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The Kelvin-Helmholtz instability (KHI) and its effects relating to the transfer of energy and
mass from the solar wind into the magnetosphere remain an important focus of
magnetospheric physics. One such effect is the generation of Pc4-Pc5 ultra low
frequency (ULF) waves (periods of 45–600 s). On July 3, 2007 at ∼ 0500 magnetic
local time the Cluster space mission encountered Pc4 frequency Kelvin-Helmholtz
waves (KHWs) at the high latitude magnetopause with signatures of persistent
vortices. Such signatures included bipolar fluctuations of the magnetic field normal
component associated with a total pressure increase and rapid change in density at
vortex edges; oscillations of magnetosheath and magnetospheric plasma populations;
existence of fast-moving, low-density, mixed plasma; quasi-periodic oscillations of the
boundary normal and an anti-phase relation between the normal and parallel components
of the boundary velocity. The event occurred during a period of southward polarity of the
interplanetary magnetic field according to the OMNI data and THEMIS observations at the
subsolar point. Several of the KHI vortices were associated with reconnection indicated by
the Walén relation, the presence of deHoffman-Teller frames, field-aligned ion beams
observed together with bipolar fluctuations in the normal magnetic field component, and
crescent ion distributions. Global magnetohydrodynamic simulation of the event also
resulted in KHWs at the magnetopause. The observed KHWs associated with
reconnection coincided with recorded ULF waves at the ground whose properties
suggest that they were driven by those waves. Such properties were the location of
Cluster’s magnetic foot point, the Pc4 frequency, and the solar wind conditions.
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1 INTRODUCTION

The Kelvin-Helmholtz instability (KHI) at the magnetopause has
been noted for its role in the transport of mass and energy from
the solar wind into the magnetosphere and down to the ground
(e.g., [1–5]). The KHI has been found to occur fairly frequently
under both southward and northward interplanetary magnetic
field (IMF) configurations with no apparent low-speed cutoff
[6,7]. When the IMF horizontal component is mostly in the
Parker-Spiral orientation, the KHI has been shown to favor the
dawn flank magnetopause [8].

One proposed manner in which energy transfer is achieved
by the KHI is through the generation of ultra low frequency
(ULF) waves. Hasegawa and Chen [9] and Southwood [1]
showed theoretically that magnetic field line resonance
oscillations can be caused by Kelvin-Helmholtz waves
(KHWs) at the magnetopause. The observed dawnward
asymmetry of Pc4-Pc5 range (frequencies of 2–22 mHz,
periods of 47–600 s) ULF waves in the vicinity of the
magnetopause [10] and enhanced heating of the cold-
component ions at the dawn sector [11,12] are possibly
related to the presence of KHI since the horizontal
component of the IMF is most often in the Parker-Spiral
orientation [13]. ULF waves have been shown to drive
auroral arcs through magnetic field line resonance [14] and
to efficiently accelerate energetic electrons in the outer
radiation belt [15,16].

However, debate remains regarding whether or not the KHI
is an actual, dominant driver for Pc4-Pc5 waves in the
magnetosphere and at the ground [17]. Since other
processes can externally drive ULF waves in the
magnetosphere, it has been argued that it is likely these
mechanisms that are the true drivers, occurring in
conjunction with the KHI at the magnetopause. Such
processes relate to high solar wind speeds and include
dynamic pressure variations and foreshock fluctuation
anisotropy instabilities [17]. Additionally, under southward
IMF conditions other possible external drivers, such as flux
transfer events, occur and interact with the KHI [18].

ULF pulsations at the magnetopause (believed to be KHWs
but without explicit evidence) which were observed to
propagate into the magnetosphere and down into the
ionosphere in the dusk sector under fast solar wind speeds
were investigated by Rae et al. [19]. Similarly, Agapitov et al.
[20] presented THEMIS magnetic field observations at the
dawn flank of magnetopause oscillations that coincided with
ULF pulsations recorded deeper in the magnetosphere. The
magnetopause surface waves were hypothesized to be KHWs
based upon the critical velocity for KHI onset and wave growth
[21]. Dougal et al. [22] modeled several instances of the KHI
observed at the magnetospheric flanks under northward IMF
to gain better insight into the resulting ionospheric signatures.
Pc5 magnetic field oscillations within the ionospheric foot
point ranges of some of these events were observed. Wang et al.
[23] investigated magnetospheric Pc5 pulsations under steady
solar wind conditions and made the case that ULF waves can
not only be driven by field line resonance or waveguide modes

[9], but also through the generation of inner and outer Kelvin-
Helmholtz modes.

Presented herein is a Cluster-observed incidence of ULF waves
in the Pc4 range observed at the magnetopause driven by the KHI
associated with reconnection. The observed magnetospheric
conditions were also modeled to further test if the magnetic
field configuration was KHI-unstable. This event adds to the few
previously published KHW-ULF linked events (e.g., [19,20,22]),
but provides an even more comprehensive analysis of the
magnetopause surface waves, investigating the magnetic field
data in conjunction with plasma particle observations for KHI
signatures at high latitudes.

