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Ill-posedness of the Maxwell–Dirac system
below charge in space dimension three and
lower
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Abstract. The Maxwell–Dirac system describes the interaction of an elec-
tron with its self-induced electromagnetic field. In space dimension d = 3
the system is charge-critical, that is, L2-critical for the spinor with re-
spect to scaling, and local well-posedness is known almost down to the
critical regularity. In the charge-subcritical dimensions d = 1, 2, global
well-posedness is known in the charge class. Here we prove that these re-
sults are sharp (or almost sharp, if d = 3), by demonstrating ill-posedness
below the charge regularity. In fact, for d ≤ 3 we exhibit a spinor datum
belonging to Hs(Rd) for s < 0, and to Lp(Rd) for 1 ≤ p < 2, but not
to L2(Rd), which does not admit any local solution that can be approxi-
mated by smooth solutions in a reasonable sense.
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1. Introduction

We consider the Maxwell–Dirac system{
(−iγμ∂μ + M)ψ = Aμγμψ,

�Aμ = ψγμψ,
(1)

on the Minkowski space-time R1+d for space dimensions d ≤ 3. This fundamen-
tal model from relativistic field theory describes the interaction of an electron
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with its self-induced electromagnetic field. Our interest here is in the Cauchy
problem with prescribed initial data at time t = 0,

ψ(0, x) = ψ0(x), Aμ(0, x) = aμ(x), ∂tAμ(0, x) = bμ(x), (2)

and the question of local or global solvability, which has received some atten-
tion in recent years; see [1,4,7,14,15,18] for the case of one space dimension
and [3,5,6,8,9,11–13,16] for higher dimensions, and the references therein.

The unknowns are the spinor field ψ = ψ(t, x), taking values in C
N (N =

2 for d = 1, 2; N = 4 for d = 3), and the real-valued potentials Aμ = Aμ(t, x),
μ = 0, 1, . . . , d. M ≥ 0 is the mass.

The equations are written in covariant form on R
1+d = Rt ×R

d
x with the

Minkowski metric (gμν) = diag(1,−1, . . . ,−1) and coordinates (xμ), where
x0 = t is the time and x = (x1, . . . , xd) is the spatial position. Greek indices
range over 0, 1, . . . , d, latin indices over 1, . . . , d, and repeated upper and lower
indices are implicitly summed over these ranges. We write ∂μ = ∂

∂xμ
, so ∂0 = ∂t

is the time derivative, ∇ = (∂1, . . . , ∂d) is the spatial gradient, and � = ∂μ∂μ =
∂2

t − Δ is the d’Alembertian. The N × N Dirac matrices γμ are required to
satisfy

γμγν + γνγμ = 2gμνI, (γ0)∗ = γ0, (γj)∗ = −γj . (3)

We denote by ψ∗ the complex conjugate transpose, and write ψ = ψ∗γ0.
Key features of the Maxwell–Dirac system are the gauge invariance, the

scaling invariance and the conservation laws, which we now recall.
Firstly, there is a U(1) gauge invariance

ψ −→ eiχψ, Aμ −→ Aμ + ∂μχ,

for any real valued χ(t, x). This implies gauge freedom, allowing to specify a
gauge condition on the potentials. The particular form (1) of the Maxwell–
Dirac system appears when the Lorenz gauge condition ∂μAμ = 0 is imposed,
that is,

∂tA0 = ∇ · A, (4)

where A = (A1, . . . , Ad). Since this gauge condition reduces to certain con-
straints on the data (2), we did not include it in (1). In addition to the obvious
constraint, there is a constraint coming from the Gauss law (implied by (4)
and the second equation in (1))

∇ · E = |ψ|2,
where E = ∇A0 − ∂tA is the electric field. Thus, the data constraints are

b0 =
d∑

j=1

∂jaj ,

d∑
j=1

∂j(∂ja0 − bj) = |ψ0|2. (5)

If these are satisfied (in some ball), then a solution of (1), (2) will also satisfy
the Lorenz gauge condition (4) (in the cone of dependence over the ball).

Secondly, the system is invariant under the rescaling, in the case M = 0,

ψ(t, x) −→ λ3/2ψ(λt, λx), Aμ(t, x) −→ λAμ(λt, λx) (λ > 0).
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For Sobolev data (ψ0, aμ, bμ) ∈ Hs(Rd) × Hr(Rd) × Hr−1(Rd), the scale-
invariant regularity (for the homogeneous Sobolev norms, to be precise) is
s = sc(d) = d−3

2 and r = rc(d) = d−2
2 . By the usual heuristic one does not

expect well-posedness below this regularity.
Thirdly, we consider conservation laws. While the Maxwell–Dirac system

does have a conserved energy, which is roughly speaking at the level of H1/2

for the spinor, this energy does not have a definite sign, so it is difficult to see
how to make use of it to prove global existence. On the other hand, one has
the conservation of charge∫

Rd

|ψ(t, x)|2 dx =
∫
Rd

|ψ(0, x)|2 dx, (6)

which plays a key role in all the known global existence results for large data.
We will refer to solutions at this regularity, that is, with t �→ ψ(t, ·) a continuous
map into L2(Rd), as charge class solutions. It should be noted that the charge
regularity s = 0 coincides with the scaling-critical regularity sc(d) = d−3

2
when d = 3. Thus, the Maxwell–Dirac system is charge-critical in three space
dimensions, and charge-subcritical in dimensions d = 1, 2.

