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1 Introduction

Jet physics aims at pinning down the microscopic properties of Quantum Chromodynamics
(QCD [1]. In the context of heavy-ion physics, the modification of jets with respect to their
vacuum counterparts is regarded as an experimental evidence for the formation of a dense,
thermal medium, namely the Quark-Gluon plasma [2].
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Nowadays, most of the efforts in the field from a theoretical point of view, both from
an analytic perspective and with machine learning tools (see ref. [3] for a review), are
directed towards studying the space-time structure of a jet by characterising its radiation
pattern through jet substructure observables, i.e. constructed from one (e.g. zg [4, 5]), or
a few branchings (e.g. N-subjettiness [6] or the Lund jet plane [7, 8]) at most. In this
paper we focus on the former category where typically the one branching that defines the
observable is selected in a region of phase space where perturbative QCD calculations are
applicable, that is, far away from the soft and wide angle sector. This tagging task is
handled by so-called ‘grooming methods’ through which the hard and collinear core of the
jet is isolated. The way this general goal is achieved differs from one groomer to the other,
e.g. Modified Mass Drop Tagger(mMDT) [9] or its extension Soft Drop (SD) [4] selects
the splitting whose momentum sharing fraction obeys z > zcutθ

β , while trimming [10]
first reclusters a jet into subjets with a smaller radius Rsub and then keep only those
subjets whose psubjet

t > zcutp
jet
t . In the previous expressions (zcut, β and Rsub) are free

parameters that need to be tuned with Monte-Carlo simulations to achieve an optimal
performance [11]. These methodological differences leave their imprint into the analytic
behavior of the observables that they define [12, 13]. For example, as we shall see in more
detail in what follows, due to the presence of an explicit zcut in the Soft Drop grooming
condition this method is free of non-global logarithms in the resummation function. This
fact has enable to push the accuracy of the calculation of Soft Drop groomed observables
up to next-to-leading log accuracy in p+ p [14–21] and even next-to-next-to-leading log in
e+ + e− [22–24]. It is then clear that the usefulness of a given grooming method should
not be judged only on the basis of its resilience to non-perturbative physics, but also on its
analytic structure from a pQCD point of view. This paper aims at deepening our analytic
understanding of jet substructure observables as defined by a novel grooming technique
that has been recently introduced and dubbed ‘Dynamical Grooming’ (DyG) [25–27].

The Dynamical Grooming method consists in identifying the ‘hardest’ branching in a
jet tree as a proxy for the physical jet scale. The hardness measure is given by

κ(a) = 1
pt,jet

z(1− z)ptθa (1.1)

where a is a continuous free parameter that has to be larger than zero in order to guarantee
collinear safety. For certain values of a in eq. (1.1), the hardness measure translates into
familiar kinematical quantities, e.g κ(1) =kt, where kt is the transverse momentum of the
splitting, or κ(2) =m2, with m being the branching mass. In addition, we define θ=∆R/R
where ∆R is the angular separation between the sub-jets and R corresponds to the cone size.
The hardest splitting is obtained after re-clustering the jet sample with Cambridge/Aachen
algorithm [28] and finding the node with the largest κ in the clustering sequence. In
fact, it can be proven through analytical arguments [29] that it is sufficient to look for
the hardest splitting along the primary Lund plane of the jet, i.e. following the branch
with the larger transverse momentum at each de-clustering step.1 First steps towards

1We have numerically checked that our results are robust if we look for the hardest splitting in the whole
tree and not only on the primary branch.
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the calculation from first-principles in perturbative QCD of the probability distribution of
the momentum sharing fraction, zg, the mass and the relative transverse momentum, kt,g,
of the hardest splitting were presented in the original Dynamical Grooming paper in the
resummation region, i.e. when zg(kt,g)� 1 [25]. Interestingly, it was found that similarly to
the Soft Drop case, the zg distribution pertains to a special class of jet observables known
as Sudakov safe [5, 30]. Together with the modified leading-log calculation of DyG jet
substructure observables, a Monte-Carlo study of the impact of non-perturbative physics
was presented in ref. [25]. An overall similar performance than Soft Drop was shown,
but with a remarkable resilience to hadronization in some cases like the zg distribution
as tagged by a= 1. This novel idea has triggered the interest of the ALICE collaboration
that has recently conducted some preliminary measurements on the zg, θg [31], and kt,g [32]
distributions at

√
s= 5.02TeV in the jet transverse momentum bin of 60< pcht < 80GeV.

As we will see, the low pt reach of the ALICE detector challenges the analytic description
of such data set given that non-perturbative effects are sizeable. In addition, first steps
towards the experimental use of DyG in heavy-ion collisions were reported in ref. [33].

From an analytic point of view the purposes of this paper are multifold: (i) understand
the resummation structure of Dynamical Grooming observables and propose a definition for
their logarithmic accuracy which circumvents their non-exponentiating nature (double log,
next-to-double log, etc) (ii) advance the resummation of zg and kt,g from modified-leading
logarithm [25] to next-to-next-to double logarithmic accuracy,2 as well as presenting for
the first time the resummation of θg, (iii) highlight the absence of clustering logarithms
in dynamically groomed observables, (iv) perform a fixed-order matching for all three
dynamically groomed observables. This last point is not trivial for the pair of Sudakov
safe observables and we propose a novel method to match the resummed and fixed-order
distributions. All these ingredients are contained in section 2. After a few sanity checks
on the analytic side, in section 3.1 we compare our results to Monte-Carlo simulations at
parton level in a high-pt setup, where non-perturbative effects are mild. Next, in section 3.2,
we present the first comparison between an analytic calculation and the preliminary ALICE
data for (zg, θg and kt,g). In addition, Monte-Carlo studies with different general purpose
event generators are performed showing the impact of different details in the definition of
the Dynamical Grooming method in appendices B, C. The discriminating power of these
type of jet substructure observables with respect to different hadronization models and
parton showers are shown in appendix E.

2 Theoretical analysis of dynamically groomed observables

In this section, we present the all-order perturbative calculation of dynamically groomed
observables in the κ(a) � 1 region3 and their matching to fixed order results applicable
when κ(a)∼1. In the soft limit, z�1 and the (1−z) factor can be removed from eq. (1.1).
Furthermore, as the hardest splitting takes place along the primary branch, we neglect

2For a precise definition of NpDL accuracy, see eq. (2.26) and the discussion below.
3At low enough values of κ the calculation is dominated by non-perturbative effects. Therefore, strictly

speaking our resummation is valid when κNP�κ�1.
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momentum degradation such that pt=pt,jet. Therefore, instead of eq. (1.1), the definition
κ(a) =zθa is adopted throughout this section, and we sometimes omit the a superscript to
lighter the notation.4

2.1 Double-logarithmic estimation and basic properties

We shortly revisit the baseline calculation performed in ref. [25]. In the κ� 1 limit, the
two-dimensional probability distribution of a splitting, with kinematic variables (z, θ), to
be hardest in the clustering sequence is given by

d2Pi(z, θ|a)
dθdz = P̃i(z, θ)∆i(κ|a) , (2.1)

where i indicates the flavor of the jet initiating parton. The two ingredients entering the
right-hand side of the previous equation are actually connected through

ln ∆i(κ|a) = −
∫ 1

0
dz′

∫ 1

0
dθ′P̃i(z′, θ′)Θ

(
z′θ′a − κ(a)

)
. (2.2)

In physical terms, the branching kernel, P̃ (z, θ), represents the probability of a splitting
with (z, θ) to occur, while ∆(κ|a) is the so-called Sudakov form factor and vetoes all harder
emissions, i.e. those with κ′>κ. From eq. (2.2), it is easy to see that a> 0 is required to
regulate the collinear singularity. The normalised probability distribution to measure an
observable κ(b,c) =zbθc on the κ(a) tagged splitting is given by

1
σ

dσ
dκ(b,c)

∣∣∣∣
a

=
∫ 1

0
dθ
∫ 1

0
dz Pi(z, θ|a)δ

(
zbθc − κ(b,c)) , (2.3)

where a sum over flavors including the proper quark/gluon fraction is implicit. The ob-
servables that we focus on are obtained from eq. (2.3) by setting: (b = 1, c = 0) for zg,
(b=0, c=1) for θg, and (b=1, c=1) for kt,g.

We start by considering branchings in the soft-collinear limit (z � 1 and θ � 1)
that generate terms with powers of αs ln2(κ(b,c)) in eq. (2.1). That is, we achieve double
logarithmic accuracy (DLA) in the language of logarithmic resummation, as we will see
below. The soft-collinear limit of the branching kernel reads

P̃i(z, θ) = αs
θπ
Pi(z) , (2.4)

where Pi is the leading-order Altarelli-Parisi splitting function that, in this approximation,
is given by

Pi(z) = 2Ci
z
, (2.5)

with Ci being the color factor of the jet initiator parton; Ci =CA for gluons, and CF for
quarks. The running of the strong coupling is beyond DLA and therefore we fix to its value
at the jet scale, i.e. αs≡αs(pt,jetR). In this limit, the Sudakov reduces to

ln ∆i(κ|a) = −
∫ 1

κ
dz′

∫ 1

(κ/z′)1/a

dθ′

θ′
αs
π

2Ci
z

= − ᾱ
a

ln2 κ , (2.6)

4One can rigorously prove that 1−z corrections are beyond our targeted accuracy (see appendix B).
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where ᾱ=Ciαs/π. By plugging eq. (2.6) into eq. (2.3), we obtain the momentum sharing
fraction of the tagged splitting

1
σ

dσ
dzg

= 1
zg

√
ᾱπ

a

[
erf
(√

ᾱ

a
ln zg

)
+ 1

]
, (2.7)

its opening angle

1
σ

dσ
dθg

= 1
θg

√
ᾱπa

[
erf
(√

ᾱa ln(θg)
)

+ 1
]
, (2.8)

and its relative transverse momentum

1
σ

dσ
dkt,g

= 1
kt,g

√
ᾱπa

a− 1

[
erf
(√

ᾱ

a
ln(kt,g)

)
− erf

(√
ᾱa ln(kt,g)

)]
. (2.9)

Location of the peak. An important feature of eqs. (2.7)–(2.9) is the value at which
they are cut off. Its location can be obtained by taking the derivative of e.g. eq. (2.8)

d
dθg

(
1
σ

dσ
dθg

)
=
√
ᾱa

1
θ2
g

[
−
√
π
(
1− erf(

√
x)
)

+ 2
√
x exp(−x)
ln(1/θg)

]
, (2.10)

where x ≡ ᾱa ln2(1/θg). Then, the maximum value of the distribution, θmax, satisfies the
implicit equation

2
√
x exp(−x)√

π(1− erf(
√
x)) = ln

( 1
θmax

)
. (2.11)

If θmax � 1, the left hand side can be approximated by its asymptotic behaviour (x→∞)

2
√
x exp(−x)√

π(1− erf(
√
x)) ' 2x , (2.12)

such that
ln
( 1
θmax

)
= 1

2aᾱ +O(1) . (2.13)

This equation indicates that the smaller the value of a, the deeper the tagged splitting is on
the angular ordered shower, i.e. at smaller angles. In other words, at fixed θg, larger values
of a lead to a bigger Sudakov suppression. Therefore, the distribution shifts to larger θg
for larger a. Thus, eq. (2.13) confirms and provides an analytic explanation for the result
reported in ref. [25] on the location of the tagged branching in the jet tree using Pythia [34]
simulations. Notice that, in order to solve the implicit equation for the peak position, we
have assumed that θmax � 1. This approximation holds for not too large values of a.
Otherwise, the smallness of ᾱ can be compensated by a in the product aᾱ appearing in
eq. (2.13) and θmax ∼ 1.

Following similar steps for the maximum of the momentum sharing fraction, we obtain5

ln
( 1
zmax

)
= a

2ᾱ +O(1) . (2.14)

Again, the previous expression is valid as long as a is not too small.
5Notice that this equation can be also obtained by applying the a 7→1/a transformation in eq. (2.13).
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Finally, in the case of kt,g, we find that

ln
(

1
kt,max

)
= asgn(a−1)

2ᾱ +O(1) . (2.15)

This analytic estimate confirms the ordering observed numerically in figure 9 of ref. [25],
i.e. the a=0.1 curve is peaked at a smaller kt than the a=2 case is, being a=1 the curve
peaking at the largest value.