Furthermore, as the present event occurs for the southward
IMF orientation, according to the OMNI data and THEMIS
observations at the subsolar point, both magnetic reconnection
and KHI can start as a primary mode [23]. For southward IMF
conditions, fast magnetic reconnection is driven and can be
strongly modified by the nonlinear KH waves: MHD and
Hall-MHD simulations have indicated that reconnection rates
are comparable to Petschek reconnection even without the
inclusion of Hall physics [24]. On the other hand, magnetic
reconnection can seed the KH mode for KH unstable conditions
[25]. We present evidence of north-south ULF magnetic field and
plasma pressure fluctuations in the magnetosheath at the subsolar
point observed by THEMIS satellites which may have modulated
the KHW, and due to the additional plasma pressure
compressions, may have driven the reconnection more
strongly in KHI vortices. KHI vortices in our event are
associated with reconnection signatures, making the case more
comprehensive.

The event improves our understanding of under which
conditions thin-current sheets, where reconnection can
operate, are created. Identification of the processes that trigger
ULF waves at the magnetospheric boundaries is important for the
study of ion acceleration. Kronberg et al. [26] has demonstrated
enhanced contamination of the XMM-Newton X-Ray telescope
by soft protons at the flank high-latitude regions.

Finally, the satellite observed KHWs were compared with
concurrent ULF pulsations measured at ground, indicating the
connection between magnetic disturbances seen in space and
those seen on Earth.

2 KHW OBSERVATIONS BY THE CLUSTER
SPACECRAFT
2.1 Event Overview, its Location and the
Solar Wind Conditions
On July 3, 2007 from 1,645 to 1720 UT, the Cluster spacecraft
approached the high-latitude dawn side magnetopause at the border
between the magnetosheath and closed magnetospheric field lines
(the coordinates in Geocentric Solar Ecliptic (GSE) system were X ≈
−10 RE, Y≈ −15 RE, Z≈ −9.4 RE). Observed plasma signatures of this
event are shown in Figure 1. These measurements, which were
obtained through the Cluster Science Archive [27], came from the
Cluster Ion Spectrometry (CIS) experiment’s [28] COmposition and
DIstribution Function (CODIF) sensor and the Hot Ion Analyser
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(HIA). The magnetic field components were measured by Cluster’s
onboard fluxgate magnetometer (FGM) [29]. Further
documentation regarding the Cluster mission can be found
through Escoubet et al. [30].

The ion density and velocity profiles measured by the CIS/HIA
instrument, in conjunction with the proton energy spectrograms
measured by the CIS/CODIF instrument, showed the oscillation
of plasma populations (see Figure 1). Velocity fluctuations from

FIGURE 1 | Cluster CIS observations from July 3, 2007, 1640–1,720 UT. From top to bottom: CODIF energy-time spectrograms of proton energy flux:
omnidirectional, measured by the anti-sunward sensors and by the sunward sensors, in keV cm−2 s−1 sr−1 keV−1, from SC 4; ion density, cm−3, from SC 1 & 3;
X-component ion velocity, km s−1 (GSE), fromSC 1 & 3; Z-component and themagnitude of themagnetic field, nT (GSE), from SC1–4. The black vertical solid lines show
the times of strong maxima in the total pressure profile defined in Figure 3.
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the strongly anti-sunward to the weakly anti-sunward or
sunward direction were experienced by both Cluster
spacecraft (SC) 1 and 3 starting after 1645 UT (HIA data
were unavailable for SC 2 and 4 during the event). The proton
energy spectrograms for SC 4 displayed similar alternations
between high-energy (∼ 5–10 keV) plasma typical for the
magnetospheric environment and lower energy (∼
0.3 eV–1 keV) plasma typical for the magnetosheath. Those
alternations corresponded with fluctuations in the SC 1 and 3
ion densities, n, from tenuous (<1 cm−3) to dense (3–10 cm−3),
respectively. These fluctuations indicate that the spacecraft
were observing alternating regimes between the
magnetosheath and closed magnetospheric magnetic field
lines1 as expected within KHWs. The vertical, BZ, magnetic
field component is strongly northward in the magnetosheath
region at SC 1, 3 and 4 from 1640 to ∼1700 UT, see Figure 1.
Also at these SC, the total magnetic field oscillates at the

boundary between the two regimes, see discussion in
Section 2.2. SC 2, which has the innermost location within
the magnetosphere compared to the other SC, mainly shows
higher values for the total magnetic field.

The OMNI-calculated solar wind parameters during this
event can be found in Figure 2. There was a solar wind speed of
∼375 km s−1, nearly constant IMF of ∼10.5 nT and the BZ

component of the IMF was southward. The wavelet analysis
for wave power of the corresponding 3 s WIND data does not
show any prominent spikes in the Pc4-Pc5 range (not shown).
The horizontal component of the IMF was in Parker spiral
orientation (BX ≈ 5 nT, BY ≈ -6 nT). There were pressure
fluctuations up until about 1635 UT which then ceased and
remained rather stable throughout the event time frame. The
Dst index (not shown) revealed that there wasn’t a
geomagnetic storm during the time of the event; however,
the AE index indicated that a geomagnetic substorm had
occurred.

The profiles of velocity; magnetic field, ion density and total
pressure, including its magnetic and plasma components, using
Cluster SC 1 data for the time interval from 1640 to 1705 UT are
shown in Figure 3. The total pressure was calculated as the sum of
the magnetic (pmag) and plasma (p), calculated using observations
from the CIS/HIA instrument) pressures.

