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Abstract

The physics of jet quenching combines the dynamics of the QCD parton shower with bremsstrahlung radi-
ation and decoherence processes induced by interactions with an underlying medium. Here we present a
brief overview of the established features of medium-induced bremsstrahlung spectrum in a deconfined QCD
plasma, highlight the aspect of rapid jet showering inside the medium and compute the resulting energy lost
out of the jet cone in heavy-ion collisions.
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1. Introduction

Hard probes, such as high-pT particles and jets, are produced abundantly in hadronic collisions
at the LHC and RHIC. The concept of “jet quenching” is a generic placeholder to address modifica-
tions of such processes in heavy-ion collisions away from their proton-proton baseline [1, 2]. The
theoretical description of parton propagation and branching in a deconfined nuclear medium has
been developing over more than two decades, for recent reviews see [3, 4]. In addition to drag
experienced by the partons due to elastic energy loss, the transverse momentum broadening plays
an important role because it also opens the possibility for medium-induced bremsstrahlung. When
performing a jet measurement with a specific cone size R the challenge is to predict how much of
the original parton’s energy remains inside that cone, and how much leaks out. The missing energy
ultimately determines the shift of the underlying production spectrum and results in an overall
suppression of the jet sample in a given pT bin.

Let us first recall the basics of QCD radiation in vacuum (meaning in the absence of interac-
tions). An initiating jet parton with energy pT can radiate within a cone with opening angle R,
corresponding to the radius of the experimentally reconstructed jet. In the soft and collinear limit,
the spectrum of gluon emissions,

dI � 2αsCR

π

dz
z

dθ
θ
, (1)
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where CR is the color charge of the parent, is enhanced by a two logarithmic divergences for small
values of the longitudinal momentum sharing fraction z and emission angle θ. Th phase space for
inter-jet emissions, or the total probability of radiating inside a jet cone, is

Prob =
αsCR

π
log2 pT R

Q0
. (2)

When this probability becomes large, i.e. Prob > O(1), multiple emissions have to be accounted for.
What drives the enhancement is the separation of the jet scale pT R and the non-perturbative cut-off
Q0 ∼ ΛQCD. Accounting for many such splittings is achieved through evolution equations that obey
angular ordering as dictated by the coherence properties of multi-gluon emissions.

In addition, for small cone-size jets one should also resum potentially large logarithms in 1/R.
The distributions of micro-jets, with (small) cone size R, originating from a parton of species i,
carrying a momentum fraction z of the total energy fjet/i(z, t), where t = log 1/R, is similarly given
by the evolution equation

∂

∂t̃
fjet/i(z, t̃) =

∫ 1

0

dz′

z′
αs

π
Pji(z′) fjet/ j

( z
z′
, t̃
)
, (3)

where Pji(z) (i = q, g) are the regularized Altarelli-Parisi splitting kernels [5, 6, 7]. This is equivalent
to the celebrated DGLAP evolution equations.

From the point of view of medium interactions, it is a relevant question to ask whether some of
these O(1) emissions take place at early times, while the projectile is still inside the medium. In this
context, the relevant quantity to consider is the formation time tf. It can be estimated as the time
when a dipole consisting of the products of the splitting, whose transverse size is grows linearly
with time x⊥ ∼ θt, can be resolved by a wave-length λ⊥ ∼ 1/k⊥ ∼ 1/(ωθ). Demanding that x⊥ ∼ λ⊥
defines the formation time to be

tf ∼ 1
ωθ2
∼ ω

k2⊥
. (4)

The first equality indicates that, at fixed emission angle θ, soft gluons are created at late times. This
is indeed what is expected from the conventional QCD cascade. Hard emissions, on the other hand,
can occur at short tf.

In the following, we will briefly recall the physics of parton propagation and branching in a
dense medium. This allows us to compute the total amount of energy taken away from a single
parton and the resulting shift of the underlying spectrum. We then turn to the question of jets
and exploit the occurrence of hard QCD radiation early in the medium that act as new sources
of bremsstrahlung and enhance energy loss. Opening up the jet cone sheds light on the delicate
balance between allowing for more early, hard QCD radiation (“wider” jets) that lead to stronger
energy loss and the recovery of soft fragments within the cone. This interplay ultimately is a probe
of the degree of thermalization of the soft fragments within a medium-modified jet.

