
1. Introduction
Large coronal mass ejections from the Sun release massive amounts of plasma, which flow at high speed 
into the interplanetary space. The interaction of this solar wind with the Earth’s magnetosphere can lead to 
significant spatiotemporal disturbances of the magnetic field at the surface of the Earth, which are known as 
geomagnetic storms. These space weather events induce a geoelectric field (GEF) in the Earth’s subsurface, 
which in turn drives geomagnetically induced currents (GIC) in ground-based technological systems such 
as power grids and pipelines posing a significant risk to the reliability and durability of such infrastructure.

The core component in quantitative estimation of the hazard to technological systems from space weather 
is as realistic as practicable numerical modeling of GIC, and, ultimately, their forecasting. Ideally, to per-
form GIC modeling one needs the following ingredients: (a) a realistic model of the source of geomagnetic 
disturbances; (b) a comprehensive three-dimensional (3-D) electrical conductivity model of the Earth’s sub-
surface in the region of interest; (c) a 3-D numerical solver which allows for accurate and detailed modeling 
of the GEF in a given conductivity model excited by a given source; and (d) the geometry of transmission 
lines and system design parameters that allow for the conversion of the modeled GEF into GIC.

Many previous studies in connection with GIC operated with simplified models either of conducting Earth 
(one-dimensional (1-D) or thin sheet conductivity models) or the source (vertically propagating laterally 
uniform electromagnetic (EM) field; plane wave), or both (e.g., Bailey et al., 2017, 2018; Beggan, 2015; Beg-
gan et al., 2013; Divett et al., 2017, 2020; Honkonen et al., 2018; Kelly et al., 2017;Püthe & Kuvshinov, 2013; 
Püthe et al., 2014; Viljanen et al., 2012, 2013, 2014).

Abstract Ground-based technological systems, such as power grids, can be affected by 
geomagnetically induced currents (GIC) during geomagnetic storms and magnetospheric substorms. This 
motivates the necessity to numerically simulate and, ultimately, forecast GIC. The prerequisite for the 
GIC modeling in the region of interest is the simulation of the ground geoelectric field (GEF) in the same 
region. The modeling of the GEF in its turn requires spatiotemporal specification of the source which 
generates the GEF, as well as an adequate regional model of the Earth’s electrical conductivity. In this 
paper, we compare results of the GEF (and ground magnetic field) simulations using three different source 
models. Two models represent the source as a laterally varying sheet current flowing above the Earth. 
The first model is constructed using the results of a physics-based 3-D magnetohydrodynamic (MHD) 
simulation of near-Earth space, the second one uses ground-based magnetometers’ data and the Spherical 
Elementary Current Systems (SECS) method. The third model is based on a “plane wave” approximation 
which assumes that the source is locally laterally uniform. Fennoscandia is chosen as a study region and 
the simulations are performed for the September 7–8, 2017 geomagnetic storm. We conclude that ground 
magnetic field perturbations are reproduced more accurately using the source constructed via the SECS 
method compared to the source obtained on the basis of MHD simulation outputs. We also show that the 
difference between the GEF modeled using laterally nonuniform source and plane wave approximation is 
substantial in Fennoscandia.
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In spite of the fact that the importance of performing simulations using fully 3-D conductivity models 
is currently widely recognized (Kelbert, 2020), such simulations are still rather rare in the GIC commu-
nity (e.g., Liu et  al.,  2018; Marshalko et  al.,  2020; Marshall et  al.,  2019; Nakamura et  al.,  2018; Pokhrel 
et al., 2018; Rosenqvist & Hall, 2019; Wang et al., 2016), mostly due to the lack of the credible 3-D conduc-
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Figure 1. Conductivity distribution [S/m] in the model: (a)–(c) Plane view on three layers of the 3-D part of the model; (d) global 1-D conductivity profile 
derived by Grayver et al. (2017) and used in this study. Locations of geomagnetic observatories Abisko (ABK), Uppsala (UPS), Saint Petersburg (SPG), and P1, 
P2, and P3 points are marked with circles in plot (a).
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Figure 2. Global snapshots of the external magnetic field components at the surface of the Earth computed based on the SWMF outputs at 23:16 and 23:52 UT 
on September 7, 2017. Bx, By, and Bz are northward, eastward, and downward directed components, respectively.
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tivity models of the regions of interest as well as unavailability of adequate tools to model the problem in 
the full complexity.

