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Abstract 

Background:  Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer and one of the 
most common cancers. While survival for localized ccRCC is good, the survival of metastatic disease is not, and thirty 
percent of patients with ccRCC develop metastases during follow-up. Although current scoring methods accurately 
identify patients at low progression risk, a small subgroup of those patients still experience metastasis. We therefore 
aimed to identify ccRCC progression biomarkers in “low-risk” patients who were potentially eligible for adjuvant treat‑
ments or more intensive follow-up.

Methods:  We assembled a cohort of ccRCC patients (n  = 443) and identified all “low-risk” patients who later devel‑
oped progressing tumors (n  = 8). Subsequently, we performed genome-wide expression profiling from formalin-fixed 
samples obtained at initial surgery from these “low-risk” patients and 16 matched patients not progressing to recur‑
rence with metastasis. The patients were matched for Leibovich sore, creatinine, age, sex, tumor size and tumor stage. 
Key results were confirmed with qPCR and external data from The Cancer Genome Atlas.

Results:  Principal component analysis indicated that systematic transcriptomic differences were already detect‑
able at the time of initial surgery. One thousand one hundred sixty-seven genes, mainly associated with cancer and 
immune-related pathways, were differentially expressed between progressors and nonprogressors. A search for a 
classifier revealed that overexpression of AGAP2-AS1, an antisense long noncoding RNA, correctly classified 23 of 24 
samples, years (4.5 years average) in advance of the discovery of metastasis and without requiring larger gene panels. 
Subsequently, we confirmed AGAP2-AS1 gene overexpression by qPCR in the same samples (p  < 0.05). Additionally, 
in external data from The Cancer Genome Atlas, overexpression of AGAP2-AS1 is correlated with overall unfavorable 
survival outcome in ccRCC​, irrespective of other prognostic predictors (p  = 2.44E−7).

Conclusion:  AGAP2-AS1 may represent a novel biomarker identifying high-risk ccRCC patients currently classified as 
“low risk” at the time of surgery.
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Introduction
The incidence of kidney cancer is rising worldwide, espe-
cially in Western countries [1–3].

Clear cell renal cell carcinoma (ccRCC), the most 
common subtype of renal cancer, is characterized by an 
especially poor prognosis [1]. While the 5-year overall 
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survival rate for patients with localized disease is 93% 
[4], those with metastatic ccRCC have a 5-year survival 
of only 12% [4]. Notably, however, approximately 30% 
of patients with localized disease also develop distant 
metastases during follow-up [5, 6].

Surgery still represents the only curative option for 
patients with ccRCC [7], but innovative medical therapies 
are rapidly emerging [1, 5]. Since treatment effectiveness 
is contingent upon early discovery of the disease or its 
recurrence, it is critically important to accurately predict 
the risk of progression, to determine the frequency and 
type of follow-up, and to increase the chances of timely 
and successful therapy [5].

A commonly used tool to predict ccRCC recurrence is 
the Leibovich score, which takes advantage of histologi-
cal and clinical data to profile progression risk in indi-
vidual cases [8, 9]. Although this score correctly predicts 
the 5-year metastasis-free survival rate in 97% of low-
risk cases [8], contrary to prediction, a small number of 
apparently low-risk patients still develop progressive dis-
ease. Other assessment methods, also based on clinical 
and histological data, have similarly been shown to fail to 
reliably predict disease progression in sizeable groups of 
low-risk patients [10].

Although these patients, classified as low-risk but 
developing progressive disease [11], account for  < 5% of 
low-risk ccRCC patients [8, 12], assuming a broadly simi-
lar risk distribution among all European patients, they 
still represent an approximate annual number of 1500 
patients. Failure to identify them prevents their further 
stratification into subtypes and the timely administration 
of potentially effective treatments. Once low-risk pro-
gressors have been singled out, stratification could also 
allow for a reduced follow-up for low-risk nonprogres-
sors, freeing valuable resources.

Although initial attempts to characterize low-risk pro-
gressors have been made, these results require further 
validation [12, 13].

In this context, the objective of our study was to iden-
tify prognostic biomarkers of potential clinical relevance 
for predicting ccRCC recurrence in apparently low-risk 
patients. To address this issue, we took advantage of 
next-generation sequencing of tumors from a cohort of 
patients with progressing tumors, despite a low-risk clas-
sification according to the Leibovich score, and from 
matched nonprogressors.

Patients and methods
Study design
This retrospective study was planned following REMARK 
biomarker-research guidelines [14]. As required by 
REMARK guidelines, it also has to be disclosed that 
in addition to the experiments described below, RNA 

sequencing from serum of all participants was also 
attempted but failed due to RNA fragmentation.

The Regional Ethics Committee (REC) of Western Nor-
way approved the study (REC no. 78-05), and permission 
for their inclusion was obtained from all participants.

Patients
Tumor tissues were collected from a cohort of 443 
ccRCC patients from Haukeland University Hospital 
(Bergen, Norway). Each sample was initially examined 
and scored by an experienced renal pathologist according 
to Fuhrmann grade. Prior to inclusion in this study each 
patient was subsequently reassessed and rescored, also by 
an experienced renal pathologist. The second scoring was 
performed independently of the first score.

