

Trn1

(
x0x1
x20

)
= Trn1

(
x1
x0

)
= 0. In this case, notice that y = x0 is not a solution, so

that we can conclude that, if Trn1

(
x1
x0

)
= 0, the function is not x0-APN.

If Trn1

(
x1
x0

)
6= 0, we consider the case x 6= 0 (similarly, y 6= 0). Taking y = x+ x0,

then Equation (13) reduces to

0 = x−1 + (x+ x0)
−1 + x−11 ,

and further to 0 = x2 + x0x + x0x1, which does not have solutions since we have

assumed Trn1

(
x1
x0

)
6= 0.

Taking y 6= x+x0, we can write y = x+a, a 6= 0, x0, x0 +x1. Then, Equation (13)
reduces to

0 = x−1 + (x+ a)−1 + (a+ x0)
−1 + x−11 ,

which is equivalent to 0 = x2 + ax + a(a+x0)x1
a+x0+x1

(recall that y 6= x + x0 + x1, that
is, a + x0 + x1 6= 0). Thus, the previous equation has solutions a if and only if

Trn1

(
(a+x0)x1

a(a+x0+x1)

)
= 0. If n is odd, we can take a = x1, since in that case, the

trace becomes Trn1

(
x1
x0

+ 1
)

= 0, which holds by our assumption (note that, by

inspection, the solutions are nontrivial). We now assume that n is even. With
α = x0/x1 (recall that Trn1 (1/α) = 1), we write the expression inside the trace as

(a+ x0)x1
a(a+ x0 + x1)

=
z

(z + 1)(αz + 1)
,
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where z = x1/(a+ x0). If Trn1

(
1

1+α

)
= 0, taking z = α−1/2, we get that the trace

satisfies Trn1

(
z

(z+1)(αz+1)

)
= Trn1

(
1

α+1

)
= 0. If Trn1

(
1

1+α

)
= 1, then we write

(a+ x0)x1
a(a+ x0 + x1)

=
x1
a

+
x21

a(a+ x0 + x1)
.

Thus, Trn1

(
(a+x0)x1

a(a+x0+x1)

)
= Trn1

(
x1
a +

x21
a(a+x0+x1)

)
= Trn1

(
x21
a2

+
x21

a(a+x0+x1)

)
. Under

Trn1

(
1

1+α

)
= 1, we look for a value of a such that

(
x21
a2

)2
=

x21
a(a+x0+x1)

(thus, the

above trace is 0). That will happen if and only if
(
a
x1

)3
+
(
a
x1

)
+ x0

x1
+ 1 = 0.

With z = a
x1

, by Theorem 2, the equation z3 + z + α + 1 = 0 has three solutions

or no solution in F2n if and only if Trn1

(
1

(1+α)2

)
= Trn1

(
1

1+α

)
= Trn1 (1) = 0, since

n is even, along with some conditions on the roots of an associated quadratic,

or a unique solution if Trn1

(
1

1+α

)
6= Trn1 (1) = 0, which always happens by our

assumption. Thus, there exists a such that Trn1

(
(a+x0)x1

a(a+x0+x1)

)
= 0. Note that the

solutions of the Janwa-Wilson-Rodier equation are nontrivial.

Therefore, for any n, G is not x0-APN, regardless of Trn1

(
x1
x0

)
. By symmetry, G

is not x1-APN.

Consider now the case of ζ 6= x0, x1, 0. Assume first that xy 6= 0. Then, we can write
x = βζ, and y = αζ, with α, β 6= 0, 1 and α 6= β. Equation (7) then becomes

0 = ζ2
n−2(1 + α2n−2 + β2

n−2 + (1 + α+ β)2
n−2) + P (x2

n−2
0 + x2n−21 ),

where P = (x + x0)
2n−1 + (x + x1)

2n−1 + (y + x0)
2n−1 + (y + x1)

2n−1 + (x + y + ζ +
x0)

2n−1 + (x+y+ ζ+x1)
2n−1. Assume that P = 0 (which can be achieved, for instance,

if all the parenthesized expressions in P are different from zero). The equation becomes

0 = ζ2
n−2(1 + α2n−2 + β2

n−2 + (1 + α+ β)2
n−2),

which, since ζ 6= 0, is equivalent to

0 = 1 + α2n−2 + β2
n−2 + (1 + α+ β)2

n−2,

which, assuming 1 + α+ β 6= 0, and multiplying both sides by αβ(1 + α+ β), becomes

0 = αβ(1 + α+ β) + β(1 + α+ β) + α(1 + α+ β) + αβ

= αβ + α2β + αβ2 + β + αβ + β2 + α+ α2 + αβ + αβ

= α+ α2 + β + β2 + α2β + αβ2.

Writing β = γα, with γ 6= 0, 1, 1α , the equation above becomes

0 = α+ α2 + γα+ γ2α2 + γα3 + γ2α3 = α(1 + γ)(γα2 + (1 + γ)α+ 1).
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Since α 6= 0, γ 6= 1, we obtain the equivalent equation

α2 +
1 + γ

γ
α+

1

γ
= 0,

which has as only solutions α = 1, 1γ , which are not valid.
We need then to assume that P = 0 and 1 +α+ β = 0, or that P = 1. If P = 0 and

1 + α+ β = 0, the equation becomes

0 = ζ2
n−2(1 + α−1 + (1 + α)−1),

which is equivalent to α2 + α+ 1 = 0, which has solutions α = ω, ω2 (where ω, ω2 ∈ F4

are the solutions of x2 + x + 1 = 0) if and only if n is even. In the case n odd, then,
there are no solutions, and in the case n even, these solutions are nontrivial as long as
P = 0, i.e., as long as either ζ 6= ωx0, ω

2x0, ωx1, ω
2x1, or, if ζ = ωx0, then x1 = ω2x0,

or, if ζ = ωx1, then x0 = ω2x1, or, if ζ = ω2x0, then x1 = ωx0, or, if ζ = ω2x1, then
x0 = ωx1. In those cases, G is not ζ-APN.

If P = 1, an odd number of terms in the parenthesis must be zero. Taking x = x0
and y = 0, P = 1 if and only if ζ = x0+x1. Then, the equation becomes 0 = (x0+x1)

−1,
rendering trivial solutions.

Now, let P = 1, and consider x = x0 and y 6= 0. If ζ = x0 + x1, then, P = 1 if and
only if y = x1, rendering only trivial solutions.