Infra-red and collinear safety. The first step towards boosting the accuracy of our
calculation is to analyse the IRC (un)safety of the observables that we are dealing with.
As we have already mentioned, and was shown in ref. [25], dynamically groomed observables
are collinear unsafe for a≤0. For a>0, while kt,g is a standard IRC safe observable, both zg
and θg are Sudakov safe only [5]. This means that the all-order resummation encompassed
in the Sudakov form factor regulates the singularities that appear at each order in αs when
θg → 0 or zg → 0. Notice that for θg, this behavior represents a stark difference with
respect to Soft Drop grooming, where this observable is, in fact, IRC safe [4]. This can be
understood as a result of the zcut that appears in the Soft Drop condition and regulates
the soft singularity. In turn, Dynamical Grooming does not introduce any sharp cut-off on
the radiation phase-space and thus nothing forbids the hardest splitting to be in the soft
(z ∼ 0) region.

A well-known consequence of Sudakov safety [5, 30] is that the zg and θg-distributions
have an ill-defined expansion in (integer) powers of αs. To illustrate this fact, we introduce
the cumulative distribution, that defines the probability to measure an observable below a
certain value ν, i.e.

Σ(ν) =
∫ ν

0
dν ′ 1

σ

dσ
dν ′ . (2.16)

The kt,g cumulative distribution at DLA reads

Σ(kt,g) = 1
a− 1

[
a exp

(
− ᾱ
a

ln2(kt,g)
)
− exp

(
−ᾱa ln2(kt,g)

)

+
√
πaᾱ ln(kt,g)

[
erf
(√

ᾱ

a
ln kt,g

)
− erf

(√
ᾱa ln kt,g

)] ]
, (2.17)

and its expansion in αs (or equivalently in ᾱ)

Σ(kt,g) = 1− ᾱ ln2
(

1
kt,g

)
+ 1 + a+ a2

6a ᾱ2 ln4
(

1
kt,g

)
+O(ᾱ3) . (2.18)

From the previous expression, it is clear that Σ(kt,g) admits an analytic expansion in ᾱ, as
it is expected for an IRC safe observable.

In contrast, the θg-cumulative distribution is

Σ(θg) = exp
(
−ᾱa ln2

(
1
θg

))
−
√
ᾱπa ln

(
1
θg

)[
erf
(
−
√
ᾱa ln

(
1
θg

))
+ 1

]
, (2.19)
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and its expansion in powers of ᾱ is given by

Σ(θg) = 1−
√
ᾱπa ln

(
1
θg

)
+ ᾱa ln2

(
1
θg

)
+O(ᾱ2) . (2.20)

In this case, the resumming function is not analytic as the second term in eq. (2.20) is of
order

√
ᾱ. The non-analyticity on the dynamically groomed θg is caused uniquely by the√

ᾱ term. That is, all other powers of ᾱ appearing in eq. (2.20) are integer and the function

Σ(θg) +
√
ᾱπa ln

(
1
θg

)
(2.21)

is, in fact, analytic. The same arguments apply to zg where again one can utilise the
a 7→ 1/a transformation, to confirm that

Σ(zg) +
√
ᾱπ

a
ln
(

1
zg

)
(2.22)

has an analytic dependence on ᾱ at any perturbative order. Interestingly, this αs-expansion
of zg is remarkably different from its Soft Drop counterpart when β > 0. For Soft Drop,
the expansion is driven by αn/2s terms where the integer n≥1 [5]. Whether this is a purely
mathematical statement, or an explanation in physical terms exists, is beyond our degree
of understanding and further work is required to clarify it.

To sum up, in this section we have shown that the opening angle and momentum shar-
ing fraction of the splitting tagged by Dynamical Grooming are unconventional observables
from a pQCD point of view. The Sudakov safety of the zg and θg distributions leads to
an ambiguous definition of the logarithmic accuracy in their resummation, as was noted
in ref. [30]. Furthermore, the standard matching to fixed-order calculations is not trivial
due to the non-analyticity of the resummed result. In this context, a careful definition of
logarithmic accuracy in the resummation is required and will be provided next.

2.2 Revisiting the meaning of accuracy: from IRC to Sudakov safe observables

We start by considering a general resummed formula for an IRC safe distribution obtained
with Dynamical Grooming. Following our previous notation, we denote κ(b,c) the observable
that we measure on the splitting whose hardness, κ(a) = zθa, is the largest in the shower.
The cumulative distribution to measure κ(b,c)�1 reads

Σ(κ(b,c)) =
∫ 1

0
dz
∫ 1

0
dθ P̃ (z, θ)∆(κ|a)Θ(κ(b,c) − zbθc) , (2.23)

where we have omitted the flavour index for simplicity. An important comment regarding
the values of (a, b, c) is in order. Only when b≤ 1 and c≤a, the hierarchy κ(a)≤κ(b,c)≤ 1
is satisfied and thus ∆(κ|a) can be accurately computed through resummation techniques.
Any other combination of (a, b, c) leads to a situation in which κ(b,c)�1 does not necessarily
imply κa�1 such that fixed order contributions to ∆(κ|a) become relevant.

– 7 –
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Having these constraints in mind, we derive the Sudakov safe distributions of zg≡κ(1,0)

and θg≡κ(0,1) as two limits of eq. (2.23), i.e.

Σ(zg) = lim
c→0

Σ(κ(1,c)) , (2.24)

and
Σ(θg) = lim

b→0
Σ(κ(b,1)) . (2.25)

The key point is that we define the accuracy of zg and θg through the accuracy of the
IRC safe distribution Σ(κ(b,c)). For instance, we shall state that Σ(zg) is known at DLA,
if Σ(κ(b,c)) is known at the same degree of accuracy for all c> 0, or at least in the neigh-
bourhood of c = 0. Our prescription to define the accuracy of Sudakov safe observables
follows the spirit of ref. [30]. However, instead of defining the accuracy of the Sudakov-safe
observable by marginalization of an IRC safe double differential distribution, we exploit
the IRC safety of the κ(b,c) observable itself. It’s important to realise that the perturbative
expansion of the Sudakov safe observables is only defined after taking first the appropriate
limit on Σ(κ(b,c)) as given by eqs. (2.24), (2.25). If these steps are taken in reverse order,
i.e. expanding Σ(κ(b,c)) in powers of αs first and subsequently taking the limit of b(c)→ 0,
one can show that the correct αs-expansion, given by eqs. (2.20)–(2.22) at DLA, is not
recovered. In short, these two operations do not commute.

The perturbative expansion of Σ(κ(b,c)) can be written as

Σ(κ(b,c)) =
∞∑
n=0

αns

2n∑
m=0

cnm lnm(κ(b,c)) , (2.26)

where the cnm coefficients have to be determined. Then, we adopt the following conven-
tion [35, 36]: the logarithmic accuracy of Σ(κ(b,c)) is said to be NpDL if the cnm coefficients
are known for all n and 2n − p ≤ m ≤ 2n. Notice that in many other jet substructure
calculations it is customary to define the logarithmic accuracy at the level of ln Σ instead
of on the cumulative distribution itself. The reason why we use Σ(κ(b,c)) is because, in
general, due to the marginalisation procedure stated in eq. (2.23) the resummation of DyG
observables does not exponentiate [37, 38] as it clear from eq. (2.17). This no exponenti-
ation property is part of other jet substructure observables such as subjet multiplicities.
Yet, there is a specific case for which it does: when b= 1 and c= a. That is, when the
kinematic variable used for tagging coincides with the measured observable. For instance,
select the splitting with the largest kt in the shower, and compute its kt-distribution. In
this case, the cumulative distribution is simply the Sudakov form factor, i.e.

Σ(κ(1,a)) = ∆(κ|a) (2.27)

that is equivalent to the plain distribution.
A natural question at this point is how does one relate the cnm coefficients with the

accuracy of P̃ (z, θ) and ∆(κ|a). In other words, which are the relevant terms that one
needs to include in the branching kernel and in the Sudakov form factor in order to reach

– 8 –
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a given accuracy? To answer this question we rely on the exponentiate property of ∆(κ|a),
to write its logarithmic structure in the traditional form6 [38]

∆(κ|a) =

1 +
∑
n≥1

αnsCn

 eln(κ)g1(x)+g2(x)+αsg3(x)+O(αn+2
s lnn κ) , (2.28)

with Cn being constant coefficients, gi analytic functions

gi(x) =
∞∑
i=1

gijx
j , (2.29)

and x ≡ αs ln κ. In the NpLL type of counting, the resuming function g1 would be referred
as LL, g2 as NLL and so on. Our targeted accuracy is N2DL in the rest of the paper, with
the possibility of keeping sub-leading terms. After expanding eq. (2.28) in powers of αs we
realize that one has to account for the following gnm coefficients at the corresponding level
of accuracy

DL(p = 0) : g11 , (2.30)
NDL(p = 1) : g11, g12, g21 , (2.31)
N2DL(p = 2) : g11, g12, g13, g21, g22, C1 . (2.32)

The g11 was already computed in section 2.1 where we accounted for soft and collinear
emissions only

g11 = −Ci
aπ

. (2.33)

The other coefficients and their physical interpretation are provided in the following section
up to N2DL. Given that the constant C1 term is related to the interplay between the
resummation and fixed-order calculations, we postpone its discussion to section 2.3.2 and
neglect it in the resummation-related part.

Turning to the terms that are needed in P̃ (z, θ), we start by working out the plain case
(b=1 and c=a). The exponentiation property of the resummation, in this particular case,
leads to a one-to-one mapping between the terms in the Sudakov and in the branching
kernel. More concretely, following eq. (2.23) one gets

−
∫ 1

0
dz
∫ 1

0
dθP̃ (z, θ)Θ(zθa − κ) = ln(κ)g1(αs ln κ) + g2(αs ln κ) + · · · , (2.34)

that reduces in the N2DL case to

−
∫ 1

0
dz
∫ 1

0
dθP̃ (z, θ)Θ(zθa − κ) = ln(κ)(g11x+ g12x

2 + g13x
3) + g21x+ g22x

2 , (2.35)

where, again, x ≡ αs ln κ. The previous equation, derived exploiting the exponentiation
property of the plain case, is sufficient to reach N2DL for all values of (b, c). Using eq. (2.35)

6Notice that, in contrast to some cases in the literature, the g-functions contain both collinear and soft,
non-global terms, i.e. we do not write a separate S factor as in [38].
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with any b and c may produce power suppressed or sub-leading (p≥3) logarithmic correc-
tions in front of αns ln2n−2(κ) terms, that are nevertheless negligible in the resummation
region. The physical insight behind the ‘universality’ of eq. (2.35) relates to the fact that
P̃ (z, θ) is just a probability to have a splitting with a given z and θ. Thus, the branching
kernel should be a priori independent of both a and the observable we measure on this
branching.

2.3 kt,g at LO+N2DL accuracy

After this rather formal discussion, we would like to shed light on our statements through
an explicit calculation. Namely, we compute the IRC safe kt,g distribution in the small
jet radius limit at N2DL accuracy on the resummation side and include its matching to a
fixed-order calculation at leading order, thus achieving a solid analytic description for all
values of kt,g.

2.3.1 Resummation

From the general formula given by eq. (2.23) it is straightforward to calculate the cumula-
tive kt,g distribution by setting b=c=1. It reads,

Σ(kt,g) =
∫ 1

0
dz
∫ 1

0
dθP̃ (z, θ)∆(κ|a)Θ(kt,g − zθ) (2.36)

such that the differential cross section is

1
σ0

dσ
dkt,g

= dΣ(kt,g)
dkt,g

(2.37)

where σ0 represents the Born level total cross-section. In what follows, we calculate the
necessary gnm coefficients that enter in the Sudakov form factor and the branching kernel,
see eqs. (2.28), (2.35), and organise them according to the underlying physical effect.

