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Edited MRS sequences are widely used for studying γ-aminobutyric acid (GABA) in

the human brain. Several algorithms are available for modelling these data, deriving

metabolite concentration estimates through peak fitting or a linear combination of

basis spectra. The present study compares seven such algorithms, using data

obtained in a large multisite study. GABA-edited (GABA+, TE = 68 ms MEGA-

PRESS) data from 222 subjects at 20 sites were processed via a standardised pipe-

line, before modelling with FSL-MRS, Gannet, AMARES, QUEST, LCModel, Osprey

and Tarquin, using standardised vendor-specific basis sets (for GE, Philips and

Siemens) where appropriate. After referencing metabolite estimates (to water or

creatine), systematic differences in scale were observed between datasets acquired

on different vendors' hardware, presenting across algorithms. Scale differences

across algorithms were also observed. Using the correlation between metabolite

estimates and voxel tissue fraction as a benchmark, most algorithms were found to

be similarly effective in detecting differences in GABA+. An interclass correlation

across all algorithms showed single-rater consistency for GABA+ estimates of

around 0.38, indicating moderate agreement. Upon inclusion of a basis set compo-

nent explicitly modelling the macromolecule signal underlying the observed

3.0 ppm GABA peaks, single-rater consistency improved to 0.44. Correlation

between discrete pairs of algorithms varied, and was concerningly weak in some

cases. Our findings highlight the need for consensus on appropriate modelling

parameters across different algorithms, and for detailed reporting of the parameters

adopted in individual studies to ensure reproducibility and meaningful comparison

of outcomes between different studies.
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1 | INTRODUCTION

Several software packages and modelling algorithms are available for processing and quantifying MR spectroscopy (MRS) data. While they

are all designed to extract quantitative estimates of metabolite levels from spectra, the packages differ significantly in their approach to

processing and modelling the underlying data, and isolating the components of interest from any artefactual signals therein. This may

give rise to systematic differences in metabolite estimates between different software packages. While an effect of ‘choice of

software’ has been documented for short-echo-time data,1–4 similar studies for γ-aminobutyric acid (GABA)–edited MRS quantification

are lacking.

Spectral editing experiments,5,6 such as the widely used Mescher–Garwood point-resolved spectroscopy (MEGA-PRESS) technique for the

selective detection of GABA, present a special case for quantification. In a typical MEGA-PRESS editing sequence, two interleaved subspectra are

acquired: the edit-ON subspectrum, in which coupling to GABA spins at three parts per million (ppm) is refocused, and the edit-OFF subspectrum,

in which it is not. Subtracting the edit-ON and edit-OFF subspectra yields a relatively sparse difference spectrum, featuring prominent broad sig-

nal for GABA (with underlying macromolecule contributions) at 3 ppm and coedited signals including glutamate (Glu) and glutamine (Gln) peaks

(usually reported collectively as the combined signal of glutamate + glutamine [Glx]) around 3.75 ppm, and strong negative peaks close to the

editing frequency — primarily N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG).

Most notable among the challenges for modelling edited spectra are coedited macromolecular signals coupled to spins near the editing

frequency,6 some of which appear in the same frequency range as the GABA and Glx signals and therefore interfere with their unambiguous

modelling. As they are broad and poorly characterised, no consensus currently exists on how they should be accounted for in the modelling stage.

Constrained by the inability to reliably separate GABA and macromolecules, their composite is commonly reported: total edited signal at 3 ppm

(GABA with underlying coedited signals [GABA+]).
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A rigorous assessment of the comparability of GABA+ estimates obtained across a range of different analysis software packages is currently

lacking. Several prior studies7–10 have investigated the test–retest reproducibility of GABA+ estimates using a small selection of available soft-

ware packages, but without detailed examination of the differences in estimates arising between software packages. Each considered data from a

single site only. Another study11 has investigated GABA+ estimates from Gannet and Tarquin compared with a simulated ‘ground truth’,
specifically with respect to the influence of signal-to-noise ratio (SNR) and linewidth on estimates, showing that the two algorithms agreed under

favourable conditions of linewidth and SNR but diverged under poorer conditions; however, only two algorithms were included in this analysis. A

recent conference paper12 has reported early findings from GABA-edited MEGA-PRESS data showing moderate associations between five

different algorithms, with data from four sites (representing two scanner vendors), albeit with divergent processing. A more thorough examination,

covering a broader range of sites and an extended selection of contemporary algorithms, is required to better characterise the noted

discrepancies.

Therefore, to establish the degree to which different software packages agree in estimating GABA+ from MEGA-PRESS data, this study com-

pares GABA+ estimates from seven modelling algorithms: FSL-MRS,13 Gannet,14 LCModel,15 Osprey,16 Tarquin,17,18 AMARES19 and QUEST,20,21

with the last two implemented in the jMRUI software package.22,23 Estimates of Glx from the difference spectra are also considered. Detailed

characterisation of differences observable across algorithms is essential for meaningful comparison of findings reported from different tools, and

particularly in reconciling any discrepancies therein.