Let ζ 6∈ {x0 + x1, x0, x1}. Taking x = x0 and y 6= 0, we see that P = 1 if and only
if (to produce valid solutions) y = x1 or y = ζ + x0 + x1, or y 6= x1, ζ + x0 + x1. The
first two cases yield only trivial solutions. Let y = x0 + ζ. Then, the equation becomes
0 = ζ−1 + (x0 + ζ)−1 + x−11 , which is equivalent to ζ2 + x0ζ + x0x1 = 0, which has

solutions if and only if Trn1

(
x1
x0

)
= 0. In that case, G is not ζ-APN for the solutions

ζ0, ζ1 of this equation. By symmetry, if Trn1

(
x0
x1

)
= 0, G is not ζ-APN for the solutions

ζ0, ζ1 of the equation ζ2 + x1ζ + x0x1 = 0.
Let now x = x0 and y 6∈ {0, x0, x1, ζ, ζ + x0 + x1}. The equation is then

0 = ζ−1 + y−1 + (y + x0 + ζ)−1 + x−11 ,

which, taking y = ζ + a, where a 6∈ {0, x0, ζ + x0, ζ + x1, x0 + x1} (note that we were
assuming ζ 6= x1), is equivalent to

a2 + a(x0 + ζ) +
ζ2(x0 + x1)

x1 + ζ
= 0,

which has solutions a if either ζ = x0 and so, a = ζ, which is not permissible, or

Trn1

(
(x0+x1)ζ2

(x1+ζ)(x0+ζ)2

)
= 0. Hence G is not ζ-APN, under this last trace condition. By

symmetry, if Trn1

(
(x0+x1)ζ2

(x0+ζ)(x1+ζ)2

)
= 0, G is also not ζ-APN.

Take now again P = 1 but x 6= x0, and, by symmetry, x 6= x1 and y 6= x0x1. Then,
P = 1 if and only if y = x+ ζ+x0 or y = x+ ζ+x1. Taking y = x+ ζ+x0, and writing
x = ζ + a, where a 6= 0, x0 + x1, ζ + x0, ζ + x1, the equation is

0 = ζ−1 + (ζ + a)−1 + (a+ x0)
−1 + x−11 ,
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which we have already handled.
Finally, let ζ 6= x0, x1, 0 and take x = 0. We can write y = αζ, with α 6= 0, 1. Then

Equation (7) becomes

0 = ζ2
n−2(1 + α2n−2 + (1 + α)2

n−2) + P (x2
n−2

0 + x2n−21 ),

where P = (αζ + x0)
2n−1 + (αζ + x1)

2n−1 + (ζ(1 + α) + x0)
2n−1 + (ζ(1 + α) + x1)

2n−1.
If P = 0, this equation is equivalent to ζ(1 +α+α2) = 0, which has no solutions if n

is odd, and has the solutions α = ω, ω2 if n is even. These solutions are valid if and only
if P = 0, i.e. if ζ 6∈ {ωx0, ω2x0, ωx1, ω

2x1}, or, if ζ = ω{x0, x1}, then x1 = ω2{x0, x1},
or, if ζ = ω2{x0, x1}, then x1 = ω{x0, x1}. In these cases, as seen before, G is not
ζ-APN.

If P = 1, then we must have that x0 = αζ, and x1 6= (1 + α)ζ, or that x1 = αζ, and
x0 6= (1 + α)ζ. Assume that x0 = αζ, and x1 6= (1 + α)ζ. Then Equation (7) becomes
0 = ζ−1 +ζ−1(1+α)−1 +x−11 which is equivalent to ζ(ζ(1+α)+αx1)) = 0, which, since

ζ 6= 0, α 6= 1, is equivalent to α = ζ
ζ+x1

. Together with x0 = αζ and x1 6= (1 + α)ζ, this

implies ζ2 +x0ζ+x0x1 = 0 and ζ 6= x1 +1. A solution exists if and only if Trn1

(
x1
x0

)
= 0,

and, for those ζ, only if ζ 6= x1+1. However, in that case, G is not ζ-APN. By symmetry,
G is not ζ-APN if ζ2+x1ζ+x0x1 = 0 and ζ 6= x0+1. However, we have already obtained
a less restrictive condition, and so this case does not yield anything new.

We can simplify the results for n even and x0x1 6= 0; there are two possibilities for
the Janwa-Wilson-Rodier equation (7) at ζ. The parenthesized expression is either equal
to 0 or to 1.

Consider ζ 6= 0 (the case ζ = 0 was already treated). If the parenthesized expression
in (7) is 0, ζ 6= x0, x1, and x, y, x+ y + ζ 6= 0, then equation (7) transforms into

ζ−1 + x−1 + y−1 + (x+ y + ζ)−1 = 0,

which is equivalent to 0 = x2y + xy2 + x2ζ + y2ζ + xζ2 + yζ2 = (x + y)(x + ζ)(y + ζ),
rendering trivial solutions.

If the parenthesized expression in (7) is 0, ζ 6= x0, x1 and x = 0, but y, y + ζ 6= 0,
then Equation (7) transforms into

ζ−1 + y−1 + (y + ζ)−1 = 0,

which is equivalent to 0 = y2 + ζy + ζ2, which has solutions if and only if Trn1

(
ζ2

ζ2

)
=

Trn1 (1) = 0, which is always true for n even. These solutions are always nontrivial, since
y = x = 0 and y = ζ are never solutions, under ζ 6= 0. These solutions are, of course,
only valid if the parenthesised expression evaluates to 0. For ζ = x1 + x0, however, this
expression is always zero, and so the function cannot be ζ-APN.

Take now x1 6= x0+ζ. We know that y2+ζy+ζ2 = 0 has exactly two different roots,
y0 = ζω and y1 = ζω2, where ω is a primitive element of F4. When yj = xk for j, k = 0, 1
or yj = xk + ζ, these solutions are not valid, since then the parenthesized expression
is 1. Suppose that y0 = x0. The equation x20 + ζx0 + ζ2 = 0 always has solutions in
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ζ since n is even and Trn1

(
x20
x20

)
= Trn1 (1) = 0, namely ζ0 = x0ω and ζ1 = x0ω

2. The

other forbidden roots give the values ζ0 = x1ω and ζ1 = x1ω
2. For these four values, the

function G can thus be ζ-APN. For all other values, G is not ζ-APN.
If ζ = x0ω, then we consider the following subcases:

• If x1 = ωx0 = ζ, then, taking y = x+ ωx0, Equation 6 becomes

0 = (ωx0)
−1 + x−1 + (x+ ωx0)

−1 + P (x−10 + (ωx0)
−1),

where P = (x+x0)
−1 +(y+x0)

2n−1 +1, which has the nontrivial solutions x = x0,
y = ω2x0 and y = x0, x = ω2x0, implying that G is not ζ-APN in that case.

• A similar analysis can be done for x1 = ω2x0, or x1 6= ωx0 = ζ, rendering that G
is not ζ-APN under these conditions on ζ.