Hard-collinear emissions. Due to its simplicity, the first term that we add to our
calculation is the one arising from including hard-collinear corrections (z ∼ 1, θ� 1) in
the splitting function. This amounts to take into account the finite part of the splitting
functions as follows:

P
(h−c)
i (z) = 2Ci

z
Θ
(
e−Bi − z

)
, (2.38)

where Bq=2/CF , Bg=11/12− nfTr/(3CA), Tr=1/2, and we fix the number of flavors to
nf =5. The analytic integration of the new finite piece that appears both in the Sudakov
and the branching kernel is useful to illustrate the point about sub-leading terms that
appear naturally in the calculation. In fact,

−
∫ 1

0
dz
∫ 1

0

dθ
θ

αs
π
P

(h−c)
i (z)Θ(zθa − κ) = −αsCi

πa
(Bi + ln(κ))2 . (2.39)

From the previous equation one can easily read off the g21 coefficient

g21 = −2CiBi
aπ

, (2.40)
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while the term proportional to Bi and no ln(κ) dependence is sub-leading, although might
be large when a� 1. Strictly speaking, this latter contribution is not required to reach
N2DL in our calculation, but we will check its numerical impact by the end of this section.
Notice that since there is no soft singularity for flavor switching splittings, they contribute
as a power correction to κ(a) in our Sudakov form factor and we do not include them
here. This argument is valid as long as κ�1 along the lines of the role played by ycut in
appendix B of ref. [12].

Running coupling. Up to now, we have fixed the coupling in order to achieve compact,
fully analytic expression. However beyond DLA, the running of the coupling has to be
taken into account. At 1-loop in perturbation theory it is given by:

α1`
s (kt) = αs

1 + 2β0αs ln
(
kt
Q

) (2.41)

= αs

[
1− 2β0αs ln

(
kt
Q

)
+ 4β2

0α
2
s ln2

(
kt
Q

)]
+O(α4

s) , (2.42)

with the reference value αs ≡ αs(Q) is set at the jet scale Q ≡ pt,jetR, β0 = (11CA−
4nfTr)/(12π) and kt=zθpt,jet.

Next, we integrate analytically the branching kernel with the 1-loop running coupling

−
∫ 1

0
dz
∫ 1

0
dθα

1`
s (kt)
πθ

Pi(z)Θ(zθa − κ) =

ln κ
(
g11αs ln κ+ 2Ciβ0(1 + a)

3a2π
α2
s ln2 κ− 2Ciβ2

0(1 + a+ a2)
3a3π

α3
s ln3 κ

)

+ g21αs ln(κ) + 2BiCiβ0
a2π

α2
s ln2 κ+O(N3DL) . (2.43)

Note that in the previous expression we have only kept the relevant terms up to N2DL, as
indicated by the O(N3DL) notation. Now, we can identify the terms corresponding to the
soft and collinear piece of the splitting function to be

g12 = 2β0Ci(1 + a)
3a2π

, (2.44)

g13 = −2β2
0Ci(1 + a+ a2)

3a3π
, (2.45)

while the hard-collinear correction results into

g1
22 = 2BiCiβ0

a2π
. (2.46)

In the last equation, the upper subscript in the coefficient indicates that this is not the
only term that contributes to the g22 coefficient, i.e. g22 =

∑
i g
i
22.

To achieve N2DL accuracy, we need to go to the next order in the running coupling.
We work in the CMW scheme [39] which enables to include also the 2-loop contribution of
the splitting functions in the soft limit. Then, the running of the coupling at two loops is
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given by

α2`
s (kt) = αs

1 + 2αsβ0 ln(kt
Q )
− β1α

2
s

β0

ln(1 + 2αsβ0 ln(kt
Q ))

[1 + 2αsβ0 ln(kt
Q )]2

+ K

2π
α2
s

[1 + 2α2
sβ0 ln(kt

Q )]2
, (2.47)

with β1 = (17C2
A−5CAnf −3Cf )/(24π2) and K = (67/18−π2/6)CA−5nf/9. Again, we

can integrate the branching kernel with the 2-loop running coupling to identify another
contribution to the g22 coefficient:

g2
22 = −KCi2aπ2 . (2.48)

Soft emissions at large angles. The dynamically groomed kt,g pertains to the category
of so-called non-global observables,7 i.e. it is sensitive to a certain region of the radiation
phase space. As such it is affected by a particularly complex class of logarithms known as
non-global logs [40–42]. A typical configuration that can give rise to these contributions is
a collection of large angle gluons outside the jet which subsequently radiate softer gluons
inside. In order to understand how this topology contributes to the kt,g distribution, we
first calculate the lowest O(α2

s) term coming from such configurations. For illustrative
purposes, we start with the calculation of the leading non-global logarithm in e+e− annihi-
lation, in which the color structure of the event is simpler. We discuss the straightforward
generalization to p + p collisions in the following paragraph. Once again, we rely on the
small-R limit and sketch how to lift this approximation in the next section.

The calculation of the non-global contribution at O(α2
s) is standard: one calculates the

cross-section for two correlated gluon emissions strongly ordered in energy, with the first
emission outside the jet and the second inside. For Dynamical Grooming, one can rely on
the fact that the gluon inside the jet is necessarily the hardest, since it is the only one at
this order. Thus, the double differential distribution for having a dynamically groomed zg
and θg value from a non-global configuration initiated by a qq̄ dipole is:

1
σ0

d2σNG

dzgd cos(Rg)

= 4CFCA
(
αs
2π

)2 ∫ pT

0

dω1
ω1

∫ ω1

0

dω2
ω2

∫ 1

−1
d cosR1

∫ 1

−1
d cosR2 Ω(cosR1, cosR2)

Θ(cos(R)− cos(R1))Θ(cos(R2)− cos(R))δ
(
zg −

ω2
pT

)
δ(cos(R2)− cos(Rg))

= 4CFCA
(
αs
2π

)2 1
zg

ln
(

1
zg

)
Θ(cos(Rg)− cos(R))

∫ cos(R)

−1
d cosR1 Ω(cosR1, cosRg) ,

(2.49)

where the first Θ-function in the second line enforces the first gluon to be outside the jet,
while the second Θ-function constrains the tagged emission to be inside. Note that this is
the real term only.8 The function Ω is the azimuthal average of the real cross-section for

7This also applies to zg and θg.
8In principle the lower bound in the integration range of cosR1 depends on the jet selection. However,

in the small R approximation (see the discussion thereafter), those corrections are power of R suppressed.
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gnm Physical origin

g11 = −Ci

aπ
Soft and collinear

g12 = 2β0Ci(1 + a)
3a2π

Soft and collinear + α1`
s (kt)

g13 = −2β2
0Ci(1 + a+ a2)

3a3π
Soft and collinear + α1`

s (kt)

g21 = −2CiBi

aπ
Hard and collinear

g22 = 2CiBiβ0

a2π
− KCi

2aπ2 −
π2

3
CiCA

(2π)2 Hard and collinear +α1`
s (kt), α2`

s (kt), non-global soft

Table 1. Relevant coefficients for the Sudakov form factor at N2DL accuracy.

correlated double gluon emission from a quark [3]:

Ω(cosR1, cosR2) = 2
(cos(R2)− cos(R1))(1− cos(R1))(1 + cos(R2)) . (2.50)

The Rg=θgR integral in eq. (2.49) is non-singular in the collinear limit, so that one can per-
form the two angular integrals exactly to get the leading term in the soft and R→ 0 limit:

1
σ0

dσNG

dzg
= 2CFCA

(
αs
2π

)2 1
zg

ln
(

1
zg

)
π2

3 . (2.51)

In the previous equation, the soft singularity when zg → 0 induces a single log contribution
which has to be taken into account at N2DL as part of the g2 function in eq. (2.28).

In p + p collisions, the situation is a priori more involved. Each Born level partonic
configuration needs to be broken into distinct hard dipoles. However, as shown in ref. [17],
only the dipoles involving the measured jet matter in the small R limit (i.e. neglecting terms
proportional to θn), and all such contributions are enhanced by the same π2/3 factor as in
the e+e− result in eq. (2.51). Consequently, the non-global contribution to the resummed
distributions factorize according to the flavour of the jet, in the same way as the collinear
piece calculated above. In other words, by imposing the small R limit we can use the e+e−

result from eq. (2.51) for the p+ p case. By doing so, we can extract the last piece of the
g22 coefficient, namely

g3
22 = −π

2

3
CiCA
(2π)2 . (2.52)

At this point let us summarize the main ingredients obtained so far in a compact way
that shall facilitate the reproducibility of our results. At N2DL accuracy, and in the small-
R limit, the Sudakov form factor given by eq. (2.28) involves the coefficients provided in
table 1.
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Equivalently, using eq. (2.35) we arrive to the following, non unique expression for the
branching kernel

P̃ (z, θ) = 2αsCi
πzθ

(1− 2αsβ0 ln(µKzθ) + 4α2
sβ

2
0 ln2(µKzθ)) + 2αsCiBi

πθ
(1− 2αsβ0 ln(µKθ))

+ K

2π
2Ciα2

s

πzθ
− 2CiCA

(
αs
2π

)2 π2

3
ln(µKz)

z
. (2.53)

In order to estimate the uncertainty of the resummation, we have introduced the dimen-
sionless multiplicative factor µK that will be varied between 0.5 and 2. A subtle issue9

concerning this µK variation is that the first non-trivial correction that arises after inte-
grating over (z, θ) eq. (2.53) is given by ∝ α2

s ln2(κ) ln(µK). This is of the same order as
the corresponding K-term, i.e. ∝ α2

s ln2(κ)K. To overcome the non-desirable variation of
a gnm coefficient, we vary µK under the condition that the K term is constant, i.e. K is
shift to K + 4πβ0 ln(µK) in the calculation (and similarly when considering varition of the
renormalization scale Q).

Note that the approximations made to derive the coefficients inside the Sudakov factor
∆(κ|a) and the branching kernel P̃ lead to a differential cross-section which is not necessar-
ily normalized to the Born jet cross-section. To restore the correct normalization, one can
simply divide the cumulative distribution eq. (2.36) by Σ(1). This overall normalization
factor is a non-logarithmic correction which does not spoil our targeted accuracy.

Lastly, we would like to draw the reader’s attention to the fact that multiple gluon
emissions were not considered in this calculation. Generically speaking, at leading loga-
rithmic accuracy, a single emission dominates jet substructure observables. This strong
ordering might be broken beyond leading-log, like in the jet mass case, such that an arbi-
trary number of emissions give comparable contributions to the final measured value. The
region of phase space for which this happens has to be determined on an observable basis
thus increasing the complexity of analytic calculations. In the Dynamical Grooming case,
multiple emissions do not have to be considered for the observables computed in this paper.
This property is a direct consequence of how the method is built. That is, dynamically
groomed observables in tagging mode are not additive but defined on the hardest emission
and thus it is the only one that contributes to all orders in the resummation.

N2DL and N2DL’. Insofar, we have provided the minimal set of gnm coefficients that
lead us to N2DL accuracy. For that purpose we have neglected all terms that are not
logarithmically enhanced. In order to gauge the impact of these sub-leading contributions,
we will also provide results with the ‘complete’ branching kernel, i.e.

P̃ (z, θ) =
[

2α2`
s (µKzθQ)Ci

πzθ
− 2CiCA

π2

3

(
αs
2π

)2 ln(µKz)
z

]
Θ
(
e−Bi − z

)
, (2.54)

and the Sudakov ∆(κ|a) calculated exactly from this complete branching kernel whose
explicit expression can be found in appendix A. Note that the resulting differential cross-
section is then normalized by construction. The running of the coupling is neglected in

9We are grateful to Gregory Soyez for pointing this out.
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the non-global term for simplicity, adding it would enable to account for part of the full
resummation of the non-global soft function [40]. We will refer to this resummation as
N2DL’, where the prime indicates that the resummation actually includes some of the sub-
leading logarithmic corrections with p≥3. That said, we emphasize that in all rigour, both
ways of doing the resummation — either ‘minimally’ using eq. (2.53) and the coefficients
in table 1 in the Sudakov or with the complete branching kernel given by eq. (2.54) —
reach the same N2DL logarithmic level accuracy, and not more.10 Therefore, we will use
this resummation scheme freedom to leverage our uncertainty.

Beyond N2DL and the small-R limit Before we move on to the fixed-order section,
we would like to sketch which steps have to be taken in order to extend the calculation
that we have just presented.