2 | METHODS

2.1 | Data

Data from 20 3-T MRI scanners from the three major manufacturers (GE, Philips and Siemens), each at a different site, were obtained from the

Big GABA24,25 repository on NITRC (https://www.nitrc.org/projects/biggaba). GABA-edited spectra (TR/TE = 2000/68 ms, 320 averages, editing

at 1.9/7.46 ppm for edit-ON/-OFF, respectively) and corresponding water-unsuppressed reference data (eight or 16 averages) were obtained

from a 3 x 3 x 3 cm3 voxel in the posterior cingulate region, from 222 consenting adult volunteers (aged 18–36 years, approximately an even

female/male split, having no known neurological or psychiatric illness), in accordance with ethical standards of their respective local institutional

review boards. Subjects consented to the sharing of anonymised data, with allowance for further study. Datasets also included T1-weighted struc-

tural MR images, which were used for tissue segmentation.

This extensive collection of datasets was acquired in an international collaborative study; several aspects have been previously reported,24–26

with a focus on comparability across sites and vendors. Full details on the acquisition protocol, software and hardware configurations and sample

composition may be found in these papers, and are summarised in Table S1. Detailed vendor-specific parameters have been reported

previously.25,27

2.2 | Processing

To the maximum extent practical, data were prepared for each algorithm using a common pipeline, to avoid variations in processing that might

otherwise confound observations regarding the model fit. Original data in vendor-specific format were imported using the GannetLoad function

from Gannet (v. 3.1). The GannetLoad function was chosen because it had the broadest support for the diverse file formats and sequence

implementations present in these datasets. This function applies coil combination where necessary, and initial categorisation of individual free

induction decay (FID) observed time-domain signals into edit-ON/OFF subspectra and water reference spectra. Although GannetLoad also incor-

porates a full processing pipeline, we did not make use of this, instead electing to implement a generalised pipeline in accordance with current

consensus recommendations,28 using the processing tools from FID-A.29 The rationale for this was to provide a common, neutral starting point

for quantification across all the algorithms to be assessed, rather than one which may have been tuned for a particular quantification algorithm.

Additionally, the standard Gannet pipeline performs line-broadening and zero-filling, which invalidates assumptions for error calculations in linear-

combination modelling algorithms such as LCModel.

Initially, motion-corrupted transients were removed by comparing the root mean square of the difference between each transient and the

median of transients in the time domain, rejecting those which differed from the mean by more than four standard deviations (SDs). This unlike-

ness metric was calculated independently within the edit-ON and edit-OFF subspectra but applied pairwise. To correct for frequency and phase

drift, the remaining FIDs were then aligned in the frequency domain using the spectral registration method,30 iteratively on a variable, restricted

frequency range (�1.6–5.5 ppm in the first iteration, reducing to �1.8–4.0 ppm in subsequent iterations), before averaging within the edit-ON

and edit-OFF subspectra. Eddy-current correction (ECC) was applied,31 before zero-order phase adjustment of each subspectrum according to a

dual-Lorentzian model for creatine (Cr) and choline (Cho) defined in Gannet14 and implemented in Osprey. Thereafter, edit-ON and edit-OFF
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subspectra were aligned by spectral registration,30 and sum and difference spectra were calculated arithmetically on the time domain data,

dividing by the number of subspectra. All resultant spectra and subspectra were frequency-shifted such that the main Cr peak (from the

dual-Lorentzian model for Cr and Cho) in the sum spectrum appeared at 3.027 ppm. After calculation of the difference spectrum, residual water

was filtered from edit-ON and edit-OFF data separately with the Hankel singular value decomposition (HSVD) method.32 A final automated check

was performed to ensure correct ON/OFF ordering and orientation of all resultant spectra, flipping where necessary. Processed data were

exported with the same resolution (number of samples and sweep width/dwell time) as the incoming data, without line-broadening or zero-filling.

Processing and modelling workflow are summarised in Figure 1.

2.2.1 | Quality control: Processing

Processed spectra were tested against two rejection criteria, designated R1 and R2 in subsequent usage:

• R1 (R1–4, adopted rejection criteria) captures spectra having strongly aberrant features in the fit range: processing was deemed to have failed

if the 0-lag cross-correlation of the normalised, reconstructed frequency domain difference spectrum in the metabolite range (2.6–4.2 ppm)

with the normalised mean of all other difference spectra was less than 0.5 or differed from the group mean by more than three SDs.

• R2 establishes thresholds on basic signal quality metrics: SNR (< 80, defined by maximum peak height around NAAdiff in the [1.8, 2.2] ppm

interval, over SD across the [�2, 0] ppm range) and linewidth (full width at half maximum [FWHM] > 10 Hz,33) measured from NAAdiff.

F IGURE 1 (A) Source data, (B) Processing and (C) Modelling workflow, summarising key differences between the algorithms assessed. Cho,
choline; Cr, creatine; Diff, difference (edited) spectrum; FD, frequency domain; LCM, linear combination modelling; TD, time domain
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Data deemed to have failed at the processing stage were still passed to the fit algorithms but flagged as having failed and excluded from evalua-

tion of groupwise statistics (such as median estimates) in further analysis.

2.3 | Initial fit and quantification

Identically processed data were fed into each algorithm. To the maximum extent practical, data were modelled using the developer-supplied

default or recommended configuration parameters for GABA-edited MEGA-PRESS data, to yield outcomes representative of those which

researchers could expect without extensive local optimisation.