The magnetic field and velocity data for this time interval were
transformed to the (L, M, N) components which describe local

FIGURE 2 | OMNI derived solar wind parameters for July 3, 2007 from 1400 to 1900 UT. The highlighted portion represents the time frame of the observed KHI
from 1640 to 1720. From top to bottom: average IMF magnitude, nT; BX, nT; BY, nT; BZ, nT; speed, km s−1; flow pressure, nPa; and AE index, nT.

1The observation of closedmagnetic field lines is indicated by the energy of maxima
intensity in spectrograms of Figure 1, which is significantly higher than those
typical for the plasma mantle, < 0.5 keV (the event is located at high latitude)[73].
The proton spectrograms in the anti-sunward and sunward direction show similar
levels of particle fluxes for the time periods with the hot plasma implying that they
bounce on the closed magnetic field lines in the plasma sheet. The location of
Cluster for this event corresponds to the typical location of plasma sheet
observations as derived by Kronberg et al. [74].
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boundary normal coordinate system. For this we used the Siscoe
method [31]. The coordinate vectors L and M are mutually
orthogonal and tangential to the boundary. N is the coordinate
vector in the boundary normal direction. It is orthogonal to L and
M, forming a right-handed coordinate system. The averaged values
of (L,M, N) are as follows. L � [−0.62, −0.69, 0.37] and is directed
mostly dawnward and tailward. M � [−0.67, 0.22, −0.71] and is
directed mostly anti-sunward and southward. N � [−0.41, 0.69,
0.60] and is directed mostly duskward and northward. The

eigenvalues of the system are [λ1, λ2, λ3] � [149, 46, 8]. The
ratio λ2/λ3 � 5.6, indicates that the normal direction is well-defined
[32]. Also, L and M are reasonably defined because λ1/λ2 � 3.2. A
well-defined Siscoe normal direction was also found for SC 4
during the event (not shown).

The three dimensionality of the boundary normal relative to
the GSE coordinate system, produced by complex processes at the
boundary, can lead to twisting of the magnetic field in the
magnetosheath in the northward direction. This can also result

FIGURE 3 | SC 1 measured and derived parameter profiles for the KHI event on July 3, 2007 are shown for the time frame of 1640–1705 UT. From top to bottom
within each graph: (A) transformed velocity components L (blue), M (green) andN (red), km s−1; (B) transformedmagnetic components L (blue), M (green) and N (red), nT;
(C) ion density (black), cm−3; (D) total/plasma/magnetic pressure (blue/black/green), nPa; (E) transformed magnetic normal component (red), nT; (F) transformed
velocity normal component (red), km s−1. The black vertical dashed lines indicate the times of strong maxima in the total pressure profile. The vertical shadowed
bars show the locations of rotational discontinuities. The grey vertical solid lines denoted as (1), (2) and (3) indicate time intervals for which field-aligned beams were
observed (see Figure 8).
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in a discrepancy between the southward direction as seen in the
OMNI data and that observed by THEMIS-C and D at the
subsolar point (not shown), see discussion in Section 5.2.

2.2 KHW Signatures
The vortex formations are indicated when the M and N
coordinates are mainly in anti-phase for both the velocity and
magnetic field, according to Yan et al. [33], see Figure 3.
However, observations of BM and BN in anti-phase can also be
associated with reconnection. As an indicator of KHI vortices, it is
expected to observe anti-phase VM and VN oscillations.

In the vortex rest frame, centrifugal force moves plasma
outwards from the central part of the rolled-up KHI vortices.
This leads to the formation of a local minimum in total pressure
at the center and a maximum at the hyperbolic point between
vortices [17,34]. The hyperbolic point is also associated with the
local absolute maxima of the normal magnetic field component
and jumps in the density [17]. Bipolar fluctuations in the normal
component of the magnetic field and flow reversals in the normal
component of the velocity occurred throughout the entirety of the
event, from 1645 to 1705 UT (see Figure 3). The ion density, total
pressure, and other magnetic and velocity component profiles

FIGURE 4 | SC 1 derived parameter profiles for the KHI event on July 3, 2007 are shown for the time frame of 1640–1705 UT. From top to bottom within each
graph: (A) the ratio λ2/λ3; (B–D) X, Y, and Z components of boundary normals, respectively; (E) angle between average normal and individual normal. The average normal
is calculated for the whole time interval using the Siscoe method. The individual normals were defined subsequently for each 1 min period of observations. The horizontal
line is at 90°.
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were also highly oscillatory. The vertical dashed lines mark the
local total pressure maxima that are mostly aligned with the local
absolute maxima of BN and with jumps in the density. This
indicates the formation of the rolled-up KHI vortices (see also
Discussion 5.1, (1) below).

We calculated the individual (L, M, N) coordinates for
subsequent 1 min windows centered on each point in the time
series, between 1640 and 1705 UT. The first panel in Figure 4
shows the values of the λ2/λ3 ratios, which are mostly well-
defined throughout the event. The variation of the X, Y, and Z
components of the boundary normals are also shown in

Figure 4. One can see from the plot that the boundary
normal is very dynamic. The angle between the averaged
and individual boundary normals changes quasi-periodically
in opposite directions indicating the oscillation of the
boundary direction, as is typical for rolled-up KHWs.

