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Abstract
Dimensional reduction strategy is an effective approach to derive reliable conceptual models to describe flow in fractured
porous media. The fracture aperture is several orders of magnitude smaller than the characteristic size (e.g., the length of
the fracture) of the physical problem. We identify the aperture to length ratio as the small parameter with the fracture
permeability scaled as an exponent of . We consider a non-Newtonian fluid described by the Carreau model type where the
viscosity is dependent on the fluid velocity. Using formal asymptotic approach, we derive a catalogue of reduced models at
the vanishing limit of . Our derivation provides new models in a hybrid-dimensional setting as well as models which exhibit
two-scale behaviour. Several numerical examples confirm the theoretical derivations of the upscaled models. Moreover, we
have also studied the sensitivity of the upscaled models when a particular upscaled model is used beyond its range of validity
to provide additional insight.

Keywords Fractured porous media · Upscaling · Polymer EOR

1 Introduction

Fractures in porous media are encountered in several con-
texts including petroleum sector, water contamination, and
nuclear waste disposal. A fracture is a thin but long domain
embedded in a porous matrix and it is one of the charac-
teristics of the heterogeneities in the medium. The flow and
transport properties such as permeabilities is often drasti-
cally different from that of the matrix. The influence of
these fractures on the flow behaviour is quite strong [1]. For
instance, if there is a fracture network, the entire flow may
take place through the fractures. At the same time, small
aperture to length ratio makes it difficult to resolve the flow
behaviour explicitly through brute force computations. An
exhaustive survey of literature dealing with fractures is quite
ambitious and for a recent survey we refer to [7].

There are several approaches to incorporate fractures in
the flow models. First, to resolve them fully by considering
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them as equidimensional domain as the porous medium.
Secondly, we may consider the fractures to be lower dimen-
sional geometric objects embedded in the porous matrix.
This will imply that the model equations are defined in
heterogeneous domains with partial differential equations
defined in both the porous matrix as well as on the sur-
face of the fracture. Thirdly, we can simplify the impact
of the fracture by incorporating their effect by suitably
modifying the permeability of the grid cells. This paper is
concerned with the second approach: to incorporate frac-
tures as lower dimensional geometric objects embedded in
the porous matrix. In practice, one combines the second and
third approaches as the subsurface is full of fractures of dif-
ferent shapes and sizes. The smaller fractures are accounted
for by suitably modifying the permeability fields whereas
the larger fractures need to be treated explicitly. Thus, our
approach here assumes that the smaller fractures are already
incorporated by a suitably altered but given permeability
field in the matrix.

The particularity in our derivation of reduced models is
considering the polymer enhanced oil recovery (EOR) as a
flow model. Polymer injection is a well known enhanced
oil recovery technique where we mix large molecules
into water to reduce its mobility and hence improve the
sweep efficiency. However, in a fractured domain, the
flow behaviour is strongly influenced by the fractures.
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Moreover, the fractures, due to their significantly different
permeability and geometry, cause a large variation in the
shear stresses and the velocity of the polymer [8]. Therefore,
the effects of polymers in a fractured media becomes more
complex. Such complexity needs to be accounted for in
any polymer enhanced oil recovery model in a fractured
porous medium. For example, if the flow takes place mainly
along the fractured network, the sweeping efficiency will
be reduced causing poor recovery. EOR applications using
polymers have been widely described in literature and we
refer to the works of [9, 25, 35, 37, 43] for more information.

The fracture flow models treating the fractures as sur-
faces have been widely used [7]. Single phase and multi-
phase flow models are considered in [6, 23, 28–30, 33],
models with a network of intersecting fractures are in [15,
17, 18], transport models are discussed in [32]. Extensions
to multiphysics including geomechanical effects are consid-
ered in [12, 22]. Also, see references within. The advantage
of treating fractures as a lower dimensional geometric object
is that we no longer need to resolve the fractures through a
fine meshing even while explicitly including the their effect.
Resolving them explicitly as a equidimensional geometric
object implies high computational costs. For example, ratio
between a characteristic fracture width to a typical porous
matrix is in orders of 10−6, resolving which using a finer
mesh in the fractures will be quite expensive. Moreover, we
may not be interested in the details of the pressure behaviour
in the thin width of the fractures. Treating them as sur-
faces alleviates these difficulties and often provides us the
freedom of choosing suitable and independent discretization
on the surface. This approach, with some technical differ-
ences, is also known as Discrete Fracture Networks, Hybrid
Fractured Models, Mixed dimensional models etc.

The reduced flow model depends on the permeability
of the fracture. This is easy to motivate. Let us consider
a porous domain where the matrix consists of two
isolated subdomains separated by a fracture. If the fracture
permeability is extremely low then it acts as a barrier. In
this case, the two subdomains are decoupled. On the other
hand, when the fracture has sufficiently high permeability,
there would be no pressure difference in the fracture. Thus,
it would be natural to define a flow model on the fracture
surface that is coupled to the porous matrix. Our approach
here is to identify a small parameter which is the ratio of
the width of the aperture to the length of the fracture. We
consider the fracture permeability as a diagonal tensor:

Kf =
α 0
0 β . (1)

We assume here that the fracture is filled with porous
material. This justifies using Darcy scale model inside
the fracture. Moreover, the filling material may also be
anisotropic and for this reason we consider the permeability

to be a diagonal tensor. Anisotropic permeability is well
used in literature, for instance in the works of [36, 38]
The upscaled models are obtained by taking the limit
tending to zero. We identify upscaled models for different
scalings given by α and β. This should be interpreted as
follows: let us say, we are given the permeability of the
fracture. The question arises, which upscaled model shall
we use for the fracture? The answer depends on the scale
of the permeability compared to the width of the fracture.
Using given width and permeability, we can compute α

and β for the fracture. Once, they are known, we can
determine the appropriate flow model to be used for the
fracture surface. The effective models in this paper are
found using a formal asymptotic approach where we expand
the solution variables in terms of . We define the reduced
model as the leading order term of the solution and identify
the equations that are satisfied by the leading order term.
Since this approach considers an expansion ansatz, we term
this as a formal approach. The vanishing limit of should
be considered as a mathematical exercise as in practice
always remains small but positive. However, the limit

equation approximates the model with the approximation
getting better as becomes smaller. We also mention here
that the terms reduced model, upscaled model, and effective
model are synonymous and will be used interchangeably.

We make a distinction in the approaches involved in
derivation of fracture models in terms of the ones sustained
by rigorous mathematical analysis and the other ones by
formal arguments. For a rigorous upscaling of fractured
flow model, we refer to the works of [29, 30, 40] for a single
phase flow. In case of the Richards equation we refer to
[27] where mathematically rigorous convergence results are
obtained for a certain range of parameters. For a study on
the transport equation in similar setting we refer to the work
by [32]. In [21] they use Fourier analysis to obtain coupling
conditions between subdomains and obtain model error
estimates when the fracture is represented as a hypersurface
embedded in the surrounded rock matrix. In [19, 20, 31], the
authors consider a thin domain with periodic coefficients for
a reactive transport model and perform a rigorous two-scale
homogenization to obtain interface conditions. In contrast to
these rigorous works, formal arguments are used to derive
the effective models in [28] which is a standard reference
for such models. We also refer to the work of [3] where they
study a reduced fracture model for two phase flow and the
work of [18] where they study a reduced model for flow and
transport in fractured porous media. A somewhat different
approach, inspired from asymptotic homogenization uses
asymptotic expansion of solution variables for deriving a
catalogue of models for a range of coefficients. We refer
to [24] and [32] for such a formal upscaling and numerical
validation of the Richards equation modelling unsaturated
flows and reactive transport in fractured porous media,
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respectively. The current work follows the approach in [32]
and [24] to derive the upscaled models.