By symmetry, we obtain a similar result in the case of y = 0. If the expression
in the parentheses in (7) is 0 and y = x + ζ, but x 6= 0, ζ, then (7) transforms into
ζ−1 + x−1 + (x + ζ)−1 = 0, which is equivalent to x2 + ζx + ζ2 = 0. We have already
handled this equation in the case x = 0 above, and we do not get any new information
from this.

If the parenthesized expression in (7) is 1, we cannot possibly have x0 = x1 + ζ. We
must then have that x = x0, or x = x1, or y = x0, or y = x1, or x + y = ζ + x0, or
x+ y = ζ + x1. We take first the case ζ 6= x0, x1, x0 + x1. If x = x0, then the equation
becomes ζ−1 + x−10 + y−1 + (x0 + y + ζ)−1 + x−10 + x−11 = 0, which is equivalent to

y2(x1 + ζ) + y(ζ + x0)(ζ + x1) + ζx1(ζ + x1) = 0,

and that, since x1 6= ζ, is equivalent to y2+y(ζ+x0)+ζx0 = 0, that is, (y+ζ)(y+x0) = 0.
Note that both solutions implied by this equation are invalid, since y = ζ is one of

the trivial solutions, and y = x0 leads to the expression in the parentheses in (7) to
evaluate to 0, and hence implies x = y, another trivial solution. The other cases also
yield trivial solutions.

We now consider ζ ∈ {x0, x1, x0 + x1}. Suppose that ζ = x0, and the parenthesized
expression in (5) is 1. Then, we have that x = x1, or y = x1, or x + y = x0 + x1. On
inspection, they either yield trivial solutions, or a contradiction. We have then that the
function is ζ-APN.

Note that, for n even, for any of the possible values ζ such that G is ζ-APN, namely
ζ ∈ {ωx0, ω2x0, ωx1, ω

2x1}, there are no nontrivial solutions to the equations ζ2 +x0ζ +
x0x1 = 0 and ζ2 + x1ζ + x0x1 = 0. Therefore the conditions for n even are further
simplified.

To supplement the above discussion, we perform an exhaustive search by going over
all pairs (x0, x1) ∈ F2

2n and compute the size of the pAPN-spectrum of the (x0, x1)-
swapping of the inverse function x2

n−2 over F2n for 4 ≤ n ≤ 10. The results are
presented in Table 1 below. The sizes of the pAPN-spectra of all (x0, x1)-swaps are

16



given in the last column, with multiplicities given in superscript, e.g., the entry 045

for n = 4 indicates that the pAPN-spectrum of the (x0, x1)-swapping is empty for 45
pairs {x0, x1}. The remaining columns give the exponent d, the differential uniformity
of x2

n−2 (which is known to be 2, respectively 4 for odd, respectively, even n [15]), and
the size of the pAPN-spectrum of x2

n−2. We recall that the pAPN-spectrum of the
inverse function over F2n is full for odd values of n, and is empty for even values of n by
Proposition 3.

For odd dimensions, an empty pAPN-spectrum is obtained precisely in the case of
swapping a pair (x0, x1) = (0, x) with 0 6= x ∈ F2n . In even dimensions, the points
(x0, x1) whose swap gives an empty spectrum are much more varied, and do not exhibit
any clear pattern. However, any swap of the form (x0, x1) = (0, x) with 0 6= x ∈ F2n

gives a function with a large pAPN-spectrum, e.g. containing 8 elements for n = 4, or
30 elements for n = 6.

n d δF Spectrum Swapped spectrum

4 7 4 0 045, 260, 815

5 15 2 32 031, 6155, 8155, 9155

6 31 4 0 01197, 2567, 4189, 3063

7 63 2 128 0127, 26889, 28889, 29889, 30889, 322667, 35889, 36889

8 127 4 0 019125, 210200, 43060, 128255

9 255 2 512 0511, 1164599, 1184599, 1194599, 1206132, 1229198, 12422995, 1254599,
1264599, 1274599, 1289198, 1294599, 13013797, 1314599, 1334599, 13413797,
1354599, 1364599, 1384599

10 511 4 0 0277233, 2230175, 415345, 5101023

Table 1: pAPN-spectra of two-point swaps of the inverse function

4 The Gold APN case

A natural question arising from the above investigations is, how does swapping output
values affect the other infinite families of APN monomials. In this section, we present
our results on the Gold functions.

We will need the following theorem from [14], which shows that a trinomial zp
k−az−b

in the finite field Fpn has either zero, one, or pg roots, where g = gcd(n, k). This result
was made more explicit by [9].

Theorem 5. Let p be a prime. Let f(z) = zp
k − az − b in Fpn, g = gcd(n, k), m =

n/ gcd(n, k) and Trg be the trace function from Fpn to Fpg . For 0 ≤ i ≤ m−1, we define
ti =

∑m−2
j=i p

n(j+1), α0 = a, β0 = b. If m > 1, then, for 1 ≤ r ≤ m− 1, we set

αr = a1+p
k+···+pkr and βr =

r∑
i=0

asibp
ki
,

where si =
∑r−1

j=i p
k(j+1), for 0 ≤ i ≤ r − 1 and sr = 0. Then:

17



• if αm−1 = 1 and βm−1 6= 0, then f has no roots in Fpn;

• if αm−1 6= 1, then f has precisely one root in Fpn, namely x = βm−1/(1− αm−1);

• if αm−1 = 1 and βm−1 = 0, then f has precisely pg roots in Fpn given by x + δτ ,

where δ ∈ Fpg , τ is fixed in Fpn with τp
k−1 = a, and, for any e ∈ F∗pn with

Trg(e) 6= 0, where x =
1

Trg(e)

m−1∑
i=0

 i∑
j=0

ep
kj

 atibp
ki

.

Theorem 6. Let F (x) = x2
k+1 be the Gold function on F2n, where n is odd and

gcd(k, n) = 1. Let G0x1 be the {0, x1}-swapping of F for some x1 ∈ F∗2n. Then:

(i) G0,x1 is not 0-APN ;

(ii) G0,x1 is not x1-APN for 0 6= x1 ∈ F2n if and only if there exists 0 6= t ∈ F2n such

that

n−1∑
i=0

t2
ki

= 0;

(iii) if 0 6= ζ 6= x1, then G0x1 is ζ-APN if and only if there are no solutions to either

of u2
k

+ u+ (x1/ζ)2
k+1 = 0, and y2

k
+ y(x1 + ζ)2

k−1 + x2
k

1 + x1ζ2
k

x1+ζ
= 0, that is, if

and only if

n−1∑
i=0

(
x1
ζ

)2ki

6= 0 and

n−1∑
i=0

(
(x1 + ζ)−2

k

(
x2

k

1 +
x1ζ

2k

x1 + ζ

))2ki

6= 0.