The first global result for (1), (2) was obtained by Chadam [4], in one
space dimension, for data (ψ0, aμ, bμ) ∈ H1(R)×H1(R)×L2(R). Chadam first
proved local existence and uniqueness, and was able to extend the solution
globally by proving an a priori bound on the H1(R)×H1(R)×L2(R) norm of
the solution via a clever boot-strap argument making use of the conservation
of charge (6). But to be able to prove global existence with a more direct use
of the conservation of charge, in any dimension, a natural strategy is to try to
prove local existence of charge class solutions.1

We proceed to recall what is known about local and global well-posedness
in the charge class.

Starting with one space dimension, we note that Bournaveas [2] proved
global charge-class existence for the related Dirac-Klein-Gordon system, but
the argument relies on a null structure in Dirac-Klein-Gordon which is not
present in Maxwell–Dirac. Bachelot [1] gave another proof that does not rely
on null structure and applies also to Maxwell–Dirac; similar results have been
obtained in [14,17,18].

In the charge-critical three space-dimensional case, local well-posedness
remains an open question in the charge class, but has been proved almost
down to that regularity by D’Ancona, Foschi and Selberg [5]; see also [3,13]
for earlier local results at higher regularity, and [9,12,16] for small-data global
results. The existence of stationary solutions was proved in [8].

In two space dimensions, global well-posedness in the charge class was
proved by D’Ancona and Selberg [6].

To summarise, in the charge-subcritical dimensions d = 1, 2, there is
global well-posedness in the charge class, and in the charge-critical dimension
d = 3, local well-posedness holds almost down to the charge regularity. Our

1However, it should be noted that such a result does not immediately imply global existence
via the conservation of charge, since one also needs a priori estimates for the potentials.
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aim here is to show that these results are sharp (or almost sharp, for d = 3),
by proving ill-posedness below the charge regularity. This result is somewhat
surprising in the subcritical cases, and in particular for d = 1. Indeed, it should
be noted that in dimensions d = 2, 3, the proof of local existence at or near the
charge regularity is quite involved and requires a subtle null structure that was
uncovered in [5]. By contrast, the proof in the case d = 1 is elementary (see
Sect. 7) and does not require this null structure. It was therefore expected that,
by exploiting the latter, one should be able to go below the charge. But our
result shows that this is not possible, and this means that the null structure
is not helpful in the case d = 1.

We remark that our proof of ill-posedness works also in dimensions d ≥ 4,
but then the critical regularity is above the charge, so this is not really of much
interest. In dimensions d ≥ 4, global existence and modified scattering for data
with small scaling-critical norm has been proved in [11].

We now state our main results.

2. Main results

The following notation is used. For 1 ≤ p ≤ ∞, Lp(Rd) denotes the standard
Lebesgue space. For s ∈ R, Hs(Rd) is the Sobolev space (1−Δ)s/2L2(Rd). For
an open set U in R

d or Rt ×R
d
x, D′(U) is the space of distributions on U . We

write

X0 = Hs(Rd) for some s < 0, or Lp(Rd) for some 1 ≤ p < 2.

B = the open unit ball in R
d, centred at the origin .

K = the cone of dependence over B.

KT = K ∩ (
[0, T ] × R

d
)
, for T > 0.

Thus, K = {(t, x) ∈ R × R
d : 0 ≤ t < 1, |x| < 1 − t}. The interior of the

truncated cone KT will be denoted Int(KT ).
We will use the following facts concerning C∞ solutions of (1), which

follow from the general theory for semilinear wave equations. Assume we are
given data (2) belonging to C∞(Rd). Then there exists a corresponding C∞

solution (ψ,Aμ) of (1) on an open subset U of [0,∞) × R
d containing the

Cauchy hypersurface {0} × R
d. Moreover, we may assume that U is causal,

in the sense that for every point (t, x) in U , the cone of dependence K(t,x),
with vertex (t, x) and base in {0} ×R

d, is contained in U . The solution in the
cone K(t,x) is uniquely determined by the data in the base of the cone. By the
uniqueness, and since the union of two causal sets is again causal, there exists
a maximal solution of the type described above, and we call this the maximal
C∞ forward evolution of the given data.

In the first version of our ill-posedness result, we take vanishing data for
the potentials.
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Theorem 1. (Ill-posedness I) In space dimensions d ≤ 3, the Cauchy problem
(1), (2) is ill-posed for data

ψ0 ∈ X0, aμ = bμ = 0 (μ = 0, . . . , d).

More precisely, there exists ψbad
0 ∈ X0 \ L2(Rd) such that for any T > 0 and

any neighbourhood Ω0 of ψbad
0 in X0, there fails to exist a continuous map

S : Ω0 −→ D′ (Int(KT )) , ψ0 �−→ S[ψ0] = (ψ,Aμ),

with the property that if ψ0 ∈ Ω0 ∩ C∞
c (Rd), then S[ψ0] is C∞ in KT and

solves (1) there, with intial data ψ0 and aμ = bμ = 0 in B.

This result applies to (1), (2) without regard to the data constraints (5),
which of course are not compatible with the assumption aμ = bμ = 0. We next
state an alternative version of the result, which allows to take into account the
constraints. In fact, Theorem 1 is an immediate consequence of the following
more precise result.