In the first place, if the small-R constraint is lifted, one has to account for process
dependent terms that enter the calculation as a power series in the jet radius. Physical
scenarios that lead to such contributions involve soft and large angle emissions that end
up being clustered in the reconstructed jet. For example, a splitting originated from the
initial state partons can be tagged by Dynamical Grooming and induce single logarithmic
terms suppressed by powers of the jet radius R in the resummation. The difficulty with
soft emissions at large angles comes from the fact that such emissions have a complicated
color structure which depend on the full Born level event and not only on the Casimir
factor of the measured jets. In order to handle such corrections, which are expected to be
important for R∼ 1, one could decide to rely on the large Nc limit and decompose each
Born processes into different colour flows, as done in refs. [8, 40] in the context of the Lund
plane density. Then, each color flow corresponds to a superposition of hard dipoles, which
can radiate a soft large angle gluon into the measured jet. In practical terms, adding these
contributions would promote the jet flavour dependence of P̃ (z, θ) and ∆i(κ|a) to a color
flow one. Once these new terms are taken into account N2DL accuracy is reached beyond
the small jet radius limit, but in the large Nc approximation. If one does not resort to the
large Nc limit, one has to deal with matrix formulae in color space, as in ref. [17]. It is
however unclear if the simple structure of eq. (2.36) remains when the exponentiation has
a matrix form and it deserves a dedicated study.

From the non-global logarithms side, their full resummation is required if a higher
accuracy in the resummation is intended. This is a complicated task for the κ(b,c) observable
in p + p collisions, even in the large Nc limit. With the latter approximation, one could
resort to the same numerical method as in ref. [17] (see also ref. [18] for the θg distribution
defined with Soft Drop).

2.3.2 Matching to fixed-order

In order to produce reliable predictions when kt,g = O(1) and to achieve N2DL via the
C1 term, the resummed distribution obtained in the previous section needs to be matched
with a fixed-order calculation. Several matching schemes are available in the literature. For

10Indeed, a complete N3DL resummation would require at least the first term in the analytic expansion
of the g3 (NNLL) function inside ∆(κ|a).
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our purposes, it is clearly desirable to have a matching scheme satisfying the two following
conditions: (i) the matching scheme should produce ‘for free’ the C1 term, (ii) the matching
scheme should preserve the fixed order endpoint of the distribution at ktg,max = 0.5. Two
possible matching schemes that satisfy these requirements are the multiplicative and the
log(R) matching [37, 43]. In what follows, we shall use multiplicative matching at leading
order (O(αs)) and discuss how to extend it to next-to-leading order (O(α2

s)).
As the colour structure of the resummation is tremendously simplified within our

targeted accuracy, i.e. it only depends on the jet flavor. The matching formula can be
decomposed accordingly as follows [43]:

ΣLO+N2DL(kt,g) = 1
σ0+σ1

∑
i=q,g

Σ̃N2DL
i (kt,g)

(
1+

ΣLO
i (kt,g)−Σ̃N2DL

i,1 (kt,g)
σ0,i

)
+ΣLO

else(kt,g)

 .

(2.55)

We proceed to describe the ingredients entering the previous equation, except the mean-
ing of the last term that will become clear later on. First, σ0 and σ1 are the inclusive
dijet cross-section at leading order and next-to-leading order respectively. The Σ̃i is the
resummed cumulative kt,g cross-section for i-jets, that shares the same endpoint, ktg,max,
as the fixed order distribution. At a given accuracy, this is achieved through the following
transformation:11

Σ̃i(kt,g) = σ0,iΣi

[
exp

(
− log

(
1
kt,g
− 1
ktg,max

+ 1
))]

. (2.56)

Notice that, besides the shift in the endpoint, we have multiplied the resummed cumulative
distribution by σ0,i in order to ensure that Σ̃N2DL and ΣLO have the same units. Following
up with the pieces entering eq. (2.55), Σ̃N2DL

i,1 is the O(αs) term in the expansion of Σ̃N2DL
i ,

while ΣLO
i is the leading order distribution defined as

ΣLO
i (kt,g) = σ1,i −

∫ 1

kt,g

dk′t,g
dσLO

i

dk′t,g
. (2.57)

Regarding the normalization, we find that, by construction, ΣLO+N2DL(ktg,max)=1.
One can check that the limiting behavior of the matched distribution is correct. Indeed,

eq. (2.55) gives back the LO distribution for kt,g ∼ ktg,max. In turn, when kt,g � 1 the
distribution behaves like

ΣLO+N2DL(kt,g) '
1

σ0 + σ1

∑
i=q,g

Σ̃N2DL
i (kt,g)(1 + αsC1,i) , (2.58)

where the C1 term is given by its standard definition:

αsC1,i = lim
kt,g→0

ΣLO
i (kt,g)− Σ̃N2DL

i,1 (kt,g)
σ0,i

. (2.59)

11When the resummed distribution has an endpoint different from 1, eq. (2.56) needs to be modified
accordingly. In particular, when using the calculation of Σ at N2DL′, the +1 inside the logarithm is
replaced by exp(Bq).
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Thus, eq. (2.58) shows that the matched distribution reproduces the resummed result in
its regime of validity. In our calculation, C1 is a constant up to R2-suppressed single
logarithmic contributions.

In practice, the LO kt,g differential cross-section and the LO and NLO jet cross-sections
σ0 and σ1 are obtained using MadGraph5 [44] (in fixed order mode) with CT10nlo PDF
set [45]. The factorisation scale for the PDF convolution is set to µFQ, with µF a di-
mensionless factor introduced to estimate the uncertainty relative to this prescription. For
a given jet selection [pt,min, pt,max], a unique generation cut is imposed in the fixed order
calculation. Namely, the sum of the transverse momenta of the partons is required to be
larger than pt,min and one asks for at least one jet with pt>pt,min/4. We have checked that
the resulting cross-sections are insensitive to the precise value of these cuts. The reference
value of the strong coupling at the jet scale, αs(µRQ), is evaluated in the MS scheme. The
µR is a dimensionless factor used to gauge the uncertainty with respect to the renormal-
ization scale. When the pt selection is broad, such as in the ATLAS set-up detailed in the
following section, the pt range is divided into smaller bins in which the inclusive jet and ktg
cross-sections are calculated. The extension of eq. (2.55) in this case is straightforward.

The last ingredient in eq. (2.55) involves the decomposition according to the flavour
of the jet. This is done in an IRC safe way for both the kt,g differential and inclusive jet
cross-section. More concretely, at LO the jets have at most two constituents. Then, when
the jet has zero or one net flavour, the jet is tagged as a gluon or quark jet, respectively.
Otherwise, whenever the jet is multi-flavored, i.e. it contains two (anti)-quarks of different
flavor, it pertains to what we call the ‘else’ category. The LO kt,g differential cross-section
for these multi-flavored jets goes to zero at small kt,g and contributes to the full match
result via the ΣLO

else(kt,g) term in eq. (2.55).
Finally, as for the resummation part, we would like to comment on how to further

extend the matching procedure to higher accuracy. In this case, the equivalent of the
multiplicative matching formula eq. (2.55) at NLO can be found in ref. [43] and it involves
the NLO kt,g differential cross-section. The latter can be obtained by generating 3-jet events
at NLO with MadGraph, or any other code dedicated to matrix element calculations. Even
if there is no conceptual difficulty in promoting our matching to NLO, we postpone it for
further studies given that its quantitative impact on the resulting distributions could be as
sizeable as the missing power of R suppressed terms on the resummation. Therefore, we
believe that these two endeavors should be pursued simultaneously and must be included
for refining our phenomenological studies presented in section 3.

2.3.3 Results

Once the analytic framework has been presented, we proceed to show some numeric results
for high-pt jets (800<pt<1000GeV) at top LHC energy

√
s=13TeV with cone size R=0.4.

The central value of the following curves is obtained with µF =µR=1. Further, the error
bars are obtained by varying a factor of two the following parameters in the calculation:
factorization and renormalization scales through the 7-point rule [46], the parameter µK
that controls the scale at which the strong coupling runs (see eq. (2.53)) and, in the case of
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kt,g = zgθg
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dσ dk
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g

DyG – a = 1

MadGraph LO
N2DL

N2DL, O(αs)

LO+N2DL

10−2 10−1 100

kt,g = zgθg

800 < pT < 1000 GeV, |η| < 1.5

anti-k⊥(R = 0.4)

DyG – a = 2

Figure 1. The kt,g-distribution computed in different ways: at leading-order with MadGraph,
resumed at N2DL as given by eq. (2.35) and table 1, first order expansion of the resumed result,
and the matched distribution (see eq. (2.55)) for a= 1 (left) and a= 2 (right). The normalization
factor σjet reduces to σ0 +σ1 for the resummed and matched distributions and to σ0 in the other
two cases.

N2DL’, the freezing scale µfr used to avoid the Landau pole in eq. (A.1). Then, we combine
the various uncertainties by taking the envelope of all distributions.

In figure 1 we present four distributions of kt,g: (i) the fixed-order result, (ii) the
resummed result at N2DL, (iii) the O(αs) expansion of the latter and (iv) the matched
distribution at LO+N2DL. It is clear from this figure that the matching procedure works
as expected, i.e. the LO+N2DL recovers the N2DL result at small kt,g, while it tends
towards the leading-order curve in the opposite regime. In addition, the endpoint of the
resummation is shifted by the matching procedure to the fixed-order one at kt,g =0.5. By
comparing the fixed-order result and the first term in the αs-expansion of the resummed
result, we can get a hint on the size of the O(Rn) logarithmically enhanced terms that
we have so far neglected. In fact, the difference between the O(αs) term of the N2DL
curve and the exact leading order result converges towards a constant at small kt,g. This
indicates that these power suppressed terms enter with a small coefficient in the cumulative
distribution and can be safely neglected for the setup studied in this work. All the previous
statements hold for both values of a. In particular, the fixed order result is independent of
a because there is only one splitting tagged.

Next, we compare in figure 2 the two prescriptions to perform the resummation that we
have discussed above, i.e. keeping uniquely the logarithmically enhanced terms at N2DL or
including sub-leading corrections (N2DL’). In the large kt,g regime, we observe no difference
between the LO+N2DL and the LO+N2DL’ as it is expected since in this limit the fixed-
order contribution dominates the matched result. This is no longer the case for kt,g �
1, where details of the resummation structure do matter. An important remark is that
the discrepancy between the two curves diminishes when increasing the parameter a that
determines the hardness condition in the grooming algorithm. We attribute this to the a-
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Figure 2. The kt,g-distribution with a minimal N2DL resummation (see eq. (2.53) and table 1),
and including sub-leading contributions N2DL’ (see eq. (2.54) and appendix A). Both curves are
normalized to σ0+σ1.

scaling of the gnm parameters that, as one can see in table 1, satisfies gnm ∼ 1/a. Hence, the
larger the value of a is, the smaller the coefficients in front of the higher order terms are and
the narrower the difference between N2DL and N2DL’ becomes. In the phenomenological
section, we will include the differences between N2DL and N2DL’ as part of our uncertainty
band given that, from a logarithmic counting point of view, there is no preferred option.

2.4 zg, θg at LO+N2DL accuracy

As discussed at length in section 2.1, the momentum sharing fraction, zg, and opening
angle, θg, of the splitting tagged by Dynamical Grooming are Sudakov safe observables. In
eqs. (2.24)–(2.25), we defined their distribution as the limit of the IRC safe kt,g distribution.
This allows us to follow the same logic as in the previous section to obtain the resummation
part of their distribution. In turn, the fixed-order result is not even well defined, as shown
in eqs. (2.22) and (2.20), and thus the matching strategy differs to that presented in
section 2.3.2. In what follows, we provide the necessary ingredients to reach LO+N2DL
accuracy in the small-R limit.