2. Medium-induced processes

A fast particle moving through a medium, will experience transverse momentum broadening,
according to

d〈k2⊥〉
dt
= q̂ , (5)

where q̂ is the jet transport coefficient that plays a role as a diffusion parameter. For a medium
in thermal equilibrium, it scales as q̂ ∼ m2

D/�mfp ∼ g4T 3 (up to logarithms), where the Debye mass
mD ∼ gT represents a typical momentum scale of that is exchanged with the medium and the mean
free path �mfp = (nσel)−1 ∼ m2

D/(α
2
sn) ∼ 1/(g2T ), where n ∼ T 3 is the density of scattering centers.
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Heuristic discussion. Momentum broadening alters the trajectories of particles in the medium, but
it also affects the possible radiation that occurs during the passage through the medium. In order
to estimate the spectrum of such emissions, let us consider the formation time of gluons that are
affected by this transverse momentum broadening, i.e. tf ∼ ω/k2⊥ where the magnitude of k2⊥ is
governed by Eq. (5). We obtain that the typical formation or branching time scales as

tf ∼ tbr ∼
√
ω

q̂
. (6)

In turn, the typical transverse momentum acquired at emission time, is k2⊥ ∼ k2
br =

√
ωq̂. Instead

of the double-logarithmic structure of vacuum radiation, the bremsstrahlung spectrum of medium-
induced gluons can be written per unit time dt suggestively as

dI =
αsCR

π

dω
ω

dt
tbr
. (7)

We note that the first two terms in the product, related to the combination of the running coupling
constant and the color charge of the emitter as well as the soft divergence term dω/ω, resemble
closely the structure of vacuum radiation.

While Eq. (7) was derived from purely heuristic arguments, it reproduces remarkably well the
behavior of the full, analytical spectrum, to be reviewed in more detail below. Let us therefore
describe three distinct regimes of the bremsstrahlung spectrum, that features two characteristic
length scales of the medium.

Bethe-Heitler regime: We start with the regime where the branching time is of the order of the
mean free path in the medium, i.e. tbr ∼ �mfp or ω ∼ ωBH = q̂�2mfp ∼ T . Our heuristic estimate
gives that the spectrum of emissions after traversing a length L inside the medium is

dI =
αsCR

π

L
�mfp

dω
ω
. (8)

This is the so-called Bethe-Heitler bremsstrahlung spectrum that describes emissions due to
incoherent scattering off the medium that is proportional to the number of scatterers Nscat ∼
L/�mfp.

LPM regime: The other length scale in the game is indeed the extent of the medium L and when
the number of scatterings Nscat = L/�mfp > 1 one has to consider interference effects between
different scattering centers. For branching times �mfp < tbr < L, the spectrum is simply given
by

dI =
αsCR

π

√
q̂L2

ω

dω
ω
. (9)

The soft energy divergence is indeed stronger that in vacuum, i.e. ω−3/2, which is a conse-
quence of the Landau-Pomeranchuk-Migdal (LPM) interference [8, 9, 10, 11]. The number
of effective scattering centers is in this case Neff = Nscat/Ncoh ∼ L/tbr, where the number of
coherent scatterings per radiation is Ncoh ∼ tbr/�mfp.

From Eq. (9) we also identify the maximal energy due to medium rescattering ωc = q̂L2,
which corresponds to long branching times tbr = L. The transverse momentum accumulated
is then simply k2⊥ = q̂L. The fact that the spectrum in Eq. (9) scales linearly with L also
indicates that the splitting can happen at any place in the medium with equal probability.

UV regime: Finally, when the gluon energy (transverse momentum) is large, i.e. ω > ωc (k2⊥ > q̂L),
the analysis is slightly more involved. The underlying k⊥ spectrum for k2⊥ � q̂L is steeply
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Fig. 1. (Left) Illustration of the three-point function that contributes to the spectrum of medium-induced gluons. (Right)
Spectrum of medium-induced gluons ωdI/dω as a function of the gluon energy ω. Figure adapted from [13].

falling, i.e. ∼ 1/k4⊥. Hence, the integral over k2⊥ is dominated by its lower limit. Since large
formation times tf > L, or k2⊥ < ω/L, are suppressed by the LPM effect, the range of available
transverse momenta is bound from below by k2⊥ > ω/L > q̂L. The spectrum is again dominated
by a single scattering, hence proportional to the length times the density of scattering centers
α2

snL ∼ q̂L, and reads

dI ∼ αsCR

π
q̂L

dω
ω

∫ ∞
ω/L

dk2⊥
k4⊥
=
αsCR

π

ωc

ω

dω
ω

(10)

This corresponds to the high-energy regime of GLV spectrum [12]. The fact that the spectrum
is again proportional to the number of scattering centers, suggests that this regime is again
dominated by rare (incoherent) interactions with the medium.