Theorem 2. (Ill-posedness II) Let d ≤ 3. There exist ψbad
0 ∈ X0 \ L2(Rd) and

ψ0,ε, aμ,ε, bμ,ε ∈ C∞
c (Rd) for each ε > 0, such that

(i) ψ0,ε → ψbad
0 in X0 as ε → 0.

(ii) The maximal C∞ forward evolution (ψε, Aμ,ε) of the data (ψ0,ε, aμ,ε, bμ,ε)
exists throughout the cone K.

(iii) There exists T > 0 such that, as ε → 0, A0,ε(t, x) → ∞ uniformly in any
compact subset of KT ∩ {(t, x) : |x| < t}.

Moreover, we can choose the aμ,ε, bμ,ε so that either

aμ,ε = bμ,ε = 0 for μ = 0, . . . , d, (7)

or

b0,ε =
d∑

j=1

∂jaj,ε,

d∑
j=1

∂j (∂ja0,ε − bj,ε) = |ψ0,ε|2 in B. (8)

Here, if we choose the alternative (8), then aμ,ε, bμ,ε do not have limits
in the sense of distributions on B as ε → 0. This is not a deficiency of our
construction, but is necessarily so, as our next result shows. The following
theorem essentially says that the Gauss law for the initial data is ill-posed
when we are below the charge regularity.

Theorem 3. (Ill-posedness of constraints) There exists ψbad
0 ∈ X0\L2(Rd) such

that for any neighbourhood Ω0 of ψbad
0 in X0, there do not exist continuous

maps

Iμ, Jμ : Ω0 −→ D′(B)

with the property that if ψ0 ∈ Ω0 ∩ C∞
c (Rd), then

aμ := Iμ[ψ0], bμ := Jμ[ψ0] (μ = 0, . . . , d)

satisfy the constraint equations (5) in B.
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We conclude this section with a brief outline of the key steps in the proof
of Theorem 2.

Step 1. We prove global well-posedness in the charge class for (1), (2) in
the case where the data only depend on a single coordinate, say x1.

Step 2. To define the data ψ0,ε, aμ,ε, bμ,ε ∈ C∞
c (Rd), we start with func-

tions of x1 and cut off smoothly outside the unit ball B. The corresponding
maximal C∞ forward evolution (ψε, Aμ,ε) exists in the entire cone K, by Step
1, and depends only on t and x1 there.

Step 3. Using a null form estimate and a boot-strap argument we prove
that there exists T > 0 such that Aj,ε, j = 2, 3, are uniformly bounded in
KT . A further boot-strap argument then yields a lower bound on |ψε| in KT ∩
{(t, x) : 0 < t < x1}.

Step 4. Letting ε → 0, we show that A0,ε(t, x) → ∞ uniformly in any
compact subset of KT ∩ {(t, x) : |x| < t}, completing the proof of Theorem 2.
In fact, we prove this in the larger set KT ∩ {(t, x) : |x1| < t}.

The remainder of this paper is organised as follows. In Sect. 3 we state
the well-posedness result (Step 1), whose elementary proof is deferred until
Sect. 7. In Sect. 4, we choose a particular representation of the Dirac matri-
ces in dimensions d ≤ 3, write out the Maxwell–Dirac system in terms of the
components of the spinor, and prove a null form estimate in one space dimen-
sion. In Sect. 5 we specify the data (Step 2), and Sect. 6 contains the proof of
ill-posedness (Steps 3 and 4).

3. Well-posedness for one-dimensional data

We start by stating the result described in Step 1, the well-posedness in the
case where the data only depend on the single coordinate x1:

ψ(0, x) = ψ0(x1), Aμ(0, x) = aμ(x1), ∂tAμ(0, x) = bμ(x1). (9)

Then the solution of (1) will depend only on t and x1. Indeed, if (ψ,Aμ) does
not depend on x2, . . . , xd, then (1) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−iγ0∂t − iγ1∂1 + M)ψ =
(
A0γ

0 + A1γ
1 + · · · + Adγ

d
)
ψ,

(∂2
t − ∂2

1)A0 = ψ∗ψ,

(∂2
t − ∂2

1)A1 = −ψ∗γ0γ1ψ,

...

(∂2
t − ∂2

1)Ad = −ψ∗γ0γdψ,

(10)

and this is the system we will solve, with the initial condition (9).
There is conservation of charge, for sufficiently regular solutions:∫

R

|ψ(t, x1)|2 dx1 =
∫
Rd

|ψ(0, x1)|2 dx1. (11)

Indeed, premultiplying the Dirac equation in (10) by iψ = iψ∗γ0, taking real
parts, and using the fact that M and the Aμ are real, and that γ0 and γ0γj are
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hermitian, one obtains the conservation law ∂tρ + ∂1j = 0, where ρ = ψ∗ψ =
|ψ|2 and j = ψ∗γ0γ1ψ. Integration then gives (11).

We now state the global well-posedness result in the charge class. The
aμ, μ = 0, . . . , d, will be taken in the space AC(R) with norm

‖f‖AC(R) = ‖f‖L∞(R) + ‖f ′‖L1(R) .

Thus, AC(R) is the space of absolutely continuous functions f : R → C with
bounded variation (cf. Corollary 3.33 in [10]), and ACloc(R) is the space of
locally absolutely continuous functions.