Proof. Let Gx0x1 be the {x0, x1}-swapping of F . The Janwa-Wilson-Rodier equation (4)
of Gx0x1 at ζ becomes

x2
k
y + x2

k
ζ + y2

k
x+ y2

k
ζ + ζ2

k
x+ ζ2

k
y

+
(
(ζ + x0)

2n−1 + (ζ + x1)
2n−1 + (x+ x0)

2n−1 + (x+ x1)
2n−1 + (y + x0)

2n−1 (14)

+(y + x1)
2n−1 + (x+ y + ζ + x0)

2n−1 + (x+ y + ζ + x1)
2n−1) (y0 + y1) = 0.

We will use below the fact that under gcd(k, n) = 1, the equation z2
k−1 = a has a

unique solution in F2n . Let x0 = 0 (hence y0 = 0). We consider three cases depending
on the value of ζ.

In the first case, suppose that ζ = 0. If 0 6= x 6= y 6= 0, then equation (14) becomes

x2
k
y + y2

k
x+

(
(x+ x1)

2n−1 + (y + x1)
2n−1 + (x+ y + x1)

2n−1) y1 = 0.

If x = x1 (similarly, for y = x1 and x + y = x1), then we get (certainly, 0 6= y 6= x1,

respectively, 0 6= x 6= x1), x
2k
1 y + y2

k
x1 = 0, rendering (y/x1)

2k−1 = 1, and since
gcd(k, n) = 1, this last equation has only the trivial solution y = x1.

We now assume x 6= x1 6= y and x + y 6= x1. Thus, recalling that y1 = x2
k+1

1 ,

equation (14) becomes x2
k
y + y2

k
x + x2

k+1
1 = 0. Taking u = x/x1, v = y/x1, and
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dividing by x2
k+1

1 above, we get u2
k
v + v2

k
u+ 1 = 0. Let us take α with α2k + α 6= 0, 1.

Such an α certainly exists; we can, for instance, take α to be a primitive element of F2n .
Writing v = αu, the above equation becomes

u2
k+1 =

(
α2k + α

)−1
.

Since n is odd, gcd(2k + 1, 2n− 1) = 1, and so, the equation above has a unique solution

u 6= 1 in F2n for every α ∈ F2n satisfying α2k + α 6= 0, 1. Thus, G0x1 cannot be 0-APN.
In the second case, let ζ = x1 6= 0. If x1 6= x 6= y 6= x1, then equation (14) becomes

x2
k
y + x2

k
x1 + y2

k
x+ y2

k
x1 + x2

k

1 x+ x2
k

1 y

+
(
x2

n−1 + y2
n−1 + (x+ y + x1)

2n−1) y1 = 0.
(15)

If x = 0, then y 6= 0, x1 and the above equation becomes y2
k
x1 + x2

k

1 y = 0, which only
has the trivial solutions y = 0 and y = x1. The cases when y = 0 and y = x + x1 are
handled similarly.

We next assume that xy 6= 0, x+ y 6= x1. Thus, equation (14) becomes

x2
k
y + x2

k
x1 + y2

k
x+ y2

k
x1 + x2

k

1 x+ x2
k

1 y + x2
k+1

1 = 0. (16)

Dividing by x2
k+1

1 and labelling u = x/x1, v = y/x1, we obtain

u2
k
v + u2

k
+ v2

k
u+ v2

k
+ u+ v + 1 = 0. (17)

We now let w = u+ v and rewrite (17) as w2k(u+ 1) + w(u+ 1)2
k

+ 1 = 0, that is,

w2k + w(u+ 1)2
k−1 + (u+ 1)−1 = 0.

We now apply Theorem 5. Here, p = 2, a = (u + 1)2
k−1, b = (u + 1)−1, and

m = n
gcd(k,n) = n. Then,

αn−1 =
(

(u+ 1)2
k−1
)1+2k+···+2k(n−1)

=
(

(u+ 1)2
k−1
) 2kn−1

2k−1 = (u+ 1)2
kn−1 = 1.

Furthermore,

βn−1 =
n−1∑
i=0

(
(u+ 1)2

k−1
)∑n−2

j=i 2k(j+1) (
(u+ 1)−1

)2ki
=

n−1∑
i=0

(u+ 1)2
k(i+1)(2k(n−i−1)−1)−2ki

= (u+ 1)2
kn

n−1∑
i=0

(u+ 1)−2
ki(2k+1) .
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Thus, βn−1 = 0 if and only if there exists u such that

n−1∑
i=0

(u+ 1)−2
ki(2k+1) = 0. We

conclude that G0x1 is not x1-APN if and only if there exists t 6= 0 such that

n−1∑
i=0

t2
ki

= 0.

In the final case, we assume that 0 6= ζ 6= x1 6= 0. Equation (14) becomes

0 = x2
k
y + y2

k
x+ x2

k
ζ + ζ2

k
x+ y2

k
ζ + ζ2

k
y

+
(
x2

n−1 + (x+ x1)
2n−1 + y2

n−1

+(y + x1)
2n−1 + (x+ y + ζ)2

n−1 + (x+ y + ζ + x1)
2n−1) y1.

(18)

We will show that equation (18) has no nontrivial solutions x, y. All of the resulting
subcases are similar, so we will explicitly describe only some of them.

If the expression in the parentheses in (18) is equal to 0, then we need to investigate
the equation

x2
k
y + y2

k
x+ x2

k
ζ + ζ2

k
x+ y2

k
ζ + ζ2

k
y = 0.

Writing y = αx, we get

x2
k+1α+ x2

k+1α2k + x2
k
ζ + xζ2

k
+ α2kx2

k
ζ + αxζ2

k
= 0,

which becomes

x2
k+1(α+ α2k) + x2

k
ζ(1 + α2k) + xζ2

k
(α+ 1) = 0.

Dividing by x2
k+1, and labelling z = ζ

x , we get

z2
k
(α+ 1) + z(α+ 1)2

k
+ α+ α2k = 0.

Dividing by 1+α and observing that α2k+α
α+1 = α2k+1+α+1

α+1 = (α+1)2
k
+α+1

α+1 = (α+1)2
k−1+1,

we obtain
z2

k
+ z(α+ 1)2

k−1 + (α+ 1)2
k−1 + 1 = 0,

which can be factored as

(z + 1)2
k

+ (z + 1)(α+ 1)2
k−1 = 0,

that is,

(z + 1)((z + 1)2
k−1 + (α+ 1)2

k−1) = 0,

with roots z = 1 and z = α. Both of these, however, are trivial, since then x = ζ,
respectively, y = ζ.