Medium-induced radiation. The heuristic presentation of the spectrum of medium-induced gluons
outlined above gives provides a quite accurate description compared to the full theoretical descrip-
tion. Consider the splitting of a parent parton a, carrying energy E, into two daughter partons b and
c carrying energies zE and (1− z)E, respectively, see Fig. 1 (left). The spectrum of medium-induced
splitting is given as

z
dIba

dz
=
αs zpba(z)

(z(1 − z)E)2 2Re
∫ ∞

0
dt2

∫ t2

0
dt1 ∂x · ∂y

[
(x|Kba(t2, t1)|y) − (x|K (0)

ba (t2, t1)|y)
]

x=y=0
, (11)

where pba(z) are the unregularized Altarelli-Parisi splitting functions. The Green’s function K(t2, t1)
incorporates the effects of multiple scattering in the medium between an initial time t1 and a final
time t2 of three propagators. This is illustrated in Fig. 1 (left), where the the two times correspond
to the splitting time in the amplitude and complex conjugate amplitude, respectively. The upper and
middle lines correspond to the daughter partons propagating after the splitting occurred at time t1
in the amplitude, while the lower line corresponds to the parent before the splitting occurs at time
t2 in the complex conjugate amplitude. This can be generally written, in arbitrary representation,
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in implicit form as

K(t2, t1) = K (0)(t2 − t1) +
∫ t2

t1
dsK (0)(t2 − s)v(s)K(s, t1) , (12)

where v(s) represents the three-body potential. In Eq. (11) it is convenient to write the representa-
tion of the three-point function in transverse coordinate space which is in turn equivalent, through
a Fourier transform, to the transverse momentum space representation.

The kernel v(t) accounts for the exchange of momenta between all three propagating pieces of
the correlator, see Fig. 1, at a given instant t during the propagation. In coordinate representation
we write

vba(x, t) =
Cb +Cc −Ca

2
ṽ(x, t) +

Cc +Ca −Cb

2
ṽ(zx, t) +

Ca +Cb −Cc

2
ṽ
(
(1 − z)x, t

)
, (13)

where Ca, Ca and Cc are the color factors associated with partons in representations a, b and c,
respectively. The elementary two-body potential, stripped of the color factor, reads

ṽ(x, t) =
∫

q

dσel

d2q

(
1 − eiq·x) ≈ 1

4Nc
x2q̂0(t) ln

1
μ2x2 + . . . (14)

where we only write explicitly the first dominant term of the expansion. We have also assumed
an IR screening the perturbative 2 → 2 elastic scattering cross section dσel/dq2 � g4n/q4⊥ at scale
q⊥ ∼ μ, which is related to the Debye screening mass. Finally, K (0)

ba (Δt) is the three-point correlator
in vacuum, and reads simply

(x|K (0)
ba (t2, t1)|y) = δba

ω

2πiΔt
exp
{

i
ω

2
(x − y)2

Δt

}
, (15)

where Δt = t2 − t1 and ω = z(1 − z)E. It is explicitly subtracted in Eq. (11) in order to remove all
vacuum like contributions to the spectrum.

There exists at least three approaches to compute this correlator. First, one can attempt a brute-
force order by order evaluation of the expansion in Eq. (12) which is usually referred to as the
opacity expansion [12, 14].1 While many calculations in the current literature are based on the
first order in opacity (N = 1), recently there has been a lot of effort devoted to computing higher
orders [17, 18, 19]. Second, by neglecting the logarithmic contribution and substituting the first
order of Eq. (14) for the full potential, that is ṽ(x) ∝ x2q̂, one can solve the three-point correlator
analytically. This typically goes under the name of the harmonic oscillator approximation (HO),
see e.g. [20, 21]. A third way is to solve the evolution equation numerically, see originally [22]
and [23, 24, 25] for recent work.