As for the source, approximating it by plane waves still prevails in the GIC-related studies (e.g., Cam-
panya et al., 2019; Kelbert & Lucas, 2020; Kelbert et al., 2017; Lucas et al., 2018; Sokolova et al., 2019; 
Wang et al., 2020). This approximation seems reasonable in low and middle latitudes, where the main 
source of anomalous geomagnetic disturbances is a large-scale magnetospheric ring current. However, 
the plane wave assumption may not work in higher latitudes, where the main source of the disturbances 
is the auroral ionospheric current, which is extremely variable both in time and space, especially during 
periods of enhanced geomagnetic activity (Belakhovsky et al., 2019). Marshalko et al. (2020) provided 
some evidence for that by comparing ground EM fields modeled in the eastern United States using 
the plane wave approximation and the excitation by a laterally variable source which was constructed 
using outputs from 3-D magnetohydrodynamic (MHD) simulation of near-Earth space. The authors 
found that the difference increases toward higher latitudes where the lateral variability of the source 
expectedly enlarges. However, their modeling was mostly confined to the midlatitude region, thus it 
is still unclear how pronounced the difference between the plane wave and “laterally varying source” 
results could be in auroral regions. In this paper, we investigate this problem using Fennoscandia as a 
study region. The choice of Fennoscandia is motivated by: (a) high-latitude location of the region; (b) 
the availability of the 3-D ground electrical conductivity model of the region (Korja et al., 2002); (c) the 
existence of the regional magnetometer network (International Monitor for Auroral Geomagnetic Ef-
fect, IMAGE (Tanskanen, 2009)) allowing us to build a data-based model of a laterally variable source, 
which is a natural alternative to physics-based (MHD) source model in the areas with a reasonably 
dense net of observations.
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Figure 3. Snapshots of the magnitude and direction of the equivalent current computed using the SECS method at an altitude of 90 km above the surface of 
the Earth at 23:16 and 23:52 UT on September 7, 2017. Locations of IMAGE magnetometers (including Abisko (ABK) and Uppsala (UPS)), the data from which 
were used for the equivalent current construction, are marked with squares. The location of the Saint Petersburg (SPG) geomagnetic observatory is marked with 
a circle. Note that SPG is not a part of the IMAGE magnetometers network and its magnetic field data were not used for the equivalent current construction.
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Specifically, we perform 3-D modeling of ground electric and magnetic fields in Fennoscandia using 
three different source models and taking September 7–8, 2017 geomagnetic storm as a space weath-
er event. Two models approximate the source by a laterally varying sheet current flowing above the 
Earth’s surface. One of the models is built using the results of physics-based 3-D MHD simulation of 
the near-Earth space, another model uses the IMAGE magnetometer data and the Spherical Elemen-
tary Current Systems (SECS) method (Juusola et  al.,  2020; Vanhamäki & Juusola,  2020). The third 
modeling is based on a “plane wave” approximation which assumes that the source is locally laterally 
uniform. Note that previous GIC-related studies in Fennoscandia operated with both 1-D (e.g., Myllys 
et  al.,  2014; Pulkkinen et  al.,  2005; Viljanen & Pirjola,  2017) and 3-D (Dimmock et  al.,  2019, 2020; 
Rosenqvist & Hall, 2019) Earth’s conductivity models, the magnetic field in most of these papers was 
allowed to be laterally variable, but the GEF was always calculated implicitly assuming the plane wave 
excitation.