The upscaled models are typically mixed dimensional
partial differential equations with the flow equation in the
porous matrix coupled to flow equations on the fracture
surface. Since the resulting systems are nonlinear, the dis-
cretization yields a nonlinear system of algebraic equations
and we need to use nonlinear solvers such as Newton
method. Since the medium consists of different homoge-
neous blocks, domain decomposition methods are quite
appropriate. In our case, the mixed dimensional models have
been solved using a domain decomposition type approach
where we solve the flow in the matrix and the flow in the
fracture independently and then iterate between the two to
achieve the converged solutions.

1.1 Structure of paper

In Section 1.2 we describe some of the polymer models
used in practice along with the Carreau model which is the
one we will use later. In Section 2 we describe the problem
of polymer flow in a fractured medium and in Section 3
we present the different upscaled models. In Section 4
the effective models are derived and the results from the
numerical computations that illustrate the quality of our
upscaled models are presented in Section 5.

1.2 Polymer model

The particularity of our derivation is considering polymer
enhanced oil recovery (EOR) models. The polymer EOR
technique employs injecting polymers to alter the viscosity
of the injecting fluid to improve the sweep efficiency. The
flow control is therefore through a suitable alteration in the
viscosity. The viscosity becomes a non-linear function of
the shear rate, η̇. In the literature, such a relationship is often
expressed by the following experimentally fitted expression
first given by Chauveteau (1882)

η̇ = c
|K− 1

2 u|√
φ

(2)

whereK is the permeability and φ the porosity of the porous
medium. The term c is a correction factor that depends on
the porous medium and the properties of the polymer, and
different values may be obtained for different scalings [44].
The term u is the Darcy velocity given by

u = − K

μ(η̇)
∇p. (3)

Since c, K and φ are given functions of space, we can
let the viscosity just be a function of velocity itself, μ(u).

This identification will simplify our presentation. The most
widely used model to describe such a polymer shear
viscosity relationship is the power law model, also called
the de-Waele Ostwald relation [8]

μ = kη̇n−1 (4)

where k is a constant equivalent to Newtonian viscosity
when the power law constant n = 1. For the case when
n > 1, this law describes shear thickening behaviour,
which is an increase in viscosity as the shear rate increases.
Correspondingly, it describes the shear thinning behaviour,
which is a decrease in viscosity as shear rate increases
for the case n < 1. This power law function is strictly
monotone and therefore, is unrealistic for large values of
shear strain where viscosity approaches a constant value
μ∞. This interval for the constant value μ∞ is known as a
plateau. There is a similar plateau for low shear rate where
we define the viscosity as μ0. To incorporate the upper and
lower Newtonian plateaus for μ0 and μ∞ an alternative
to the power law model is widely known as the Carreau
Model [13].

μ = μ∞ + μ0 − μ∞
[1 + (λη̇)2] 1−n

2

. (5)

Where λ is the polymer relaxation constant, η̇ is the shear
rate and n is a power law constant (see Eq. 4). When n <

1, this model describes shear thinning with μ∞ being the
viscosity at infinite shear rate and μ0 the viscosity at zero
shear rate. When n = 1 the fluid is Newtonian, and for
the case n > 1 the model behaves as a power law fluid
describing shear thickening. One of the drawbacks of the
Carreau model is that it cannot describe both shear thinning
and shear thickening for the same fluid [4]. In practice,
complex compositions of fluid mixtures are used that show
both shear thinning and shear thickening behaviour in the
same fluid at different locations or time. There have been
suggestions in literature, see e.g., [14] to include both shear
thickening and thinning behaviour in the same fluid by
including more parameters. One of the models proposed is

μ = μ∞ + (μ0 − μ∞)[1 + (λη̇)a](n−1)/a

+μmax[1 − exp(−(λ2τr η̇)n2−1)] (6)

where τr is the polymer relaxation time, λ2 is a second
time constant and n2 a second power law exponent. This
extended Carreau model is also called the Universal Viscos-
ity Model (UVM) and it describes the apparent viscosity as
a function of 10 parameters.

In what follows, we study the Carreau model and present
the derivation of reduced models (Fig. 1).
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Fig. 1 The domain

2 Polymer flow in a fracturedmedium

We consider a rectangular domain with the fracture
domain f as a rectangle symmetrically embedded. The
domain and the subdomains are given by:

1 := (− 1
2 − 2 , − 2 ) × (0, 1 1 := {− 2 } × (0, 1)

2 := ( 2 ,
1
2 + 2 ) × (0, 1 2 := { 2 } × (0, 1)

f := (− 2 , 2 ) × (0, 1),

(7)

and for the limit → 0 we denote

1 := (− 1
2 , 0) × (0, 1 := {0} × (0, 1)

2 := (0, 1
2 ) × (0, 1)

(8)

Here, the domain contains a single fracture f which
divides into two subdomains 1 and 2. We denote
the boundary of 1 2, and f by 1 2, and f ,
respectively. The interfaces between the subdomains are
denoted by 1 and 2. Here 0 denotes the width of
the fracture and is much smaller than the length and hence,
is a small parameter. Extending this to an open, bounded,

convex polygonal domain containing a non-self-intersecting
fracture is straightforward.

As already indicated above, resolving the thin domain

f requires a meshing that is of the order of which is
typically very small. This will be computationally costly.
The idea is therefore to perform the dimensional reduction
of the fracture model and obtain an equation on the interface

such that the solution of the dimensionally reduced
model approximates that of the original problem. Naturally,
the processes in the fractures are coupled to the porous
subdomains and hence the resulting reduced models will be
of a hybrid-dimensional (or mixed-dimensional). As we will
see depending on the fracture hydraulic properties, there is
a catalogue of models that we obtain.

We consider a non-Newtonian single phase flow in gov-
erned by Darcy’s law and the mass conservation equation.

div u = q in

u = − K

μ(u )
∇p in

(9)

Here, μ(u ) is the viscosity as a function of velocity,
and it can be described by the extended Carreau model in
Eq. 6 together with the relationship between shear stress and
velocity described in Eq. 2. q is a source/sink term, and the
permeability in j , j = 1, 2, and f is given in Eq. 10 For
simplicity we assume that the permeabilities K1 and K2 in

1 and 2 equal 1 in both x and y-direction. Even though
the permeabilities in 1 and 2 are constant, we denote
it with the -superscript for notiational convenience. In the
fracture domain the ratio between the length and the width
motivates us to describe the permeability as an exponent of
fracture width

Kj = 1 0
0 1

, Kf =
α 0
0 β . (10)

Here, α, β are given real numbers and are the parameters
that describe the permeability in the fracture. We will see
that as we vary the parameters α, β, different reduced
models are obtained. In practice, they are estimated as
follows. We assume that the fracture is given along with its
permeability and geometric dimensions. The latter provides
us which is fixed for this given fracture. Next, we compute
the scaling of the permeability in both x and y directions
with respect to . This yields the parameters α and β.

For the sake of convenience homogeneous Dirichlet
boundary conditions are considered. The interface condi-
tions are the continuity of the pressure and the continuity of
normal flux. We get the complete set of equations for our
fracture problem

div ui = qi in i

ui = − Ki

μ (ui )
∇pi in i

pj = pf on j

β

μ (ui )
∂ypf = Kj

μ (uj )
∂ypj on j

(11)

where j = 1, 2 and i = 1, 2, f and Kf and Kj is
defined in Eq. 10. In the above system of equations, we have
introduced as a superscript to emphasize the dependency
of the solution variables on .