Finally, it was also recently suggested to shift the point of expansion in order to make the
resummation more efficient [26, 13]. Concretely, in [13] it was suggested to explicitly extract the
harmonic oscillator term, i.e.

ṽ(x, t) = ṽHO(x, t) + δṽ(x, t) , (16)

where ṽHO(x, t) ∝ x2q̂ ln Q2
sub/μ

2 and Qsub is a suitable matching scale. The advantage of this trick is
that the 0th order (harmonic oscillator) solution is known analytically and higher-order corrections
amount to small perturbations around it. It also naturally embodies the expected behavior in the
IR and UV regimes.

The medium-induced spectrum in the soft limit z  1 (or alternatively E → ∞), where ω �
zE, is plotted in Fig. 1 (right). We have explicitly marked the characteristic energy scales ωBH =

1See also [15, 16] for related results in the higher-twist formalism.
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q̂�2m f p and ωc = q̂L2 according to the discussion above. We have additionally plotted the results
from the N = 1 (denoted by “GLV” in the figure) (orange, dashed curve) and HO (denoted by
“BDMPS”) approximations (blue, dotted curve). Finally, we also plot the results from considering
the decomposition in Eq. (16) up to next-to-leading order [13] which provides a good description
across the three distinct regimes.

Modification of spectra due to energy loss. In order to calculate the full amount of energy lost by a
parton, we should account for multiple emissions. Assuming independent emissions that can easily
be achieved leading to the definition of a probability distribution P(ε; R, L) to lose energy ε out of
cone with radius R during the in-medium propagation along L (we typically will suppress the cone
size and length dependence when writing this distribution). It is then given by [27, 20]

P(ε) = P0δ(ε) +
∞∑

n=1

1
n!

n∏
i=1

∫ ∞
0

dωi
dI>
dωi
P0 δ

⎛⎜⎜⎜⎜⎜⎝ε −
n∑

i=1

ωi

⎞⎟⎟⎟⎟⎟⎠ , (17)

where P0 = exp
(
− ∫ ∞0 dω dI>

dω

)
is the no-emission probability. In Laplace space, this lengthy expres-

sion simplifies to

P̃(ν) = exp
[∫ ∞

0
dω

dI>
dω
(
e−ων − 1

)]
. (18)

The subscript “>” on the spectrum in the expressions above implies that we only consider gluons
that are emitted a larger angles than the cone size. This can be calculated from the full double-
differential spectrum but for our purposes it can easily be accounted for assuming that medium-
induced quanta typically accumulate transverse momentum of the order of ∼ √q̂L.2

The latter representation is particularly useful, since the medium-modified spectrum,

dσmed

dpT
=

∫ ∞
0

dε P(ε)
dσvac

dp′T

∣∣∣∣∣∣
p′T=pT+ε

≈ dσvac

dpT

∫ ∞
0

dε P(ε)e−ε
n

pT =
dσvac

dpT
Q(pT ) , , (19)

is proportional to the vacuum spectrum times a jet suppression factor Q(pT ) which, up to correc-
tions, is nothing else than the Laplace transform at ν = n/pT , where n is the index of the steeply
falling spectrum. It turns out that quenching is large whenever the multiplicity of radiated gluons
is large, namely at the scale α2

s q̂L2 which is denoted explicitly in Fig. 1 (right) [27]. At this scale,
a refined description, which accounts for secondary branchings, is needed [28, 29].

We plot the quenching factor for a single quark or gluon in Fig. 2 left and right panel, re-
spectively, in dashed lines. The different colors denote the angle above which the bremsstrahlung
gluons have to be emitted. We observe that with larger angles, the quenching gets weaker be-
cause of the gradual recovery of energy deposited at finite angles away from the jet as we open the
reconstruction cone.

3. Multi-parton energy loss and jet quenching

As explained above, radiation induced by the medium has a limited range in energy or trans-
verse momentum. However, hard radiation, with correspondingly short formation time, can occur
if the phase space of the jet permits it. Such splittings correspond to vacuum-like emissions inside
the medium [30, 31] so long as k2⊥ >

√
q̂ω, or tf < td. The decoherence time td is the time-scale

when a medium wave-length resolves a formed dipole and reads td ∼ (q̂θ2)−1/3. Furthermore, in
order for the splitting to be resolved by the medium we have to demand that td < L which implies
that θ > θc = (q̂L3)−1/2. In the opposite case, the splittings are too narrow to be resolved during the
passage through the medium and can therefore be considered to happen outside of the medium.