We compare modeling results and discuss found differences and similarities. We also compare the results 
of magnetic field modeling with observations. The paper is organized as follows. The methodology used is 
described in Section 2 followed by the presentation of our results in Section 3. Finally, the discussion of our 
results and conclusions are given in Section 4.
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Figure 4. Three upper plots: modeled and observed time series of magnetic field at Abisko (ABK) geomagnetic 
observatory. Two lower plots: modeled time series of horizontal electric field. The results are shown for a time window 
from 20:00 UT, September 7, 2017 to 03:59 UT, September 8, 2017. Vertical dashed lines mark time instants (23:16 and 
23:52 UT September 7, 2017) for which the results in Figures 2, 3, 8, and 9 are shown.
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2. Methodology
2.1. Governing Equations and Modeling Scheme

We compute electric, E(t, r), and magnetic, B(t, r), fields for a given Earth’s conductivity distribution σ(r) 
and a given inducing source jext(t, r), where t and r = (x, y, z) denote time and position vector, correspond-
ingly. These fields obey Maxwell’s equations, which are written in the time domain as




   
0

1 ,extB E j (1)


   


,

t
BE (2)

where μ0 is the magnetic permeability of free space. Note that this formulation of Maxwell’s equations ne-
glects displacement currents, which are insignificant in the range of periods considered in this study. We 
solve Equations 1 and 2 numerically using the following three-step procedure:

1.  The inducing source jext(t, r) is transformed from the time to the frequency domain with a fast Fourier 
transform (FFT)
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Figure 5. The same caption as in Figure 4 but for Uppsala (UPS) geomagnetic observatory.
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2.  Maxwell’s equations in the frequency domain




   
0

1 ,extB E j (3)

   ,iE B (4)

are numerically solved for the corresponding angular frequencies ω = 2πf, using the scalable 3-D EM for-
ward modeling code PGIEM2G (Kruglyakov & Kuvshinov, 2018), based on a method of volume integral 
equations (IE) with a contracting kernel (Pankratov & Kuvshinov, 2016).

We would like to note here that in our previous papers (Ivannikova et al., 2018; Marshalko et al., 2020) 
we used modeling code extrEMe (Kruglyakov et al., 2016) which is also based on the IE method. The 
distinction between the two codes lies in the different piece-wise bases used. PGIEM2G exploits a piece-
wise polynomial basis whereas extrEMe uses a piece-wise constant basis. We found that in order to prop-
erly account for the effects (in electric field) from extremely large conductivity contrasts in the Fennos-
candian region, extrEMe requires significantly larger computational loads compared to the PGIEM2G. 
This is the reason why we used the PGIEM2G code rather than extrEMe to obtain the modeling results 
presented in this paper. Specifically, PGIEM2G was run with the use of first-order polynomials in lateral 
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Figure 6. The same caption as in Figure 4 but for Saint Petersburg (SPG) geomagnetic observatory.
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Figure 7. SECS-based and plane-wave-based GEF modeling results at three sites located in the regions with high 
lateral conductivity contrasts; locations of these sites are shown in Figure 1.
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Figure 8. Top and middle: magnitudes of respective SECS-based and MHD-based GEF. Bottom: absolute differences 
between corresponding GEF magnitudes.
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Figure 9. The same caption as in Figure 8 but for SECS-based and plane-wave-based GEF.
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directions and third-order polynomials in the vertical direction. Frequencies f range between 
1
L

 and 
1

2Δt
 

where L is the length of the (input) times series of the inducing current jext(t, r), and Δt is the sampling 

rate of this time series. In this study Δt is 1 min, and L is 8 h.
3. E(t, r) and B(t, r) are obtained with an inverse FFT of the frequency-domain fields.

2.2. 3-D Conductivity Model

3-D conductivity model of the region was constructed using the SMAP (Korja et al., 2002)—a set of maps 
of crustal conductances (vertically integrated electrical conductivities) of the Fennoscandian Shield, sur-
rounding seas, and continental areas. The SMAP consists of six layers of laterally variable conductance. 
Each layer has a thickness of 10 km. The first layer comprises contributions from the seawater, sediments, 
and upper crust. The other five layers describe conductivity distribution in the middle and lower crust. 
SMAP covers 0°E–50°E and 50°N–85°N area and has a 5′ × 5′ resolution. We converted the original SMAP 
database into a Cartesian 3-D conductivity model of Fennoscandia with three layers of laterally variable 
conductivity of 10, 20, and 30 km thicknesses (Figures 1a–1c). This vertical discretization is chosen to be 
compatible with that previously used by Rosenqvist and Hall (2019) and Dimmock et al. (2019, 2020) for 
GIC studies in the region. Conductivities in the second and the third layers of this model are simple aver-
ages of the conductivities in the corresponding layers of the original conductivity model with six layers. To 
obtain the conductivities in Cartesian coordinates, we applied the transverse Mercator map projection (lati-
tude and longitude of the true origin are 50°N and 25°E, correspondingly) to original data and interpolated 
the results onto a regular lateral grid. The lateral discretization and size of the resulting conductivity model 
were taken as 5 × 5 km2 and 2,550 × 2,550 km2, respectively. Deeper than 60 km we used a 1-D conductivity 
profile obtained by Grayver et al. (2017) (cf. Figure 1d).