Batch processing for all algorithms was automated in Matlab (v. 2019a), with the exception of the jMRUI-based algorithms, for which

processed data were exported then processed as batches (grouped by manufacturer and spectral resolution) in a standardised but manual proce-

dure through the jMRUI user interface. As the commonly used default processing pipeline for Gannet incorporates zero-fill and line-broadening

factors not present in the standardised pipeline adopted here, we report outcomes both from the standardised processing pipeline (hereafter den-

oted ‘Gannet’), and from data processed with Gannet's own default pipeline, denoted ‘Gannet (native)’. Tarquin fitting is often performed with an

internally simulated basis set; we also assess outcomes from this mode of operation, hereafter denoted ‘Tarquin (internal)’.
Full details on the operation of each method are supplied in the supporting information, section C, for quantification of the edited difference

spectra. To facilitate concentration scaling to an internal Cr reference, corresponding edit-OFF subspectra are also modelled; this is described in

the supporting information, section E. Concentration estimates are reported both relative to total creatine (tCr), and with respect to an internal

water reference; the complexities and relative merits of each approach are described in Near et al.28

As the specifics of each algorithm's water referencing procedure varied considerably, scaling as documented for the respective algorithms

was first reversed to yield a raw ratio of signal intensities, before applying tissue-class correction34 using previously derived tissue fractions.24 Full

details on the adjustment for each algorithm are provided in the supporting information, section D. Water-scaled, tissue-class–corrected molar

concentration estimates are hereafter denoted ‘/H2O’; concentration estimates scaled to water with no adjustment for tissue class (assuming

pure water concentration as per Equation (3) of 35) are also calculated, denoted ‘/H2OnoTC’.

2.3.1 | Basis set preparation and prior knowledge

All the algorithms examined require some degree of prior knowledge to describe expected spectral features, either in the form of parameter con-

straints or simulated basis sets. In the present study, prior knowledge was standardised as far as possible: all algorithms requiring a basis set were

supplied with the same simulated basis set appropriate to the dataset, while both algorithms parameterising individual peaks (Gannet and

AMARES) were supplied with similar model parameters.

For comparison of the basis set algorithms (FSL-MRS, LCModel, Osprey, QUEST and Tarquin), a standard simulated basis set specific to each

hardware vendor was adopted. As a starting point, vendor-specific basis sets for GABA-edited MEGA-PRESS (TE = 68 ms) that are distributed

with Osprey were used; these are derived from fast spatially resolved 2D density-matrix simulations36 implemented in FID-A using ideal excita-

tion pulses and vendor-specific refocusing pulses and timings, and using chemical shifts and J-coupling coefficients from Kaiser et al.37 These

incorporated metabolite basis functions for GABA, Glu, Gln, glutathione (GSH), NAA, NAAG and a Gaussian component (FWHM = 10.9 Hz) rep-

resenting coedited macromolecules around 0.91 ppm (macromolecule signal around x(.y) ppm [MM09ex]).

A variation of this basis set was created, incorporating an additional Gaussian component at 3.0 ppm (simulated with FWHM = 14 Hz and

scaled intensity equivalent to two protons) to represent coedited macromolecule signal underlying the GABA peak around 3.0 ppm. The amplitude

scaling is consistent with the assumptions of a pseudo-doublet GABA signal at 3 ppm, and around 50% macromolecule contribution38–42 to the

observed signal in that area; the FWHM parameter had been optimised previously43 on an aggregate subset of the data, over the 1–20 Hz range.

This component, denoted MM3co, allowed the influence of macromolecule modelling on the various algorithms to be examined; subsequent use

of this basis set is annotated with +MM3. The interaction of this component with baseline stiffness and soft constraint models similar to those

of43–45 is explored for Osprey and LCModel in the supporting information, section B. All basis set algorithms were run both with and without the

MM3 component; in all cases, the reported GABA+ values include contributions from the underlying macromolecule signal, either explicitly in

cases where the MM3 component was modelled (i.e., GABA + MM3co), or implicitly in cases where it was not.

2.3.2 | Quality control: Modelling

The available quality metrics vary between algorithms; all except Osprey report some form of modelling uncertainty (% SD, % Cramér-Rao lower

bound for uncertainty [CRLB] of metabolite estimates or % fit error for the model), and most report SNR and linewidth of water and/or some
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metabolite components. As the specifics of each algorithm's SNR and linewidth calculation vary, independently derived values are assessed at the

processing stage (R2; section 2.2.1). Adopting rather liberal criteria, individual fits were flagged as having failed if either of the following additional

criteria were met; in cases where a given metric was not available, the condition was ignored. The criteria below are designated R3 and R4 for

subsequent usage.

• R3: %SD, CRLB or FitError for GABA+, Glxdiff or tCredit_off estimate exceeded 50% (as per,33,46 acknowledging that this strategy must be used

with caution47).

• R4: Final, scaled estimate for any target metabolite (GABA+/H2O, Glxdiff/H2O, GABA+/tCredit_off, Glxdiff/tCredit_off) differing from the median

value by more than five times the median absolute deviation (MAD)48 for that algorithm; this was intended to capture any poor fits not flagged

by any other criteria.