Assume now that the parenthesized expression in (18) does not evaluate to 0 (which
can only happen if an odd number of terms vanish). Equation (18) becomes

x2
k
y + y2

k
x+ x2

k
ζ + ζ2

k
x+ y2

k
ζ + ζ2

k
y + x2

k+1
1 = 0.
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If x = 0, then (18) becomes y2
k
ζ + ζ2

k
y + x2

k+1
1 = 0. Dividing by ζ2

k+1 and labelling

u = y/ζ, we get u2
k

+ u + (x1/ζ)2
k+1 = 0. By the same argument as in the previous

case, solutions to this equation exist if and only if
∑n−1

i=0 (x1/ζ)(2
k+1)2ki = 0. Thus, if

there exist solutions to this equation other than u = x1
ζ or u = 1 + x1

ζ (which would give
y = x1 or y = ζ + x1, making the parenthesized expression in (18) vanish), then G0x1 is
not ζ-APN (note that y = 0, y = ζ cannot be solutions).

We have to ensure that the potential solutions of u2
k
+u+(x1/ζ)2

k+1 = 0 are different
from u = x1

ζ (which would give y = x1) and u = 1 + x1
ζ (which would give y = ζ + x1),

since in both cases the expression inside the parentheses in (18) would vanish. If y = x1

or y = ζ + x1, since x = 0, then (18) becomes x2
k

1 ζ + ζ2
k
x1 + x2

k+1
1 = 0. Dividing by

x2
k+1

1 and relabelling z = ζ
x1

, we obtain the equation z2
k

+ z + 1 = 0, which has no
solutions by Theorem 5.

If x = x1, then (18) transforms into

x2
k

1 y + y2
k
x1 + x2

k

1 ζ + ζ2
k
x1 + y2

k
ζ + ζ2

k
y + x2

k+1
1 = 0,

which can be rewritten as y2
k

+ y(x1 + ζ)2
k−1 +x2

k

1 + x1ζ2
k

x1+ζ
= 0. If a solution y exists to

this previous equation (observe that y cannot be equal to x1), then G0x1 is not ζ-APN.
By a similar argument as the one in the second case, by Theorem 5 we get αn−1 = 1,
and

βn−1 = (x1 + ζ)2
kn

n−1∑
i=0

(
(x1 + ζ)−2

k

(
x2

k

1 +
x1ζ

2k

x1 + ζ

))2ki

.

Therefore, G0x1 is not ζ-APN if and only if
n−1∑
i=0

(
(x1 + ζ)−2

k

(
x2

k

1 +
x1ζ

2k

x1 + ζ

))2ki

= 0.

The remaining cases give the same equations (up to relabelling).

Remark 7. Our computations for 4 ≤ n ≤ 10 suggest that swapping any two outputs
in a Gold APN function produce a function with a non-empty pAPN-spectrum, but we
do not yet have a theoretical argument explaining this. See Table 6 in the appendix for
detailed computational results.

5 The Welch APN case

Recall that the Welch APN function is defined over F2n as F (x) = x2
k+3 for n = 2k+ 1.

In this section, we generalize this function by allowing k in x2
k+3 to be any positive

integer.
To simplify notation, we denote

E(ζ, x1, x, y) = ζ2
n−1 + (ζ + x1)

2n−1 + x2
n−1 + (x+ x1)

2n−1 + y2
n−1

+ (y + x1)
2n−1 + (x+ y + ζ)2

n−1 + (x+ y + ζ + x1)
2n−1,

C(ζ, x, y) = ζ2
k+3 + x2

k+3 + y2
k+3 + (x+ y + ζ)2

k+3
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in F2n . Certainly, E(ζ, x1, x, y) ∈ {0, 1}.

Theorem 8. Let F (x) = x2
k+3 be the Welch function on F2n, where n is odd and let

G0x1 be the {0, x1}-swapping of F for some 0 6= x1 ∈ F2n. Then:

• G0x1 is not 0-APN if gcd(2k + 3, 2n−1) = 1 (which always happens if n = 2k+ 1),
nor x1-APN in general ;

• if ζ 6= 0, x1, then G0x1 is not ζ-APN if and only if there is a solution (x, y)

of the system C(ζ, x, y) = 0 and E(ζ, x1, x, y) = 0, or C(ζ, x, y) = x2
k+3

1 and
E(ζ, x1, x, y) = 1, where x1, ζ 6= x 6= y 6= x1, ζ.

Proof. Let G0x1 be the {0, x1}-swapping of F . The Janwa-Wilson-Rodier equation (4)
of G0x1 at ζ becomes

ζ2
k+3 + x2

k+3 + y2
k+3 + (x+ y + ζ)2

k+3

+
(
ζ2

n−1 + (ζ + x1)
2n−1 + x2

n−1 + (x+ x1)
2n−1 + y2

n−1 (19)

+(y + x1)
2n−1 + (x+ y + ζ)2

n−1 + (x+ y + ζ + x1)
2n−1)x2k+3

1 = 0.

First, assume that ζ = 0. Then (19) becomes

x2
k
y3 + x2

k+2y + x2
k+1y2 + y2

k
x3 + y2

k+1x2 + y2
k+2x

+
(
x2

n−1
1 + x2

n−1 + (x+ x1)
2n−1 + y2

n−1 (20)

+(y + x1)
2n−1 + (x+ y)2

n−1 + (x+ y + x1)
2n−1)x2k+3

1 = 0.

If the expression inside the parentheses vanishes (with y = αx 6= 0, x), the equation
becomes

α(α2k−1 + 1)(α2 + α+ 1) = 0,

which does not have solutions other than α = 0, 1 (which contradict y 6= 0, x), since
gcd(k, n) = 1 and n is odd. Thus, we need to assume that the parenthesized expression
in (20) does not vanish, that is, E(0, x1, x, y) = 1. The equation thus becomes

x2
k
y3 + x2

k+2y + x2
k+1y2 + y2

k
x3 + y2

k+1x2 + y2
k+2x+ x2

k+3
1 = 0.

Taking y = αx 6= 0, x (so, α 6= 0, 1) we obtain,

x2
k+3α(α2k−1 + 1)(α2 + α+ 1) = x2

k+3
1 ,

and since α(α2k−1 + 1)(α2 + α + 1) 6= 0, if gcd(2k + 3, 2n − 1) = 1, then there exists a
unique solution

x2
k+3 =

x2
k+3

1

α(α2k−1 + 1)(α2 + α+ 1)
,

and so G0x1 is not 0-APN.
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We argue now that when n = 2k + 1 we have gcd(2k + 3, 2n − 1) = 1. Let us denote
d = gcd(2k + 3, 2n − 1). We then have

2k ≡−3 (mod d)

22k+1 ≡ 1 (mod d),

and so

22k+1 ≡ 2 · 32 (mod d)

22k+1 ≡ 1 (mod d),

which, by subtraction, renders 17 ≡ 0 (mod d), and so, d = 1 or d = 17. However,

by [10, Lemma 9] we know that gcd(2s+ 1, 2n−1) = 2gcd(n,2s)−1
2gcd(n,s)−1 , which, if s = 2 and n is

odd becomes gcd(2n−1, 24+1) = 1. Therefore, gcd(2k+3, 2n−1) = 1, when n = 2k+1.
Now, suppose that ζ = x1. Then (19) becomes

x2
k+3

1 + x2
k+3 + y2

k+3 + (x+ y + x1)
2k+3 +

(
x2

n−1
1 + x2

n−1 + (x+ x1)
2n−1

+y2
n−1 + (y + x1)

2n−1 + (x+ y + x1)
2n−1 + (x+ y)2

n−1)x2k+3
1 = 0.