The inclusion criteria were low-risk ccRCC assessed 
by the Leibovich score (between 0 and 2 according to the 
2003 version of the score) [8, 15, 16] and available follow-
up data of progression (later occurrence of metastases) or 
nonprogression (absence of tumor recurrence/metasta-
ses); see Additional file  1. Due to an updated Leibovich 
score being made public, the selected cases were rescored 
using the updated algorithm [9]. No sample lost its status 
as low-risk in the new score.

We selected progressors (n  = 8) and included two 
matched nonprogressors with similar Leibovich scores, 
Fuhrmann grades, tumor stages and sizes, similar cre-
atinine levels, and similarly underwent surgical tumor 
removal per progressor sample as controls (n  = 16). 
Patients who were not treatment naïve, had lymph node 
metastasis, suffered from heart failure (grade  ≥ 3 accord-
ing to the New York Heart Association Classification), 
used immunosuppressive drugs due to transplantation or 
suffered from severe rheumatic disease at the time of the 
biopsy were excluded from the study. All patients showed 
an estimated glomerular filtration rate (eGFR)  > 45  ml/
min/1.73  m2 and a Charlson comorbidity index (CCI)  
> 1, except for one progressor with an eGFR of 36 ml/min 
and a CCI of 3. See Table 1 for patient details.

Serum was available from progressors (n  = 2) and non-
progressors (n  = 6). We also obtained biopsies from the 
metastasis of 6/8 progressor patients; data not shown.

Tumor specimens and serum collection
Tissues from all 24 ccRCC patients were stored as forma-
lin-fixed and paraffin-embedded (FFPE) samples at room 
temperature. Serum was harvested from patient blood 
samples within 1  h after sampling and subsequently 
stored at − 80 °C.

RNA extraction
Four 10 µm sections were cut from the FFPE blocks and 
used as input, whereas for serum samples, 200  µl was 
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used as input. Total RNA for sequencing and qPCR was 
extracted, as previously described [17, 18], using the 
miRNeasy FFPE kit (cat no. 217504; Qiagen, Venlo, The 
Netherlands). RNA was extracted from serum with the 
miRNeasy serum/plasma kit (cat no. 217184; Qiagen) 
according to the manufacturer’s instructions. Following 
RNA extraction, samples were stored at  − 80 °C.

RNA yield and gene expression analysis
Total RNA concentration was measured using a Qbit 
RNA HS assay kit on a Qubit 2.0 fluorimeter (Thermo 
Fisher Scientific, Waltham, MA, USA). Integrity was 
assessed using an Agilent RNA 6000 Nano kit on a 2100 
bioanalyzer instrument (Agilent Technologies, Santa 
Clara, CA, USA), and DV200 values were calculated.

RNA extraction from tissue specimens yielded an aver-
age of 1362  ng/sample, whereas RNA extraction from 
serum samples yielded an average of 97 ng/sample.

RNA library preparation and sequencing
Sequencing libraries were generated using the TruSeq 
RNA exome library kit (Illumina, San Diego, CA, USA) 
according to the manufacturer’s instructions.

Libraries were quantitated by qPCR using the KAPA 
library quantification kit–Illumina/ABI Prism (Kapa Bio-
systems, Wilmington, MA, USA) and validated using the 
Agilent high-sensitivity DNA kit on a bioanalyser. Librar-
ies were normalized to 2.6  pM and subjected to cluster 
and paired-end read sequencing, performed for 2 × 75 
cycles on two NextSeq500 HO flow cells (Illumina), 
according to the manufacturer’s instructions. Sequencing 
depth was 30 million reads/sample. Base calling was per-
formed using the NextSeq500 instrument and RTA 2.4.6. 
FASTQ files were generated using bcl2fastq2 conversion 
software (v.2.17; Illumina).

Bioinformatics
TopHat (https://​ccb.​jhu.​edu/​softw​are/​tophat/​index.​
shtml) and Bowtie (http://​bowtie-​bio.​sourc​eforge.​net/​
index.​shtml) were used for assembly of reads and align-
ment of the contigs to the human genome assembly 
(GRCh38), respectively. An empirical expression filter 
was applied, which left genes with  > 1 count per million 
in at least three samples. Trimmed mean of M values 
[19] normalization was applied to adjust for variation in 
library size. Group was used to determine the difference 
between the two patient groups, and age matching was 
accounted for as a blocking factor, with one progressor 
and two nonprogressor samples per age-matched block. 
Group is here defined as diagnosis, whereas those three 
age-matched patients constitute a “block” which is fac-
tored into the analysis to account for their age-matching.

Comparative analysis was performed using the voom/
Limma R package (www.​Bioco​nduct​or.​org) [20, 21]. To 
reduce unwanted variation induced by unknown sources 
but avoid overfitting, two surrogate variables were added 
using the SVA package in R Bioconductor (https://​bioco​
nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​sva.​html).