2.3. EM Induction Source Settings

In this section, we discuss the construction of two models of a laterally variable source and also explain how 
the EM field is calculated in the framework of the plane wave (laterally uniform source) concept. The sourc-
es are set up for the geomagnetic storm on September 7–8, 2017, more specifically, for 8-h time period from 
20:00 UT, September 7, 2017 to 03:59 UT, September 8, 2017, thus, before and during the main phase of the 
storm. The disturbance storm time (Dst) index during this geomagnetic storm reached −124 nT according 
to the World Data Center of Kyoto (http://wdc.kugi.kyoto-u.ac.jp/dstdir/). More details on the September 
2017 storm can be found in Linty et al. (2018) and Dimmock et al. (2019).

2.3.1. Construction of the Source on the Basis of an MHD 
Simulation

The first source model is based on the results of the physics-based 3-D 
MHD simulation of near-Earth space. In this study, we employ the Space 
Weather Modeling Framework (SWMF, Toth et al., 2005, 2012). The input 
to this MHD model is solar wind (density, temperature, velocity) and in-
terplanetary magnetic field parameters measured at satellites located at L1 
Lagrange point, such as Advanced Composition Explorer (ACE) and Deep 
Space Climate Observatory (DSCOVR). The other input is the solar radio 
flux at F10.7 cm (2,800 MHz). The outputs are time-varying 3-D currents 
in the magnetosphere, horizontal currents in the ionosphere, and field-
aligned currents flowing between the magnetosphere and the ionosphere. 
These output data are then used to calculate (via the Biot-Savart law) ex-
ternal magnetic field perturbations Bext(t, r) at the ground using the Cal-
cDeltaB tool (Rastätter et al., 2014). Figure 2 demonstrates snapshots of the 
external magnetic field components at 23:16 and 23:52 UT on September 7, 
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ABK UPS SPG

nRMSE(Bx,SECS, Bx,obs) 0.14 0.52 0.34

nRMSE(By,SECS, By,obs) 0.32 0.5 1.17

nRMSE(Bz,SECS, Bz,obs) 0.28 0.27 0.31

corr(Bx,SECS, Bx,obs) 0.99 0.92 0.95

corr(By,SECS, By,obs) 0.95 0.93 0.39

corr(Bz,SECS, Bz,obs) 0.97 0.98 0.95

The results are shown for a time window from 20:00 UT, September 7, 
2017 to 03:59 UT, September 8, 2017.

Table 1 
Normalized Root-Mean-Square Errors and Correlation Coefficients 
Between SECS-Based and Observed Magnetic Fields at Abisko (ABK), 
Uppsala (UPS), and Saint Petersburg (SPG) Geomagnetic Observatories

http://wdc.kugi.kyoto-u.ac.jp/dstdir/
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2017 (during the main phase of the geomagnetic storm). Time series of the 
external magnetic field are computed globally at a 5° × 5° grid with a 1-min 
sampling rate and further converted into the equivalent current (stream) 
function Ψ(t, r). The equivalent current density (jext(t, r) in Equation 1 is 
then calculated at the surface of the Earth based on the current function 
data as

 (5)

where δ(z − 0+) is Dirac’s delta function, er is the radial (outward) unit 
vector, and ∇⊥ is the surface gradient. The whole scheme of the equiva-
lent current density calculation from the outputs of MHD simulations is 
discussed in Ivannikova et al. (2018).