Theorem 4. In any space dimension d, the Maxwell–Dirac system (1) is glob-
ally well-posed for one-dimensional data (9) with the regularity

(ψ0, a, b) ∈ X0 := L2(R;CN ) × AC(R;Rd+1) × L1(R;Rd+1),

where a = (a0, . . . , ad) and b = (b0, . . . , bd). That is, for any T > 0, there is a
unique solution

(ψ,A, ∂tA) ∈ C([0, T ];X0), A = (A0, . . . , Ad),

depending only on t and x1. The solution has the following properties:
(i) The data-to-solution map is continuous from X0 to C([0, T ];X0).
(ii) Higher regularity persists. That is, if J ∈ N and ∂j

1(ψ0, aμ, bμ) ∈ X0 for
j ≤ J , then ∂j

t ∂k
1 (ψ,Aμ, ∂tAμ) ∈ C([0, T ];X0) for j + k ≤ J .

(iii) If the data are C∞, then so is the solution.
(iv) The conservation of charge (11) holds.
(v) If the data constraints (5) are satisfied for x1 in an interval I, then the

Lorenz gauge condition ∂tA0 = ∂1A1 is satisfied in the cone of dependence
over I.

In particular, taking d = 1, this result provides an alternative to the
charge-class results from [1,18], with a stronger form of well-posedness and at
the same time a much simpler proof. The elementary proof is given in Sect. 7.
We use iteration to prove local existence, and to close the estimates we only
rely on the energy inequality for the Dirac equation and an estimate for the
wave equation deduced from the d’Alembert representation.

4. The Dirac matrices and a null form estimate

In this section we specify our choice of the Dirac matrices, in dimensions d ≤ 3.
We do this in such a way that the Dirac equation in (10), when written in terms
of the spinor components, has a form which makes it easy to work with. Recall
that that the spinor has N = 2 components in space dimensions d = 1, 2, and
N = 4 components when d = 3. We write

ψ =
(

u
v

)
,

where u, v are C-valued for d = 1, 2 and C
2-valued for d = 3.



42 Page 8 of 20 S. Selberg and A. Tesfahun NoDEA

4.1. Space dimension d = 1
We choose

γ0 =
(

0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
.

Then (3) is satisfied, and (10) becomes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∂t + ∂x)u = i(A0 + A1)u − iMv,

(∂t − ∂x)v = i(A0 − A1)v − iMu,

(∂2
t − ∂2

x)A0 = |u|2 + |v|2,
(∂2

t − ∂2
x)A1 = −|u|2 + |v|2.

(12)

Since A0, A1 are real valued, the first two equations imply{
(∂t + ∂x)|u|2 = −2M Im (vu) ,

(∂t − ∂x)|v|2 = 2M Im (vu) .
(13)

4.2. Dimension d = 2
We choose

γ0 =
(

0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
,

γ2 =
(

i 0
0 −i

)
.

Then (3) is satisfied, and (10) becomes, writing x = x1 for simplicity,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + ∂x)u = i(A0 + A1)u + A2v − iMv,

(∂t − ∂x)v = i(A0 − A1)v − A2u − iMu,

(∂2
t − ∂2

x)A0 = |u|2 + |v|2,
(∂2

t − ∂2
x)A1 = −|u|2 + |v|2,

(∂2
t − ∂2

x)A2 = −2 Im(uv).

(14)

Then we also have{
(∂t + ∂x)|u|2 = 2A2 Re (vu) − 2M Im (vu) ,

(∂t − ∂x)|v|2 = −2A2 Re (vu) + 2M Im (vu) .
(15)

4.3. Dimension d = 3
The 4 × 4 Dirac matrices are, in 2 × 2 block form,

γ0 =
(

0 I
I 0

)
, γ1 =

(
0 −I
I 0

)
,

γ2 =
(

ρ 0
0 −ρ

)
,

γ3 =
(

κ 0
0 −κ

)
,
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where I is the 2 × 2 identity matrix and ρ, κ must satisfy

ρ∗ = −ρ, ρ2 = −I, κ∗ = −κ, κ2 = −I, ρκ + κρ = 0.

Then (3) is satisfied. For example, we can choose

ρ =
(

0 −1
1 0

)
,

κ =
(

i 0
0 −i

)
.

Then (10) reads (with x = x1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + ∂x)u = i(A0 + A1)u − iA2ρv − iA3κv − iMv,

(∂t − ∂x)v = i(A0 − A1)v + iA2ρu + iA3κu − iMu,

(∂2
t − ∂2

x)A0 = |u|2 + |v|2,
(∂2

t − ∂2
x)A1 = −|u|2 + |v|2,

(∂2
t − ∂2

x)A2 = −2Re(v∗ρu),

(∂2
t − ∂2

x)A3 = −2Re(v∗κu),

(16)

where u, v are now C
2-valued. Then also{

(∂t + ∂x)|u|2 = 2A2 Im (v∗ρu) + 2A3 Im (v∗κu) − 2M Im (v∗u) ,

(∂t − ∂x)|v|2 = −2A2 Im (v∗ρu) − 2A3 Im (v∗κu) + 2M Im (v∗u) .
(17)

4.4. A null form estimate

When we move from d = 1 to d = 2 or d = 3, the decisive difference is that we
pick up the additional fields A2, A3. These fields will be better behaved than
A0, A1, since the right hand sides of the corresponding equations in (14) and
(16) are null forms: They contain a product of v∗ and u, which propagate in
transverse directions. This fact will be exploited through the following crucial
estimate (which fails for uu and uu).