Genes with a p  ≤ 0.05 and an absolute fold change 
(abs. FC)  ≥ 2 were considered differentially expressed. 
Pathway analysis was performed with Ingenuity Pathway 
Analysis (v.47547484; Qiagen, Redwood City, CA, USA), 
with the Ingenuity Knowledge Base used as the refer-
ence set. Canonical pathways were sorted by the small-
est Benjamini–Hochberg adjusted p value. Biomarker 
analysis was performed with the KNN validation pack-
age in GenePattern (http://​www.​broad​insti​tute.​org/​can-
cer/​softw​are/​genep​attern). Euclidean distance was used 
as the distance measure, where three neighbors were 
considered, and leave-one-out internal cross-validation 
was applied. PCA, hierarchical clustering with Ward’s 
method, and other data visualization techniques were 
undertaken using JMP Genomics (v.9.0; SAS Institute, 
Cary, NC, USA) and GraphPad Prism software (v.9.0; 
GraphPad Software, La Jolla, CA, USA).

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed 
with GSEAv4 (http://​www.​gsea-​msigdb.​org/​gsea/​index.​
jsp). Normalized gene expression values and their patient 
group information with the Human Ensembl Gene ID 
MSigDB 7.4 were tested for enrichment using the KEGG 
pathway database with 1000-fold permutation of pheno-
types, weighted enrichment statistics and signal-to-noise 
metric for ranking of genes. Gene sets smaller than 15 
and larger than 500 were excluded.

Immunohistochemistry
Immunohistochemistry (IHC) was performed on 
4-μm-thick FFPE sections with the following primary 
antibodies: anti-AGAP2 (1:100; polyclonal, rabbit, no. 
HPA023474; Sigma–Aldrich, St. Louis, MO, USA) and 
anti-USP10 (1:1000; monoclonal, rabbit, no. ab109219; 
Abcam, Cambridge, UK, USA). We included a negative 
control by including a duplicate of another section and 
omitting the primary antibody. Incubations were per-
formed overnight at 4  °C and pH 6.0 for both antibod-
ies. Sections were counterstained with hematoxylin (no. 
CS70030-2; Dako, Kyoto, Japan). The slides were stained 
with both HE and Ki67 to assess the morphology (data 
not shown). As positive controls during the staining, we 
used lymphoid tissue, as the protein has been described 
as highly expressed in tissue https://​www.​prote​inatl​as.​
org/​ENSG0​00001​03194-​USP10/​tissue, https://​www.​
prote​inatl​as.​org/​ENSG0​00001​35439-​AGAP2/​tissue.

https://ccb.jhu.edu/software/tophat/index.shtml
https://ccb.jhu.edu/software/tophat/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://www.Bioconductor.org
https://bioconductor.org/packages/release/bioc/html/sva.html
https://bioconductor.org/packages/release/bioc/html/sva.html
http://www.broadinstitute.org/cancer/software/genepattern
http://www.broadinstitute.org/cancer/software/genepattern
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
https://www.proteinatlas.org/ENSG00000103194-USP10/tissue
https://www.proteinatlas.org/ENSG00000103194-USP10/tissue
https://www.proteinatlas.org/ENSG00000135439-AGAP2/tissue
https://www.proteinatlas.org/ENSG00000135439-AGAP2/tissue
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Survival analysis
Survival analyses were performed using the Kaplan–
Meier log-rank and Wilcoxon signed-rank tests to evalu-
ate progression-free survival (PFS) and overall survival, 
with events defined as progression or lack of progres-
sion. Endpoints were progression, death of the patient 
due to ccRCC, or PFS to the end of the follow-up period 
for this study (1.2.2020). Analyses were performed using 
R (v.1.1.383; R Foundation for Statistical Computing, 
Vienna, Austria; packages: Tidyverse and Survival). Haz-
ard ratios were determined using JMP Genomics (Fit 
proportional hazards; SAS Institute), and survival curves 
were generated using SPSS (v.25; IBM Corp.).

qPCR
qPCR was performed using SuperScript IV VILO master 
mix with ezDNase (No. 11766050; Thermo Fisher Scien-
tific), TaqMan Fast Advanced master mix (No. 4444556; 
Thermo Fisher Scientific), and the AGAP2-AS1 primer 
and probe (Hs01096080_s1, no. 4426961; Thermo Fisher 
Scientific). qPCR was performed on a StepOne Plus real-
time PCR system (Applied Biosystems, Carlsbad, CA, 
USA), with the gene encoding 40S ribosomal protein S13 
(RPS13; Hs01011487_g1, no. 4426961; Thermo Fisher 
Scientific) used to normalize samples. RNA input for 
cDNA was 20 ng for serum and 50 ng for solid tissue. We 
used a no template control as negative control.

Statistical analysis
mRNA abundance, qPCR analysis, and correlation plots 
were generated using SPSS (v.25; IBM Corp., Armonk, 
NY, USA), with correlations determined using Spear-
man’s rho test and continuous variables for age, creati-
nine level, AGAP2-AS1 expression, tumor size, time to 
metastasis, and categorical variables for sex, Leibovich 
score, and sample status.