2.4.1 Boundary logarithms for the θg distribution

In the case of zg, the resummation proceeds in exactly the same fashion as for kt,g. In turn,
for θg, another source of logarithmic enhancement appears, caused by the interplay between
the anti-k⊥ algorithm [47] used to cluster the jet, and the C/A algorithm to decluster it
in the Dynamical Grooming procedure. These so-called clustering boundary logarithms [8]
are of the form:

α2
s

1
z

ln
(1
z

)
ln
(

R

R−Rg

)
, (2.60)

where the double logarithmic enhancement becomes important when Rg → R (θg≡Rg/R
close to 1).
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Boundary logarithms arise from a non-global configuration where the first emission is
outside the anti-k⊥ jet, while the second is inside and almost collinear to the first one.
In this situation, C/A algorithm would cluster these two emissions together, as part of
the jet. As such, their leading contribution to the branching kernel can be obtained from
the same calculation as the one done in eq. (2.49), but focusing in the regime where
θ1'θ2'R�1 [8, 48], such that:

Ω(θ1, θ2) ' 4
θ2

1(θ2
1 − θ2

2)
, (2.61)

and

1
σ0

d2σNG,cl

dzgdθg
' 4CFCA

(
αs
2π

)2 1
zg

ln
(

1
zg

)
R2
∫ ∞
R

dθ1θ1θg Ω(θ1, θgR)

= 8CRCA
(
αs
2π

)2 1
zg

ln
(

1
zg

)
1
θg

ln
(

1
1− θ2

g

)
(2.62)

' 8CRCA
(
αs
2π

)2 1
zg

ln
(

1
zg

)
1
θg

ln
(

1
1− θg

)
. (2.63)

The upper boundary in the θ1 integral can be safely sent to ∞ since the integral is dom-
inated by the region θ1 ' θ2 ' R. To get the last line, we have kept the dominant
contribution at θg ∼ 1.

As stated above, this O(α2
s)-contribution is enhanced by two soft logarithms of the

type ln(zg)/zg and one boundary logarithm ln(1−θg). However, the logarithmic divergence
associated with θg∼1 is integrable in a neighbourhood of 1. Consequently, as long as one
deals with an observable in which the angle Rg ∼ R is integrated out between some lower
bound and 1 (such as zg or kt,g distributions), the boundary divergence is harmless. More
precisely, its integral over θg should give back the soft single logarithmic divergence that
was part of our treatment of non-global configurations. This argument also applies to the
Sudakov factor, since vetoing all emissions with hardness larger than κ translates into the
following integral ∫ 1

0
dz′

∫ 1

0
dθ′ 1

σ0

d2σNG,cl

dz′dθ′ Θ(z′θ′a − κ) , (2.64)

where it is clear that θ′ is always marginalized in the neighbourhood of 1. In other words,
the Dynamical Grooming procedure lowers the singularity associated with boundary log-
arithms from double- to single-log, and this single-log term is already taken into account
by the coefficient g3

22 in the Sudakov.
From that perspective, the θg distribution is peculiar since the Rg → R logarithmic

divergence from eq. (2.63) is not integrated out. To effectively include boundary logarithms
for the θg distribution, we replace the last term in the branching kernel P̃ (z, θ) given in
eq. (2.53) by

− 2CiCA
(
αs
2π

)2 π2

3
ln z
z
→ −8CiCA

(
αs
2π

)2 ln z
z

1
θg

ln
(

1
1− θg

)
Θ(θg − θ̄) , (2.65)
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with θ̄ defined such that ∫ 1

θ̄

dθg
θg

ln
(

1
1− θg

)
= π2

12 . (2.66)

Numerically, one finds θ̄' 0.66. The step function guarantees that the single logarithmic
term from soft non-global configurations is correctly accounted for within our targeted
accuracy and without double counting.12 Such a constraint is also physically expected
since boundary logarithms come from the region where θg∼1 by definition.

Finally, we would like to discuss how this new logarithmic divergence affects the loga-
rithmic counting provided in section 2.2. For the θg distribution, we have found two sources
of logarithmic enhancement that are either of the form ln(θg) or ln(1−θg). Since the veto
factor in ∆(κ|a) suppresses boundary logarithms, there is only one power of ln(1−θg) that
appears in the αs expansion of the θg distribution and it comes from the α2

s result given
by eq. (2.65). In order to have the correct logarithms at N2DL in front of this single
power of ln(1−θg), it is enough to solely include the first one-loop correction in the run-
ning coupling α2

s→α2
s(1−4αsβ0 log(z)) and the hard-collinear correction at fixed coupling

1/z→Θ(e−Bi−z)/z in eq. (2.65).

2.4.2 Comparison between the resummation structure of Soft Drop and
Dynamical Grooming

The idea of studying the momentum sharing fraction and opening angle of a given splitting
in the shower was originally proposed in ref. [4]. In this work, the splitting at issue was
selected through the Soft Drop procedure, that is, the first branching in the de-clustering
sequence that satisfies z > zcutθ

β . These observables, (zg, θg), have been measured ex-
perimentally [31, 49] and resummed to modified-leading log [50] and next-to-leading log
accuracy [18], respectively. An important comment at this point is that Soft Drop observ-
ables do exponentiate and, therefore, a NpLL counting applies. Hence, strictly speaking, an
apples-to-apples comparison on the resummation structure for Soft Drop and Dynamical
Grooming does not exist.

We have identified one major simplification in the resummation structure of θg when it
is defined through the Dynamical Grooming procedure instead of with Soft Drop: Dynam-
ical Grooming is free of clustering logarithms. Let us briefly recap how these contributions
arise for two correlated emissions [42]. Consider the emission of a gluon, p1, off a hard quark
p0 together with a secondary emission, p2, off p1. These two emissions have commensurate
angles θ01∼θ02, while their energies (and thus transverse momentum) are strongly ordered
z2�z1 (kt,2�kt,1). The C/A algorithm will miss-cluster the secondary gluon as a primary
if θ02<θ12, with θ12 being the relative distance between the two emissions. Then, if p2 is a
real emission it will trigger the Soft Drop condition, even though z1�z2, and consequently
θ02 = θg. In turn, if p2 is virtual, the tagged splitting would be p1 and θ1 = θg. This
mismatch between the real and virtual contributions lead to a tower of logarithms at NLL

12The spirit of the step function is essentially the same as in our treatment of hard collinear emissions via
the effective splitting function given by eq. (2.38) Another way of including boundary logarithms without
double counting is to use directly eq. (2.62) (without step function) since −

∫ 1
0 dθ ln(1−θ2)/θ=π2/12.
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that were numerically computed, in the large Nc-limit, in ref. [18] for θg, as defined by Soft
Drop, and also discussed in the context of the Lund plane in ref. [8]. In the Dynamical
Grooming case, even if some secondary emissions can be ‘wrongly’ pushed by the C/A
algorithm into the primary Lund plane, it will never be the hardest given that z1�z2 and,
therefore, κ1 =z1θ

a
1 will be larger than κ2 =z2θ

a
2 even if the angles are commensurate. The

only effect of these emissions on DyG, beyond N2DL, would be a small contribution to the
pt degradation of the primary branch.

From the non-global logarithms side, that affect not only zg but also kt,g, we have
shown in section 2.3, that they are proportional to ln(zg) for Dynamical Grooming. In the
Soft Drop case, the soft singularity is cured by the definition of the grooming condition.
That is, non-global logs enter in the Soft Drop calculation as ∝ ln(zcutθ

β) and thus have a
smaller impact that in the DyG option.

Therefore, the cleanest grooming procedure from a theoretical point of view in order
to avoid the resummation of both non-global and clustering logarithms at NLL would be
to combine the two methods. Then, the grooming procedure would be a two-step process:
first, one removes all emissions with z < zcut and then one looks for the hardest one in
the Dynamical Grooming sense. This possibility will be further studied in an upcoming
publication [51].

2.4.3 Matching to fixed-order

The first leading order matching scheme for Sudakov safe observables was proposed in
ref. [30]. It is based on constructing a n-dimensional IRC safe distribution, that we dub ‘IRC
safe companion’, and re-defining the Sudakov safe observable by an appropriate marginal-
ization. In our case, the 2-dimensional IRC safe distribution would be d2σ/dzgdθg, that
can be interpreted as the joint probability distribution for having a tagged branching with
momentum sharing fraction zg and (normalised) opening angle θg. Although zg and θg are
Sudakov safe observables by themselves, measuring them simultaneously, i.e. zg in a given
bin of θg or vice versa, restores IRC safety.

To define a matching scheme for a Sudakov safe observable, one then rely on the match-
ing of the IRC safe companion. Such matching can be done for instance in a multiplicative
way,

d2σLO+N2DL
i = d2σLO

i × d2σN2DL
i

d2σN2DL
i,1

. (2.67)

This formula guarantees that d2σLO+N2DL
i has exactly the same O(αs) coefficient as the

LO result and reproduces the resumed calculation in the kinematic region enhanced by
large logarithms. Notice also that at LO, d2σLO

i coincides with the primary Lund plane
density. We would like to point out that this matching scheme applies to jets with a given
flavour i. As we shall see, this simplifies the resulting formula as our resummed result
depends on the jet’s flavour via the Casimir factor of the jet. At LO, such a decomposition
is trivial, as explained in section 2.3.2. However, beyond LO, this requires to determine in
an IRC safe manner the jet’s flavour. This can be done using, for instance, the flavour-kt
clustering algorithm [52].
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Once d2σLO+N2DL
i is known, the zg or θg distributions are computed by marginalization.

In the case of zg, for example, this amounts to

1
σ

dσLO+N2DL

dzg
= 1
σ

∑
i=q,g

∫ 1

0
dz
∫ 1

0
dθ d2σLO+N2DL

i

dzdθ δ(z − zg) , (2.68)

where σ is the inclusive jet cross-section. An important feature of Sudakov safe observables
is hidden behind the apparent simplicity of eq. (2.68). In fact, not all matching schemes for
the IRC safe companion lead to a well-defined integral after marginalization. For instance,
choosing an additive matching,

d2σLO+N2DL
i =

[
d2σLO

i − d2σ
N2DL,(1)
i

]
+ d2σN2DL

i , (2.69)

induces a collinear divergent term (the one inside the bracket) which is not cured by the
Sudakov. On the contrary, the integral in eq. (2.68) is well defined because the Sudakov
factor in d2σN2DL

i shields the θ=0 logarithmic divergence.
We now turn the concrete implementation of eq. (2.68) used in this paper. In principle

we could compute d2σLO
i using MadGraph as in our matched calculation of kt,g. However,

we decide here to take another path that we find more enlightening from the physics point
of view and, at the same time, easier to implement numerically. Namely, in the small jet
radius limit that we consider throughout this paper, it is possible to provide an explicit
analytic expression for d2σLO

i . Up to powers of θg corrections, it reads

d2σLO
i

dzgdθg
' σ0,i

2αsCi
π

1
θg
P i(zg) +O(θng ) , (2.70)

where P i is the symmetrized splitting function of a parton i: P i(z) = Pi(z)+Pi(1 − z),
summed over all decay channels. Matching our resummed distribution to this form of the
LO result is then straightforward as it amounts to replace 2CiΘ(e−Bi−z)/z in P̃ (z, θ)
(eq. (2.54)) by 2CiP i(z).13

In figure 3, we show a comparison between the exact result of d2σLO
i /dzgdθg obtained

through MadGraph and the approximation given by eq. (2.70). In addition, we compare
these two options with the one that we get after replacing the full symmetrized splitting
function by its soft limit in eq. (2.70). More concretely, we have computed d2σLO

i for the
gluon channel in the three ways that we have just mentioned and show the zg and θg-
projections for two bins of θg and zg, respectively. We see that eq. (2.70) matches the exact
leading order result while the soft limit of the splitting function is not enough to accurately
reproduce the MadGraph output throughout the whole range of zg. Similar conclusions
can be drawn by analysing the θg-projection of d2σLO

i . Both for zg and θg, the deviation of
eq. (2.70) to the exact result remains below 5%. We have deliberately chosen a low pt bin
to ensure that using P i as a proxy for d2σLO

i is valid in the regime in which the ALICE
measurement has been recorded.

We decide to normalize the zg and θg distributions to the Born level cross-section, σ0,
in contrast to the kt,g case where the NLO correction to the inclusive jet cross section, σ1,

13See also refs. [5, 50] for a similar trick in the calculation of the Soft Drop zg distribution.
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Figure 3. Left: zg differential distribution at leading order in αs for the gluon channel in a bin
of θg computed in three different ways: with MadGraph (gray), using the splitting function as a
proxy for the leading order result, see eq. (2.70), either with the leading order expression of Pi(z)
(solid, red) or taking the soft limit (dashed, red). Right: same as left panel but for θg.

was taken into account. For ktg, the reason we included this correction is to account for
the C1 term, but in principle, a LO matched cross-section can safely be normalized by the
Born cross-section without spoiling the targeted accuracy. For Sudakov safe cross-sections
such as zg and θg, the question of finding a matching scheme which makes possible the
inclusion of the NLO correction to σ in a consistent way with respect to the resummation
counterpart is in fact closely related to the C1 problem that we proceed to tackle.