We transformed the velocity into the deHoffmann-Teller
(HT) frame, which is co-moving with the discontinuity [35].
The HT velocity, VHT

���→
, is determined by minimizing |( �VHT −

�V) × �B|2 to obtain the constant transformational velocity VHT
���→

for a given dataset. Here �V and �B are the observed time series of
the ion velocities and of the magnetic field. We calculated the

FIGURE 5 | SC 1 derived observations of the HT velocity vectors (cyan) and of the boundary normals (yellow) for the KHI event on July 3, 2007 are shown for the
time frame of 1640–1705 UT.
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HT velocity for every minute and plotted its vectors and the
normal vectors, as determined above, along the Cluster
trajectory for this event, see Figure 5. It shows that, after a
solar wind period when HT velocity vectors were in the
negative XGSE direction, Cluster entered a region with
rotating deHoffmann-Teller velocity vectors and normal
vectors associated with the boundary direction oscillations.

The existence of fast-moving, low-density plasma is typical for
the KHI associated with mixing of two plasma environments
[36,37]. We demonstrate this existence by plotting VM versus ion
density in Figure 6. The color of each point indicates the ion
specific entropy, S, calculated as

S � T/n2/3. (1)

FIGURE 6 | SC 1 derived observations of the VM velocity component versus ion density with colors indicating the ion specific entropy for the time frame of
1640–1705 UT.

FIGURE 7 |Wavelet transform analysis of Siscoe-derivedmagnetic field normal component, nT, from Cluster SC 1 between 16:40 and 17:05 UT: (A) original series
(black) and inverse (gray) wavelet transform; (B) the normalized wavelet power spectrum and cone of influence hatched and (C) the global wavelet for periods outside of
the cone of influence (COI) (black) and Fourier power spectra (green). Note that the period scale is logarithmic. The horizontal lines in panel (B) indicate periods of KHW
defined manually as the time between dashed lines for corresponding time intervals in Figure 3. The dashed red rectangles correspond to two period bands from
62 to 82 s and from 113 to 173 s.
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FIGURE 9 | The SuperMAG Polar Plot is shown for July 3, 2007 at 1640 UT. The field line foot point corresponding to Cluster SC 1 is shown by a black star. The
green vectors represent the direction and magnitude of ground-based magnetic field disturbances. The approximate location of the Arctic Station (ARC) magnetometer
is denoted by the red dot.

FIGURE 8 | Ion velocity distribution functions as measured by the HIA instrument onboard SC 3 at 16:45:58.748 UT (left), 16:56:06.596 UT (middle) and 16:59:
12.674 UT (right) during 12 s time-averaged ion velocity distribution functions. VPAR is directed along B, VPER1 is directed along − V × B and VPER2 direction completes
the orthogonal system. The black arrows indicate the field-aligned beams. The time of observation for distributions (1), (2), and (3) correspond to that similarly noted in
Figure 3.
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The black line in the figure shows the fast-moving plasma
population, with speeds in the range of −400 to −200 km s−1,
low ion density of < 5.5 cm−3, and specific entropy values in
the intermediate range between that of magnetospheric and
magnetosheath ions [38].

2.3 Wavelet Analysis of the KHW
The spectral wavelet analysis of the magnetic field normal
fluctuations as observed by Cluster is shown in Figure 7. The
periods of KHWs were defined manually using pressure maxima
criteria and are marked in Figure 3 as the time between dashed lines.
These periods were 173, 143, 64, 167, 113, 81, 79, 98, 142 and 62 s at∼
16:46:00, 16:48:53, 16:51:16, 16:52:20, 16:55:07, 16:57:00, 16:58:21, 16:
59:40, 17:01:18, 17:03:40 and 17:04:42 UT, respectively. We see that
the KHW-associated periods mainly coincide with power spectra
increases of the magnetic field (excluding the period at 98 s, which is
approximate minimum of the Fourier power spectra, and the period
at 113 s, which is at the boundary between the local maximum and
minimum). Within the range of marked periods we observe two
power peaks in the global wavelet spectrum for the magnetic
fluctuations: at periods of about 133 s and 70 s, see panel (c).
These are fluctuations within the Pc4 range [39]. It seems that we
observe a primary wave mode with a period ∼ 133 s and its submode
at ∼ 70 s.

2.4 Observations of Associated
Reconnection
We also tested if reconnection was observed during this event.
The Walén relation calculated in the HT frame shows the

relation between the plasma velocity in the HT frame and the

Alfvén velocity, VA
��→ � �B/

���

μ0ρ
√

[35]. We found a 1 min
deHoffmann-Teller interval from 16:45:58-16:47:01 UT (HT
slope is one and correlation coefficient (CC) is 0.99) where the
Walén relation is very well met (Walén slope � −0.99 and
Walén CC � −0.87), see the Supplementary Material S1. The
Walén slope was negative, which means the spacecraft crossed
the rotational discontinuity (RD) tailward of the X-line [40].
The interval is marked by a gray shadowed bar in Figure 3.
There were several other frames that met the “strict” HT (HT
Slope � 0.9–1.1 and CC > 0.95) and RD (HT Slope � 0.7–1.1
and CC > 0.95) qualifications according to Nykyri et al. [41].
These were from 16:42:30–16:43:00 UT, 16:45:30–16:46:00 UT
and 16:51:30–16:52:00UT. If the correlation requirements and
slope requirements for theWalén relation are both relaxed (CC
> 0.85, Walén slope > 0.5), then two RD intervals can be
extended: 16:43:00–16:43:30 UT and 16:51:00–16:51:30 UT.
Also an additional interval can be gained: 16:44:30–16:45:00
UT. All these RD intervals are marked by gray shadowed bars
in Figure 3. In this figure we can see that the hyperbolic points
of the rolled-up KHWs indicated by the dashed lines are in two
cases accompanied by the RD likely associated with
reconnection.