In qPCR, three technical replicates per sample were 
used to compile an average Ct value, which was used in 
subsequent analyses. qPCR analysis to determine abs. 
Fold change (FC) between groups was determined by 
averaging the normalized Ct values for each group and 
determining the ∆∆Ct with the averaged values. Sig-
nificance and p values were evaluated using the Mann–
Whitney U test according to the ∆Ct values from each 
sample.

Categorical variables, such as different nephrectomies, 
were analyzed with the Chi-squared Test.

Data availability
Data are available at the Gene Expression Omnibus 
(GEO) data repository (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/), GEO accession number GSE171955. External 

datasets from the Genomics Data Commons (GDC) and 
The Cancer Genome Atlas (TCGA) were accessed and 
analyzed via the UCSC-XENA website (https://​xena.​ucsc.​
edu).

Results
Patient selection
From the 443 ccRCC patient cohort, 274 were assigned a 
Leibovich score between zero and two (low-risk). Within 
this low-risk subgroup, 8 developed distant metastases 
within 109 days–7 years, with an average time to recur-
rence of 4 years and 8 months and were enrolled in this 
study as progressors. Two matched nonprogressors 
with similar Leibovich scores, Fuhrmann grades, tumor 
stages and sizes, similar creatinine levels, and similarly 
underwent surgical tumor removal but did not develop 
metastases in a 2–7 year time range (average follow-up: 
6 years) per progressor sample were included as controls 
(n  = 16).

No statistically significant differences regarding age, 
creatinine levels, tumor size, tumor stage, Fuhrmann 
grade or Leibovich scores were found between the pro-
gressor and nonprogressor groups. However, 7/8 pro-
gressor patients were treated with radical nephrectomy 
compared to 9/16 nonprogressor patients (p  = 0.04) 
(Table  1). Follow-up details have been reported previ-
ously [15, 16].

Differentially expressed genes (DEG)
A total of 18,942 genes were detected by applying an 
empirical filter that left genes with at least 1 cpm in 3 or 
more samples. Visual inspection of the groupwise mean 
of the genes indicated that the value distribution for 
both groups was very similar, with both the mean and 
median values almost identical (Fig. 1A). The symmetry 
of the volcano plot suggests that there is no bias toward 
overrepresentation of genes in a given group (Fig. 1B). A 
total of 1167 out of 18,942 detected genes were found to 
be differentially expressed between the groups “progres-
sors” (P) and “nonprogressors” (NP). A total of 840 genes 
were upregulated and 327 were downregulated in tumors 
from progressors compared to those from nonprogres-
sors. The top 20 most overrepresented genes according 
to FC are shown in Table 2. On average, the most over-
represented gene in nonprogressor samples compared to 
progressor samples was solute carrier family 12 member 
1 (SLC12A1) gene FC  = 14,31; p  = 1.24e−2), whereas 
the most overrepresented gene in the progressor group 
compared to the nonprogressor group was the synap-
tic vesicle glycoprotein 2B gene (SV2B) (FC  = 14.84; p  
= 3.19e−4).

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xena.ucsc.edu
https://xena.ucsc.edu
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Principal component analysis (PCA)
PCA was performed using normalized mRNA read 
counts of the 1167 differentially expressed genes 
(Fig. 1C). The two groups separated along PC1, which 
explained 31% of the variation. Furthermore, hierar-
chical clustering analysis using the 1167 differentially 
expressed genes also separated progressors from non-
progressors, with no patient clustering outside their 
respective group (Fig. 1D).

Pathway analysis and gene set enrichment analysis
Pathway analysis of the 1167 differentially expressed 
gene sets revealed “Primary Immunodeficiency Signal-
ing” (p  = 6.76e−04) as the most represented canoni-
cal pathway, followed by “Molecular Mechanisms of 
Cancer” (p  = 1.28e−3). The top disease category was 
“Cancer”, with 169 “Disease function” categories and p 
values ranging from 7.49e−15 (“Nonmelanoma solid 
tumor”: 777 genes) to 1.47e−02 (“Laryngeal cancer”: 40 
genes) (Additional file 2).

Fig. 1  Data visualization. Comparison of violin plots of the distribution of the mean normalized expression values of 18,942 quality filtered 
ENSEMBL genes shows very similar distribution patterns for both patient groups (A). The median values were very similar for both groups (NP: 
2.841, P: 3.080), with means being almost identical to the median values (NP: 2.835, P: 3.082). The volcano plot (B) of all 18,942 genes reveals a 
fairly symmetrical distribution of the fold changes in the absence of overt severe anomalies. Dots in red are 1167 differentially expressed genes. 
(C) Displays principal component analysis using expression values. A total of 1167 genes were differentially expressed (abs. FC  ≥ 2; p  ≤ 0.05) in the 
nonprogressor (blue) and progressor (red) groups. Each dot represents one patient. The nonoverlapping circle surrounding each group refers to 
the 95% confidence interval. The nonprogressors and progressors cluster together and separate along PC1, which explains 31% of the variance. 
The heatmap in D is based on the same 1167 differentially expressed genes used in the PCA. All samples clustered within their own group, with a 
clear separation between progressors and nonprogressors. Upregulated genes are shown in shades of red, and downregulated genes are shown in 
shades of blue
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Gene set enrichment analysis (Table  3) did not yield 
many KEGG pathways that would have been enriched 
in either of the patient groups with statistical signifi-
cance. This was not unexpected since we had very similar 
patient conditions in our analysis, with all patients suf-
fering from mild stages of ccRCC at the time of biopsy. 
Enriched in NP was glycosaminoglycan degradation, and 
enriched in P was “Basel transcription factors”, “Hedge-
hog signaling pathway”, and “sphingolipid metabolism”.