We use the following notation. For x ∈ R and t > 0, let K(t,x) denote the
backward cone with vertex at (t, x), that is,

K(t,x) =
{
(s, y) ∈ R

2 : 0 < s < t, x − t + s < y < x + t − s
}

. (18)

Lemma 1. (Null form estimate) Consider a system of the form

(∂t + ∂x)u = F (t, x), u(0, x) = f(x),
(∂t − ∂x)v = G(t, x), v(0, x) = g(x),

where x ∈ R, t > 0, and the functions are C-valued. For the solution (u, v) we
have the estimate, for all X ∈ R and T > 0,∫∫

K(T,X)
|uv| dx dt

≤
(

‖f‖L1 +
∫ T

0

‖F (t)‖L1 dt

) (
‖g‖L1 +

∫ T

0

‖G(t)‖L1 dt

)
.
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Proof. Integrating, we have

u(t, x) = f(x − t) +
∫ t

0

F (s, x − t + s) ds,

v(t, x) = g(x + t) +
∫ t

0

G(s, x + t − s) ds.

Taking absolute values, we see that for 0 ≤ t ≤ T ,

|u(t, x)| ≤ μ(x − t) := |f(x − t)| +
∫ T

0

|F (s, x − t + s)| ds,

|v(t, x)| ≤ ν(x + t) := |g(x + t)| +
∫ T

0

|G(s, x + t − s)| ds.

By Fubini’s theorem it is then obvious that∫∫
K(T,X)

|uv| dx dt ≤ ‖μ‖L1(R) ‖ν‖L1(R) .

But

‖μ‖L1(R) ≤ ‖f‖L1(R) +
∫ T

0

‖F (t)‖L1(R) dt,

and similarly for ν, so we get the desired estimate.

5. Data for ill-posedness

In this section we specify the data that are used to prove Theorem 2.
Choose a cut-off χ ∈ C∞

c (R) such that χ = 1 on [−1, 1]. Let ε > 0. For
the spinor datum and its approximations, which are C

N -valued, we then take

ψbad
0 (x) = χ(x1) · · · χ(xd)

⎛
⎜⎜⎜⎝

f(x1)
0
...
0

⎞
⎟⎟⎟⎠ ,

ψ0,ε(x) = χ(x1) · · · χ(xd)

⎛
⎜⎜⎜⎝

fε(x1)
0
...
0

⎞
⎟⎟⎟⎠ , (19)

where

f(x1) =
1

|x1|1/2
, fε(x1) =

1
(ε2 + x2

1)1/4
. (20)

Thus, χfε ∈ C∞
c (R), and for 1 ≤ p < 2 we have χf ∈ Lp(R) \ L2(R) and

lim
ε→0

‖χfε − χf‖Lp(R) = 0.
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By the Hardy-Littlewood-Sobolev inequality,2 we then conclude that χf ∈
Hs(R) for s < 0, and that

lim
ε→0

‖χfε − χf‖Hs(R) = 0.

It follows that ψ0,ε ∈ C∞
c (Rd), ψbad

0 ∈ X0 \ L2(Rd), and

lim
ε→0

∥∥ψ0,ε − ψbad
0

∥∥
X0

= 0,

where as before X0 denotes either Hs(Rd), s < 0, or Lp(Rd), 1 ≤ p < 2.
Next, we choose the data aμ,ε, bμ,ε ∈ C∞

c (Rd). The first alternative is to
take vanishing data

a0,ε = · · · = ad,ε = 0, b0,ε = · · · = bd,ε = 0, (21)

as in (7). The second alternative is to ensure that the constraints in (8) are
satisfied. For this, we take all the data to vanish except b1,ε, so the constraints
reduce to

−∂1b1,ε = |ψ0,ε|2 =
1√

ε2 + x2
1

in B.

Integrating this, we obtain⎧⎨
⎩

a0,ε = · · · = ad,ε = 0, b0,ε = b2,ε = · · · = bd,ε = 0,

b1,ε(x) = −χ(x1) · · · χ(xd) log
(

x1 +
√

ε2 + x2
1

)
,

(22)

which satisfies (8).

6. Proof of ill-posedness

We start by proving Theorem 2, which implies Theorem 1. Theorem 3 is proved
at the end of this section.

Let d ≤ 3, choose the Dirac matrices as in Sect. 4, and define the data
(ψ0,ε, aμ,ε, bμ,ε) ∈ C∞

c (Rd) by (19), (20), and either (21) or (22). Since the
data depend only on x1 in B, it follows from Theorem 4 that their maximal
C∞ forward evolution (ψε, Aμ,ε) exists throughout the cone K over B, and
depends only on t and x1 there. Indeed, we can apply Theorem 4 with the
data restricted to x2 = · · · = xd = 0.

We now claim that for T > 0 sufficiently small, the following holds for
ε > 0:

|Aj,ε(t, x)| ≤ 1 in KT , for 2 ≤ j ≤ d, (23)
and

|ψε(t, x)|2 ≥ 1
2
|fε(x1 − t)|2 in KT ∩ {(t, x) : 0 < t < x1}. (24)

Moreover,

A0,ε(t, x) ≥ c(Q)| log ε| in any compactQ ⊂ KT ∩ {(t, x) : |x1| < t}, (25)

2We use the inequality ‖g‖Hs(R) ≤ C ‖g‖Lp(R), valid for s = 1/2 − 1/p, 1 ≤ p ≤ 2.
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for all sufficiently small ε > 0, and some constant c(Q) > 0 depending only on
Q.