2It is worth mentioning that in this formulation the energy is lost independently via different mechanisms, and can be
accounted for as P(ε) =

∫
dε1dε2 δ(ε−ε1−ε2)Prad(ε1)Pel(ε2) and the spectrum is suppressed by a product of quenching factors.
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Fig. 2. The bare quenching factors and resulting collimators for quark (left) and gluon (right) initiated jets.

Fig. 3. Phase space illustrating hard, re-
solved jet emissions inside the medium.

These in-medium splittings have the following phase
space

(Prob.)in = ᾱ

∫ R

0

dθ
θ

∫ pT

0

dω
ω
Θin

= 2ᾱ
(
ln

pT

ωc
ln

R
θc
+

2
3

ln2 R
θc

)
, (20)

where Θin ≡ Θ(tf < td < L). We obtain a potentially
large logarithm of the jet energy, pT , which indicates that
the probability to form a vacuum cascade early inside the
medium when (Prob.)in > O(1), see also [32, 33]. This
cascade fully retains its color coherence properties and is
therefore ordered in angle.

At this stage we have clarified that a jet can branch sev-
eral times before being affected by the medium, but we still
have to understand how this color-coherent set of partons
interact with the medium at later times. It turns out that,
in the leading-logarithmic limit where td  L, all partons
eventually get resolved inside the medium and lose energy

independently [34]. For the medium-modified jet spectrum in Eq. (19), the single-parton quench-
ing factor Q(pT ) should be replaced by a multi-parton quenching factor Q(pT ,R) that counts the
number of hard in-medium jet splittings. This is achieved through a novel, non-linear evolution
equation [30]

Qa(p,R) = Qa(p) +
∫ R

0

dθ
θ

∫ 1

0
dz
αs

π
pba(z)Θin

[
Qb(zp, θ)Qc((1 − z)p, θ) − Qa(p, θ)

]
. (21)

where the evolving variable p is ultimately matched to pT . At high-pT , when the single parton
quenching factor tends to unity Q(pT )→ 1, the solution of the evolution is a fixed point at Q(pT ,R) =
1 as well.

We plot the fully resummed quenching factors for an initiating quark or gluon are plotted with
full lines in Fig. 2. The curves show the interplay between opening up phase space for hard radia-
tion at large angles, leading to enhanced energy loss, and the gradual recovering of energy, again
at large angles.
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4. Summary

To summarize, QCD jet showering depends on the possibility for copious soft and collinear
radiation. These emissions are, up to leading-logarithmic accuracy, also endowed with a specific
space-time structure of subsequent emissions. It is therefore reasonable to estimate that the hardest
branches form very early, e.g. of the order of 0.1 fm for 100 GeV jets, thus making them especially
sensitive to further medium interactions.

We have also briefly summarized the understanding of bremsstrahlung radiation in a deconfined
QCD medium. It turns out that the emissions span a wide range of scales, from the Bethe-Heitler
ωBH ∼ T scale to ωc ∼ q̂L2 (or k2⊥ = q̂L). Harder emissions are suppressed in the medium and can
therefore only arise as a results of jet showering. It turns out that in a dense medium, where Nscat �
1, bremsstrahlung radiation constitute an efficient way of losing energy through the emission of
multiple soft gluon with energies α2

s q̂L2 that get deflected and broadened up to large angles.
Finally, the total amount of energy lost by a jet is a superposition of quenching of all its emissions

that were created, and subsequently resolved, early in the medium, i.e. with tf < td or k2⊥ >
√

q̂ω.
This offers a new handle to measure the effect of q̂. In particular, the R dependence of the jet
spectrum is sensitive to the intricate balance between an increased phase space for hard radiation
and the flow in and out of the jet cone that is closely related to the ability for soft, medium-induced
jet fragments to thermalize with the underlying medium. The sensitivity of the details of phase
space modeling is already built into many Monte Carlo models (such as MARTINI [35], the Saclay
model [32] and the hybrid model [36]—the latter with a different phase space constraint), and
therefore further theoretical studies are needed to understand this process in detail.
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