The C1 term in Sudakov safe observables. The impossibility to perturbatively ex-
pand Sudakov safe observables in powers of αs invalidates the definition of the C1 term
given by eq. (2.59). Up to now, the question on whether a ‘C1-like’ contribution to the
resummation exists for this type of observables has not even been addressed in the lit-
erature. In this paper, we would like to outline a new, dedicated matching scheme for
Sudakov safe observables. The main difference with respect to the original proposal by the
authors in ref. [30] is to rely on an IRC safe cross-section which is one-dimensional. This
IRC safe companion is built from the Sudakov safe distribution with an additional cut on
the kinematic variable that is integrated out. More explicitly, for the dynamically groomed
zg distribution, one defines the IRC safe cumulative distribution Σ(zg|θcut) using the same
grooming procedure, but with an additional cut-off on the angle of the splitting, θg, that
is denoted θcut. Then, our matching formula is:

ΣLO+N2DL(zg) = ΣLO+N2DL(zg|θcut) + ΣN2DL(zg)− ΣN2DL(zg|θcut) , (2.71)

with ΣLO+N2DL(zg|θcut) defined using multiplicative matching as in eq. (2.55).14 Notice
that the normalization of ΣLO+N2DL(zg) to σ0 +σ1 is ensured. Clearly, this formula has
an explicit dependance on θcut, but it is the price to pay in order to define a C1-like

14The generalization of eq. (2.71) to θg and beyond leading order is straightforward.
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contribution to the logarithmic resummation of Sudakov safe cross-sections. That said,
if θcut is low enough the distribution is not sensitive to its value over a large zg domain.
To understand this, recall that the Sudakov form factor in ΣN2DL(zg) provides a natural
cut-off, θc, on the angular integration of the branching kernel that scales at DLA with
θc'exp(−1/

√
ᾱa) see eq. (2.13) (also in ref. [25]). Thus, if θcut is chosen smaller than θc,

we expect that
ΣN2DL(zg) = ΣN2DL(zg|θcut) (2.72)

for zg & θacut. Consequently, far from the resummation region, the dominant term in
eq. (2.71) is ΣLO+N2DL(zg|θcut) which correctly captures the large zg ∼ 0.5 domain. On
the contrary, in the small zg limit (but not smaller than θacut), we obtain:

ΣLO+N2DL(zg) ' ΣN2DL(zg) + αsC1(θcut)ΣN2DL(zg) . (2.73)

The second term in the previous equation is a correction to our resummed formula, which
looks like a C1 term. It depends on the value of θcut as a reminiscence of the non
IRC safety of the zg distribution. To see that, one notices that up to a constant fac-
tor, C1(θcut)∝ ln(θcut). Since θcut cannot be larger than θc, the C1 correction is actually of
order O(αs/

√
αsa)=O(

√
αs/a), at least. There are two interesting features in this scaling

behavior. First, the appearance of the square root of αs is characteristic of Sudakov safe
quantities. Second, we observe how C1 can become sizeable for a � 1. The latter point
reminds us that introducing and ad-hoc parameter, θcut, in the matching scheme comes
with some associated difficulties. In short, from the resummation point of view, one would
like θcut to be as small as possible such that eq. (2.72) holds. However, the smallness of θcut
can lead to a sizeable C1 correction in eq. (2.73), thus spoiling the correct asymptotic limit.
A clear trade-off exists and the concrete value of θcut in the proposed matching scheme
and its applicability to phenomenological applications deserve further investigation. We
emphasize that the proposed scheme has not been used in the results of this paper.

2.4.4 Results

Following the reasoning of the kt,g section, we would like to highlight some features of the
zg and θg analytic distributions before moving on to the comparison against Monte-Carlo
simulations and ALICE preliminary data. In the left panel of figure 4, we quantify the
difference between the double-log calculation of the zg distribution and the LO+N2DL’.
The purpose of this figure is to highlight the deviation of the zg-distribution from the 1/z
behavior when higher orders in the resummation are included. Indeed, we have shown in
eq. (2.14), the zg-distribution has a dynamically generated cut-off at zcut ∼ e−a/ᾱ. For
z > zcut, it was shown in ref. [25] that the distribution falls off like the soft limit of the
Altarelli-Parisi splitting function. We observe that NDL and N2DL contributions such as
the running of the strong coupling or the presence of non-global logarithms induce an almost
50% difference with respect to the DLA result. This should be taken into account when
interpreting the experimental data specially when searching for modifications in heavy-ion
measurements [53, 54].

In the right panel of figure 4, we asses the impact of the boundary logarithms in the
θg distribution that were discussed in section 2.4.1. As expected, they only matter at large
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Figure 4. Left: zg-distribution for a= 1 (red) and a= 2 (blue) at two different accuracies, DLA
and LO+N2DL’ and their ratio. Right: θg-distribution for a= 1 (red) and a= 2 (blue) with and
without boundary logarithms in the LO+N2DL’ result and their ratio.

angles and diverge when θg → 1. Their contribution amounts to a 10−20% and is therefore
mandatory to include them if a theory-to-data comparison is aimed.

3 Phenomenology at LHC energies

The analytic calculations that we have presented above rely mainly on two approximations:
the narrow jet limit and the use of the Altarelli-Parisi splitting function in the matching as a
proxy for the leading order result in the case of zg and θg. In order to evaluate the goodness
of such approximations, we test our analytic results against parton level simulations in
realistic experimental conditions together with the available experimental data. The results
are presented for two values of a in the Dynamical Grooming condition: a= 1 and a= 2.
The reason why we do not consider smaller values of a and, in particular, a=0.1 as done in
the ALICE measurement, is because non-perturbative phenomena, beyond the reach of our
analytic pQCD calculation, notably affect dynamically groomed observables when a < 1.
In addition, we utilise the N2DL’ prescription on the resummation side.

3.1 Analytics vs. Monte-Carlo parton level

In this section, we compare our analytic calculation for (kt,g, zg, θg) to parton level simula-
tions of dijet events with Pythia8.235 [34] and Herwig7.1.2 [55]. For the latter we use both
the default angular-ordered shower that we denote ‘Herwig7-AO’ [56] and the dipole-type
shower, ‘Herwig7-Dip’, based on ref. [57]. Given that non-perturbative effects are reduced
when going to larger pt, we study an experimental setup, that lies within the ATLAS ca-
pabilities [49], where the comparison to pQCD calculations are deemed to be cleaner. The
centre of mass energy is set to

√
s= 13TeV, jets are clustered with the anti-k⊥ algorithm

with R= 0.4 and re-clustered with Cambridge/Aachen using FastJet3.3.1 [58]. The anal-
ysis is performed on those jets that satisfy: 800 < pt < 1000GeV and |η| < 1.5. For the
Monte-Carlo studies, we used the DyG condition given by eq. (1.1).
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We show the comparison between our analytic result and parton level Monte-Carlo
simulations with Pythia8 and Herwig7 for the relative transverse momentum of the dy-
namically groomed splitting in figure 5. A crucial point to understand the fixed-order
dominated regime, i.e. kt,g & 10−1, is that in the default setting of both Monte-Carlos, the
parton shower starts off a leading-order 2→2 matrix element.15 Therefore, the fixed-order
contribution to the kt,g distribution is exactly zero for these event generators. Hence, at
large kt,g, an exact agreement between our analytic result, dominated by the exact NLO
matrix element, and the Monte-Carlos, where kt,g is exclusively generated by the parton
shower, is not expected. Nevertheless, both event generators use at the very least the
leading order Altarelli-Parisi splitting functions. As we have discussed in section 2.4.3, the
use of the full splitting function in the resummation (or, similarly, in the parton shower)
effectively reproduces the fixed-order result in the narrow jet limit. Then, part of the
higher-order corrections to the Born-level process are incorporated through the splitting
function in the parton shower. This can explain the nice agreement between the analytic
result and the Monte-Carlo curves for kt,g&10−1.

On the resummation side, both showers in Herwig are in relatively good agreement and
notably differ from Pythia. This is, a priori, rather counterintuitive based on the nature
of the three parton showers that we are evaluating. The dipole-style Herwig shower and
the Pythia one use a Catani-Seymour like [59] dipole map, transverse momentum ordering
and implement a local recoil scheme. In turn, Herwig7-AO evolves through 1→2 splittings
by means of a generalised angular variable and employs a global recoil scheme. Based
on these general arguments, one would expect Herwig7-Dip and Pythia showers to deliver
somewhat similar results. The opposite behavior observed in figure 5 points out to a more
general Pythia-to-Herwig difference rather than to the showers themselves. We identify
the scale at which the QCD shower is stopped to be the source of this discrepancy. In fact,
in the default setting, Pythia imposes a relatively low infra-red cut-off of 0.5GeV, while
Herwig uses a more conservative scale of ∼ 1GeV that is common to both showers [60].
Then, more phase-space is available for radiation in the Pythia case and this leads to the
differences observed on the low kt,g side in figure 5. Thus, we conclude that the small-
kt,g part of the differential distribution is sensitive to the way the infra-red is handled
and thus to hadronisation. This point will be further emphasized in the following section.
Moreover, any higher order term contained in the Monte-Carlo and not present at N2DL
in the resummation, e.g. energy-momentum conservation, would affect the low kt,g regime.

In what concerns the comparison between MCs and the analytic result, an enhance-
ment at low kt,g values appears. A very similar trend is observed in figure 11 of appendix B
where we evaluate the impact of removing the 1−z in the hardness variable κ (see eq. (1.1))
for the Monte-Carlo results. We remind the reader that this factor is a sub-leading, non-
logarithmic correction in our analytic calculation at N2DL accuracy. However, this mis-
match in the κ definition on the analytics and the Monte-Carlos amounts to a ∼ 10% differ-
ence on the low kt,g regime and is, therefore, partly responsible for the bump at kt,g∼10−3.

15The αs counting might be misleading at this point. Notice that what we refer to as LO in the analytic
result is actually a NLO contribution in the sense that it enters at order αs, i.e. we consider p + p → jj

at NLO.
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Figure 5. Theory to parton level comparison of kt,g in the ATLAS-like scenario for a=1 (left) and
a=2 (right) in the Dynamical Grooming condition, see eq. (1.1).

The distribution of the opening angle θg is displayed in figure 6. On the Monte-Carlo
side, we again observe a strong sensitivity to the momentum scale at which the shower
is cut-off. In fact, no significant differences are observed between the angle tagged by
Herwig7-AO and Herwig7-Dip, thus indicating a strong dominance of the choice of IR-
scale. In particular, we have checked that the small angle bump for a = 2 disappears if
the infra-red scale is lowered down in Herwig. We have pinned down two other sources for
the analytic-to-Monte-Carlo discrepancy. The first one concerns again the 1−z factor in
the definition of κ. In figure 11 in appendix B, we quantify this effect and observe that
the small θg region can be distorted by ∼ 20−40%, depending on the value of a. The
enhancement of θg at large angles in the MCs with respect to the analytic curve could be
explained by the O(θng ) terms that we have neglected all along our calculation, both on
the resummation side and also on the matching procedure where power suppressed terms
in the fixed order result were ignored. On the other hand, it is not guaranteed that the
branching kernels implemented in the Monte-Carlos recover the exact soft and large angle
limit. Then, we conclude that the disagreement between the analytic calculation of the
θg-distribution and the parton shower results can be understood as a result of the choice
of the infra-red scale, the finite z corrections in the κ definition and the jet clustering
procedure, being the first one the strongest effect.

Finally, the momentum sharing splitting fraction zg is presented in figure 7. We clearly
observe the presence of the dynamically generated cut-off that separates the fall-off of the
distributions from the flattening. The latter starts earlier for a=2 given that zcut is smaller
in this case, see eq. (2.14). The agreement between the theory calculation and the Monte-
Carlos is reasonable in the intermediate regime of 10−2<zg<10−1. Outside this interval,
the recoil factor in the hardness definition is responsible for both the depletion at large
zg in the MC’s with respect to the analytic as well as for the excess at small-z, as can be
seen in appendix B. In addition, the reduced phase space for emissions at infra-red scales
in Herwig as compared to Pythia is manifest and further studied in appendix D.
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Figure 6. Same as figure 5 but for θg.
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Figure 7. Same as figure 6 but for zg.