Identification of AGAP2‑AS1 as prognostic marker
Unsupervised gene filtering analysis using the k-near-
est neighbor was then used to evaluate the ability of all 
1167 differentially expressed genes to correctly clas-
sify the 24 samples. We tested gene sets consisting of 
between one and 10 features and selected for their abil-
ity to predict disease progression (Additional file 3). The 
results were ranked for their ability to correctly classify 
the largest number of samples as either progressor or 
non-progressor.

The best results were achieved by using AGAP2 anti-
sense RNA 1 (AGAP2-AS1, p  < 0.001, FC  = 5.82). 
AGAP2-AS1 is an antisense RNA belonging to the family 
of long noncoding (lnc) RNAs. AGAP2-AS1 gene expres-
sion alone was sufficient to correctly classify 23 of 24 
samples (96%), thereby eliminating the need for a larger 
gene panel (Fig.  2a). The only sample that was incor-
rectly classified was a progressor sample with a very low 
RNA yield (9.95 ng/sample), but the sample was not oth-
erwise distinct. Neither did it systematically differ from 
the other samples and the results do not have a lower 
quality. No significant correlations between AGAP2-AS1 
expression level and tumor size, Leibovich score, patient 
age, sex, or creatinine level were observed. In a survival 
analysis where patients were split based on AGAP2-AS1 
expression, low AGAP2-AS1 suggested good prognosis, 
and high levels indicated poor prognosis at a cutoff of 
1.5 log2cpm normalized expression level.

Importantly, mining of existing databases (ccRCC GDC 
TCGA, https://​portal.​gdc.​cancer.​gov/​proje​cts/​TCGA-​
KIRC) indicates that, irrespective of prognostic predic-
tors, overexpression of AGAP2-AS1 is associated with 
overall unfavorable survival outcome in ccRCC (Fig. 2b), 
thus providing corroboration of our findings.

To further validate the RNA-seq results, we per-
formed RT–qPCR analysis of AGAP2-AS1 gene expres-
sion in primary tumor tissue from a subset of the same 
samples used for RNAseq from progressors (n  = 7) and 

Table 2  Top 20 upregulated and downregulated genes

Top 20 upregulated and downregulated genes in nonprogressor and progressor 
patients. The 20 genes with the lowest and highest FC are displayed. AGAP-AS1 
was not found among these genes

Nonprogr nonprogressors; Progr progressors

Symbol Ratio NP/P Abs. FC P Value

Most overrepresented in Nonprogr

 SLC12A1 14.31 14.31 1.24E−02

 AC146944.1 11.82 11.82 6.37E−03

 IGHA2 9.18 9.18 1.40E−02

 IGLL5 9.13 9.13 8.78E−03

 SLC9A4 8.84 8.84 1.51E−03

 HPD 8.05 8.05 1.68E−02

 IGKV1-5 7.98 7.98 1.44E−03

 GRIA4 6.53 6.53 1.27E−02

 H3F3AP4 6.46 6.46 9.16E−03

 IGHV4-61 6.14 6.14 2.43E−02

 SNORD115-11 5.89 5.89 2.41E−02

 IGLV2-23 5.78 5.78 1.12E−02

 IGLV2-14 5.77 5.77 3.10E−03

 CLEC18C 5.62 5.62 2.11E−02

 SNORA38 5.62 5.62 3.51E−04

 MST1P2 5.60 5.60 4.75E−03

 IGKV1-39 5.55 5.55 1.03E−02

 MST1L 5.54 5.54 2.48E−02

 LTF 5.50 5.50 3.37E−03

 SYT7 5.5 5.50 0.00595

Most overrepresented in Progr

 SV2B 0.06737229 14.8429 0.000319

 FAM86B2 0.077412071 12.91788 0.000404

 NPIPB9 0.082203939 12.16487 2.76E-05

 ANKRD20A7P 0.085199087 11.73721 0.000611

 LBP 0.092082598 10.85982 0.000551

 SNORD116-18 0.097088878 10.29984 0.01859

 ADGRB1 0.10462215 9.558205 0.000124

 ASAH2 0.106344157 9.403432 0.003289

 PLK4 0.108067443 9.253481 0.002456

 STAG3 0.108558859 9.211593 0.000654

 ZNF321P 0.109969942 9.093394 0.000128

 AC135048.4 0.113068345 8.844208 6.67E-05

 NPIPB1P 0.113446458 8.814731 0.001067

 SYS1-DBNDD2 0.118191167 8.460869 0.00063

 RMRP 0.122271935 8.178492 0.023045

 RASA4CP 0.123307134 8.109831 0.008782

 AC239799.1 0.123616908 8.089508 0.011112

 DCUN1D2 0.125942208 7.94015 3.24E-05

 FAM131C 0.128131248 7.804497 0.000418

 CAMK2B 0.132235909 7.562242 0.000196

https://portal.gdc.cancer.gov/projects/TCGA-KIRC
https://portal.gdc.cancer.gov/projects/TCGA-KIRC