In these models it is assumed that the pressure is
continuous at the interfaces separating the matrix blocks
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and the fracture. We mention other works such as [41]
where an extended pressure condition is used instead of the
continuity of pressures at the interface. Such conditions can
explain the trapping of oil when the flow moves from a high
permeable region to a lower one [42]. In case of oil recovery,
such effects may be important. Homogenization approaches
that derive such models are in [34, 39]. However, such
models are posed directly at a finite model (where the
fracture and matrix are equidimensional). In our case, we
have considered a simplified approach by assuming pressure
continuity. However, these extensions can be obtained in the
framework that we present by suitably altering the starting
microscopic (fixed ) model. This should be contrasted
with the upscaled models obtained here where we do get
discontinuity in the pressure across the interface as well.
However, this is in the effective equations rather than in the
model itself, see also [2, 5, 11, 24].
In Section 3, we take the above model, Eq. 11, as the

starting one and study the limit of tending to zero. Accord-
ingly, we perform a formal asymptotics, where we expand
the solution variables in powers of . We identify the equa-
tions satisfied by the leading terms and define them to be
the reduced models. Naturally, they depend on the hydraulic
properties of the fracture and in our description on α, β.
Therefore, we get a catalogue of reduced models depending
on the values of α and β.

3 Catalogue of reducedmodels

We state the main results in this section. We begin by
classifying our effective models in three types. These are: i)
models with continuous pressure across the fracture-matrix
interface, ii) models with discontinuous pressure across the
interface and iii) a model with disconnected pressure across
the fracture-matrix interface. The difference between the
last two is the pressure distribution in the effective model
inside the fracture. In case ii), the pressure is given by a
differential equation inside the fracture which is coupled
to those in the matrix while in case iii), the fracture acts
as no-flow boundaries for the flow model in the matrix
(Sections 3.2 and 3.3). The derivation of the reduced models
is done in Section 4. For all the models [uj ] denotes the
jump in the flux [uj ] = u1 · n − u2 · n with n being the
outward normal on pointing towards 2.

3.1 β < 1: Model with continuous pressure in the
fracture

When β < 1; we get models that have pressure continuity
across the fracture-matrix interface, independent of α.
The permeability in y-direction in the fracture allows the

equilibration of the pressure in the y-direction so that the
fracture collapses on a surface and takes the value of the
trace of the pressure from the matrix side.

3.1.1 Effective model 1

For α > β − 2, β < 1, j = 1, 2 we get the following model

div uj = qj in j

uj = − Kj

μ(uj )
∇pj in j

[uj ] = 0 in
p1 = p2 = pf on

uf = − 1
μ(uf )

dpf

dx
in

Effective model I

In this case, the value of permeability in the y-direction
is sufficiently high so that the pressure is equilibrated in
this direction. Accordingly, the pressure becomes uniform
along this direction. Moreover, this case also implies a low
permeability in the x− direction so that the resulting model
has no flow along this direction. This makes the effective
problem as if the fracture is an interface playing no role,
and the pressure and the normal fluxes in the matrices are
continuous. Accordingly, the flow equation in the matrix
can be solved independently without considering the flow
equation in the fracture. The two interface conditions for the
matrix flow equations are the continuity of fluxes and that of
the pressure. Once the flow equation is solved for the matrix,
fracture pressure can be computed by using the continuity
of pressure to the trace of the matrix pressure on fracture
surface. Similarly, the flux can be computed by using the
pressure in the fracture.

3.1.2 Effective model 2

For α = β − 2, β < 1, j = 1, 2 we get the model

div uj = qj in j

uj = − Kj

μ(uj )
∇pj in j

d
dx

uf = [uj ] in

uf = − 1
μ(uf )

dpf

dx
in

p1 = pf = p2 on

Effective model 2

As in the previous case, we see that the permeability in the
y− direction is large enough for the equilibration of the
pressure there. Moreover, the elliptic equation in the fracture
retains its character though now defined on the collapsed
interface. The continuity in the pressure is retained through
the traces of the pressure from the matrix side. However,
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there is still a jump in the flux that may be non-zero which
is on the right hand side in the fracture equation.

3.1.3 Effective model 3

For α < β − 2, β < 1, j = 1, 2, the effective model takes
the form

div uj = qj in j

uj = − Kj

μ(uj )
∇pj in j

d
dx

uf = 0 in

uf = − 1
μf (uf )

dpf

dx
in

p1 = p2 = pf on

Effective model 3

The pressure as before is independent of the y variable.
Moreover, the pressure continuity across the fracture matrix
interface is retained in the effective model. Furthermore,
the pressure in the x-direction also gets equilibrated as the
permeability in the x-direction is quite large. This means
that the pressure in the fracture is determined by solving
an ordinary differential equation defined on the fracture
surface. This pressure acts as the boundary condition for the
matrix equation with homogeneous boundary conditions,
pf = 0. In case of homogeneous Neumann boundary
condition on the boundary of the fracture, the pressure
on the fracture surface becomes constant. This constant is
determined by the condition [uj ] = 0. As the numerical
tests presented later show, the mass conservation is retained
in this case.

3.2 β = 1: Model with discontinuous pressure

If the y-direction permeability is proportional to the fracture
width, that is, β = 1, effective model results in which
the pressure is discontinuous across the interface fracture-
matrix interface and there is a jump in pressure over the
fracture. In this case, we realize that the fracture cannot be
collapsed on an interface. Thus, the usual sense in which we
obtain an effective equation defined on an interface, that is
by averaging across the fracture aperture cannot be justified.
Hence, we get a two scale model where the pressure jump
is determined by an elliptic differential equation over the
fracture domain f := (− 2 , 2 ) × (0, 1). In this case,
it is natural to rescale the fracture domain so that it is
independent of the value of . We define new variables in
the rescaled domain. ξ = x and η = y . The fracture
domain in the new coordinate system becomes f :=
(− 1

2 ,
1
2 ) × (0, L). For notational convenience, we define,

1 := {(ξ, η), η = 1
2 } 2 := {(ξ, η), η = − 1

2 }.

3.2.1 Effective model 4

For α > −1, β = 1, j = 1, 2 gives the following model

div uj = qj in j

uj = − Kj

μ(uj )
∇pj in j

uf = − 1
μ(uf )

dpf

dη
e2 in f

d

dη
(− 1

μ(uf )

dpf

dη
) = 0 in f

p1(y = 0) = pf (η = − 1
2 ) on 1

p2(y = 0) = pf (η = 1
2 ) on 2

1
μ(uf )

∂ηpf = 1
μ(u1)

∂yp1(y = 0) on 1

1
μ(uf )

∂ηpf = 1
μ(u2)

∂yp2(y = 0) on 2

Effective model 4

As for the other effective models, the flow equations in
the matrix remain unchanged. Here, e2 is the unitvector
in η-direction. We see that the dominant flow is going
in the η direction. For any fixed ξ , pf is a solution of
a second order boundary value problem in the vertical
direction with the unknown pf being a function of η with
the boundary conditions at η = − 1

2 and η = 1
2 . These

boundary conditions are given by the traces of the pressure
from the matrix. Since the traces of the matrix pressure are
themselves unknowns, the flux conditions at the boundaries
η = − 1

2 and η = 1
2 complete the system. There is no

horizontal coupling as the ξ variable enters the model as a
parameter. In other words, the flux has only one component.
In the case here we have that the flux is constant, however,
in cases with external sources this would not be true.

3.2.2 Effective model 5

For α = −1, β = 1, we have

div uj = qj in j

uj = − Kj

μ(uj )
∇pj in j

uf = − 1
μ(uf )

∂pf

∂ξ
− 1

μ(uf )

∂pf

∂η
in f

div uf = 0 in f

p1(y = 0) = pf (η = − 1
2 ) on 1

p2(y = 0) = pf (η = 1
2 ) on 2

1
μ(uf )

∂ηpf = 1
μ(u1)

∂yp1 on 1

1
μ(uf )

∂ηpf = 1
μ(u2)

∂yp2 on 2

Effective model 5

This scaling of the permeability in the fracture domain is
the critical one. In this case, the permeability in the ξ and
η directions after the fracture domain is rescaled is such
that it gives the same flow equation in the fracture as in
the matrix. This may include a jump in the flux as well as
the jump in the pressure across the fracture surface if one
views it with respect to the matrix flow equations. These are
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determined by a differential equation in the rescaled fracture
domain f . We see the emergence of a two-scale nature of
the upscaled equation.