Field-aligned ion beams were observed at three instances
during these marked intervals: 16:45:58.748 (Vpar �
2,300 kms−1, Vperp � 900 kms−1), 16:56:06.596 (Vpar �
1,400 kms−1, Vperp � − 700 kms−1) and 16:59:12.674 UT
(Vpar � 1,700 kms−1, Vperp � − 500 kms−1), see Figure 8.
The field-aligned beams may be an indication of ions
moving along a separatrix and further imply that
reconnection may have occurred. In the distribution
function 1) at 1645 UT one can also simultaneously observe
a perpendicular beam. This can happen if Cluster was crossing
different magnetic field lines during the same data
accumulation interval. The perpendicular beam can indicate
that there are demagnetized ions in the reconnection exhaust
region. Additionally during this interval the crescent
distribution is seen, see Figure 8. This is a sign that the
ions are demagnetized and the satellite was crossing the
diffusion region [42]. There are multiple observations of the
crescent distributions from 1640 to 1650 UT (not shown).

3 GROUND-BASED OBSERVATIONS

During the same time period as the observed magnetopause
fluctuations, large magnetic field disturbances were recorded at
ground-based geomagnetic stations. These disturbances are
shown in SuperMAG’s Polar Plot (Gjerloev [43]; see
Figure 9). Also shown in Figure 9 is the estimated magnetic
field line foot point from Cluster SC 1.

The magnetic foot point of the Cluster mission was mapped
to the ionosphere by projecting the satellite location along the
magnetic field lines to the altitude of 100 km, where the lower
boundary of the ionosphere was assumed. Since the spacecraft
was located at the magnetosheath boundary just outside the

FIGURE 10 | The magnetopause shear angle for IMF values BZ< 0,
BY<0 as seen from the Sun. Red areas represent magnetopause regions
where the geomagnetic field and IMF are antiparallel within 150°–180°. White
regions embedded in the red regions represent the line of maximum
magnetic shear angles which are thought to be the most likely location for
reconnection to occur. The black circle represents the location of the x � 0
plane. Earth’s dayside and nightside magnetopause are shown inside and
outside of the black circle, respectively. The yellow star marks the location of
Cluster SC 1 (XGSM ≈ −9.5 RE, YGSM ≈ −15 RE, ZGSM ≈ −9.5 RE).
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FIGURE 11 |Wavelet transform analysis of the geomagnetic field oscillations at Arctic Village, Alaska (ARC) for the E-component, nT, between 1640 and 1705 UT:
(A) original (black) series and inverse wavelet transform (gray), each relative to their respective values at 1640 UT; (B) the normalized wavelet power spectrum and shaded
COI and (C) the global wavelet for periods outside of the COI (black) and Fourier power spectra (green). Note that the period scale is logarithmic. The horizontal lines in
panel (b) indicate periods of KHW defined manually in Figure 3 as the time between dashed lines for corresponding time intervals. The dashed red rectangle
corresponds to the period band from 113 to 173 s.

FIGURE 12 | Snapshot of the Global MHD (LFM-model) simulation in Solar Magnetic coordinates, driven with solar wind dynamic pressure variations, in the XY-
plane with Z � −9.4 RE (solar magnetic coordinates) for July 3, 2007 at 1650 (on the left) and 1657 UT (on the right). Colors represent plasma density (see color bar),
arrows represent plasma velocity, and the triangles show the location of the four Cluster spacecraft. The purple diamond denotes the approximate (X, Y) location of the
THEMIS-E spacecraft (with ZGSE ≈ −2.4 RE).
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bounds of the magnetic field model, some adjustments were
necessary in order to derive the magnetic foot point’s location.
In this case, the ZGSE-coordinate of the spacecraft was
assumed to be equal to −8.5 RE instead of −9.6 RE, as it
was the closest point where mapping was possible. The
location of the magnetic foot point was derived using the
Tsyganenko-1989 model of the external magnetic field [44]
with internal field given by IGRF (for Kp � 2.7), as
implemented in the IRBEM library [45,46]. It is worth
mentioning that magnetic foot point tracing is highly
model dependent (as shown in Dunlop et al. [47]) and thus
gives only an approximate indication of the spacecraft
position with relation to the ionosphere.

The highest amplitude of ground-measured magnetic field
disturbances in the SuperMAG Polar Plots were observed to be
concentrated within the North Slope region of Alaska. While
magnetic fluctuations were recorded at other geomagnetic
stations around the polar cap, they were lower in amplitude.
The magnetic field line foot point for Cluster SC 1 mapped to the
northwest coast of Canada, in the vicinity of the highest
magnitude magnetic field fluctuations. Figure 10 shows the
calculated magnetopause shear angle determined according to
the event’s specific solar wind parameters and geomagnetic field
(calculated from the T96 model [48]). The white line depicts the
maximum magnetic shear angle where magnetic reconnection
had the highest probability of occurring [49,50], particularly at

the dawn side of the northern hemisphere. Therefore, the
magnetic field fluctuations were possibly at least partially
triggered by flux transfer events (FTEs) in the northern
hemisphere where they are likely to occur according to
Figure 10. We note that location of reconnection in Figure 10
is irrelevant to local reconnection occurring during the KHI
observed by Cluster.