Page 8 of 12Nakken et al. Cancer Cell International          (2021) 21:690 

nonprogressors (n  = 7). In accordance with the RNAseq 
data, the AGAP2-AS1 gene was overexpressed in pro-
gressors [p  = 0.035, FC (P/NP): 4.09]. Intriguingly, in 
our cohort, AGAP2-AS1 gene expression did not differ 
between tumor biopsies from the original tumor and 
the metastasis in the same progressor patient (data not 
shown).

Circulating AGAP‑AS1 RNA
Analysis of serum AGAP2-AS1 RNA levels in these sam-
ples provided initial evidence of overexpression of this 
gene in progressors. However, it failed to reach signifi-
cance (p  = 0.12).

Immunohistochemical analysis
As AGAP2-AS1 is a long noncoding RNA, we explored 
the expression of the protein encoded by the comple-
mentary strand to AGAP2-AS1, ADP-ribosylation factor 
GTPase-activating protein with GTPase domain, ankyrin 
repeat, and PH domain 2 (AGAP2).

We observed a stronger AGAP2 signal in the progres-
sor group (Additional file 4).

We also stained specimens for ubiquitin-specific pepti-
dase 10 (USP10) protein [22] to examine whether tran-
scriptomic results matched results at the protein level. 
The experiments revealed data in accordance with the 
RNAseq (FC NP/P: 3.20, p  < 0.01) (Additional file 4).

Table 3  Gene set enrichment analysis

Results from the gene set enrichment analysis in the progressor patients. Only results with a p value below 0.05 are displayed. Three pathways were significantly 
affected

Gene sets Gene set size Normalized enrichment score P value

KEGG_BASAL_TRANSCRIPTION_FACTORS 34 − 1.63 0.014

KEGG_HEDGEHOG_SIGNALING_PATHWAY​ 40 − 1.53 0.032

KEGG_SPHINGOLIPID_METABOLISM 36 − 1.46 0.043

Fig. 2  AGAP2-AS1 expression levels can be used to classify patients into those with poor and good prognoses. In a, the classification of n  = 8 
progressors and n  = 16 matched nonprogressors is displayed. Each pillar represents one sample. Columns with negative confidence (y-axis) were 
classified as progressors, whereas positive values were classified as nonprogressors. Colors indicate the actual status as either progressor (red) or 
nonprogressor (blue). Correct classification was observed in 23 of 24 samples (sensitivity: 87.5%; specificity: 100%, area under the curve score 0.93). 
b Shows the results from mining the GDC TCGA ccRCC data on the prognostic significance of AGAP2-AS1 for patients with ccRCC or controls. The 
blue lines represent patients with low expression of AGAP2-AS1, while the red lines represent high expression. Time is displayed on the x-axis, while 
the y-axis displays the percentage of surviving patients. Higher expression of AGAP2-AS1 is significantly associated with poor prognosis
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Survival analysis
In keeping with selection criteria, i.e., progressors vs. 
nonprogressors, progression-free survival was confirmed 
to be significantly higher in the nonprogressor patients 
[p  < 0.0005; hazard ratio (HR): 9.24e−11]. However, due 
to unrelated cancer-related death in three patients in 
the nonprogressor group, only a trend (p  = 0.07) toward 
shorter overall survival was observed in the progressor 
group (Additional file 5).

Discussion
In this study, we investigated the gene expression profiles 
of ccRCC patients with an originally estimated low risk of 
progression who nevertheless developed metastasis dur-
ing a follow-up period of up to eleven years.

Our main finding is that the level of AGAP2-AS1 
expression in tumor tissues from the time of the ini-
tial surgery correctly predicts 100% of the nonprogres-
sor group and close to 90% of the progressor group of 
patients with low-risk ccRCC. Higher expression of 
AGAP2-AS1 long noncoding RNA in progressors than in 
nonprogressors was further confirmed by qPCR.

Taken together, these data provide novel tools, contrib-
uting to a more effective prognostic profiling of patients 
with low-risk ccRCC.

Considering the low percentage of low-risk ccRCC 
patients developing disease progression [8, 12], it is rea-
sonable to question whether they represent a transcrip-
tomically distinct cohort. Indeed, PCA and hierarchical 
clustering results indicate that progressors and nonpro-
gressors form distinct groups at the transcriptome level, 
and the identification of prospective biomarkers using 
qPCR is of potentially high clinical relevance.