3.2.3 Effective model 6

For α < −1, β = 1, the model takes the form

div uj = qj in j

uj = − Kj

μ(uj )
∇pj in j

uf = − 1

μ(uf )

dpf

dξ
in f

d

dξ
− 1

μ(uf )

dpf

dξ
= 0 in f

p1(y = 0) = pf (η = − 1
2 ) on 1

p2(y = 0) = pf (η = 1
2 ) on 2

Effective model 6

Here, the diffusion in the ξ direction is much stronger so
that the other terms in the fracture flow model vanish in the
limit. This makes the pressure pf satisfying a boundary
value problem involving an ordinary differential equation.
This explains the derivatives in f being an ordinary deriva-
tive in contrast to the partial derivatives in porous matrix.
Together with the boundary conditions on ξ = 0 or ξ = L,
the pressure in the fracture can be obtained. This acts as
Dirichlet boundary condition for the matrix flow equation.
Note that in the simple case of taking homogeneous bound-
ary conditions at ξ = 0 or ξ = L, the pressure in the fracture
would be zero. In case of homogeneous Neumann bound-
ary condition on the boundary of the fracture, the pressure
in the fracture subdomain becomes constant. This constant
is determined by the condition [uj ] = 0.

3.3 β > 1: Model with disconnected pressure

For the case of β > 1, the permeability in the fracture is
much smaller than that of matrix. In this case, the fracture
becomes a non-conducting barrier and the flow is confined
to the matrix. Accordingly, we get a decoupled model
where the two solid matrix domains 1 and 2 are entirely
decoupled from each other and can be solved separately.

3.3.1 Effective model 7

We have the following model for j = 1, 2.

div uj = qj in j

uj = − Kj

μ(uj )
∇pj in j

∂yp1 = 0 on
∂yp2 = 0 on

Effective model 7

The last two equations are the boundary condition for the
matrix flow and shows that the fracture interface acts as a
no flux condition. The “fracture” thus acts as an impervious
barrier. Under these conditions, the fracture surface provides
sufficient number of boundary condition for the flow on the
either side of the matrix. The matrix flow equations can be
solved uniquely. Accordingly, the equation in the fracture
accordingly becomes irrelevant.

3.4 Remarks on the upscaledmodels

Observe that unlike other effective models, in the Effective
models 4, 5 and 6 the solution in the fracture depends on η

as well. Also, η = − 1
2 in the fracture corresponds to the top

boundary of the matrix domain 2 (at y = 0−). Similarly,

1 has the bottom interface at y = 0+, connected to the
fracture domain boundary at η = 1

2 . This is a “two-scale”
type of model where the permeability has the scaling such
that the dimensionality reduction of the fracture interface is
not justified. Instead, the original problem posed in a larger
domain is reduced to three coupled sub-problems. Similar
models, in the context of reactive flow, are derived in [31].
This is in contrast to the Effective models 1–3 where the
solution in the fracture domain is independent of η and the
fracture collapses as an interface. Also the two interfaces
from the porous matrix sides coincide.
We make a brief comparison with the fracture models that
are widely used in practice (see e.g., [7]). We refer to [28]
where similar models are derived for single phase flow, to
[3] for two phase flow models and to the recent work
of [21] where Fourier analysis is used to derive coupling
conditions between subdomains. The key difference is in
the methodology of derivation and the starting assumptions.
Whereas in the references cited here, the authors make
an assumption on the pressure profile inside the fracture,
our starting assumption is the scaling of permeability of
the fracture based on . However, once the assumption
on scaling of the coefficients is made, the derivation
follows without requiring any assumption on the solution. In
contrast, the derivation in [28] and in [3] takes place by first
integrating the flow equation along the transverse direction
in the fracture subdomain. Using the continuity of fluxes at
the matrix/fracture interfaces, this yields a surface equation
with the jump in the matrix flux term as a source term.
Further, a closure relationship is postulated for the pressure
profile in the fracture. In the work of [21] the derivation
of coupling conditions relies on a Fourier transform of the
physical unknowns in direction tangential to the fracture and
an elimination of the fracture unknowns in Fourier space.
In contrast, our approach does not postulate any closure
condition on the pressure inside the fracture as this is part of
the solution. Also we mention that in the references cited,
the closure condition introduces a parameter in the effective
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model for the fracture. Here, we have a catalogue of models
and no additional parameter is necessary. Moreover, for
some of the regimes considered here, for nonlinear models
such as the Richards equation, the derivation is sustained
by mathematically rigorous proofs (see [27]). We also refer
to [21] for rigorous modelling error estimates for models in
the spirit of [28]. For more detailed comparison between the
existing models in literature and the current approach, we
refer to [24].

In this paper a simple geometry for the fracture embed-
ded in a porous matrix and a simplified polymer flow model
having natural interface conditions across the matrix/fracture
interface are considered. These interface conditions are the
continuity of pressure and those of the normal fluxes. The
formal upscaling procedure that we employ here allows us
to consider more complicated flow models involving more
physics or complex constitutive models. Our objective here
is to illustrate the role of properties of the fracture (com-
pared to the ones in the adjacent blocks) in determining
the appropriate Discrete Fracture Network (DFN) model for
polymer EOR models. For further uses, we mention that
this approach can be used to provide arguments for the
mixed dimensional models proposed in [10] based on phys-
ical arguments. In the same spirit, the reduced models are
derived for fracture networks in [16] building on the work of
[28]. Our work can be used to similarly provide a hierarchy
of reduced models based on the properties of the fractured
networks. Our formal approach can be adapted to sev-
eral extensions. Matrix heterogeneity can be immediately
included as it does not change any of the descriptions below.
Hence, the findings here can be incorporated to obtain other
types of flows such as compressible, multiphase flows, or
reactive flows or other broader models.

4 Derivation of upscaledmodels

We start with the subdomain equations followed by the
fracture equation. Together with the interface conditions,
we will be in a position to derive the upscaled models for
different values of α and β.

4.1 The subdomains 1 and 2

The derivation of the upscaled model in the subdomains 1
and 2 is rather straightforward. Our starting model is

div uj = qj

uj = − Kj

μ (uj )
∇pj

in j (12)

We first note that as vanishes, the domains j tends
to j . Moreover, as stated above, we have chosen the
permeability Kj = 1. This is not restrictive as extension

to any positive definite anisotropic and diagonal tensor is
straightforward. The viscosity μ is a function of velocity
uj as already explained in Eq. 5. The dependence of the
viscosity on velocity uj makes this equation non-linear.

For simplicity, we now assume that the source term
qj = qj is independent of and of order O(1). In case
of a two-dimensional geometry, we can explicitly write the
derivatives in the Eq. 12

∂

∂x
− 1

μ (uj )

∂pj

∂x
+ ∂

∂y
− 1

μ (uj )

∂pj

∂y
= qj (13)

for the respective domains j .
Now we make a homogenization ansatz. We assume that

the pressure can be expanded as

p1 = P1,0 + 1,1 + 2)

p2 = P2,0 + 2,1 + 2)
(14)

and the same can be done for velocity

u1 = u1,0 + 1,1 + 2)

u2 = u2,0 + 2,1 + 2)
(15)

To take care of the viscosity, we assume it to be a smooth
function. The Taylor expansion then provides the expansion:

μ = μ(uj ) = μ(uj,0 + j,1 + . . .)

= μ(uj,0) + (uj,0) + 2) (16)

where μ (uj,0) is the derivative of μ when u = uj,0.
We can find the effective equation by neglecting the

higher order terms and insert the lowest order term into
Eq. 13. The effective equation in 1 becomes

∂

∂x
− 1

μ(u0)

∂

∂x
P1,0 + ∂

∂y
− 1

μ(u0)

∂

∂y
P1,0 = q1.

(17)

Accordingly, the effective equation in 2

∂

∂x
− 1

μ(u0)

∂

∂x
P2,0 + ∂

∂y
− 1

μ(u0)

∂

∂y
P2,0 = q2.