Our event showed magnetic field fluctuations at the
magnetopause in the Pc4 frequency range. Therefore, to
establish a link between the disturbances measured by
Cluster in space and those recorded at ground-based
magnetic field observatories, we needed to analyze those
field measurements at a resolution of 1–10°s. The closest
stations to the mapped Cluster location were Arctic Village
(ARC) and Kaktovik, Alaska (KAV). To show that the ARC
and KAV stations were located on the closed magnetic field
lines and their observations are not directly affected by the
solar wind, we launched the tracing described above, using a
grid with 1° steps in latitude and longitude, see the
Supplementary Material S2. If the corresponding magnetic
field line was closed, IRBEM returned a position of its foot
point, and if the field line was open, the output was “Not a
Number”. Using this information, the map of open and closed
magnetic field lines was created. It can be seen from
Supplementary Material S2 that the KAV and ARC
stations were on closed field lines.

FIGURE 13 | Snapshot of the Global MHD (LFM-model) simulation in Solar Magnetic coordinates, driven with constant IMF orientation and without solar wind
dynamic pressure variations, in the XY-plane with Z � −9.4 RE (solar magnetic coordinates) for conditions characteristic of July 3, 2007 between 1600 and 1730 UT. The
figure on the left shows a snapshot taken at 10 min into the simulation, and the figure on the right shows a snapshot taken at 20 min. Colors represent plasma density
(see color bar), arrows represent plasma velocity, and the triangles show the location of the four Cluster spacecraft. The purple diamond denotes the approximate
(X, Y) location of the THEMIS-E spacecraft (with ZGSE ≈ −2.4 RE).
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The wavelet analysis for the magnetic field recorded at the
magnetometer in ARC (selected for its better clarity) is shown in
Figure 11. The analysis shows a wave power peak in the global
wavelet spectrum for the N-component at 140°s. This value
approximately coincides with the main mode of the KHW.
According to, for example, Hughes and Southwood [51];
Sciffer and Waters [52]; Paschmann et al. [53], not all ULF
waves propagate from the magnetosphere down to the ground
and the wave modes could be affected by complex wave mode
conversions, modulation or damping. For instance, low
ionospheric conductance during the summer could have
prevented propagation of waves with periods of 70°s observed
by Cluster but not observed at the ground.

4 MODELING OF MAGNETOSPHERIC
OBSERVATIONS

The Lyon-Fedder-Mobarry (LFM) global magnetosphere model,
as hosted by the NASA Community Coordinated Modeling
Center (CCMC), was used to further investigate the
magnetopause configuration in the vicinity of the Cluster
spacecraft during the event time frame. The LFM model solves
the ideal magnetohydrodynamic (MHD) equations to simulate
the 3D interaction between the solar wind and the Earth’s
magnetosphere. Further description of the simulation code
and its numerical methods can be found in Lyon et al. [54]
and Merkin and Lyon [55]. The LFM model can effectively
resolve the KHI due to its low diffusion numerical scheme and
has been used in previous studies of the KHI [56,57].

The simulation was driven bymeasured solar wind parameters
provided by the virtual OMNI database King and Papitashvili
[58] including plasma density, velocities, IMF vector and dipole
tilt angle. The simulation was run from 1,600 to 1,730 UT and
snapshots of its development at 1,650 and 1657 UT are shown in
Figure 12. The background color represents plasma density and
the arrows show the velocity vectors. The triangles show the
actual location of the four Cluster spacecraft during the event.
From the figure, it can be seen that the lower density
magnetosphere (dark blue) has developed rolled-up waves at
the border with the higher density magnetosheath (light blue). At
both times the KH waves are not clearly visible on the dusk side.
This is because the horizontal component of the IMF for this
event is in the Parker Spiral orientation, making the dusk flank
downstream of the quasi-perpendicular bow shock, where the
stronger magnetic tension can stabilize the KHI. This is
consistent with previous simulation studies of the KHI during
Parker Spiral IMF [59] and observations from 6°years of THEMIS
data [8].

Figure 13 displays the simulation driven for constant solar
wind and IMF conditions but without any solar wind dynamic
pressure variations in order to check whether the ULF waves were
caused by pressure driven surface waves or by KHI driven waves.
Because the waves were formed in the simulation without any
solar wind fluctuations, the non-linear waves seen by Cluster were
most likely generated by the KHI. Note that for the unstable
boundary conditions, the KHI can be seeded by any perturbation

such as magnetic fluctuations [25], velocity fluctuations [60],
pressure fluctuations, or any combination of these. The
magnitude and frequency of the perturbation can affect the
non-linear stage of the instability [60]. Based on the present
simulation, the source region for the KHI appears to be on the
dayside magnetopause where the magnetosheath flow first
diverges dawnward. Note that this is a cut at Z � −9.4 RE and
low latitude reconnection is also likely to operate which can act as
a seed perturbation for the KHI [25].