3.2 Comparison to preliminary ALICE data

In this section, we scrutinise our analytic calculation against preliminary measurements
of DyG observables [31, 32]. The experimental analysis is performed at

√
s = 5.02TeV

on jets clustered with the anti-k⊥ algorithm with R = 0.4. An important aspect is that
only charged jets that satisfy 60 < pcht < 80GeV and |η| < 0.5 are considered. In the
analytic calculation, no distinction is made between charged and neutral particles, thus
a method to translate the charged pt bin of the data into its full counterpart has to be
designed. A few possibilities exist to tackle this problem. One could be to identify via
Monte-Carlo simulations the transverse momentum bin that, after subtracting the neutral
component, yields most of the jets in the 60<pt< 80GeV interval. We have carried out
this exercise and found that 80% of the jets that fulfil 64.5 < pt < 102.5GeV, fall in the
60<pcht < 80GeV category. Another option is to absorb this pt-shift from charged to full
jets into a non-perturbative factor that also accounts for the effect of hadronization, initial
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state radiation and multi-parton interactions. This latter is the approach followed in this
paper (see also ref. [8]) and works as follows. We perform the analytic calculation in the
same pt-bin as where the experimental measurement is carried out, i.e. 60<pt< 80GeV.
Then, to construct the non-perturbative factor two samples have to be generated with
Monte-Carlo. The first one includes all non-perturbative effects and only charged particles
are clustered. Then, the Dynamical Grooming analysis is performed on the charged jets
that satisfy 60 < pcht < 80GeV. The second sample is generated as parton level events.
Again, we select jets in the same pt-bin as the theoretical calculation, i.e. 60< pt< 80GeV,
without any charge selection. Then, our non-perturbative factor is defined as the ratio
of the charged hadron level sample and the parton level one, both computed in the same
transverse momentum bin. These results are plotted in appendix D, where further details
on the role of the infra-red cutoff in the parton shower are provided. Finally, the theoretical
results are multiplied by this phenomenological parameter. Then, the theoretical error band
includes both the uncertainty of the non-perturbative factor and the analytic uncertainties
characterised in the end of section 2.3.3. We label these results as ‘LO+N2DL’+NP’.

Like in the previous section, we start the discussion with the kt,g distribution shown in
figure 8. To begin with, an important remark is that a mismatch exists between how the
kt,g is defined in the analytic calculation, i.e. kt,g =zgRg,16 and in ALICE’s measurement,
where kt,g = zg sin(Rg)pt. As we have already mentioned, pt degradation is ignored in
our calculation because the hardest branching is located on the primary Lund plane at our
degree of accuracy. Then, to accommodate the pt dependence of the experimental definition
we simply multiply our analytic result by the lower bound of the pt bin, 60GeV in this
case. We have checked that changing this factor by any other value within the explored
pt-bin leads to variations that are well covered by our uncertainty bands. The functional
form of the angular dependence of the two kt,g definitions is a bit more delicate. This
is so because considering sin(Rg) instead of Rg brings additional power-corrections in the
calculation that we have so far neglected based on our narrow jet approximation. Besides
this fact, we observe in figure 8 that the data points are only described by the theoretical
calculation if the non-perturbative factor, displayed in figure 13, is included. In particular,
its role is most prominent for the first bin and generates a large uncertainty. This is yet
another manifestation of the different methods that Pythia and Herwig employ to regulate
the infra-red sector in the shower. We also provide the Monte-Carlo to data comparison
in appendix E and find that all three explored setups result into 10−20% deviations with
respect to the data both for a= 1 and a= 2. Therefore, we conclude that the agreement
between the analytic result presented in this paper and ALICE data is satisfactory in spite
of the low pt selection where hadronization effects are very large.

Turning to θg, represented in figure 9, we observe that the ad-hoc non-perturbative
factor completely dominates the result in the first bin for a = 1. The a-dependence of
these results is also interesting from the point of view of missing terms in the analytic
calculation. Indeed, we see a deficit in the analytic result for splittings with angles θg>0.6

16Notice that in the previous section we have used kt,g = zgθg and now we replace θg by Rg = θgR to
follow ALICE convention.
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Figure 8. Comparison between the analytic result obtained in this paper and the preliminary
ALICE data [32] of kt,g.
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Figure 9. Same as figure 8 for θg. The experimental data was obtained from [31].

that disappears for the a = 2. We have already mentioned that the gnm coefficients are
inversely proportional to a and thus higher-order terms would impact less the a=2 result
than the a= 1 one. In addition, the discrepancy appears in the region where the power-
suppressed terms that we have neglected all along the calculation based on the narrow jet
approximation, i.e. contributions of O(θng ), may matter. An obvious way to confirm this
hypothesis would be either to include them or, alternatively, to make a jet radius scan of
this observable on the experimental side.

To end up this phenomenological section, we present the theory-to-data comparison for
the momentum sharing fraction in figure 10. In this scenario, the non-perturbative factor
is prominent at small zg, but has a relatively mild effect for zg>0.2. In fact, in this interval
both the LO+N2DL’ and LO+N2DL’+NP results agree with the data within uncertainties.
Clearly, this observable together with kt,g are the ones for which our theoretical calculation
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Figure 10. Same as figure 9 for zg.

results provides the best description of the experimental measurements. This is a remark-
able result given that the Sudakov nature of this observable complicates its theoretical
analysis in many different ways, as we have discussed throughout the paper. The Monte-
Carlo results are also consistent with the experimental measurement (see appendix E).

4 Conclusions and outlook

The work presented in this paper follows the current global effort towards a precise the-
oretical description of jet substructure observables that will help us to deepen our un-
derstanding of the space-time evolution of QCD jets, both in vacuum and in heavy-ion
collisions. In particular, we have focused on three substructure observables defined on the
splitting selected by the Dynamical Grooming method, that is, the hardest one in the jet
tree. These three observables are the momentum sharing fraction zg, the opening angle θg
and the relative transverse momentum kt,g. Out of the three, kt,g is the only infra-red and
collinearly safe observable. Then, the definition of logarithmic accuracy for zg and θg is
far from trivial and we extensively discuss a possible approach to tackle the problem that
consists in defining the accuracy of the Sudakov safe observable in terms of the cumulative
distribution of an IRC safe companion. In this way, we demonstrate that the resummation
of dynamically groomed observables does not exponentiate, in general, and that a logarith-
mic counting at the level of the cumulative distribution is therefore better suited. Further,
we present all the necessary ingredients to reach next-to-next-to-double logarithmic accu-
racy in the narrow jet limit. This includes: (i) the resummation of collinear logarithms
arising from the running of the coupling and the hard-collinear correction to the splitting
function, (ii) the contribution of non-global logarithms at O(α2

s) and (iii) the O(α2
s) contri-

bution of boundary logarithms in the case of θg. Remarkably, neither clustering logarithms
nor multiple emissions affect these dynamically groomed distributions. We make use of a
matching scheme that naturally includes the C1 term and allows us to recover the exact
leading-order result, computed with MadGraph, for large values of kt,g. On the Sudakov
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safe cases, we employ the full splitting function as a proxy for the fixed-order result and
propose a dedicated matching scheme that depends on an ad-hoc cut-off. All in all, we
achieve LO+N2DL accuracy in our analytic computation.

The analytic framework is tested against three different parton-level Monte-Carlo sim-
ulations at high-pt: Pythia8, angular-ordered, and dipole-style showers in Herwig. In the
resummation dominated regime, we find a strong dependence of the Monte-Carlo results on
the transverse momentum cut-off at which the parton shower stops. This value is smaller
for Pythia (∼ 0.5GeV) than for Herwig (∼ 1GeV) by default and, as such, more radia-
tion is allowed in the former case. The analytic result regulates the infra-red singularity
through a freezing of the running coupling below 1GeV and, therefore, allows for emissions
with all possible transverse momenta. Due to this fact, it is reasonable that the analytic
result is closer to Pythia than to Herwig. Even in the region in which the analytic calcu-
lation reduces to the fixed-order contribution, the parton shower is fully responsible of the
Monte-Carlo results, given that a leading-order matrix element is implemented by default.
Despite this mismatch, an overall good agreement is found for the three jet substructure
observables that we attribute to the use of the full splitting function in the parton showers
that, as we have stated, generates the correct matrix element in the narrow jet limit.

Our last step is to compare the analytic predictions against the preliminary ALICE
data. To do so, we supplement the perturbative results with a non-perturbative factor ex-
tracted from Monte-Carlo simulations with Pythia and Herwig that accounts for the use of
charged tracks, hadronisation and underlying event. This ingredient is particularly crucial
in this experimental setup given that only low-pt jets, i.e. pcht . 200GeV are measurable
by the ALICE detector. In fact, it dominates the theoretical prediction in the lower bins
of the kt,g, zg and θg distributions. A quantitative description of kt,g and zg is achieved
up to 5−10% deviations in some bins. In the case of θg, we find deviations of up to 15%
in the moderately large angle region. This is precisely the regime in which we have less
confidence in our result considering that we have neglected all power suppressed terms of
the type O(θng ).

The natural extension of this work is to go beyond the small-R limit and develop a nu-
merical routine to account for the resummation of non-global and boundary logarithms. No-
tice that, as far as we are aware, the latter has yet never been achieved in the literature. On
the collinear side of the resummation, we could include the recoil of the hard branch, make
use of the NLO splitting function together with higher orders in the running coupling. Fur-
ther, promoting our leading-order matching to NLO is straightforward from a conceptual
point of view in the case of kt,g and would improve the agreement with data/parton level
MC simulations both at low and high pt and reduce the theoretical uncertainties. Regarding
the Sudakov safe observables, we would like to understand the feasibility of the dedicated
matching scheme proposed in this paper and, specifically, quantify its dependence on the ad-
hoc cut off. Finally, it would be insightful to compare these analytic results for dynamically
groomed observables to the newly developed parton showers that aim at achieving pertur-
bative control beyond leading double logarithmic accuracy and leading color [35, 36, 61].
From an experimental perspective, these theoretical efforts would highly benefit from a
high-pt measurement where non-perturbative corrections are deemed to be milder.
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Beyond the possible improvements of the p + p calculation, we would like to discuss
two further extensions in terms of collision systems: e+ p (and eventually e+A), relevant
for the future Electron Ion Collider and heavy-ion collisions. The former, despite the
relatively low number of constituents per jet [62], provides a cleaner environment with
respect to p + p given that both multi-parton interactions and the underlying event will
have a residual effect. On the heavy-ion side, dynamically groomed observables can be
used to characterise the properties of an in-medium parton shower. In particular, the
θg distribution can be used to experimentally measure the critical resolution angle of the
Quark-Gluon Plasma [63], while deviations at large kt,g from respect to the vacuum baseline
could suggest rare, hard scatterings between the propagating parton and the medium.
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A Details of analytic calculations at N2DL’

The purpose of this section is to provide the analytic Sudakov form factor needed to achieve
N2DL’ accuracy as explained in section 2.3. To that end, we need to perform the following
integral:

− ln(∆i(κ|a)) = 2Ci
π

∫ e−Bi

0

dz
z

∫ 1

0

dθ
θ
αs(µKzθQ)Θ(zθa − κ) , (A.1)

with Q = pt,jetR and the coupling is frozen in the infra-red as αs(kt) = α2`
s (kt)Θ(kt −

µfr) + αs(µfr)Θ(µfr − kt). We would like to point out that this choice is completely ad-
hoc and one could think of a more general functional form for the infra-red description
of the coupling and systematically study its impact on jet substructure observables. We
will investigate this possibility in future studies. In the perturbative domain kt > µfr, the
two-loop running coupling α2`

s (kt) is given by eq. (2.47) with the reference αs value taken
at the renormalization scale µRQ.

We define the following dimensionless variable: λκ = 2αsβ0 ln(κ), λB = −2αsβ0Bi,
λK = 2αsβ0 ln(µK/µR) and λfr = 2αsβ0 ln(µfr/(µKQ)), and the following functions:

W (x) = −x+ x ln(x) , (A.2)
V (x) = ln(x)(2 + ln(x)) . (A.3)
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Due to the presence of the constant kt = µfr line in the (z, θ) phase space, the formulae
depend on whether a is larger or smaller than 1.