The SWMF run, results of which are used in the current study, was performed at NASA’s Community 
Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. The version of the SWMF 
is v20140611. The Rice Convection Model was used to simulate the inner magnetosphere dynamics 
(Toffoletto et  al.,  2003). The ionospheric electrodynamics is simulated using the Ridley Ionosphere 
Model (Ridley et al., 2004). The MHD modeling domain consists of about one million grid cells. The 
size of the smallest cells is 0.25 RE (where RE is the Earth radius) close to the inner boundary of the 
modeling domain. The size of the largest cells is 8 RE (close to the outer boundary in the distant tail). 
The outer boundaries are set at 32 RE in the +x upstream direction, 224 RE in the −x downstream di-
rection, and 128 RE in the ±y and z directions (GSM coordinates). The inner boundary is located at a 
distance of 2.5 RE from the Earth’s center. One-minute OMNI solar wind data were used as an input in 
this run. The F10.7 cm flux was set to 130.4. Details and results of the run are available at the CCMC 
website (https://ccmc.gsfc.nasa.gov, run number Naomi_Maruyama_011818_1).

We would like to note that we also performed SWMF simulations with the same input parameters as were 
used in the CCMC Naomi_Maruyama_011818_1 run, but with different spatial resolutions at the inner 
boundary of the modeling domain, namely, 0.125 and 0.0625 RE. External magnetic fields (see Figure S1 
and Table S1 in the supporting information) from higher-resolution MHD simulations appeared not to 
differ significantly from those obtained based on Naomi_Maruyama_011818_1 run in the region of our 
interest. Taking into account that small differences in the external magnetic field should not notably affect 
modeling results, we construct the “MHD-based” source using Naomi_Maruyama_011818_1 simulation 
outputs.

2.3.2. Construction of the Source Using the SECS Method

The second model of the source was constructed using the SECS method (Vanhamäki & Juusola, 2020). In 
this method, the elementary current systems form a set of basis functions for representing two-dimensional 
vector fields on a spherical surface. An important application of the SECS method, which is relevant for this 
study, is the estimation of the ionospheric current system from ground-based measurements of magnetic 
field disturbances. Note that elementary current systems, as applied to ionospheric current systems, were 
first introduced by Amm (1997).

With the help of the SECS technique, it is possible to separate the meas-
ured magnetic field into external and internal parts, which are represent-
ed by two equivalent sheet currents placed in the ionosphere and under-
ground (Juusola et al., 2020).

To construct the external sheet current, we used IMAGE 10 s vector mag-
netic field data from all available stations, except for Røst and Harestua, 
for which the baselines are not yet determined. Baselines are subtract-
ed from variometers’ measurements according to the method of van de 
Kamp (2013). Ionospheric current density is computed using the 2-D SECS 
method (Vanhamäki & Juusola, 2020) with the following parameters:

      ( 0 )( Ψ),ext
rzj e
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ABK UPS SPG

nRMSE(Bx,MHD, Bx,obs) 0.78 0.77 0.73

nRMSE(By,MHD, By,obs) 1 1.25 1.06

nRMSE(Bz,MHD, Bz,obs) 0.81 0.81 0.76

corr(Bx,MHD, Bx,obs) 0.67 0.72 0.7

corr(By,MHD, By,obs) 0.15 0.28 0.18

corr(Bz,MHD, Bz,obs) 0.62 0.8 0.78

Table 2 
The Same Caption as in Table 1 but for the MHD-Based Magnetic Field

ABK UPS SPG

nRMSE(Ex,MHD, Ex,SECS) 1.05 1.16 1.06

nRMSE(Ey,MHD, Ey,SECS) 1.05 1.29 1.24

corr(Ex,MHD, Ex,SECS) 0.001 0.12 0.06

corr(Ey,MHD, Ey,SECS) 0.09 0.05 0.06

Table 3 
The Same Caption as in Table 1 but for the Horizontal Electric Field

https://ccmc.gsfc.nasa.gov
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•  Altitude of the ionospheric equivalent current sheet: 90 km
•  Depth of the induced telluric equivalent current sheet: 0.001 km
•  Latitude resolution of the SECS grid: 0.5°
•  Longitude resolution of the SECS grid: 1°
•  Latitude range of the grid: from 59°N to 79°N
•  Longitude range of the grid: from 4°E to 42°E

Note that extrapolation of the equivalent current density up to 42°E is per-
formed in order to cover the whole region of Fennoscandia, even though 
the estimates of the equivalent current far from the stations are less relia-
ble. This applies not only to estimates in areas outside of the region covered 
by the stations but also to estimates inside of the region covered by the sta-
tions at locations where the distances between the nearby station are large.