(18)

4.2 The fracture f

The fracture flow model gives,

div uf = qf

uf = − Kf

μ(uf )
∇pf

(19)

Here

Kf =
α 0
0 β
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For simplicity, we set qf = 0. We eliminate the flux
above to have an elliptic equation for pressure,

∂

∂x

α

μ

∂pf

∂x
+ ∂

∂y

β

μ

∂pf

∂y
= 0. (20)

The fracture domain is dependent on and a simple re-
scaling maps it to an − independent domain. Indeed,

define ξ = x, η = y
to rewrite the equation for the fracture

flow as

∂

∂ξ

α

μ(uf )

∂pf

∂ξ
+ 1

2

∂

∂η

β

μ(uf )

∂pf

∂η
= 0. (21)

In the above equations, we have retained the notation
to denote the same symbol for pressure as in the original
domain, that is, pf (ξ, η) = pf (x(ξ), y(η)). As in the case
of subdomains, we have the homogenization ansatz:

pf = Pf,0 + f,1 + 2Pf,2 + 3)

uf = uf,0 + f,1 + 2uf,2 + 3)

For the viscosity, again we use the Taylor expansion

μ =μ(uf,0+ f,1+ 2)) = μ(uf,0)+ (uf,0)+ 2)

(22)

where μ denotes the derivative of the viscosity μ at uf,0.
The equation for f can be written as

∂
∂ξ

α

μ(uf,0)+ (uf,0)+ 2)

∂
∂ξ

(Pf,0+ f,1+ 2)) +
1
2

∂
∂η

β

μ(uf,0)+ (uf,0)+ 2)

∂
∂η

(Pf,0+ f,1+ 2)) = 0.

(23)

4.3 Interface conditions

Along the interfaces 1 = 1∩ f and 2 = 2∩ f

we assume that there is a continuity of normal fluxes and
pressures across the fracture/matrix interfaces. For j = 1, 2

β

μf
∂ypf = 1

μj
∂ypj at j

pf = pj at j .
(24)

Using the expansion for the pressures, we obtain at

j , j = 1, 2

Pf,0 + f,1 = Pj,0 + j,1 + 2),
β

μ
∂y(Pf,0 + f,1) = 1

μj
∂y(Pj,0 + j,1).

(25)

In terms of η = y , we have at j , j = 1, 2

Pf,0 + f,1 = Pj,0 + j,1 + 2),
β−1

μf
∂η(Pf,0 + f,1) = 1

μj
∂y(Pj,0 + j,1) . (26)

Equating the respective powers of for the first equation,
and note that as → 0, j converges to j , we have for

j , j = 1, 2

Pf,0 = Pj,0,

Pf,1 = Pj,1.
(27)

For the second equation in Eq. 26, we consider different
values of β. For β > 1, we have upto ),

∂yPj,0 = 0. (28)

For β = 1,

1

μf

∂ηPf,0 = 1

μj

∂yPj,0. (29)

For β < 1, we keep it in the same form and use it in later
derivation.

It is clear from the preceding discussions that the inter-
face conditions at the fracture/matrix interface depends on
the permeability scaling; accordingly, the effective equa-
tions will vary depending on the permeabilities in the x−
and y− directions. We study this for each of the cases below.

4.4 Case 1 β < 1

Let us first note an energy inequality that will be used in
this part. The following estimate is easily obtained using
standard variational techniques.

f

α

μf

∂xpf

2
dxdy +

f

β

μf

∂ypf

2
dxdy

+
1

1

μf

∇p1
2
dxdy +

2

1

μf

∇p2
2
dxdy ≤ C.

The above inequality is obtained by testing the flow (11)
with pf , p1, p2 and integrating over the respective domains

f 1, and 2. Performing partial integration and using
interface conditions provide us the above estimate. Here, C
is a generic constant that depends on the boundary condition
and the right hand side. Using the bound that the viscosity
is bounded by below μf ≥ μ0, we get

f

α

μ0
∂xpf

2
dxdy +

f

β

μ0
∂ypf

2
dxdy

+
1

1

μ0
∇p1

2
dxdy +

2

1

μ0
∇p2

2
dxdy ≤ C.

Switching to the ξ, η co-ordinates with ξ = x, η = y

transforms the fracture domain f to f , we get

f

α+1

μ0
∂ξpf

2
dxdy +

f

β−1

μ0
∂ηpf

2
dxdy ≤ C.

Here, we have reused the same notation for pf but now
as a function of ξ, η. This allows us to conclude for β < 1,
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∂ηpf = 1−β) and the leading order terms, Pf,0 is
independent of η.

Here again we take three subcases. These are, {α >

β − 2}, {α = β − 2}, and {α < β − 2}. As before, we begin
by considering (21)

∂ξ

α

μ(u0)
∂ξPf,0 + 1

2
∂η

β

μ(u0)
∂ηPf,0 = 0.

and look at the effects of α and β.

Subcase 1.1 α > β − 2
In this case, the first term is dominated by the second.
Hence, Eq. (21) is reduced to

∂η

1

μ(u0)
∂ηPf,0 = 0. (30)

However, as we already concluded Pf,0 is independent of η.
In this case, the fracture therefore simply disappears. That
is, across this interface, the flux continuity and the traces of
pressure from the subdomains become equal to that of the
fracture. There is no flow along the fracture.

Subcase 1.2 α = β − 2
We integrate (21) over η = − 1

2 to η = 1
2 to obtain

∂ξ

1
2

− 1
2

− 1

μ(u0)
∂ξPf,0dη + 1

μ(u0)
∂ηPf,0|η=− 1

2

− 1

μ(u0)
∂ηPf,0|η= 1

2
= 0.

Using the interface condition, we get

d

dξ

1
2

− 1
2

− 1

μ(u0)
∂ξPf,0dη = [− 1

μ(u0)
∇P ].

Here, [− 1
μ(u0)

∇P ] = − 1
μ(u0)

∇P1,0 · n+ + 1
μ(u0)

∇P2,0 · n−

with n+ and n− denoting the outward normal on 1 and 2

respectively. Using Pf,0 is independent of η, and reverting
back to x, y coordinate, we obtain

∂x[− 1

μ(u0)
∂xPf,0] = [− 1

μ(u0)
∇P ] on . (31)

Together with the equality of traces of the pressures
Pf,0 = P1,0 = P2,0 on . This completes the model.
Note here that the fracture model has a partial differential
equation defined on its collapsed surface with the jump
of the fluxes from the matrix in the right hand side. This
is the most commonly model used in the literature. This
corresponds to the situation when there is a flow taking
place along the fracture surface with the flow from the
matrix side entering or exiting. In this case, the flow
equations are fully coupled: the matrix flow and the fracture
flow equations together with the equality of traces of the
pressures determine the pressure profile.

Subcase 1.3 α < β − 2
In this case, the first term dominates and the equation takes
the form

∂x[ 1

μ(u0)
∂xPf,0] = 0 on (32)

Here recall is the collapsed surface of the fracture. The
pressures on the fracture surface can be found by solving
this ordinary differential equations and using the boundary
conditions at the ends of the . In the case of homogeneous
Dirichlet boundary conditions, this would lead to zero
solution. This can be then used as boundary condition for
the matrix flow. As we show in the numerical examples,
the model works well also for non-homogeneous Dirichlet
boundary conditions.

4.5 Case 2. β = 1

We again begin from Eq. 21

∂ξ [
α

μ(u0)
∂ξPf,0] + 1

2
∂η[

β

μ(u0)
∂ηPf,0] = 0.

We subdivide this in three regimes.