Visual inspection of data, fit outcomes and residuals was also performed, to confirm that no grossly aberrant outcomes eluded the defined rejec-

tion criteria. All subsequent analyses are performed after exclusion of individual algorithms' fits (not entire subject datasets) as per these criteria.

2.4 | Statistical analysis of modelling outcomes

After batch modelling, statistical analysis was performed using locally implemented scripts written in Python (v. 3.7.3), using the pandas49

(v. 0.23.3) data analysis framework, with numeric methods from NumPy,50 and statistical methods from the SciPy51 (v. 1.1.0), pingouin52 and

statsmodels53 (v. 0.12.1) libraries.

Scaled estimates for target metabolite, grouped by algorithm, were tested for normality using the Shapiro–Wilk method,54 and for comparable

distribution of variance between algorithms by the Fligner–Killeen's test,55 both implemented in SciPy. Limits of agreement between pairs of algo-

rithms were derived, along with their 95% confidence intervals, in accordance with the Bland–Altman method.56 Estimates grouped by algorithm

and manufacturer were compared using Welch's t-test,57 with Holm–Bonferroni correction58,59 for multiple comparisons. An adjusted p value of

less than 0.05 was considered significant.

An unconditional linear mixed-effects model was fit to water-referenced GABA+ estimates, using R version 3.5.360 with the lme4 package61

and an implementation derived from.25 Vendor, site, algorithm and subject factors were incorporated into the fit, to calculate variance partition

coefficients (VPCs) estimating the proportion of total variance attributable to each factor. Significance testing was performed using chi-square

likelihood ratio tests, against a null hypothesis simulated by parametric bootstrapping (2000 simulations).62 The Big GABA dataset described

herein has previously been assessed with respect to demographics and signal quality.24

For each metabolite of interest, a global median was calculated across all subjects and all algorithms. Subsequently, estimates grouped by site

and algorithm were linearly scaled to match the global median, thereby removing broad scaling differences observed between certain sites, ven-

dors and algorithms that would otherwise bias inter-algorithm correlations.

The degree of correlation between MRS-detected GABA estimates and voxel tissue fraction has been shown to be an effective index of

GABA estimation accuracy,35 given the differing GABA concentrations between grey and white matter.63–65 Building on this approach, robust

Spearman correlation coefficients between voxel grey matter fraction and GABA+/water referenced without tissue class correction (H2OnoTC)

estimates were calculated using the ‘skipped’ method66,67 ( implemented in pingouin) to exclude bivariate outliers. To determine whether correla-

tion coefficients obtained for any one of the algorithms differed significantly from the correlation obtained across all algorithms, z-scored coeffi-

cients were compared (two-tailed), with a significance level of Holm–Bonferroni adjusted p value (pholm) of less than 0.05; similarly, z-scored

coefficients were compared between variants without and with the MM3 macromolecule component in the basis set.

Finally, intraclass correlation coefficients (ICCs) were calculated between all algorithms, separately without and with the MM3 component for

basis set algorithms, and between pairs of algorithms, using a two-way mixed-effects model for single-rater consistency (ICC (3,1) implemented in

pingouin).

3 | RESULTS

3.1 | Fit and residuals

Mean fit outcomes for each algorithm are presented in Figure 2. Note that all basis set algorithms without MM3, except QUEST, show strong

residuals in the 3 ppm range; in the case of Osprey (Figure 2F), this appears to have a strong influence on baseline in the vicinity. Variants with

MM3 show generally reduced residuals in that range, indicating that the inclusion of a dedicated MM3 basis function leads to more appropriate

modelling of the data.
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A characteristic hump around 3.2 ppm is handled differently by the various algorithms: peak fitting algorithms Gannet and AMARES

(Figure 2B,C) are largely unperturbed, QUEST (Figure 2D) envelopes the entire signal with broader 3.0 ppm peak, while other algorithms fall some-

where in between.

A notable difference between algorithms arises from the differences in baseline estimation practices. While AMARES, QUEST and LCModel

do not include a baseline term in their default settings for MEGA-PRESS, and Gannet and FSL-MRS adopt relatively stiff, low-order models, both

Tarquin and Osprey attribute a considerable fraction of the edited 3-ppm signal to the baseline. This tendency is mitigated upon the inclusion of

the MM3 model.

Finally, there is a distinct pattern to the residuals around the Glx peaks from all basis set algorithms, not present in the fits applying simple

peak fitting on a restricted frequency range (Gannet, AMARES).

A summary of basic quality metrics from the fit spectra is presented in Figure S6, along with the number of spectra rejected according to the

defined criteria (as per sections 2.2.1 and 2.3.2).

F IGURE 2 Average metabolite and baseline (where applicable) models with corresponding residuals for the GABA+ edited spectra, for each
algorithm: (A) FSL-MRS, (B) Gannet, (C) AMARES, (D) QUEST, (E) LCModel, (F) Osprey, (G) Tarquin and (H) Tarquin using its internally-generated
basis set. Vertical scaling is normalised; outcomes over the full fit range are presented in Figure S8; outcomes split by vendor are presented in
Figure S9

CRAVEN ET AL. 7 of 17



3.2 | Statistical analysis

Shapiro–Wilk testing and subsequent inspection of quantile-quantile (Q-Q) plots indicated that while concentration estimates from most algo-

rithms satisfied the assumption of a normal distribution, several (predominantly Glxdiff/tCr estimates) deviated slightly from this. Fligner–Killeen

tests revealed mismatched variances between several sets of estimates (predominantly relating to QUEST and LCModel +MM3), which motivated

the subsequent adoption of Welch's t-test for groupwise comparisons.