(21)

If the parenthesized expression above does not vanish, that is, E(ζ, x1, x, y) = 1, the
equation becomes

x2
k+3 + y2

k+3 + (x+ y + x1)
2k+3 = 0,

which, dividing by x2
k+3

1 , and taking u = x/x1, v = y/x1, becomes

u2
k+3 + v2

k+3 + (u+ v + 1)2
k+3 = 0.

Noting that u = 0 can not be a solution, we take v = αu with α 6= 0, 1 and divide both
sides by u2

k+3. Since gcd(2k + 3, 2n− 1) = 1, then a unique (2k + 3)-root exists and this
last equation becomes

β =
1 + u(1 + α)

u
= (1 + α2k+3)1/(2

k+3),

which (taking α such that β + α + 1 6= 0) renders the solution u = (β + α + 1)−1.
Surely, one can find many values of α such that 1 6= u 6= v 6= 1, and consequently,
x1 6= x 6= y 6= x1. Therefore, G0x1 is not x1-APN, either.
Finally, assume that 0 6= ζ 6= x1. If the expression in the parentheses in (19) is zero,
that is, E(ζ, x1, x, y) = 0, the equation becomes

ζ2
k+3 + x2

k+3 + y2
k+3 + (x+ y + ζ)2

k+3 = 0.

If the expression in the parentheses in (19) is not zero, that is, E(ζ, x1, x, y) = 1, the
equation is then

x2
k+3

1 + ζ2
k+3 + x2

k+3 + y2
k+3 + (x+ y + ζ)2

k+3 = 0,

which concludes the proof of the theorem.
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Remark 9. As with the Gold function, our computational results in Table 5 suggest
that swapping any two points of the Welch APN function leads to a function with a
non-empty spectrum. At the moment, we cannot theoretically justify why this happens.
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A Experimental data on the infinite APN families

For functions from each of the infinite APN monomial families over F2n with n ≤ 10
(except for the inverse family which is characterized by Theorem 4), we have computed
the size of the pAPN-spectrum of Gx0x1 for all possible pairs (x0, x1) ∈ F2

2n . The results
are given in Tables 2, 3, 4, 5, 6 below.

In all cases, the results are computed for generalizations of the respective infinite
families, with all restrictions on the parameters dropped. This means that we consider
the following functions over F2n , with the parameter i being any positive integer in the
range 1 ≤ i ≤ n− 1:

• x2
4i+23i+22i+2i−1 for Dobbertin,

• x2
2i−2i+1 for Kasami,

• x2
i+2i/2−1 or x2

i+2(3i+1)/2−1 for even and odd values of i, respectively, for Niho,

• x2
i+3 for Welch, and

• x2
i+1 for Gold.

The first two columns of each table specify the degree n of the extension field F2n

and the value of the parameter i. The third column gives the smallest element from
the cyclotomic coset of the resulting exponent d. The fourth and fifth columns give
the differential uniformity and size of the pAPN-spectrum of xd over F2n , respectively.
Finally, the last column describes how the pAPN-spectrum changes after swapping two
output values of the function. More precisely, for every pair {x0, x1} ⊆ F2n with x0 6= x1,
we compute the size of the pAPN-spectrum of Gx0x1 ; the last column then lists the sizes
of all possible spectra obtained in this way. The frequencies with which these sizes occur
over all possible pairs {x0, x1} are given as superscripts. For example, the first row of
Table 2 contains 045, 260, 815 in the last column. This means that, out of the 120 pairs
{x0, x1} ⊆ F24 , 45 pairs produce a function with an empty pAPN-spectrum, 60 pairs
produce a function which is ζ-APN for two values of ζ, and the remaining 15 pairs lead
to functions that are ζ-APN for 8 values of ζ.

By Proposition 3, all exponents d such that xd has 2s-to-1 derivatives for some
fixed s > 1 are omitted. All such functions and all two-point swaps of these functions
have an empty pAPN-spectrum by the proposition, and are therefore of very limited
interest. These include all Gold functions with gcd(i, n) > 1 and all Kasami functions
with gcd(i, n) > 1 and n/ gcd(i, n) odd. They also include the exponents i = 3, 4 for
n = 6 and i = 5 for n = 10 in the Dobbertin case; i = 3 for n = 6 in the Kasami case;
i = 1 for even n, i = 4 for n = 6 and i = 8 for n = 10 in the Welch case; i = 1, 2 for n
even, i = 3 for n = 5, i = 4 for n = 6, i = 5 for n = 8 and i = 6 for n = 9 in the Niho
case.

We note that in some cases, swap operations lead to a full-sized pAPN-spectrum,
indicating that the corresponding function is APN. This occurs exclusively in even dimen-
sions for APN functions, and is caused by pairs {x0, x1} with x0 6= x1 but F (x0) = F (x1),
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where F is the function in question. Consider, for example, F (x) = x3 for n = 6 and
i = 2 in Table 2; there are 63 pairs leading to a pAPN-spectrum of size 64. We know
that APN power functions over even-degree extensions of F2 are 3-to-1; in this case, x3

has 21 non-zero images y, for each of which there are three pre-images x1, x2, x3 such
that F (x1) = F (x2) = F (x3) = y. Since a pair of elements from among {x1, x2, x3} can
be selected in three different ways, each of the 21 images contributes three pairs, leading
to these 63 pairs which trivially preserve the APN-ness of the initial function.

The only exceptions to this occur for n = 4; for example, for F (x) = x3 in Table
2, there are 30 pairs giving a full pAPN-spectrum, while the trivial pairs as described
above account for only 15 of these. To the best of our knowledge, n = 4 is the highest
extension degree for which APN functions at Hamming distance 2 from each other exist;
this is reflected in e.g. [12] and agrees with the results presented in the tables.

Conversely, we can observe that the inverse function is the only APN function among
the ones considered whose pAPN-spectrum can become empty after a two-point swap.
We ran a separate experiment in which we computed the sizes of the pAPN-spectra of
all two-points swaps for representatives from all known CCZ-equivalence classes of APN
functions, and observed the same phenomenon: the inverse function is the only one for
which an empty pAPN-spectrum could be obtained by swapping two points. Based on
this, we formulate the following conjecture.