Once we have obtained (25), then Theorem 2 is proved. The plan is now
as follows: First, we prove that (24) implies (25), then we prove (23), and
finally we prove (24).

Since (23)–(25) are restricted to the cone K, where the solution depends
only on t and x1, it suffices to prove them for x2 = · · · = xd = 0. For the
remainder of this section we therefore restrict to x2 = · · · = xd = 0. The
solution then exists for all t ≥ 0 and x1 ∈ R, by Theorem 4. To simplify the
notation we also write x = x1.

6.1. Proof that (24) =⇒ (25)

Since (∂2
t −∂2

x)A0,ε = |ψε|2 with vanishing initial data, we have by d’Alembert’s
formula

A0,ε(t, x) =
1
2

∫∫
K(t,x)

|ψε|2 dy ds =
1
2

∫ t

0

∫ x+t−s

x−t+s

|ψε(s, y)|2 dy ds,

with notation as in (18). Take |x| < t < T � 1 and restrict the integration to
the cone K(t,x) ∩ {(s, y) : s < y}. Assuming (24) holds, we thus obtain

A0,ε(t, x) ≥ 1
2

∫ x+t
2

0

∫ x+t−s

s

|ψε(s, y)|2 dy ds

≥ 1
4

∫ x+t
2

0

∫ x+t−s

s

1√
ε2 + (y − s)2

dy ds

≥ 1
4

∫ x+t
2

0

∫ x+t−s

s

1
ε + y − s

dy ds

=
x + t

8
(− log ε) +

1
8
(ε + x + t) (log(ε + x + t) − 1) − 1

2
ε(log ε − 1),

and (25) follows.

6.2. Proof of (23)

This is only relevant in dimensions d = 2, 3. We show the proof for d = 2, and
comment on d = 3 at the end.

Assuming now d = 2, then the system is as in (14):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(∂t + ∂x)uε = i(A0,ε + A1,ε)uε + A2,εvε − iMvε,

(∂t − ∂x)vε = i(A0,ε − A1,ε)vε − A2,εuε − iMuε,

(∂2
t − ∂2

x)A0,ε = |uε|2 + |vε|2,
(∂2

t − ∂2
x)A1,ε = −|uε|2 + |vε|2,

(∂2
t − ∂2

x)A2,ε = −2 Im(uεvε),

(26)

with data

uε(0, x) = χfε(x) =
χ(x)

(ε2 + x2)1/4
,

vε(0, x) = 0,
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and either (21) or (22) (with x = x1 and x2 = 0). The solution exists globally
and is C∞, by Theorem 4.

We want to prove (23). This will follow if we can prove that for T > 0
sufficiently small,

sup
(t,x)∈[0,T ]×R

|A2,ε(t, x)| ≤ 1 (27)

for all ε > 0.
By d’Alembert’s formula, since a2,ε = b2,ε = 0,

A2,ε(t, x) =
∫∫

K(t,x)
Im(uεvε)(s, y) dy ds, (28)

were K(t,x) denotes the backward cone (18).
The idea is now to apply Lemma 1 to the first two equations in (26). But

first we need to integrate out the terms involving (A0,ε ± A1,ε). Define φ+,ε,
φ−,ε by

(∂t + ∂x)φ+,ε = A0,ε + A1,ε, φ+,ε(0, x) = 0,
(∂t − ∂x)φ−,ε = A0,ε − A1,ε, φ−,ε(0, x) = 0,

that is,

φ+,ε(t, x) =
∫ t

0

(A0,ε + A1,ε)(s, x − t + s) ds,

φ−,ε(t, x) =
∫ t

0

(A0,ε − A1,ε)(s, x + t − s) ds.

Then from the first two equations in (26) we get

(∂t + ∂x)(e−iφ+,εuε) = e−iφ+,ε [A2,εvε − iMvε],

(∂t − ∂x)(e−iφ−,εvε) = e−iφ−,ε [−A2,εuε − iMuε], (29)

so by (28) and Lemma 1,

‖A2,ε(t)‖L∞ ≤ sup
x∈R

∫∫
K(t,x)

|uε||vε| dy ds

= sup
x∈R

∫∫
K(t,x)

|e−iφ+,εuε||e−iφ−,εvε| dy ds

≤
(

‖χfε‖L1 +
∫ t

0

(M + ‖A2,ε(s)‖L∞) ‖vε(s)‖L1 ds

)

×
(∫ t

0

(M + ‖A2,ε(s)‖L∞) ‖uε(s)‖L1 ds

)
. (30)

To control the L1 norms of uε(t) and vε(t), we use again (29), which implies

(e−iφ+,εuε)(t, x) = χfε(x − t) +
∫ t

0

(
e−iφ+,ε [A2,εvε − iMvε]

)
(s, x − t + s) ds,

(e−iφ−,εvε)(t, x) =
∫ t

0

(
e−iφ−,ε [−A2,εuε − iMuε]

)
(s, x + t − s) ds.
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Take L1 norms in x to get

‖uε(t)‖L1 ≤ ‖χfε‖L1 +
∫ t

0

(M + ‖A2,ε(s)‖L∞) ‖vε(s)‖L1 ds,

‖vε(t)‖L1 ≤
∫ t

0

(M + ‖A2,ε(s)‖L∞) ‖uε(s)‖L1 ds.