3.2.1 | Water-referenced concentration estimates

Comparisons between algorithms for GABA+/H2O are summarised in Figure 3, with full details in Table S6, and Bland–Altman plots describing

limits of agreement in Figure S10. The global median estimate for GABA+/H2O across all algorithms and subjects was found to be 3.2 ± 0.4 insti-

tutional units (i.u.).

For several quantification algorithms, water-referenced estimates for GABA+/H2O were found to be significantly higher from Siemens

datasets than from other manufacturers, by a factor of 9%–17% (pholm < 0.001, depending on the algorithm) for FSL-MRS (+MM3), Gannet,

Gannet (native), AMARES and LCModel, and increased to 41% (pholm < 0.001) for QUEST. Osprey gave significantly lower estimates for

Siemens datasets (�28.0%, pholm < 0.001). QUEST (and the +MM3 variant) gave significantly lower estimates for Philips datasets (�16.1%

and �7.7%, respectively, pholm < 0.001), and AMARES and Gannet (native) gave lower estimates for GE datasets (�9.5%, pholm < 0.01

and �8.5%, pholm < 0.05, respectively). Median GABA+ estimate across all algorithms was 5.8% higher for Siemens sites (pholm < 0.01).

All differences are expressed relative to the mean across all subjects for the respective algorithm. No other variants showed

significant effects.

Water-referenced Glxdiff estimates from all algorithms were significantly higher for Siemens sites: median Glxdiff/H2O across algorithms

+15.7% (pholm < 0.001) relative to group mean. Estimates from Philips sites were somewhat lower (�10.1%, pholm < 0.01).

For data fit without the explicit MM3 component, the unconditional linear mixed-effects model yielded VPCs of 33.8%, 16.4%, 6.4% and

4.0% for algorithm, site, subject and vendor factors, respectively. In this context, the ‘subject’ factor reflects systematic within-subject variation in

estimates, while the residual 39.4% accounts for inherent, systematic between-subject variation, as well as any other variance that could not be

accounted for in the model. Parametric bootstrap testing showed all factors to be significant (pholm < 0.001).

3.2.2 | Metabolite-referenced concentration estimates

Estimates for GABA+/tCredit_off were consistently higher for GE datasets (+17.3% across algorithms, pholm < 0.001) and lower for Siemens

datasets (�14.3%, pholm < 0.001). Glxdiff/tCredit_off ratios were higher in GE datasets (21.9%, pholm < 0.001) and slightly lower in Philips (�5.0%,

pholm < 0.05) and Siemens (�6.7%, pholm < 0.05) datasets. As in section 3.2.1, differences are quoted relative to the mean estimate across all

F IGURE 3 Distribution of GABA+/H2O estimates from each algorithm, grouped by manufacturer. The global median is shown in dashed
black
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subjects for the respective algorithm. All these trends presented similarly across all modelling algorithms, albeit with varying magnitudes and sig-

nificance levels.

3.2.3 | Grey matter volume fraction correlation

The relationship between estimated GABA+ and grey matter volume fraction is reported in Figure 4, as an index of estimation accuracy. The

accuracy of QUEST (without MM3) was found to be significantly below that of other algorithms (pholm < 0.01), while the QUEST +MM3 variant

performed comparably with other algorithms. Otherwise, slight differences observable between algorithms were not statistically significant, and

no particular trend is evident between algorithm variants without and with MM3 components.

3.2.4 | Correlational analysis

ICC (single-rater consistency) for GABA+ across all algorithms was 0.38 (95% CI 0.32–0.44) without the MM3 component for basis

set algorithms, and increased to 0.44 (95% CI 0.39–0.5) with MM3 included, supporting that the inclusion of this dedicated component is

F IGURE 4 Relationship between GABA+ and grey matter (GM), with different modelling strategies for GABA+. Robust (skipped) correlation
coefficients are reported, with line-of-best-fit in dashed black
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warranted. ICCs between all pairs of algorithms are presented in Figure 5. For fits performed without the MM3 component, GABA+/H2O esti-

mates showed moderate correlation between most algorithms (typically of the range r = 0.4–0.6; slightly lower when referenced to tCredit_off).

Correlations for AMARES, LCModel and Tarquin were significantly stronger (pholm < 0.01) than the group mean, those for QUEST and Osprey

somewhat lower. Inclusion of an MM3 basis set component generally improved concordance with other algorithms for FSL-MRS (pholm < 0.001)

and Osprey, the latter at trend level. However, both time domain basis set algorithms (QUEST and Tarquin) showed reduced concordance

(at trend level) upon inclusion of the MM3 component.

ICCs for additional metabolites and ratios are presented in Figure S12; Glxdiff/H2O estimates from the edited spectrum correlated more

strongly between algorithms (typically of the range r = 0.6–0.8, slightly lower when referenced to tCredit_off).