Conjecture 10. Let F be any APN power function over F2n, CCZ-inequivalent to the
inverse power function x2

n−2, and let Gx0x1 be the (x0, x1)-swapping of F for some
(x0, x1) ∈ F2

2n. Then the pAPN-spectrum of Gx0x1 is not empty.

According to some limited computational experiments, the same might be true for
quadratic APN functions; however, we do not state this a conjecture in general since we
do not have enough data, nor heuristics on why that would happen.

We note that the multiset of the sizes of the pAPN-spectra of all functions obtained
by swapping two points in a given function is not CCZ-invariant. Counterexamples can
be found easily, for instance by considering the Kim function and its CCZ-equivalent
permutation [2] over F26 : the pAPN-spectra of all functions obtained by swapping two
outputs of the former are of even size, while pAPN-spectra of odd size can be obtained
from the latter. Hence, our conjecture relates only to power APN functions and does
not include the ones CCZ-equivalent to them.

Some of the functions listed in the table have a singleton pAPN-spectrum, e.g.
F (x) = x47 for i = 3 and n = 7 in Table 2. All such functions are 0-APN.

The function F (x) = x15 over F28 , as given in Table 4, is remarkable due to the
fact that all possible pairs {x0, x1} lead to a function with a singleton pAPN-spectrum.
When x0 = 0, the resulting function is x1-APN, and when x0 6= 0, the resulting function
is 0-APN.
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Table 2: pAPN-spectra of two-point swaps of the Dobbertin function

n i d δF Spectrum Swapped spectrum

4 1,3 7 4 0 045, 260, 815

2 3 2 16 1630, 490

5 1,2,3,4 15 2 32 031, 6155, 8155, 9155

6 1 23 10 0 02016

2 3 2 64 10189, 12378, 16189, 22378, 24378, 26378, 6463, 863

5 31 4 0 01197, 2567, 3063, 4189

7 1,5 29 2 128 25889, 28889, 29889, 301778, 312667, 32889, 42127

2,4 43 2 128 22889, 26889, 28127, 30889, 322667, 361778, 38889

3 47 4 1 04572, 13556

6 63 2 128 0127, 26889, 28889, 29889, 30889, 322667, 35889, 36889

8 1 29 10 0 032640

2,6 21 4 1 014025, 118615

3 43 30 0 032640

4 9 2 256 256255, 482040, 522040, 542040, 562040, 586120, 603060, 625100, 70510,
74255, 802040, 864080, 883060

5 59 12 0 032640

7 127 4 0 019125, 128255, 210200, 43060

9 1 29 8 0 0130816

2 117 6 1 080227, 150589

3 5 2 512 11213797, 1141533, 1184599, 12013797, 12213797, 1249198, 12614308,
12818396, 1309198, 1329198, 1349198, 1364599, 1424599, 1444599

4 95 8 0 0130816

5 83 6 1 080227, 150589

6 17 2 512 1064599, 1144599, 1189198, 12022995, 12213797, 12418396, 12611242,
1284599, 1329198, 13618396, 1384599, 1429198

7 85 8 0 0130816

8 255 2 512 0511, 1164599, 1184599, 1194599, 1206132, 1229198, 12422995, 1254599,
1264599, 1274599, 1289198, 1294599, 13013797, 1314599, 1334599,
13413797, 1354599, 1364599, 1384599

10 1 29 4 0 0523776

2,4,6,8 213 2 1024 10241023, 22410230, 22810230, 23015345, 23225575, 24110230, 24310230,
24425575, 24510230, 24620460, 24710230, 25030690, 25120460, 25220460,
25430690, 25510230, 25810230, 26020460, 2615115, 2621023, 26310230,
26425575, 26510230, 26610230, 26710230, 26810230, 26910230, 27010230,
27120460, 27220460, 2745115, 27520460, 27820460, 27920460, 28310230,
29110230

3 151 6 0 0523776

7 89 6 0 0523776

9 511 4 0 0277233, 2230175, 415345, 5101023
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Table 3: pAPN-spectra of two-point swaps of the Kasami function

n i d δF Spectrum Swapped spectrum

4 1,3 3 2 16 1630, 490

2 7 4 0 045, 260, 815

5 1,4 3 2 32 1031, 6155, 8310

2,3 11 2 32 1031, 6155, 8310

6 1,5 3 2 64 10189, 12378, 16189, 22378, 24378, 26378, 6463, 863

7 1,6 3 2 128 22889, 26889, 28127, 30889, 322667, 361778, 38889

2,5 13 2 128 21127, 27889, 28889, 292667, 30889, 321778, 38889

3,4 23 2 128 25889, 28889, 29889, 301778, 312667, 32889, 42127

8 1,7 3 2 256 256255, 482040, 524080, 544080, 562040, 584080, 623060, 662040, 70510,
74255, 761020, 802040, 822040, 883060, 902040

2,6 13 12 0 032640

3,5 39 2 256 256255, 532040, 552040, 572040, 604080, 614080, 626630, 652040, 812040,
832040, 854080, 881020, 98255

4 31 16 0 032640

9 1,8 3 2 512 1129198, 1144599, 11613797, 1184599, 1209198, 1224599, 1249198,
12620440, 1284599, 13013797, 13213797, 1364599, 1384599, 1409198,
1424599

2,7 13 2 512 1081533, 1184599, 1199198, 1204599, 1219198, 1224599, 12313797,
1244599, 1254599, 1264599, 1274599, 12822995, 12913797, 1304599,
1324599, 13313797, 1354599, 144511

4,5 47 2 512 1164599, 1179198, 1214599, 1234599, 1244599, 1259198, 1269198,
1279198, 12813797, 1294599, 13127594, 13210731, 1334599, 1359198,
1364599, 99511

10 1,9 3 2 1024 10241023, 2121023, 21610230, 21820460, 22020460, 22210230, 22410230,
22620460, 23030690, 23220460, 23815345, 24010230, 2425115, 2465115,
25210230, 25610230, 25830690, 26230690, 26410230, 26620460, 26835805,
27020460, 27210230, 27620460, 27820460, 28030690, 28430690, 28610230,
28820460, 29010230, 29210230, 29410230

3,7 57 2 1024 10241023, 21920460, 22010230, 22710230, 22810230, 22910230, 23110230,
23236828, 23310230, 23410230, 23510230, 24010230, 24220460, 24410230,
2485115, 25510230, 25910230, 26020460, 26310230, 26640920, 26910230,
27010230, 27110230, 27210230, 27320460, 27410230, 27510230, 27610230,
27720460, 27820460, 27920460, 28010230, 28120460, 28210230, 28310230,
28430690, 29010230