Interestingly, qPCR analysis of serum samples also sug-
gests a higher level of AGAP2-AS1 circulating RNA in 
progressors, although the investigated cohort was too 
small to detect significant differences. If confirmed, these 
data would support the use of liquid biopsies compared 
to solid tissue samples in diagnosis [23]. As the liquid 
biopsies were taken at the time of surgery, we hypoth-
esized that liquid biopsies taken later, but still prior to 
recurrence, may have contained higher levels of AGAP2-
AS1 in the progressor patients.

Conventional prognostic models, e.g., the Leibovich 
score, are characterized by high sensitivity and specificity 
to predict recurrence in ccRCC [10]. Furthermore, they 
are well established and do not require the use of addi-
tional sequencing techniques [9, 10, 12, 24].

However, AGAP2-AS1 overexpression specifically 
detected metastasizing tumors classified as “low-risk” 
by the current methods. Combining conventional prog-
nostic models and AGAP2-AS1, easily measured by PCR, 

would allow for a more accurate estimation of the risk 
profile of low-risk patients.

Once low-risk progressors have been identified, strati-
fication could also allow for a reduced follow-up for low-
risk nonprogressors, freeing valuable resources.

AGAP2-AS1 is a long noncoding antisense RNA previ-
ously investigated in a variety of cancers [25–32], where 
its upregulation was shown to correlate with decreased 
survival rates [28, 33]. Accordingly, AGAP2-AS1 silenc-
ing suppresses the proliferation and invasion potential 
of glioblastoma cells while promoting their apoptosis 
[34]. Multiple studies also show that AGAP2-AS1 knock-
down inhibits the proliferation of malignant cells from 
pancreatic [27] and hepatic cancers and gliomas [35, 36] 
in  vitro and in  vivo. Moreover, breast cancer cell lines 
overexpressing AGAP2-AS1 and showing resistance to 
trastuzumab were resensitized to its effects following 
gene knockdown [26]. Interestingly, in a study compar-
ing metastatic to localized prostate cancer, the AGAP2-
AS1 gene was also found to be upregulated in metastatic 
cancer tissues [37]. In ccRCC, using a cohort of n  = 611 
samples AGAP2-AS1 was found to significantly correlate 
with higher tumor stages, prognosis and metastasis in the 
TCGA dataset, corroborating our independent findings 
[38].

In our data, AGAP2-AS1 was not differentially 
expressed between the original tumor and metastases. 
This could be taken to indicate stable gene expression 
over time, as the biopsy from the metastasis was taken an 
average of 4.5 years after the original biopsy.

A well-known transcriptomic characterization of 
ccRCC is represented by the classification into ccA and 
ccB subtypes [39–41]. The ccB subtype displays mark-
edly improved disease-specific survival compared with 
ccA [40]. The ClearCode34 risk predictor was developed 
to forecast the ccA or ccB and prognostic group classi-
fication [42]. According to our data, of the 34 mRNAs 
used in ClearCode34, only receptor tyrosine kinase-like 
orphan receptor 2 (upregulated in progressors; abs. FC: 
3.81; p  < 0.05) was differentially expressed. This lack 
of overlap might be explained by the small size of our 
cohort. However, it is also of note that the ccA and ccB 
subtypes developed within a more heterogeneous cohort 
and were not restricted to stage 1 tumors.

In the only other closely related report, Parasramka 
et  al. [12] also investigated low-risk ccRCC progressors 
using RNA-seq. However, although their findings were 
supported by a validation cohort, they did not attempt 
validation with other laboratory techniques. Of the 10 
differentially expressed genes identified in both their dis-
covery and validation sets, only ASPM (abnormal spin-
dle-like microcephaly associated protein) (abs. FC: 4.84; 
p  < 0.05) was also differentially expressed in our study. Of 
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the 20 most upregulated genes in both progressors and 
20 most upregulated genes in nonprogressors, none were 
found in the differentially expressed genes listed by the 
authors.

AGAP2-AS1 was not included within their published 
results, but as data from this study are not publicly avail-
able, we could not elucidate whether AGAP2-AS1 was 
not significant, nondetected and/or not identified. A 
possible explanation for why AGAP2-AS1 was not found 
might lie in their more stringent requirements for signifi-
cance. They set their cutoff for significance at p  < 0.001 
and filtered out any genes with fewer than three patients 
expressing at 2 counts per million. While we used the 
more usual cut off at p  < 0.05 and filtered at 1 counts per 
million in at least three samples. As such they found 92 
genes which were differentially expressed in their cohort, 
compared our 1167. Considering that multiple other 
studies, including TCGA data show that AGAP2-AS1 
correlates with both survival, stage, progression and pro-
gression in specific stages [38], AGAP2-AS1 might well 
have been excluded by these requirements.

One of the only pathways enriched progressors in the 
GSEA results was ‘’SPHINGOLIPID METABOLISM’’. 
In a recent paper, several genes from that pathway were 
linked to ccRCC progression [43]. In our data, 5 of those 
6 genes fit with the authors’ findings, i.e., the gene direc-
tion of the deregulation indicated a worse prognosis in 
the progressive patients.