4 | DISCUSSION

4.1 | Quality control

Basic signal quality metrics (such as SNR and linewidth) and reliability-of-fit estimates (% CRLB, % fit error) are often used as the basis for rejecting

poor fits. However, as seen in Figure S6, these are often not sufficient. While four datasets were deemed to have failed at the processing stage

(R1), yielding output barely recognisable as GABA-edited difference spectra, all algorithms ‘successfully’ fit some of these (Figure S7), with quality

metrics that satisfied all other criteria. We therefore repeat the observation that simply filtering results based on these basic signal metrics is inad-

equate as a means of quality control; the metrics themselves may have limited reliability, particularly in cases where the model does not accurately

reflect the experimental data.68 Consideration must also be given to the shape of the data, fit and residuals themselves, either by algorithmic

assessment, or, if feasible, visual inspection.

4.2 | Scale differences between manufacturers

Previous studies, including,69 have explored systematic differences in reported GABA+ estimates between different manufacturers, and their rela-

tion to GABA editing efficiency and the contribution of coedited macromolecules to the measured signal. Furthermore, a previous examination of

water-scaled GABA+ estimates on a superset of data also incorporating the present study's subjects24 identified systematically higher GABA+

estimates from datasets acquired on the Siemens platform, by approximately 29%, which could not be explained in terms of editing efficiency or

macromolecule contribution. Observations in the present analysis corroborate this, with most algorithms yielding higher GABA+/H2O estimates

from Siemens datasets, and all algorithms yielding higher estimates for both Glxdiff/H2O and tCredit_off/H2O for Siemens datasets. The fact that

this trend is seen across different metabolites and within the edit-OFF subspectra gives support to the notion that water reference data from the

Siemens implementation may not be optimal for scaling purposes, although it cannot be ruled out that both GE and Philips share a similar mis-

scaling.

4.3 | Macromolecule fitting

The observed signal around 3 ppm includes substantial contamination (around 50%38–42) from coedited signals, including homocarnosine,70 with

coupling between 1.89 and 3.00 ppm spins, and poorly characterised components tentatively attributed to lysine-containing

macromolecules,6,39,71,72 with coupling between 1.71 and 3.01 ppm spins. This may give rise to large residuals or biased baseline estimates if not

considered in the model. Although their impact has been studied by some,39,41,43–45,73 there is currently no consensus on how these should be

handled.

The default LCModel configuration (flat baseline) performs surprisingly well by simply ignoring such signals, giving rise to characteristic peaks

in the residuals. Meanwhile, the case of Osprey (without MM3co component, Figure 2F) exemplifies the potential baseline distortions and corre-

spondingly reduced GABA+ estimates resulting from these residuals. The result of our ICC analysis across all algorithms suggests that more con-

sistent GABA+ estimates may be obtained by explicitly parametrizing the MM3 contribution in the model. However, using correlation between

GABA+ estimates and grey matter fraction as a benchmark, incorporation of the MM3 component did not significantly impact the effectiveness

of individual algorithms in measuring differences in GABA+ levels. Moreover, while the supplementary analysis (supporting information,

section B) suggested improved effectiveness for LCModel after incorporation of soft constraints on MM3 amplitude (whether to GABA or

MM0.9), similar performance for this algorithm was obtained by simply modelling a stiff but nonzero baseline, allowing this to absorb some of the

MM3 signal. This configuration was also found to be effective for modelling GABA alone, consistent with previously reported findings,73 wherein

modelling a more flexible baseline in LCModel to selectively remove a portion of the MM3 contribution allowed for closer measurement of GABA
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F IGURE 5 Intraclass correlation coefficients between algorithms, scaled to water (upper left triangle) and tCredit_off (lower right triangle), with
basis set algorithms (A) Excluding and (B) Including a component representing the coedited macromolecule contribution. ‘Median’ data denote
correlation with the median estimate across all algorithms
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rather than GABA+. Estimates from Osprey in similar configurations were comparable, and it has been shown that higher degrees of baseline flex-

ibility cause greater fractions of the 3-ppm signal to be absorbed into the baseline.43

Peak-fitting algorithms (such as Gannet and AMARES) may circumvent this issue somewhat by considering the entire 3.0 ppm GABA+MM

signal with a single broad Gaussian model as examined herein; this approach performed comparably with more elaborate models. Furthermore,

Tarquin with its internally simulated basis set has two separate Gaussian components representing the GABA+ signal, which are seen to shift and

broaden to conform to the shape of the observed GABA+MM signal (Figure 2H). QUEST, similarly, broadened the GABA basis function substan-

tially to more closely envelop the entire GABA+MM signal and (unfortunately) adjacent artefacts (Figure 2D), perhaps accounting for its some-

what lower correlation with grey matter fraction and agreement with other algorithms.