5 63 32 0 0523776
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Table 4: pAPN-spectra of two-point swaps of the Niho function

n i d δF Spectrum Swapped spectrum

4 3 3 2 16 1630, 490

5 1,2 5 2 32 1031, 6155, 8310

4 7 2 32 1031, 6155, 8310

6 3 15 8 0 02016

5 7 6 0 02016

7 1,2,5 5 2 128 20889, 28127, 301778, 322667, 34889, 36889, 38889

3 29 2 128 25889, 28889, 29889, 301778, 312667, 32889, 42127

4 19 4 1 04572, 13556

6 15 2 128 22889, 26889, 281016, 32889, 341778, 362667

8 3 39 2 256 256255, 532040, 552040, 572040, 604080, 614080, 626630, 652040, 812040,
832040, 854080, 881020, 98255

4 19 16 0 032640

6 29 10 0 032640

7 15 14 1 132640

9 1,2 5 2 512 11213797, 1141533, 1184599, 12013797, 12213797, 1249198, 12614308,
12818396, 1309198, 1329198, 1349198, 1364599, 1424599, 1444599

3 39 8 0 0130816

4 19 2 512 1164599, 117511, 1194599, 1214599, 1224599, 1234599, 1249198,
12527594, 1269198, 12713797, 1289198, 1299198, 1304599, 1314599,
1329198, 1334599, 1356132

5 63 6 1 0129283, 11533

7 13 2 512 1081533, 1184599, 1199198, 1204599, 1219198, 1224599, 12313797,
1244599, 1254599, 1264599, 1274599, 12822995, 12913797, 1304599,
1324599, 13313797, 1354599, 144511

8 31 2 512 1064599, 1144599, 1189198, 12022995, 12213797, 12418396, 12611242,
1284599, 1329198, 13618396, 1384599, 1429198

10 3 39 32 0 0523776

4 19 6 0 0523776

5 125 34 0 0523776

6 71 6 0 0523776

7 9 2 1024 10241023, 20620460, 20810230, 21010230, 21211253, 22020460, 22210230,
23010230, 2325115, 23410230, 23615345, 23810230, 24225575, 24815345,
2545115, 25620460, 25810230, 26020460, 2625115, 26430690, 26620460,
26830690, 27040920, 27230690, 27430690, 27820460, 28010230, 28620460,
28810230, 29210230, 29410230, 30010230, 30810230

8 61 6 0 0523776

9 31 30 0 0523776
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Table 5: pAPN-spectra of two-point swaps of the Welch function

n i d δF Spectrum Swapped spectrum

4 2,3 7 4 0 045, 260, 815

5 1 5 2 32 1031, 6155, 8310

2,4 7 2 32 1031, 6155, 8310

3 11 2 32 1031, 6155, 8310

6 2,5 7 6 0 02016

3 11 10 0 02016

7 1 5 2 128 20889, 28127, 301778, 322667, 34889, 36889, 38889

2,6 7 6 1 05461, 12667

3 11 2 128 21127, 27889, 28889, 292667, 30889, 321778, 38889

4 19 4 1 04572, 13556

5 13 2 128 21127, 27889, 28889, 292667, 30889, 321778, 38889

8 2,7 7 6 0 032640

3 11 10 0 032640

4 19 16 0 032640

5 25 6 0 032640

6 13 12 0 032640

9 1 5 2 512 11213797, 1141533, 1184599, 12013797, 12213797, 1249198, 12614308,
12818396, 1309198, 1329198, 1349198, 1364599, 1424599, 1444599

2,8 7 6 1 0129283, 11533

3 11 8 0 0130816

4 19 2 512 1164599, 117511, 1194599, 1214599, 1224599, 1234599, 1249198,
12527594, 1269198, 12713797, 1289198, 1299198, 1304599, 1314599,
1329198, 1334599, 1356132

5 35 6 1 0129283, 11533

6 25 8 0 0130816

7 13 2 512 1081533, 1184599, 1199198, 1204599, 1219198, 1224599, 12313797,
1244599, 1254599, 1264599, 1274599, 12822995, 12913797, 1304599,
1324599, 13313797, 1354599, 144511

10 2,9 7 6 0 0523776

3 11 10 0 0523776

4 19 6 0 0523776

5 35 34 0 0523776

6 49 8 0 0523776

7 25 8 0 0523776
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Table 6: pAPN-spectra of two-point swaps of the Gold function

n i d δF Spectrum Swapped spectrum

4 1,3 3 2 16 1630, 490

5 1,4 3 2 32 1031, 6155, 8310

2,3 5 2 32 1031, 6155, 8310

6 1,5 3 2 64 10189, 12378, 16189, 22378, 24378, 26378, 6463, 863

7 1,6 3 2 128 22889, 26889, 28127, 30889, 322667, 361778, 38889

2,5 5 2 128 20889, 28127, 301778, 322667, 34889, 36889, 38889

3,4 9 2 128 22889, 26889, 281016, 32889, 341778, 362667

8 1,7 3 2 256 256255, 482040, 524080, 544080, 562040, 584080, 623060, 662040, 70510,
74255, 761020, 802040, 822040, 883060, 902040

3,5 9 2 256 256255, 482040, 522040, 542040, 562040, 586120, 603060, 625100, 70510,
74255, 802040, 864080, 883060

9 1,8 3 2 512 1129198, 1144599, 11613797, 1184599, 1209198, 1224599, 1249198,
12620440, 1284599, 13013797, 13213797, 1364599, 1384599, 1409198,
1424599

2,7 5 2 512 11213797, 1141533, 1184599, 12013797, 12213797, 1249198, 12614308,
12818396, 1309198, 1329198, 1349198, 1364599, 1424599, 1444599

4,5 17 2 512 1064599, 1144599, 1189198, 12022995, 12213797, 12418396, 12611242,
1284599, 1329198, 13618396, 1384599, 1429198

10 1,9 3 2 1024 10241023, 2121023, 21610230, 21820460, 22020460, 22210230, 22410230,
22620460, 23030690, 23220460, 23815345, 24010230, 2425115, 2465115,
25210230, 25610230, 25830690, 26230690, 26410230, 26620460, 26835805,
27020460, 27210230, 27620460, 27820460, 28030690, 28430690, 28610230,
28820460, 29010230, 29210230, 29410230

3,7 9 2 1024 10241023, 20620460, 20810230, 21010230, 21211253, 22020460, 22210230,
23010230, 2325115, 23410230, 23615345, 23810230, 24225575, 24815345,
2545115, 25620460, 25810230, 26020460, 2625115, 26430690, 26620460,
26830690, 27040920, 27230690, 27430690, 27820460, 28010230, 28620460,
28810230, 29210230, 29410230, 30010230, 30810230
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