Figure 3 demonstrates snapshots of equivalent current components at 23:16 and 23:52 UT on September 7, 
2017.

We further perform the equivalent current extrapolation in order to ensure its smooth decay outside the 
region covered by the data. This is done to avoid the occurrence of artifacts from the edges of the current 
sheet. We also reduce the temporal resolution of the estimated equivalent current from 10 s to 1 min in order 
to perform a comparison of modeling results obtained via the MHD-based and SECS-based sources. We 
then project the current density onto a region of interest and perform vector rotation, which is required for 
the results’ transition from spherical to Cartesian coordinate system. After that we interpolate the current 
density onto a regular Cartesian grid.

2.3.3. Plane Wave Modeling

The scheme of the GEF calculation via the plane wave approach differs from the one described in Sec-
tion 2.1. The plane wave modeling results are obtained as follows:

1.  3-D EM forward modeling is carried out via PGIEM2G code (Kruglyakov & Kuvshinov, 2018) with two 
(laterally uniform) plane wave sources for the SMAP conductivity model at FFT frequencies correspond-
ing to periods from 2 min to 8 h. 3-D MT impedances Z(ω, r) (Berdichevsky & Dmitriev, 2008) that relate 
the surface horizontal electric field with the surface magnetic field at each grid point r

   


 
    

 0

1( , ) ( , ) ( , ), ( , ) ,xx xy
h h

yx yy

Z Z
Z Z

Z Z
E r r B r r (6)

 are then calculated for each FFT frequency ω.
2.  We then consider the magnetic field modeled using the PGIEM2G code and the SECS-based source as the 

“true” magnetic field, thus mimicking the actual magnetic field in the region.
3.  Further, the horizontal GEF is calculated for each frequency and each grid point r as

  



0

1( , ) ( , ) ( , ).pw SECS
h hZE r r B r (7)

4.  Finally, an inverse FFT is performed for the frequency-domain GEF to obtain the “plane wave” GEF in 
the time domain.

3. Results
3.1. Comparing Results at a Number of Locations in the Region

We first compare modeled and recorded magnetic field variations at the locations of the geomagnetic observa-
tories Abisko (ABK), Uppsala (UPS), and Saint Petersburg (SPG) during the considered event. Observatories’  
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ABK UPS SPG P1 P2 P3

nRMSE(Ex,SECS, Ex,pw) 0.42 0.16 0.17 0.85 0.81 0.83

nRMSE(Ey,SECS, Ey,pw) 0.54 0.12 0.2 0.79 0.75 0.78

corr(Ex,SECS, Ex,pw) 0.94 0.99 0.99 0.53 0.58 0.57

corr(Ey,SECS, Ey,pw) 0.86 0.99 0.98 0.62 0.66 0.63

Table 4 
The Same Caption as in Table 1 but for the Horizontal Electric Field, 
SECS-Based and Plane-Wave-Based Results and for Three Extra Locations
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locations are shown in Figure 1. The sampling rate of the time series is 1 min. The linear trend was removed 
from observatory data before comparing them to modeling results.

Three upper plots in Figures  4–6 demonstrate time series of (total, i.e., external  +  induced) magnetic 
field modeled using MHD-based and SECS-based sources (hereinafter to be referred as MHD-based and 
SECS-based magnetic fields), as well as time series of the observed magnetic fields. We do not show in 
these plots “plane wave” magnetic fields because by construction they coincide with the SECS-based mag-
netic field (see the second item in Section 2.3.3). It is seen that the agreement between SECS-based and 
observed magnetic fields for ABK and UPS observatories is very good in all components. This is not very 
surprising because magnetic field data from these observatories were used to construct the SECS source. 
As the construction is based on the least-square approach, it inevitably attempts to make predictions 
close to observations. In this context probably the most interesting comparison is for the SPG observatory 
because this observatory is not a part of the IMAGE array, and its data were not used for the SECS source 
construction. Remarkably, the agreement between SECS-based and observed magnetic fields for SPG is 
also good, except By component. The disagreement in By may be due to a localized geomagnetic distur-
bance which is not accounted for in the SECS source model. Table 1 supports quantitatively the above 
observations by presenting correlation coefficients between corresponding time series and the normalized 
root-mean-square errors which is defined as
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i i ii ia b b

a b
n n
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where a and b are modeled and observed time series, respectively, ai and bi are elements of these time series, 
and n is the number of these elements.