4.4 | Artefact rejection around 3.2 ppm

MEGA-edited GABA spectra often exhibit a slight artefactual feature around 3.2 ppm, which can be problematic for fitting algorithms. The origin is

uncertain, but potentially related to incomplete subtraction of Cho74 or contribution from undetermined other coedited signals (such as, perhaps,

valine-containing macromolecules71 or arginine75). In the present study, the baseline for the Osprey fit (without MM3co) tends to respond to this

artefact, inducing a bend in the baseline that appears to cut out a significant part of the real GABA peak (Figure 2F), leading to a likely underestima-

tion of GABA+ area. QUEST appears to broaden the GABA and/or MM3co basis components, incorporating the artefact into the GABA+ estimate

and most likely overestimating the GABA+ signal area (Figure 2D); this effect was most pronounced for Siemens datasets (see Figure S9D), where

the feature manifests more prominently. FSL-MRS and LCModel both handle the artefact well in the general case, largely rejecting it from both the

baseline and metabolite models (Figure 2A,E); this is likely attributable to the fact that their default MEGA-PRESS settings prescribe a low-order

polynomial baseline (FSL-MRS) or no baseline at all (LCModel). While other basis set algorithms end up somewhere in between (with a degree of

contamination from the artefact), peak-fitting algorithms AMARES and Gannet both perform well in this area. Indeed, Gannet (Figure 2B) is the

only algorithm to explicitly deal with this artefact, down-weighting some residuals in this region. We suggest that comparably rigid baseline estima-

tion as well as incorporating a Gaussian basis component around 3.2 ppm, with tight constraints on linewidth, shift and amplitude to avoid inadver-

tently fitting part of the GABA peak, may yield some benefits in this area for other algorithms. Ultimately, further investigation into the underlying

signal, and more complete profiling of the coedited metabolite and macromolecule signals in the region, would be preferable.

4.5 | Glx

Although quantification of Glx from the difference spectrum has been demonstrated to be reliable given suitable quality constraints,76 several

researchers have highlighted the relatively low concordance between estimates from short-TE PRESS spectra and GABA-edited difference spec-

tra, with estimates from the edit-OFF subspectra often found to agree better with the short-TE PRESS77–79; this is unsurprising given that the Glx

signal in the short-TE and edit-OFF subspectra are subject to similar underlying uncertainties, including MM background and overlapping GSH

and aspartyl signals. In comparing Glx quantification between MEGA-PRESS difference and edit-OFF subspectra, recent studies79,80 report a cor-

relation around r = 0.8; results in the present study show a more moderate correlation, between r = 0.34 and 0.69 depending on algorithm (see

Figure S13); a linear scaling factor is also observed, consistent with recent findings.81 It is notable that agreement between algorithms is higher

for coedited Glx than for GABA+, reflecting the better-defined signal seen in the difference spectrum (Figure 2).

With reference to Figure S8, all basis set algorithms showed a distinct structure in the residuals around 3.7 ppm, with the model peaks appe-

aring a little to the right of the peaks observed in the data. This is most likely due to the complicated signal patterns around 2.3 ppm in the edited

spectrum (resulting from overlapping signals of GABA and coedited Glu, Gln and GSH), which interact critically with the 3.75 ppm modelling. It is

likely that there is a poorly understood baseline fluctuation arising from coedited macromolecular signals appearing between 1.5 and 2.5 ppm,45

which will bias the correct phase estimation of the 2.25 ppm signals, at the expense of getting the phase of the related 3.75 ppm signals right.

The peak-fitting algorithms tested, where modelling around 3.7 ppm is not bound to features in other parts of the spectrum (such as around

2.3 ppm), show much lower residuals in the region. It is possible that basis set fitting on a constrained range would mitigate this effect, at the

expense of throwing away useful spectral information and hence detracting from the utility of the basis set approach in general. A model that

shares lineshape information between the 2.3 and 3.7 ppm Glx peaks but allows a tightly constrained frequency shift between them may present

a reasonable alternative.

4.6 | Limitations

The basis set adopted in the present study was simulated with ideal excitation pulses, and therefore may not fully model subtle variations in spec-

tral structure between manufacturers. However, the impact of excitation is likely negligible compared with the impact of refocusing, which is
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appropriately accounted for in the 2D simulations. Vendor-specific excitation pulses may also contribute to the subtly different shape and asym-

metry of the 3.0 ppm peak and varying manifestation of the 3.2 ppm feature, which may be observed in Figure S9.

While the present analysis examines a variety of commonly used implementations representing a range of modelling strategies for GABA-

edited spectroscopy data, we note that several other algorithms and implementations are also available to the MRS community, including

AQSES,82 INSPECTOR,83 KALPANA,84 OXSA,85 spant86 and Vespa.87

Furthermore, many of the packages examined offer extended functionality, which may well lead to improved performance in certain circum-

stances, but this did not align with our approach of adopting recommended/default configurations for all algorithms. Most significantly, many soft-

ware packages offer the fine-tuning of several aspects of the modelling process, for instance, the baseline parametrization. As further examples,

jMRUI QUEST offers flexible baseline modelling strategies; FSL-MRS offers independent shift groups that were not assessed; and Osprey can

additionally simultaneously optimise difference and sum spectra, potentially benefitting from additional spectral information and improved SNR.

Both peak-fitting algorithms examined are flexible in their choice of model, with, for example, dual-Gaussian models for the GABA+ signal readily

available. An inevitable consequence of adopting default settings in this analysis is that these might not be optimal for cross-vendor data

processed with the standard pipeline adopted herein. All the tools tested are highly configurable and offer expert users many possibilities to tune

performance optimally for particular datasets, offering the potential for further invention and protection against establishing a possibly incorrect

orthodoxy. Nonetheless, this flexibility comes with the caveat that it may also lead to misuse, selective reporting and inappropriate modelling.