Adding these and applying Grönwall’s inequality yields

‖uε(t)‖L1 + ‖vε(t)‖L1 ≤ ‖χfε‖L1 e
∫ t
0 (M+‖A2,ε(s)‖L∞ ) ds. (31)

Observing that

‖χfε‖L1 ≤ C :=
∫
R

|χ(x)|
|x|1/2

dx < ∞,

and defining the continuous function gε : [0,∞) → [0,∞) by

gε(t) = sup
0≤s≤t

‖A2,ε(s)‖L∞ ,

we conclude from (30) and (31) that

gε(t) ≤ C2
(
1 + t(M + gε(t))et(M+gε(t))

) (
t(M + gε(t))et(M+gε(t))

)
. (32)

We now use a boot-strap argument to show that there exists a δ > 0,
depending only on C and M , such that for 0 ≤ t ≤ δ,

gε(t) ≤ 1. (33)

Assuming this holds for some t > 0, then by (32) we have

gε(t) ≤ C2α(t), (34)

where the increasing function α : [0,∞) → [0,∞) is defined by

α(t) =
(
1 + t(M + 1)et(M+1)

)(
t(M + 1)et(M+1)

)
.

Since α(0) = 0, there exists δ > 0, depending only on M and C, such that

C2α(δ) ≤ 1
2
. (35)

By a continuity argument it now follows that (33) holds for all t ∈ [0, δ].
Indeed, since gε(0) = 0, then (33) certainly holds for sufficiently small t > 0.
And if (33) holds on some interval [0, T ] ⊂ [0, δ], then by (34) and (35) we
have in fact gε(t) ≤ 1/2 on that interval, so (33) holds on a slightly larger
interval.

This concludes the proof of (23) for d = 2. For d = 3 the same proof goes
through with some obvious changes. Indeed, the system (16) has essentially
the same structure as (14), and in particular the equations for A2, A3 have
null forms in the right hand side. Thus, we obtain

sup
(t,x)∈[0,T ]×R

(|A2,ε(t, x)| + |A3,ε(t, x)|) ≤ 1 (36)

for T > 0 sufficiently small.
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6.3. Proof of (24)

Since we restrict to x2 = · · · = xd = 0 and write x = x1, then (24) reduces to
proving that for T > 0 sufficiently small,

|uε(t, x)|2 ≥ 1
2
|fε(x − t)|2 for 0 < t < x < 1 − t and t < T. (37)

We do the proof for d = 2, and comment on d = 1 and d = 3 at the end.
Assuming d = 2, we use (15). Thus,

(∂t + ∂x)|uε|2 = Fε := 2A2,ε Re(uεvε) − 2M Im(uεvε),

(∂t − ∂x)|vε|2 = Gε := −2A2,ε Re(uεvε) + 2M Im(uεvε),

and therefore

|uε(t, x)|2 = |χfε(x − t)|2 +
∫ t

0

Fε(s, x − t + s) ds, (38)

|vε(t, x)|2 =
∫ t

0

Gε(s, x + t − s) ds. (39)

By (27), for T > 0 sufficiently small we have

|Fε|, |Gε| ≤ (M + 1)(|uε|2 + |vε|2) in [0, T ] × R, (40)

hence

|uε(t, x)|2 ≤ |χfε(x − t)|2 + (M + 1)
∫ t

0

(|uε|2 + |vε|2)(s, x − t + s) ds, (41)

|vε(t, x)|2 ≤ (M + 1)
∫ t

0

(|uε|2 + |vε|2)(s, x + t − s) ds (42)

for t ∈ [0, T ], x ∈ R.
The idea is now to apply a boot-strap argument. For ρ ∈ (0, 1 − 2T ),

define

Bρ,ε(s) = sup
ρ+s≤y≤1−s

(|uε(s, y|2 + |vε(s, y)|2) (0 ≤ s ≤ T ).

If ρ + t ≤ x ≤ 1 − t, the integrands in (41), (42) are bounded by Bρ,ε(s), so

|uε(t, x)|2 + |vε(t, x)|2 ≤ 1√
ε2 + (x − t)2

+ 2(M + 1)
∫ t

0

Bρ,ε(s) ds

Taking the supremum over x ∈ [ρ + t, 1 − t] gives

Bρ,ε(t) ≤ 1√
ε2 + ρ2

+ 2(M + 1)
∫ t

0

Bρ,ε(s) ds.

By Grönwall’s inequality we conclude that

Bρ,ε(t) ≤ 1√
ε2 + ρ2

e2(M+1)t ≤ 3√
ε2 + ρ2

for t ∈ [0, T ], (43)

assuming T > 0 is so small that 2(M + 1)T < 1.
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Combining (43), (38) and (40), we obtain, for ρ > 0, x ∈ [ρ+ t, 1− t] and
t ≤ T ,

|uε(t, x)|2 ≥ |χfε(x − t)|2 − (M + 1)
∫ t

0

(|uε|2 + |vε|2)(s, x − t + s) ds

≥ 1√
ε2 + (x − t)2

− (M + 1)
∫ t

0

Bρ,ε(s) ds

≥ 1√
ε2 + (x − t)2

− 3(M + 1)t√
ε2 + ρ2

,

where we also used the fact that χ = 1 on [−1, 1]. Choosing ρ = x − t and
assuming T > 0 so small that 6(M +1)T < 1, we obtain the claimed inequality
(37).

This completes the proof of (24) for d = 2. The proof for d = 1, 3 works
out the same way, but instead of (15) we use either (13) or (17), and in the
case d = 3 we use (36) instead of (27).