It is also seen from the figures and Table 2 that the agreement between MHD-based and observed magnetic 
field is significantly worse for all considered observatories and all components. The agreement is especially 
bad in the By component. On the whole, the magnitude of MHD-based magnetic field perturbations is un-
derestimated (compared to the SECS-based and observed magnetic field perturbations). Moreover, MHD-
based magnetic field captures less of the short-period variability. These results are consistent with results 
of Kwagala et al.  (2020), who carried out SWMF simulations for a number of space weather events and 
compared SWMF-based (external) magnetic fields with observed ones at a number of locations in northern 
Europe. According to their modeling results, the SWMF predicts the northward component of external 
magnetic field perturbations better than the eastward component in auroral and subauroral regions, which 
is also the case in our modeling of the total magnetic field. As it was mentioned by Kwagala et al. (2020), 
poor prediction of the eastward component of magnetic field perturbations is directly related to the north-
ward current density in the ionosphere and may arise from the misplacement of the currents in the SWMF 
with respect to the magnetometer stations.

Finally, two lower plots in Figures 4–6 show plane-wave-based, SECS-based, and MHD-based horizontal 
GEF. Note that long-term continuous observations of GEF are absent in the region, thus only modeling 
results are shown in the plots.

Similar to the MHD-based magnetic field, the MHD-based GEF is underestimated compared to the SECS-
based GEF. The correlation between these modeling results is very low and nRMSE are high (see Table 3).

On the contrary, SECS-based and plane-wave-based electric fields are rather close to each other, especially 
at locations of UPS and SPG observatories; Table  4 illustrates this quantitatively. Correlation between 
modeling results at ABK observatory is lower and nRMSE is higher most likely due to the fact that this 
observatory is situated in the region with high lateral conductivity contrasts (resistive landmass and con-
ductive sea). To put more weight on this inference last three columns of Table 4 and Figure 7 demonstrate 
SECS-based and plane-wave-based results for three “sites” also located in the regions with high lateral 
conductivity contrasts (their locations are shown in Figure 1). Now we observe that the difference between 
the results is even more pronounced which is, in particular, reflected in lower correlation coefficients and 
higher nRMSE.

MARSHALKO ET AL.

10.1029/2020SW002657

14 of 18



Space Weather

3.2. Comparing Results in the Entire Region

Contrary to the previous section where we compared modeled and observed time series of the EM field at a 
number of locations, in this section, we compare MHD-based, SECS-based, and plane-wave-based electric 
fields in the entire region for two time instants discussed earlier in the paper.

Top and middle plots in Figure 8 show magnitudes of respective SECS-based and MHD-based GEF. Bottom 
plots show the absolute differences between corresponding GEF magnitudes. It is seen that SECS-based 
GEF significantly exceeds MHD-based GEF throughout the Fennoscandian region and for both time in-
stants. The largest differences occur in areas of strong lateral contrasts of conductivity (e.g., at the coast-
lines) and at higher latitudes.

In a similar manner, Figure 9 presents the comparison of SECS-based and plane-wave-based GEF. In con-
trast to MHD-based results, at a first glance magnitude of plane-wave-based GEF is in overall comparable 
with SECS-based GEF (cf. top and middle plots in the figure). However, bottom plots show that the differ-
ence is substantial but more localized (compared to the difference between SECS-based and MHD-based 
results), occurring, again, in areas of strong lateral contrasts of conductivity and increasing toward higher 
latitudes.

4. Conclusions and Discussion
In this work, we performed 3-D modeling of the EM field in the Fennoscandian region during the Septem-
ber 7–8 geomagnetic storm in 2017. The goal of this model study was to explore to what extent the resulting 
EM field depends on the setup of the external source which induces this field. We have used three different 
approaches to the EM induction source setting. The first technique is based on the retrieval of the (later-
ally variable) equivalent current from the dedicated MHD simulation. In the second method, the laterally 
variable equivalent current is constructed on the basis of IMAGE magnetometers’ data using the SECS 
approach. The third technique exploits the plane wave concept, which implies that the source is laterally 
uniform locally.