Moreover, such variability runs counter to efforts to standardise analysis methodology.1 While more research into optimised modelling strategies

is needed to improve the comparability and robustness of MEGA-PRESS fitting, this work highlights that the complete and accurate reporting of

all decisions made during analysis and modelling is immensely important, going even beyond the recently published minimum reporting standards

for MRS.88

The present study examines metabolite estimates for each algorithm, relative to water and Cr references obtained using that same algorithm:

this reflects typical usage, but means that variations discussed herein are not necessarily driven purely by the metabolite modelling.

Finally, because the findings documented herein are substantiated entirely by in vivo data, there is no ‘ground truth’ available by which to

directly assess the algorithms' accuracy. While this limitation has been partially addressed by considering the strength of correlation between

GABA+ estimates and grey matter fraction as an index of relative accuracy,35 a more direct assessment of accuracy could be achieved in further

studies involving carefully prepared phantom or synthetic data,89 each approach having its own inherent limitations. In either case, meticulous

attention to macromolecule baseline, SNR and line shape would be required to ensure transferability of findings to in vivo applications.

4.7 | Key recommendations

Based on these findings, we recommend the following for future studies:

• When applying basis set modelling approaches, special consideration must be given to the coedited macromolecular signal underlying the

3.0 ppm GABA peak. While appropriate modelling outcomes may be obtained in some cases by entrusting a carefully tuned baseline to capture

the entirety of the signal,43 a more generalisable approach is simply to routinely incorporate a simulated basis component to represent this

signal.

• Care must be taken to ensure consistent behaviour in the presence of commonly observed artefacts, such as the signal around 3.2 ppm. This

artefact could be explicitly incorporated into the model, or mitigated with a rigid baseline model, which is less likely to follow the local signal

curvature.

• More generally, when inspecting fit outcomes, the behaviour of the baseline (where modelled) demands close attention, to ensure that it does

not unduly bias modelling of the GABA peak.

• When assessing data acquired at different sites, systematic differences in scale are to be expected and must be considered, regardless of the

algorithm applied.

Additionally, we propose four key areas for further systematic investigation in future studies:

1. Robust methods for the generation of large synthetic datasets for validation are necessary to facilitate direct assessment of modelling accu-

racy. These synthetic data need to be truly representative of in vivo data, hence the design of their underlying physical signal models will

require great attention to detail. Subsequent interpretation must bear in mind that the outcome is likely to be determined by the degree of

similarity between the physical model used to generate the data and the model used to decompose it during linear-combination fitting.

2. Detailed exploration of the coedited macromolecule profile that underlies typical GABA-edited data is required. Metabolite-nulled edited spec-

tra obtained on different hardware platforms could provide the basis for a more informed parametrization of these signals during modelling,

and also contribute to accurate and in vivo-like representation of synthetic data.
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3. The origin of the spectral feature around 3.2 ppm requires further investigation: it needs to be determined whether this is a subtraction arte-

fact or an actual real signal (e.g., from valine-containing macromolecules or other signals hitherto not routinely included in modelling, such as

arginine, which has a compatible spin system). Clarification of this feature would allow for more appropriate modelling and parametrization of

synthetic data.

4. When considering Glx estimates from the difference spectrum, further investigation into the complex interactions of coedited Glu, Gln, GSH

and possibly other signals around 2.3 ppm, and their impact on the 3.75 ppm Glx modelling, would be beneficial. This focus area will benefit

from increased insight into the macromolecular background of the GABA-edited spectrum.

4.8 | Conclusions

Although the observed consistency across algorithms was generally moderate, with pairwise correlation in some cases concerningly weak, we

emphasise that more consistent estimates are not necessarily more accurate estimates: all the algorithms tested (except for QUEST without

MM3) were shown to be comparable in their effectiveness in detecting differences in GABA+ concentration. This does, however, raise some con-

cerns regarding the comparability of findings between different studies, each of which will typically employ a single modelling algorithm, often

with divergent processing and prior knowledge and with significantly smaller sample sizes than tested here. This means that the choice of analysis

already adds considerable uncertainty and variability.

Improved standardisation of sequence implementation,27,90 and adoption of standardised processing pipelines and prior knowledge (e.g., in

the form of publicly available basis set libraries), may reduce sources of variation between studies. However, the interaction of baseline, coedited

macromolecule and metabolite signals, and other artefactual signals, remains a critical source of variation between algorithms, and within different

configurations of the same algorithm. Better characterisation of these signals would allow for more complete modelling (at the risk of overfitting).

Consensus on optimal (or at least, appropriate) control parameters for the respective algorithms would also be beneficial; this should be informed

by representative datasets covering multiple sites and vendors, as facilitated by publicly available repositories, such as the one leveraged

herein.24,25 It may further be of benefit to conceive a ‘consensus algorithm’ to be implemented across software environments, and used as a

shared starting point to refine the algorithmic decision-making in future iterations of the algorithm. Meanwhile, careful attention to the behaviour

of the model with regard to such signals, and rigorous reporting of the configuration employed, are necessary to facilitate meaningful comparisons

between studies.
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