All the simulation results and more details on the settings of
both runs can be found at https://ccmc.gsfc.nasa.gov/with run-
name Katariina_Nykyri_111218_1 (real solar wind and IMF
based run) and Katariina_Nykyri_070119_8 (synthetic run
without solar wind dynamic pressure variations). A movie of
the simulation can be found in the Supplementary Materials, S3.
More detailed high-resolution 3D MHD simulations with test
particles and Cluster data comparison is left for our future work.

5 DISCUSSION

5.1 Identification of KHW
Based on the Cluster observations, the Pc4 event shown here can
be interpreted as the KHI because:

1) The magnetic field magnitude and normal component
maxima were aligned with the pressure maxima, indicating
that the spacecraft were traversing the rolled-up KHWs [5,17].
This differs from instances of observing either FTEs or
persistent surface waves. In the case of FTE observation,
the pressure maxima is expected at its core (the center of
the bipolar BN) and the bipolar BN fluctuations are separated
by repetitious quiet periods with periods longer than 4 min
[6]. In the case of persistent surface waves, the pressure
maxima would be associated with the bipolar BN � 0
crossings. These KHW magnetic field and total pressure
signatures occurred in conjunction with periodical
observations of magnetospheric and magnetosheath plasma
populations (jumps in the density at the hyperbolic points),
indicating that the KHI had developed into the vortices
necessary for energy transport across the magnetopause [61];

2) VM and VN and BM and BN are mainly in anti-phase,
indicating that there are vortex formations according to
Yan et al. [33]. In the case of FTEs, the velocity
components will not show such anti-phase behavior;

3) The angle between the average boundary normal and the
boundary normals, calculated for subsequent 1 min windows
centered on each point in the time series, oscillates between
opposite directions;

4) The HT velocity vectors show oscillations at the boundary
region;

5) Fast-moving, low-density plasma populations associated with
the mixing of two plasma environments are observed;

6) Pc4 is a typical KHW frequency.

The interpretation of the observations is also supported by the
global modeling. The rolled-up vortices were clearly seen in LFM
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FIGURE 14 | THEMIS-E pressure tensor for the xx − (red), yy − (blue), and zz − components (green), eV cm−3, recorded by the Electrostatic Analyzer (ESA).
Reduced mode data are shown for July 3, 2007 from 1630 to 1720 UT.

FIGURE 15 | Wavelet transform analysis of the magnetic field oscillations for the ZGSE-component, nT, observed by THEMIS-E between 1640 and 1705 UT: (A)
original (black) series and inverse (gray) wavelet transform; (B) the normalized wavelet power spectrum and shaded cone of influence and (C) the global wavelet for
periods outside of the COI (black) and Fourier power spectra (green). Note that the period scale is logarithmic. The horizontal lines in panel (b) indicate periods of KHW
defined manually in Figure 3 as the time between dashed lines for corresponding time intervals. The dashed red rectangles correspond to two period bands from
62 to 82 s and from 113 to 173 s.
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simulation results for the event, confirming that the solar wind
conditions were favorable for KHW development. The favorable
solar wind conditions are also supported by the analysis of the
magnetopause shear angle. It has been shown that when the IMF has
a strong Parker spiral component, the KHI can develop with tilted k-
vectors with respect to the shear flow plane to maximize the onset
condition [8,41,62], which could explain why KHWs were observed
by Cluster at high latitudes.

5.2 Associated Reconnection
Several of the KHI vortices observed in this event were likely
accompanied by reconnection events as indicated by the Walén
relation, the presence of deHoffmann-Teller frames, field-aligned
ion beams observed together with bipolar fluctuations in the
normal magnetic field component, and crescent distributions.
The relation between the KHI and reconnection is highly
dependent upon the magnetic field direction with respect to
the sheared flow.

For northward IMF conditions, Otto and Fairfield [3]
demonstrated that as long as there is a KH wave vector
component along the magnetic field, the nonlinear KH
mode can twist the magnetic field line and consequently
generate a strong anti-parallel component. This then
triggers magnetic reconnection (even without an anti-
parallel magnetic component in the initial condition). Later,
Nakamura et al. [63] showed that if there is an anti-parallel
magnetic component across the sheared flow, the spin region
(trailing edge) of the KH wave can thin the current sheet,
which also triggers magnetic reconnection. The above two KH
driven reconnection mechanisms are described in a two-
dimensional perspective. In three-dimensions, the KHI can
strongly twist magnetic field lines in its active region, which
triggers a pair of middle-latitude component reconnections
(e.g., [64–66]).

For the southward IMF condition, as is namely the case in this
paper according to the OMNI data and THEMIS observations at
the subsolar point, there are pre-existing anti-parallel magnetic
field components (mainly along the north-south direction) that
are mostly perpendicular to the sheared flow (mainly along the
Sun-Earth direction). This configuration is unstable for both
magnetic reconnection and KHI. Thus, both KHI (mostly in
XYGSE plane) and reconnection (mostly in XZGSE plane) can
operate simultaneously [23], One process can be initialized earlier
or grow faster than the other. But it does not have to be that one
triggers another. The onset of KHI can locally thin the current
sheet which triggers reconnection, especially in the spine region
(trailing edge) (see illustration of such coupling in Figures 4, 6, 11
(at t � 124 s) in Ma et al. [24]). Note that the majority of open flux
are connected through the spine region. In the vicinity of vortices,
plasma flow strongly twists magnetic field lines which generates
patchy reconnection and complex flux rope structures. Both
strongly anti-parallel magnetic field and reconnection jets
(i.e., along the Z-direction), may not be easily observed (see
also [67]). In our study we observe field-aligned beams together
with bipolar BN magnetic field fluctuations as an indication of
reconnection. The onset of magnetic reconnection can change the
width of the sheared flow, and consequently changes the KH

wavelength [25]. This event demonstrates the complexity of the
instabilities generated at the magnetopause.