6.4. Proof of Theorem 3

Define ψbad
0 ∈ X0\L2(Rd) as in Sect. 5. Assume there exist (i) a neighbourhood

Ω0 of ψbad
0 in X0, and (ii) continuous maps

Iμ, Jμ : Ω0 −→ D′(B),

such that if ψ0 ∈ Ω0 ∩ C∞
c (Rd), then defining

aμ = Iμ[ψ0], bμ = Jμ[ψ0] (μ = 0, . . . , d),

the constraint equations (5) are satisfied in B.
We will show that these assumptions lead to a contradiction. Define ψ0,ε ∈

C∞
c (Rd) as in Sect. 5. Then ψ0,ε → ψbad

0 in X0 as ε → 0, so ψ0,ε belongs to
Ω0 for all ε > 0 small enough, and we may define

aμ,ε = Iμ[ψ0,ε], bμ,ε = Jμ[ψ0,ε] (μ = 0, . . . , d).

By assumption, these fields satisfy the constraints (5) in B, so in particular

d∑
j=1

∂j(∂ja0,ε − bj,ε) = |ψ0,ε|2 in B.

By the assumed continuity of the maps Iμ, Jμ, the left hand side must converge
in D′(B) as ε → 0. But the right hand side equals

|ψ0,ε(x)|2 =
1√

ε2 + x2
1

for x ∈ B,

and this function does not have a limit in the sense distributions in B, as
ε → 0.
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7. Proof of well-posedness

In this section we prove Theorem 4. To ease the notation we write x = x1

throughout. To prove local existence we use an iteration and rely only on the
following elementary estimates.

7.1. Linear estimates

Firstly, for the Dirac equation

(−iγ0∂t − iγ1∂x + M)ψ = F (t, x), ψ(0, x) = ψ0(x),

we shall use the energy inequality, for t > 0,

‖ψ(t)‖L2(R) ≤ ‖ψ0‖L2(R) +
∫ t

0

‖F (s)‖L2(R) ds. (44)

This is proved as follows. By approximation, we may assume that ψ0 and
F are smooth and compactly supported in x. Premultiplying the equation
by iψ = iψ∗γ0 and taking real parts yields ∂tρ + ∂xj = Re(iψ∗γ0F ), where
ρ = ψ∗ψ and j = ψ∗γ0γ1ψ. Integration in x gives

d

dt

∫
R

|ψ|2 dx = 2Re
∫
R

iψ∗γ0F dx ≤ 2 ‖ψ(t)‖L2 ‖F (t)‖L2 ,

which implies (44).
Secondly, for the wave equation

�u = G(t, x), u(0, x) = f(x), ∂tu(0, x) = g(x),

we shall use the estimates, for t > 0,

‖u(t)‖L∞(R) ≤ ‖f‖L∞(R) + ‖g‖L1(R) +
∫ t

0

‖G(s)‖L1(R) ds, (45)

‖∂xu(t)‖L1(R) ≤ ‖f ′‖L1(R) + ‖g‖L1(R) +
∫ t

0

‖G(s)‖L1(R) ds, (46)

‖∂tu(t)‖L1(R) ≤ ‖f ′‖L1(R) + ‖g‖L1(R) +
∫ t

0

‖G(s)‖L1(R) ds, (47)

which are immediate from d’Alembert’s formula,

u(t, x) =
f(x + t) + f(x − t)

2
+

1
2

∫ x+t

x−t

g(y) dy +
1
2

∫ t

0

∫ x+t−s

x−(t−s)

G(s, y) dy ds.

Adding (45)–(47) gives

‖u(t)‖AC + ‖∂tu(t)‖L1 ≤ 3
(

‖f‖AC(R) + ‖g‖L1 +
∫ t

0

‖G(s)‖L1 ds

)
. (48)
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7.2. The local result

With the above linear estimates, it is now an easy matter to prove the local
well-posedness of (10) by iteration, for data with the regularity ψ0 ∈ L2(R),
aμ ∈ AC(R) and bμ ∈ L1(R). Indeed, applying the energy inequality (44) to
the Dirac equation in (10), we use the trivial bilinear estimate∫ T

0

‖Aμγμψ(s)‖L2 ds ≤ CT ‖A‖C([0,T ];L∞) ‖ψ‖C([0,T ];L2) ,

where C([0, T ];Lp) is equipped with the sup norm in time. Moreover, applying
(48) to the wave equations in (10) we use the equally trivial bilinear bound∫ T

0

∥∥ψ∗γ0γμψ(s)
∥∥

L1 ds ≤ CT ‖ψ‖2C([0,T ];L2) . (49)

By a standard contraction argument, which we do not repeat here, one now
obtains local well-posedness with a time of existence T > 0 determined by

CT

(
‖ψ0‖L2 +

d∑
μ=0

‖aμ‖AC +
d∑

μ=0

‖bμ‖L1

)
≤ 1,

where C is a universal constant. This proves Theorem 4 for such T . Next, we
show that the results extend globally.

7.3. The global result

To extend the local result globally in time, it suffices to obtain an a priori
bound on the solution (ψ,A, ∂tA)(t) in L2(R) × AC(R) × L1(R). For ψ, this
bound is directly provided by the conservation of charge, (11). The latter also
provides the necessary bound for (A, ∂tA), via the linear estimate (48) and the
bilinear estimate (49). This concludes the proof of Theorem 4.
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