Our study has several limitations. Only 8 patients out 
of the initial 443 (1.8%) were progressors within low-risk 
ccRCC, mainly due to the low frequency of this subtype. 
Furthermore, the adjusted p values were not significant 
for all mRNAs due to the comparison of intrinsically 
similar samples, e.g., two forms of histologically identi-
cal cancer types from closely matched patients. While a 
larger cohort is unlikely to overcome the later restriction 
[12], the former can and should be corrected in a larger 
validation cohort.

Another limitation is the follow-up time of the con-
trols. Not all nonprogressors had a follow-up time longer 
than the longest time until metastasis in the progressor 
group. However, all pairs of progressors and matched 
nonprogressors included at least one nonprogressor 
with a longer follow-up time than the time to metasta-
sis in the matched progressor. Still, we cannot categori-
cally exclude that some of the nonprogressors will turn 
into progressors, albeit delayed compared to the original 
group. However, even if this were to occur, we have dem-
onstrated that the groups differ transcriptomically and 
delayed progression would still be a prognostic model of 
significant value.

There is also the lack of 100% sensitivity in only using 
AGAP2-AS1. While the results for using AGAP2-AS1 on 

its own were good, we could have achieved 100% sensi-
tivity by extended the classifier. We could have added 
more RNAs which identified the one progressor which 
was incorrectly classified by AGAP2-AS1, increasing sen-
sitivity, potentially at the cost of accuracy. The decreased 
accuracy due to an increase in misclassified samples 
might have been worthwhile, as a high sensitivity allows 
for the ruling out of disease [44]. Interestingly, the sen-
sitivity of the 10 classifier models with one to 10 gene 
members, always stayed at 87.5% (always one Prog sam-
ple falsely classified, though not always the same), while 
the specificity decreased slightly from 100 to 81.25% (in 
the model with 2 genes), and then to 87% (with three to 
8 genes), and then back to 93.75% with 9 or ten genes. 
Therefore, the number of genes needed to achieve 100% 
sensitivity, the small sample size and only a single mis-
classification led us to conclude that the results are best 
presented a single component classifier. However, a sin-
gle gene might well be insufficient to act as a classifier in 
a heterogenous cohort such as ccRCC. A clinical classi-
fier would most likely require the inclusion of additional 
components in order to be viable, however in our results 
the best classifier was AGAP2-AS1 on its own.

Conclusion
RNA-seq reveals different transcriptomic profiles in 
“low-risk” ccRCC progressors and nonprogressors. Our 
findings suggest that AGAP2-AS1 might represent a clini-
cally effective biomarker of subsequent tumor progres-
sion in conventionally staged low-risk tumors. These 
findings, however, require further validation.

Abbreviations
ccRCC​: Clear cell renal cell carcinoma; FFPE: Formalin-fixed and paraffin-
embedded; IHC: Immunohistochemistry; PFS: Progression-free survival; PCA: 
Principal component analysis; abs.FC: Absolute fold change; FC: Fold change; 
Lnc: Long noncoding.
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Additional file 1: Patient selection procedure. Out of 443 patients oper‑
ated on for ccRCC between 1997 and 2014, 274 were classified as “low risk” 
(score 0–2, according to the Leibovich 2003 classification). Eight of them 
(2.9%) developed metastases. Control patients (n = 16) matched for age, 
primary tumor stage and size, Fuhrman grade and eGFR were selected 
from the 266 nonprogressing “low risk” patients. A detailed analysis of the 
clinicopathological characteristics of progressing and nonprogressing 
control patients is reported in Table 1 of the main text.

Additional file 2: Ingenuity pathway analyses for progressors vs. non‑
progressors. The top results are presented in table format (a), and the top 
10 canonical pathways are additionally presented as a graph (b). The top 
disease was “Cancer”, even though we compared two forms of cancer that 
were histologically identically and came from closely matched patients.
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Additional file 3: Biomarker evaluation. Evaluation of the expression of 
individual genes or combinations of up to 10 genes as biomarkers. The 
best results were achieved with AGAP2-AS1, which correctly classified 23 
out of 24 samples without the need for a larger gene panel.

Additional file 4: IHC, survival and mRNA abundance plots for USP10 and 
AGAP2. IHC, survival and mRNA abundance plots for USP10 and AGAP2, 
IHC analysis of USP10 and mRNA abundance plots revealed upregulated 
protein and gene expression levels in nonprogressors (a) compared to 
progressors (b). Images were taken from matched sets of samples and 
viewed at 40x magnification. c depicts the corresponding gene abun‑
dance plot, which is both in accordance with the protein expression data 
and statistically significant (p = 0.0015). IHC analysis of AGAP2 and mRNA 
abundance plots for complementary AGAP2-AS1 (f) revealed upregu‑
lated protein and gene expression levels in progressors (e) compared to 
nonprogressors (d).

Additional file 5: Overall survival of patients. Overall survival of patients 
bearing nonprogressors (blue) and progressors (red) ccRCC (p = 0.078). 
During the follow-up, three deaths unrelated to ccRCC diagnosis also 
occurred in the nonprogressor group. All other patients were censored 
once the end of their follow-up was met.
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