Subcase 2.1 For α > −1, β = 1 we multiply the above
equation, Eq. 21, by to make the second term in the left
hand side free of and noting that the first term on the left
has α+1 as the coefficient which vanishes as tends to zero.
Thus, we have for the leading order term,

d

dη

1

μ(u0)

d

dη
Pf,0 = 0 (33)

The above holds for every ξ . The boundary conditions
for this ordinary differential equation are obtained by the
interface conditions at η = ± 1

2 . Thus, we have, for each ξ

(and recall x = ξ ),

Pf,0(ξ, η = 1/2) = P1,0(x, y = 0), (34)

Pf,0(ξ, η = −1/2) = P2,0(x, y = 0). (35)

Note that P1,0 and P2,0 are unknowns satisfying the polymer
flow equations in the subdomains 1 and 2. The above
ordinary differential equation thus cannot be solved unless
we specify further conditions. Indeed, the continuity of
normal fluxes is retained via the interface conditions

∂ηPf,0 ξ, η = 1

2
= ∂yP1,0(x, y = 0), (36)

∂ηPf,0 ξ, η = −1

2
= ∂yP2,0(x, y = 0). (37)

Note that Pf,0 = Pf,0(ξ, η) and η = ± 1
2 corresponds

to the top/bottom boundary of f . At the same time, this
coincides with the boundary y = 0 of the subdomains 1

and 2. Moreover, the equations in all the subdomains are
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coupled together. This case therefore brings out the “two-
scale” nature of the effective equations as alluded before.
Here, the equation for the fracture is set up in a domain f

and cannot be collapsed on an interface as are the cases for
β < 1 as shown in the next section. Further, the pressure
at the matrix fracture interface as seen from the subdomains

1 2 are discontinuous. At the same time, we also have
a well-defined pressure equation in the fracture that couples
the traces of the two subdomain pressures and allows these
traces to be discontinuous. This is in contrast to the case
β > 1 where the traces of the subdomain pressures may
be discontinuous as well, however, the fracture equation
becomes irrelevant as it behaves as an impermeable barrier.
The present case also shows that in the regime discussed
here, the averaged model needs to consider the full details
in the fracture flow.

Subcase 2.2 For α = −1, β = 1, the exponents of
balances for both the terms on the left hand side. This
implies after multiplying the equation on both sides by ,
we obtain

∂ξ [ 1

μ(u0)
∂ξPf,0] + ∂η[ 1

μ(u0)
∂ηPf,0] = 0. (38)

The solution requires interface conditions. These conditions
are the continuity of the pressures and that of the normal
fluxes

Pf,0(ξ, η = 1

2
) = P1,0(x, y = 0), (39)

Pf,0(ξ, η = −1

2
) = P2,0(x, y = 0). (40)

The continuity of normal fluxes is given by

∂ηPf,0(ξ, η = 1

2
) = ∂yP1,0(x, y = 0), (41)

∂ηPf,0(ξ, η = −1

2
) = ∂yP2,0(x, y = 0). (42)

The same comment as above for this model being two-
scaled holds here as well. Moreover, as in the previous case,
the effective equation cannot be collapsed on an interface.
In the list of effective models, together with the subdomain
equations, this is Effective Model 5.

Subcase 2.3 For α < −1, β = 1, we follow an analogous
argument and obtain

d

dξ

1

μ(u0)

d

dξ
Pf,0 = 0 (43)

We get an ordinary differential equation which can be
solved and is independent of η (independent of y-direction).
Together with the subdomain equations, this gives the
Effective Model 6.

4.6 Case 3. β > 1

In this case, the interface conditions simplify and yield
equations such that the two subdomains 1 and 2 becomes
decoupled and obtain no-flow interface conditions. This is
as vanishes, for β > 1, β−1 → 0 and since other terms
are assumed to be of O(1), we obtain

1
μ(u0)

∂yP1,0 = β

μ(u0)
∂yPf,0 = 0 at 1 (44)

1
μ(u0)

∂yP2,0 = β

μ(u0)
∂yPf,0 = 0 at 2 (45)

As the interface condition for the subdomain takes the
form of a no-flow (homogeneous Neuman) boundary condi-
tion, the subdomain equations can be solved independently.
We have thus, a simplified case when the Darcy equa-
tions in the subdomain are retained with the fracture/matrix
interface acting as a no-flow boundary condition.

−∇ · (
1

μ(u0)
∇P1,0) = 0 in 1,

−∇ · (
1

μ(u0)
∇P2,) = 0 in 2,

We call this the interface conditions from the Effective
Model 7. Since the model is complete with the no-flow
boundary condition for the subdomains, the pressure inside
the fracture becomes irrelevant. Thus, irrespective of the
value of α. the boundary conditions gives us that there is no
flow in y-direction at the boundaries 1 and 2. This case
represents the impermeable barrier in the effective model.
We will validate this model in the numerical computations
later.

4.7 Summary in a table

We summarize the above in the table below.

α > β − 2 α = β − 2 α < β − 2

β < 1 Effective model 1 Effective model 2 Effective model 3

β = 1 Effective model 4 Effective model 5 Effective model 6

β > 1 Effective model 7 Effective model 7 Effective model 7

5 Numerical results

In this section we validate the results of the upscaled models
numerically. As the derivation shows, the upscaled models
are valid for a certain range of α and β. Thus, the validation
exercise here is to compare the effectiveness of a particular
upscaled model in its range of validity and the errors caused
when it is used outside this range.

Our reference geometry as defined in Eq. 7 and for
the reduced model the geometry is as defined in Eq. 8. For
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the discretization, subdomains 1 and 2 are both split
up into 100 × 50 grid cells. The edges of the domain
have been given Dirichlet boundary conditions. Since we
have a variety of upscaled models, solving them requires
different approaches. The simplest is the case of no-flow
boundary condition (effective model 7) where we prescribe
a no-flow boundary condition for the interface between the
two subdomains. In the case of “two-scale” model (effective
model 4, 5, and 6) we define an iterative procedure. While
solving the effective model in subdomain f , we use
the pressure boundary condition from the two subdomains.
Whereas, while computing the solutions in subdomains 1

and 2, we take the flux computed from the subdomain

f and use it as a boundary condition. In the effective
models 1, 2, and 3, again we perform an iterative procedure.
We solve the subdomain problems 1 and 2 using the
pressure boundary conditions computed by solving the
interface problem. Moreover, the flux is computed at the
subdomain/fracture interface and the jump in the fluxes is
added to the right hand side in the fracture interface model.
Our implementation has been done in theMatlab based open
source code MRST [26].

For all the simulations we have used a finite volume
scheme on a static uniform grid with rectangular cells.
The fluxes are implemented first with a two point flux
approximation and the pressures are defined at the center
of the cells. Note that the Carreau model is a nonlinear
flow model, which is solved by an iterative procedure. The
iterative scheme consists of using the viscosity computed
from the iteration-lagged flux in the flow problem, hence
linearizing the equations. After solving them, we compute
the flux and calculate the updated shear stress, which is
used in the Carreau model equation to provide the updated
viscosity. This process is repeated until convergence. The
test for convergence is the difference of pressure between
two successive iterations. The norm used is L2 and the
tolerance is taken as 10−6. For all our cases we have used
the standard Carreau model, and the parameters used are

μ0 = 10 cP (1 × 10−2 Pa.s), μ∞ = 1 cP (1 × 10−3 Pa.s),

c = 1, λ = 1 s, and φ = 1.

Our approach for the validation is as follows. We select
certain values of which determines the reference
geometry and the permeabilities. We compute the pressure
for the full -model resolving the fracture thickness. i.e. we
solve the pressure equations (13) - (19) with a finite value
of . This forms our reference solution. Corresponding to
the chosen value of α and β, we have the recommended
upscaled model and we compare it to the full -model. An
example is shown in Fig. 2. Here Fig. 2a gives the pressure
in the domain for effective model 1, and Fig. 2b gives the

pressure when the full -model is used. In both the Fig. 2a
and b, we have fixed α = 2 and β = −2 and = 3

50 .
In the next sections we study in further details the

difference of solutions for the effective models and the -
model. We plot the pressures at the cells following three
lines parallel to the y-axis at x = 0.4, x = 1 and x = 1.6,
and also plot the difference between the two pressures.