Two main findings of the paper are as follows. Magnetic field perturbations in Fennoscandia are reproduced 
much more accurately using the SECS rather than the MHD-based source, constructed using the SWMF. 
The difference between the GEF modeled using the SECS-based laterally varying source and the plane wave 
excitation is substantial in Fennoscandia, especially in the areas of strong lateral contrasts of conductivity 
(e.g., at the coasts), and at higher latitudes where lateral variability of the source becomes more pronounced.

We would like to remind the reader that in order to obtain MHD-based 3-D EM modeling results presented 
in this paper we calculated the external magnetic field perturbations on a coarse 5° × 5° grid, which was 
done to reduce the computational time. Ideally, the resolution of the grid should be much higher to account 
for the effects of small-scale current structures. However, according to our results the external magnetic 
field is not reproduced accurately enough at locations of geomagnetic observatories ABK and UPS using the 
SMWF outputs irrespective of the resolution of the MHD modeling domain (see Figure S1 and Table S1 in 
the supporting information). That is why increasing the external magnetic field grid resolution most likely 
will not significantly improve the 3-D EM modeling results, at least in the case of the September 7–8, 2017 
geomagnetic storm, the Fennoscandian region, a particular setup of the SWMF described in the current 
paper and three considered resolutions of the MHD modeling domain. However, it is clear that a separate 
study is required to investigate the influence of the spatial resolution of the MHD model on the external 
magnetic field perturbations at the Earth’s surface.

From our study, the reader may have a biased impression that the SECS-based current system is an ideal 
source candidate for rigorous modeling (and eventually forecasting) ground EM field due to space weather 
events. However, our vision of the problem is that each source setting discussed in this study has its own 
advantages and drawbacks.

The MHD-based approach is the only one out of the considered three, which allows researchers to forecast 
the space weather impact on ground-based technological systems. This is possible due to the fact that MHD 
simulations are run on the basis of the satellite solar wind data collected at the L1 Lagrange point. The 
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solar wind velocity has a typical speed of 300–500 km/s and, thus, the geomagnetic disturbance observed 
at the Earth’s surface is usually lagged compared to the L1 point in the range of 30–90 min (Cameron & 
Jackel, 2019). This time is, obviously, reduced for fast CMEs; the initial speed of one of the fastest recorded 
CMEs, which occurred on July 23, 2012 (but was not Earth-directed), was estimated as 2,500 ± 500 km/s 
(Baker et al., 2013). Another advantage of the aforementioned method is the ability to compute the equiv-
alent current and, subsequently, the EM field for any point on the Earth. It is noteworthy that this method 
is not dependent on ground-based geomagnetic field observations. The drawback of the approach is that it 
is currently the least accurate among the considered modeling techniques. Moreover, significant computa-
tional resources (in terms of CPU time and memory) are required to carry out MHD simulations. In spite of 
the fact that these simulations are still rather far from reproducing actual ground geomagnetic disturbances 
(as is shown once again in this paper) there are continuing efforts to improve the predictive power of MHD 
models (e.g., Zhang et al., 2019).

The SECS-based approach uses ground magnetometers’ data and, thus, does not have forecasting capabili-
ties. However, it is the most accurate among all the considered approaches, but in order to properly capture 
the spatiotemporal evolution of the source, it requires a dense grid of continuous geomagnetic field obser-
vations in the region of interest.

The plane wave method is most probably an optimal choice for EM modeling (due to space weather events) 
in low-latitude and midlatitude regions provided MT impedances are estimated in these regions on as regu-
lar and detailed grid as practicable. The plane wave approach is the least computationally expensive among 
the three methods considered in this study, as MT impedances can be computed/estimated in advance and 
then convolved with the magnetic field which, again, requires a network of continuous geomagnetic field 
observations in the region. However, the violation of the plane wave assumption in high latitudes leads to 
significant differences between GEF modeled with the use of the SECS-based laterally varying source and 
the plane wave approximation.
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