5.3 Source of KHI
Source regions for longer wavelengths and lower frequencies
are expected farther down the magnetotail. For the present
KHI associated with reconnection event, there are three
possible source regions. The first is close to the subsolar
point where magnetosheath flow first starts to diverge and
where KHI growth may be enhanced by both dayside
reconnection [25] and by solar wind velocity and pressure
fluctuations [60]. The latter enhancement was also
demonstrated by the LFM simulation of this event. The
second source region is at the dawn sector of the southern
cusp [68], and the third region is farther down the tail where
flow from tail reconnection is moving Earthward and forms a
shear layer. This velocity shear layer is observable in the LFM
simulation, see, e.g., Figure 12. Most relevant for the present
event are the first two source regions, and future work will need
to address the possible KHI associated with reconnection
interference from multiple sources.

ULF waves in the magnetosphere have been correlated with solar
wind conditions. For example, dynamic pressure variations are
known to generate pulsations [69]. However, the solar wind
speed, IMF magnitude, Alfvénic Mach number (not shown), and
flow dynamic pressure from the OMNI data all remained nearly
constant during the event, ruling out the likelihood of the ULFwaves
observed by Cluster being driven directly by pressure perturbations.

There were solar wind ion pressure pulsations preceding the
event which may have acted as seed perturbations at the subsolar
point, providing for the propagation and development of the
event KHWs seen farther down the flank [70]. In fact, three of the
THEMIS spacecraft situated in the magnetosheath at the subsolar
point during this event recorded signatures of significant
boundary motion, including pressure perturbations, which
further supports this hypothesis. Figure 14 shows the pressure
tensor for the xx −, yy −, and zz − components (red, blue, green,
respectively) recorded by the Electrostatic Analyzer (ESA)
onboard THEMIS-E (P4). The ion pressure moment data were
obtained from reduced-mode data, which has a degraded angular
resolution, but high time resolution (∼ 3 s). Similar plots for
THEMIS-C and THEMIS-D can be found in the Supplementary
Materials, see Supplementary Figures S4, S5.

We did the wavelet analysis of the magnetic field BZ,GSE
fluctuations observed by THEMIS-E, see Figure 15. We do
observe spikes of the wave power at the periods of 140 and
70 s which is in agreement with the spikes observed by Cluster.
Therefore, these fluctuations (via reconnection) may have further
modulated the KHWs.

THEMIS-E also observes magnetosheath jets (see the plasma
ram pressure pulsations in Supplementary Figure S6 in the
Supplementary Materials) with a periodicity of about 5 min,
which would result in dayside magnetopause oscillations and/or
magnetopause reconnection [71,72], and possibly also modulate
the KHWs and associated reconnection. The origin and dynamics
of these jets is beyond the scope of this paper and is left for a
future study.
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6 CONCLUSION

The current debate surrounding the extent of magnetospheric
effects caused by KHWs at the magnetopause remains an
exciting topic as more and more in situ observations
become available for analysis. This process’ role in the
generation of ULF waves at the Earth’s ground, in
particular, continues to be uncertain since different
potential drivers have been identified. The event scrutinized
in this article suggests a relation between the KHI associated
with reconnection and ground-based ULF waves.

On July 3, 2007 Cluster encountered KHWs at the high-
latitude magnetopause. Signatures of these waves included
bipolar fluctuations in the magnetic field normal
component at the edge of total pressure maxima mostly
coinciding with alternations of the low-density, low-speed
and high-energy magnetospheric plasma with the high-
density, high-speed, and low-energy magnetosheath plasma;
existence of fast-moving, low-density mixed plasma; quasi-
periodic oscillations of the boundary normal; and the
boundary normal and parallel velocity components being in
anti-phase. The KHWs exhibited frequency peaks in the Pc4
range which is typical for this instability. Several of the
observed KHI vortices were accompanied by reconnection
as indicated by the Walén relation, the presence of
deHoffmann-Teller frames, field-aligned ion beams observed
together with bipolar fluctuations in the normal magnetic field
component, and crescent distributions. LFM simulations of
the observed event conditions also resulted in KHWs at the
magnetopause.

During the same time as the event at the magnetopause,
there were Pc4 ULF perturbations recorded at ground-based
geomagnetic stations. These pulsations were observed around
the location of the foot point corresponding to the field line of
the location of the spacecraft recordings. Solar wind
conditions during the event were rather steady. The solar
wind speed was low and the IMF magnitude was nearly
constant. Only minimal pressure perturbations were
recorded and the BZ component of the IMF, according to
the OMNI data, remained southward without strong
fluctuations. However, the fluctuations in the southward
IMF and plasma/ram pressure at the subsolar point may
have triggered KHWs.

The conditions recorded during this case study provide
evidence for the likelihood that Pc4 ULF waves can be
generated by the KHI associated with reconnection at the
magnetopause. This suggests that the KHI can play a role in
the transfer of energy from the solar wind to the magnetosphere.
However, further studies are needed before the ubiquity of such
an event can be declared.
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