5.1 The averagemodel: effectivemodels 1-3

We investigate when the fracture has sufficient permeabil-
ity in y-direction so that the pressure is constant in that
direction. We choose α = 2 and β = −2 which falls in
this regime. The appropriate effective model for this case
is Effective Model 1. We solve both the reference and the
effective model in this case. For both the problems, we dis-
cretize the domain having 100 × 100 grid cells, and we
choose the fracture width to be = 3/50. The boundary
conditions are p = 0 at top (y = 2) and p = 1 at bottom
(y = 0), and at the sides we have p = 0 at x = 0 and
p = 1 at y = 1. Note that the boundary conditions may
affect how well the effective model approximates the pres-
sure. This boundary condition is different from the model
boundary condition (homogeneous Dirichlet boundary con-
dition) that we chose for the derivation, however, the bound-
ary condition chosen here is more interesting for pressure
profile. The pressure for the Newtonian flow is plotted in
Fig. 2 and again in Fig. 3a for fixed values of x at x = 0.4,
x = 1 and x = 1.6. The difference in pressure between
the average model and the -model is plotted in Fig. 3b. As
we see the two models are overlapping and the difference
in pressure is of the order of 1e − 7. We conclude that the
average model is a good effective model in this case.

Now we take the same simulations for the non-Newtonian
case which is of interest in this paper. In Fig. 4 we have
used the average model for the non-Newtonian flow. The
only thing that has changed from the plot in Fig. 3 is that
the n parameter in the Carreau is now equal to 0.5, and this
makes the fluid non-Newtonian. As we see from the Figure,
the average model is still a good effective equation.

We see above that the average model works fine for the
case where α = 2 and β = −2. This shows that the
effective model works fine in its range of validity. To show
how different boundary conditions affect the results we have
plotted the pressure in Fig. 5a for a case where the boundary
conditions are p = 1 at y = 0 and p = 0 on all other sides.
The difference between our upscaled model and reference
model can be seen in Fig. 5b. To show that the upscaled
model is even better for small grid sizes we have plotted
the pressure for a case where the domain is divided
into 1000 × 1000 grid cells and where = 3/1000. The
approximation becomes better with more grid cells. Note
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Fig. 2

also that the error here is of the order of 1e − 7 which is
of the same order as the tolerance of the non-linear solver
(Fig. 6).

Now, we test the average model for a wide range of
different α and β values including outside the range of
validity of the model. This will give us the performance
of any particular model and its use without regard for
the permeability values of the fracture. In Fig. 7 we have

found the relative difference between the average model and
the reference model for different α and β and plotted the
difference in the figures. In Fig. 7a we have the range of
validity for a Newtonian flow, and in Fig. 7b we see the
validity range for the average model for a non-Newtonian
flow. As expected in both cases, Newtonian and non-
Newtonian, the average model works fine for β < 1. At the
same time, the approximation becomes poor if the model is

Fig. 3 Pressure distribution for the whole domain (left) and the relative difference between the pressures in the reference case and the upscaled
case (right). Here α = 2 and β = −2. n = 1 (Newtonian case)
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Fig. 4 Pressure distribution for the whole domain (left) and the relative difference between the pressures in the reference case and the upscaled
case (right). Here α = 2 and β = −2. n = 0.5 (non-Newtonian case)

pushed to be used for permeability ranges outside its validity
range. This shows that a single upscaled model cannot be
used for arbitrary values of the fracture permeability.

We make a remark on the reduced model 3. Here, the
pressure in the fracture is determined by an ODE defined
on the fracture interface and the pressure obtained thereby
is used as Dirichlet boundary condition for the matrix side.
This raises the issues of conservation of mass in the reduced
model. In this case, the permeability in the x− direction
is quite strong which dominates the flow behaviour. We
distinguish the two cases for the boundary conditions for
the fracture subdomain. In the homogenenous Neumann
boundary condition, the pressure becomes constant on the
fracture surface. However, this constant is determined by
employing the mass continuity condition [uj ] = 0.
For the homogeneous Dirichlet boundary condition, the

pressure on the fracture is constant along the x− axis and
is thus equal to zero. We verify through numerical tests for
different values of the flux difference between the reduced
model and the reference model. We have considered the
following examples:

Test case 1 for effective Model 3 The boundary condi-
tions for the reference domain are: At x = −1, p =
4; x = 1, p = 4; y = −1− = 1; y = 1+ = 20.
For the reduced model, the boundary conditions are: At
x = −1, p = 4; x = 1, p = 4; y = −1, p = 1; y =
1, p = 20. We choose = 0.1, 0.05, 0.025 and com-
pute the pressure profiles for both the reference and the
reduced model. This is a homogeneous Dirichlet bound-
ary condition where instead of taking zero, we have taken
4. In the reduced model, the pressure in the fracture is

Fig. 5 Pressure distribution for the whole domain (left) and the relative difference between the pressures in the reference case and the upscaled
case (right). Here α = 2 and β = −2. n = 0.5 (non-Newtonian case)
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Fig. 6 Pressure distribution for the whole domain (left) and the relative
difference between the pressures in the reference case and the upscaled
case (right). Here α = 2 and β = −2. Here the grid size is changed.

We split our domain into 1000 × 1000 grid cells. = 3/1000. This is
the case where we have a non-Newtonian case. The n in the Carreau
model is equal to n = 0.5

Fig. 7 The domain error gives us that the validity of the different models are dependent on both the scalings α and β

Fig. 8 For the Effective Model
3, jump in the flux for the
reduced model and the reference
model for the case when
α = −2, β = 0.8. Here,

= 0.05, n = 1
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Table 1 Error in the mass balance for different

Flux error (Mass balance error)

0.1 0.0322

0.05 0.0156

0.025 0.0075

equal to 4 and is then used as Dirichlet boundary condi-
tion for the matrix side. We plot the flux jump in both the
cases in Fig. 8.
Moreover, for different values of , we compute the

error in the mass balance in the two cases in the
maximum norm. We tabulate the results in Table 1.
Furthermore, in the homogeneous Neumann case, we

computed the pressure profile in the reference solution
for different values of pressure boundary conditions on
the top and at the bottom. We verified numerically that
the pressure profile is nearly constant in the fracture and
assumes the value that satisfies the condition [uj ] = 0.

Test case 2 for effective model 3 In this case, the bound-
ary conditions for the reference domain are: At x =
−1, p = 4; x = 1, p = 8; y = −1 − = 1; y =
1 + = 20. For the reduced model, the bound-
ary conditions are: At x = −1, p = 4; x = 1, p =
8; y = −1, p = 1; y = 1, p = 20. We choose =
0.1, 0.05, 0.025 and compute the pressure profiles for
both the reference and the reduced model. In the reduced
model, the pressure profile on the fracture is given by
2x + 6 that is consistent with the two boundary condi-
tions at x = −1, and x = 1. We then compute the jump
in the flux across the fracture in the reduced model and
for the reference model we compute the net flux in the
fracture subdomain from the matrix side. We compare the
two values in Fig. 9.
Moreover, as before, for different values of , we

compute the error in the mass balance in the two cases in
the maximum norm. We tabulate the results in Table 2
This suggests the convergence to the reduced model

and also suggests a rate of first order convergence. These

Table 2 Error in the mass balance for different

Flux error (Mass balance error)

0.1 0.0254

0.05 0.0121

0.025 0.0057

numerical tests indicate that the reduced models do not
introduce any additional errors in mass balance.

5.2 Two-scale model, effectivemodels 4-6

This covers the effective models 4, 5, and 6 for the case
when β = 1. Our grid for the upscaled model becomes
100×150 where 100×50 of the cells represent the fracture,
and the boundary conditions are p = 0 to the left, p = 1 to
the right, p = 0 at the top and p = 1 at the bottom.

The plot in Fig. 10a is again the pressure for given lines
at fixed x values, and Fig. 10b is the difference between the
reference model and the two scale model along the same
lines. From the plot it is obvious that the two scale model
is a good effective model for the case when α = 1 and
β = 1 for the Newtonian flow as expected from above cal-
culations.