Case a > 1. If λκ ≥ λfr:

− ln ∆i(κ|a) = Ci
2παsβ2

0

[
W (1 + λK + λB) + 1

a− 1
(
W (1 + λK + λκ)

−aW
(

1 + λK + a− 1
a

λB + λκ
a

))]
+ Ciβ1

4πβ3
0

[
V (1 + λK + λB) + 1

a− 1
(
V (1 + λK + λκ)

−aV
(

1 + λK + a− 1
a

λB + λκ
a

))]
− CiK

4π2β2
0

[
ln(1 + λK + λB) + 1

a− 1
(

ln(1 + λK + λκ)

−a ln
(

1 + λK + a− 1
a

λB + λκ
a

))]
. (A.4)

If λκ ≤ aλfr + (1− a)λB:

− ln ∆i(κ|a) = Ci
2παsβ2

0

[
−λB + λfr + (1 + λB + λK) ln

(1 + λB + λK
1 + λfr + λK

)]
+ Ciβ1

4πβ3
0

[
V (1 + λB + λK)− 2λB − 2λfr + 2(1 + λB + λK) ln(1 + λfr + λK)

1 + λfr + λK

+ ln2(1 + λK + λfr)
]

− CiK

4π2β2
0

[
λfr − λB

1 + λfr + λK
+ ln

(1 + λB + λK
1 + λfr + λK

)]
+ 2CRαs(µfr)

4πα2
sβ

2
0

[
(1− a)λB2 + 2aλBλfr − 2λBλκ − aλfr

2 + λκ
2

2a

]
. (A.5)

If aλfr + (1− a)λB < λκ < λfr:

− ln ∆i(κ|a) = Ci
2παsβ2

0

[
λfr − λκ

1− a ln(1 + λK + λfr) +W (1 + λK + λB)

1
a− 1

(
W (1 + λK + λfr)− aW

(
1 + λK + a− 1

a
λB + λκ

a

))]
+ Ciβ1

4πβ3
0

[2(λfr − λκ)
1− a

(1 + ln(1 + λK + λfr))
1 + λK + λfr

+ V (1 + λK + λB)

1
a− 1

(
V (1 + λK + λfr)− aV

(
1 + λK + a− 1

a
λB + λκ

a

))]
− CiK

4π2β2
0

[
λfr − λκ

1− a
1

1 + λK + λfr
+ ln(1 + λK + λB)

1
a− 1

(
ln(1 + λK + λfr)− a ln

(
1 + λK + a− 1

a
λB + λκ

a

))]
+ CRαs(µfr)

2πα2
sβ

2
0

(λfr − λκ)2

2(a− 1) . (A.6)
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Case a = 1. It is straightforward, albeit tedious, to take the limit a→ 1 of the previous
formulae. If λκ > λfr,

− ln ∆i(κ|1) = Ci
2παsβ2

0

[
−λB + λκ + (1 + λB + λK) ln

(1 + λB + λK
1 + λκ + λK

)]
+ Ciβ1

4πβ3
0

[
V (1 + λB + λK)− 2λB − 2λκ + 2(1 + λB + λK) ln(1 + λκ + λK)

1 + λκ + λK

+ ln2(1 + λK + λκ)
]

− CiK

4π2β2
0

[
λκ − λB

1 + λκ + λK
+ ln

(1 + λB + λK
1 + λκ + λK

)]
, (A.7)

and if λκ < λfr

− ln ∆i(κ|1) = Ci
2παsβ2

0

[
−λB + λfr + (1 + λB + λK) ln

(1 + λB + λK
1 + λfr + λK

)]
+ Ciβ1

4πβ3
0

[
V (1 + λB + λK)− 2λB − 2λfr + 2(1 + λB + λK) ln(1 + λfr + λK)

1 + λfr + λK

+ ln2(1 + λK + λfr)
]

− CiK

4π2β2
0

[
λfr − λB

1 + λfr + λK
+ ln

(1 + λB + λK
1 + λfr + λK

)]
+ CRαs(µfr)

2πα2
sβ

2
0

[
(λfr − λκ)(λB − λfr) + 1

2(λfr − λκ)2
]
. (A.8)

Case a < 1. For completeness, we provide also the formulae when a < 1. For some values
of λκ, they can be related to the expression in the a > 1 case. If λκ ≥ aλfr + (1 − a)λB,
∆(κ|a < 1) is given by the expression of ∆(κ|a > 1) when λκ > λfr. In a similar way, when
λκ < λfr, ∆(κ|a < 1) is given by the expression of ∆(κ|a > 1) when λκ ≤ aλfr + (1− a)λB.
In the remaining κ domain, λfr ≤ λκ ≤ aλfr + (1− a)λB, one finds

− ln∆i(κ|a) = Ci
2παsβ2

0

[(1−a)λB+aλfr−λκ
a−1 ln(1+λK +λfr)+W (1+λK +λB)

1
a−1(W (1+λK +λκ)−aW (1+λK +λfr))

]
+ Ciβ1

4πβ3
0

[2((1−a)λB+aλfr−λκ)
a−1

(1+ln(1+λK +λfr))
1+λK +λfr

+V (1+λK +λB)

1
a−1(V (1+λK +λκ)−aV (1+λK +λfr))

]
− CiK

4π2β2
0

[(1−a)λB+aλfr−λκ
a−1

1
1+λK +λfr

+ln(1+λK +λB)

1
a−1(ln(1+λK +λκ)−a ln(1+λK +λfr))

]
+ CRαs(µfr)

2πα2
sβ

2
0

[
((1−a)λB+aλfr−λκ)2

2a(1−a)

]
. (A.9)
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The non-global term. On top of eq. (A.1), the Sudakov factor receives a contribution
from soft non-global emissions of the form

− ln(∆NG
i (κ|a)) = 2CiCA

(
αs
2π

)2 π2

3

∫ e−B

0

dz
z

ln
( 1
µKz

)∫ 1

0
dθΘ(zθa−κ) (A.10)

=CiCA

(
αs
2π

)2 π2

3 ln2(µKκ)+CiCA
(
αs
2π

)2 π2

3
[
−ln2

(
µKe

−B
)

+2a2
(
1−κ1/aeB/a

)
+2a

(
ln(κµK)−ln

(
e−BµK

))
κ1/aeB/a

]
. (A.11)

In this expression, we have separated the single-log term from the pure αs or power cor-
rections in κ which can be neglected to N2DL accuracy.

B The size of finite z corrections in the definition of κ

In this appendix, we evaluate the impact of not neglecting the 1−z factor on the definition
of κ in eq. (1.1). From an analytic point of view, this is a sub-leading, non logarithmic
correction and thus not needed to reach N2DL. For example, at the level of the Sudakov
∆(κ|a), the 1 − z in the definition of k⊥ = z(1 − z)pT θ for the running coupling scale
induces a N3DL correction of the form:

δ ln(∆(κ|a)) = 4α2
sβ0Ci
π

∫ 1

0

dz′

z′

∫ 1

0

dθ′

θ′
log(1− z′)Θ(z′θ′a − κ) (B.1)

= 4α2
sβ0Ci
πa

(
π2

6 ln(κ) + ζ(3) +O(κ)
)

(B.2)

where we have used αs(k⊥) ' αs(zpT θ)(1−2αsβ0 ln(1− z)) at our order of interest. In the
same way, one can determine the magnitude of the leading correction induced by 1− z in
the definition of κ = z(1 − z)(∆R/R)a by using the double logarithmic formula (2.6) for
the Sudakov, with the veto constraint including the 1− z factor:

ln(∆(κ|a)) = −2αsCi
π

∫ 1

0

dz′

z′

∫ 1

0

dθ′

θ′
Θ(z′(1− z′)θ′a − κ) (B.3)

= −αsCi
πa

(
ln2(κ)− π2

3 +O(κ)
)

(B.4)

The correction to the double logarithmic result is therefore a sub-leading non logarithmic
correction.

That said, we would like to understand its impact on Monte-Carlo results in the ex-
perimental setups explored in this paper. The results are presented in figure 11 while their
implications are commented over the main text.
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Figure 11. Impact of including or not the recoil factor in the hardness variable definition as a
function of a for dijet events at parton level in Pythia with

√
s=13TeV for kt,g (top), θg (center)

and zg (bottom).
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C Impact of jet clustering algorithms

Throughout the main text we have determined dynamically groomed substructure observ-
ables for jets found with an initial anti-kt clustering and subsequently re-clustered with
Cambridge/Aachen. This two-step process has advantages from an experimental point of
view. However, from a theoretical perspective we have seen in section 2.4.1 that this two-
step process induces boundary logarithms in the calculation. In this appendix, we would
like to investigate at the Monte-Carlo level if the observables are modified when defining
the jets only with C/A. This is shown in figure 12. Interestingly, we observe how the bump
at large angles whose origin we have discussed in the main text disappears when clustering
with C/A. Nevertheless, the impact of these two jet clustering strategies is mild for all cases.

D Non-perturbative corrections with Pythia and Herwig

In order to compare our analytic predictions with ALICE’s experimental data, we add non-
perturbative effects through a single parameter extracted from Monte-Carlo simulations.
This factor, thoroughly explained in section 3.2, is provided in figure 13, where we took
the ratio of MCs before and after hadronisation. Besides the default settings of Pythia
and Herwig, we show two additional curves in which the parton shower cutoff, denoted
as µparton

NP , in Herwig is changed from its default value of 1GeV to the number used in
Pythia where µparton

NP =0.5GeV. Note that changing this factor does not necessarily imply
a one-to-one correspondence between the two event generators. The value of this factor,
like any other hadronisation-related parameter, is tuned to data. Then, one cannot vary
it when running the Monte-Carlo at hadron level because its predictive power would be
negatively affected. Therefore, we only vary this factor for the parton level result, that is,
for the denominator of our non-perturbative factor.

The point of the variation of the parton shower stopping is to demonstrate the sen-
sitivity of the dynamically groomed observables to that scale, and the limitations of this
method for incorporating hadronisation corrections into analytic calculations. This is man-
ifest in figure 13, where the hadron-to-parton ratio varies from 0.5 to 2.5 for those settings
that share the same value of µparton

NP , while it explodes for the default Herwig-AO and
Herwig-Dip in the limit of non-perturbative values of (kt,g, zg, θg). In the latter case, the
reason for the rapid growth of the non-perturbative factor, e.g. in the low kt regime, is
rooted in the fact that the parton-level shower does not generate splittings below µparton

NP ,
while hadronization and underlying event populate this part of the phase-space. In terms
of Lund planes, the area covered by the parton-level result and the hadron level one are
clearly distinct in Herwig. This effect is less pronounced whenever µparton

NP is low, as in
default Pythia. This is explicitly shown in figure 14.

As we have already mentioned, there is no preferred value of µparton
NP when running

parton level simulations and the large variations encountered in the non-perturbative factor
simply indicate that the parton-level results are out of their regime of applicability. Then,
we decide to use the average of the Monte-Carlo generators with the same value of µparton

NP
as the central value of the non-perturbative factor. The uncertainty band is obtained from
the envelope of the five MC settings.
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E Monte-Carlo description of (zg, θg, kt,g) data

In this appendix we compare the three Monte-Carlo settings that we explore through this
paper, i.e. Pythia8, Herwig7-AO and Herwig7-Dip, to the preliminary ALICE data. The
results are shown in figure 15. Notice that through these comparisons we are testing simul-
taneously the parton shower, i.e. dipole-style or angular-ordered, and the hadronization
mechanism, i.e. Lund string or cluster models. In the case of kt,g, no significant differences
are observed among all Monte-Carlos. For θg, Herwig7-Dip provides the best description
of the data from small to large angles. All three Monte-Carlo settings are able to capture
the data in the intermediate range of this measurement 0.4<θg<0.7 and differences only
appear in the tails of figure 15, where the hadronization mechanism seems to dominate for
θg<0.4. Finally, all Monte-Carlos show a significant depletion at 0.2<zg<0.3 that is ame-
liorated for a=1. Pythia achieves the best theory-to-data ratio, but its not obvious for this
observable to disentangle between parton-shower dominated differences and hadronization
mechanisms.
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