In Fig. 11 we again show the same results for a non-
Newtonian flow, and conclude that the model is a good
effective model for the case when α = 1 and β = 1. It is
worth to notice that the polymer have led to a higher jump
in flux over the fracture for this case.

The two-scale model has been used to solve for the
pressure for a range of α and β values, and the relative
error for each case is plotted in Fig. 12. Here we see the
Newtonian case in Fig. 12a and the non-Newtonian case
in Fig. 12b. Both the plot for Newtonian flow and non-
Newtonian flow show that the two-scale model is a good
effective model for the case where β = 1. From the two
plots it is clear that the polymer behaviour also impacts the
accuracy of the approximation. Moreover, as already stated
above in the case of average model, the two-scale model

Fig. 9 For the Effective Model
3, jump in the flux for the
reduced model and the reference
model for the case when
α = −2, β = 0.8. Here,

= 0.05, n = 1
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Fig. 10 Pressure distribution for the whole domain (left) and the relative difference between the pressures in the reference case and the upscaled
case (right). Here α = 1 and β = 1. We consider the Newtonian case (n = 1 in the Carreau model)

Fig. 11 Pressure distribution for the whole domain (left) and the relative difference between the pressures in the reference case and the upscaled
case (right). Here α = 1 and β = 1. n = 0.5 (non-Newtonian case)

Fig. 12 The domain error gives us that the validity of the different models are dependent on both the scalings α and β
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Fig. 13 Pressure distribution for the whole domain (left) and the relative difference between the pressures in the reference case and the upscaled
case (right). Here α = 2 and β = 2. n = 1 (Newtonian case)

is a good approximation in its range of validity, and the
approximation becomes poorer as one goes further from its
validity range.

5.3 The decoupledmodel, effectivemodel 7

This corresponds to the case when β > 1. In this case
the fracture is much less permeable that the surrounding
matrix blocks leading to a decoupled model in the effective
equations. For our decoupled model we solve the two
subdomains 1 and 2 separately with a no flow boundary
condition at the fracture interface. The two domains 1 and

2 are made by 100 × 50 grid systems and the boundary
conditions around is p = 0 to the left, p = 1 to the
right, p = 0 at the top and p = 1 at the bottom. For our
pressure plots and relative differnce plots in Figs. 13 and 14

we have chosen α = 2 and β = 2. From our Newtonian
case we see that the difference between the effective model
(decoupled model) and the reference model is of the order
of 1e − 3%, and hence a good fit. For our non-Newtonian
flow the behaviour is similar as shown in Fig. 14a.

The decoupled model is used at a variety of α and β

values and compared to the reference model for each case.
The relative error in every case is plotted in Fig. 15. Both for
the Newtownian flow in Fig. 15a and non-Newtonian flow
in Fig. 15b, and as expected from the previous calculations
the decoupled model is a good effective model for the cases
where β > 1. We also see from our plot that the decoupled
model can be of use in some cases where β < 1 where the
value of α is sufficiently high.

Finally, we comment on the solution procedure. As stated
above, we have used an iterative procedure to solve the

Fig. 14 Pressure distribution for the whole domain (left) and the relative difference between the pressures in the reference case and the upscaled
case (right). Here α = 2 and β = 2. n = 0.5 (non-Newtonian case)
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Fig. 15 The domain error gives us that the validity of the different models are dependent on both the scalings α and β

flow model. This iterative process has two loops, an inner
loop where the viscosity is updated for given boundary
conditions, and one outer loop where the interface condi-
tions are updated between the fracture and the surrounding
domains(s iterations). To show how our models converge we
have used the L2 norm to find out how much the pressure
in our domain change between each iteration of our outer
loop. We calculate the average pressure difference between
the domain after s iterations and compare it with the average
pressure in the previous iteration. The average pressure dif-
ference is plotted in Fig. 16 for the 30 first iterations. Note
that we do not plot convergence for the decoupled model as
the boundary conditions do not change.

6 Conclusion

We consider a two-dimensional fractured porous medium
where the fracture has a thickness . For the flow model,
we have considered a single phase polymer enhanced oil
recovery model. This model consists of a non-linear Darcy
equation where the viscosity depends on the flow through
the well-known Carreau type model. For this model, we
perform an upscaling of the flow model which is obtained
as the limit of tends to zero. The particularity in our
approach is the anisotropic permeability in the fracture
that is taken as the exponent of characterized by two
real numbers α and β combined with polymer enhanced

Fig. 16 Pressure change
between iterations using the L2
norm. For the average model we
have used α = 2 and β = −2,
and for the two scaled model we
have used α = β = 1. Note that
the y-axis is logarithmic
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oil recovery (EOR). We obtain a catalogue of models for
different values of α and β. Using numerical computations,
we study the suitability of our upscaled models in their
regimes of validity. Moreover, we study the sensitivity of the
upscaled models when a particular upscaled model is used
beyond its range of validity. We show that any particular
upscaled model, if used beyond its validity regime, performs
quite poorly. The approach is a formal upscaling one that
can be adapted to other models.
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3. Ahmed, E., Jaffré, J., Roberts, J.E.: A reduced fracture model for
two-phase flow with different rock types. Math. Comput. Simul.
137, 49–70 (2017)

4. Akbar, N.S., Nadeem, S.: Carreau fluid model for blood flow
through a tapered artery with a stenosis. Ain Shams Eng. J. 5(4),
1307–1316 (2014)

5. Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical
modelling of flows in fractured porous media. ESAIM: Math.
Model. Numer. Anal. 43(2), 239–275 (2009)

6. Bastian, P., Chen, Z., Ewing, R.E., Helmig, R., Jakobs, H.,
Reichenberger, V.: Numerical simulation of multiphase flow in
fractured porous media. In: Chen, Z., Ewing, R.E., Shi, Z.-
C. (eds.) Numerical Treatment of Multiphase Flows in Porous
Media: Proceedings of the International Workshop Held a Beijing,
China, 2–6 August 1999, pp. 50–68. Springer, Berlin (2000)

7. Berre, I., Doster, F., Keilegavlen, E.: Flow in fractured porous
media: a review of conceptual models and discretization
approaches. Transp. Porous Media 130(1), 215–236 (2019)

8. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena,
vol. 1. Wiley, Hoboken (2006)

9. Bondor, P.L., Hirasaki, G.J., Tham, M.J., et al.: Mathematical
simulation of polymer flooding in complex reservoirs. Soc. Pet.
Eng. J. 12(05), 369–382 (1972)

10. Boon, W.M., Nordbotten, J.M., Vatne, J.E.: Functional analysis
and exterior calculus on mixed-dimensional geometries. Annali di
Matematica Pura ed Applicata (1923-), 1–33 (2020)

11. Brenner, K., Hennicker, J., Masson, R., Samier, P.: Hybrid-
dimensional modelling of two-phase flow through fractured
porous media with enhanced matrix fracture transmission
conditions. J. Comput. Phys. 357, 100–124 (2018)

12. Bukac, M., Yotov, I., Zunino, P.: Dimensional model reduction
for flow through fractures in poroelastic media. ESAIM: Math.
Model. Numer. Anal. (2016)

13. Cannella, W.J., Huh, C., Seright, R.S., et al.: Prediction of xanthan
rheology in porous media. In: SPE Annual Technical Conference
and Exhibition (1988)

14. Delshad, M., Kim, D.H., Magbagbeola, O.A., Huh, C., Pope,
G.A., Tarahhom, F., et al.: Mechanistic interpretation and
utilization of viscoelastic behavior of polymer solutions for
improved polymer-flood efficiency. In: SPE Symposium on
Improved Oil Recovery (2008)

15. Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P.: A reduced
model for darcy’s problem in networks of fractures. ESAIM:
Math. Model. Numer. Anal. 48(4), 1089–1116 (2014)

16. Fumagalli, A., Keilegavlen, E., Scialò, S.: Conforming, non-
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