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Abstract. A unified framework for studying extremal curves on real Stiefel

manifolds is presented. We start with a smooth one-parameter family of

pseudo-Riemannian metrics on a product of orthogonal groups acting tran-
sitively on Stiefel manifolds. In the next step Euler-Langrange equations for

a whole class of extremal curves on Stiefel manifolds are derived. This in-

cludes not only geodesics with respect to different Riemannian metrics, but
so-called quasi-geodesics and smooth curves of constant geodesic curvature, as

well. It is shown that they all can be written in closed form. Our results are
put into perspective to recent related work where a Hamiltonian rather than a

Lagrangian approach was used. For some specific values of the parameter we

recover certain well-known results.

1. Introduction. The main objective of this paper is to present a unified frame-
work for studying extremal curves on the important class of real Stiefel manifolds,
using a direct variational approach.

This paper is a tribute to Anthony M. Bloch on the occasion of his 65th anniver-
sary. His work in the area of geometric mechanics and optimal control has been
inspirational to us. Without being exhaustive, we name [4, 5, 6, 7, 16], for some of
his important contributions in those areas.

In general, the problem of finding extremal curves, e.g., curves that minimize
or maximize some functional is an old problem which goes back to the origins
of variational calculus. The present paper deals with geometric extremal curves,
i.e., those curves that minimize the length functional or in other words find the
geodesics on a specific manifold. The manifold we consider here is the set of all
orthonormal k-frames on Euclidean n-dimensional space, nowadays known under
the name Stiefel manifold, cf. [26]. This problem has been considered by several
authors, see for instance [7, 9, 11, 18]. The difference in these approaches, is the
realization of the Stiefel manifold: it was considered as a homogeneous space under
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the action of different groups, or as an embedded submanifold of the space of all
(n× k)-matrices. The length functional also varied.

In the present paper we propose to consider a one-parameter family of non-
degenerate not necessarily positive definite metrics, that includes most of the pre-
viously considered Riemannian metrics. Such an all-embracing approach becomes
possible due to the realization of the Stiefel manifold as a homogeneous space un-
der the transitive action of the product group of orthogonal matrices On×Ok, see
Sections 3 and 4. The considered metrics lead to the length functionals. By mak-
ing use of variational calculus, as a consequence, we obtain a one-parameter family
of nonlinear, second order, matrix-valued, ordinary differential equations (ODEs),
that surprisingly can be reduced to a one-parameter family of linear, autonomous,
second order, matrix ODEs. The solutions of the corresponding one-parameter
family of initial value problems, i.e., geodesics, are calculated in closed form for all
parameters defining the family of metrics. Besides new formulas and insights, we
recover several of the beforementioned previous results. We note that the obtained
formulas are written for an arbitrary choice of the isotropy point for the action of
On×Ok, see Section 5. We mention another important feature of our approach. All
the closed formulas for extremal curves we derive here share a remarkable property.
They all include matrix exponentials exclusively of skew symmetric matrices, pre-
destinated for numerically stable implementations. The skew symmetric matrices
to be exponentiated are either of size k × k or n× n, sometimes of both.

As a further byproduct of our approach we describe a huge family of curves that
have constant geodesic curvature with respect to metrics within the one-parameter
family. In this part we use a sub-Riemannian approach, that allows to relate the
geodesic curves on the Stiefel manifold to special curves on the group On×Ok

being tangent to distinguished distributions on On×Ok, associated to a Cartan
decomposition of the Lie algebra son× sok, see Section 6.

2. Setting. The orthogonal group On in its standard representation is denoted by

On := {Q ∈ Rn×n | Q>Q = In}, (1)

where In denotes the (n×n)-identity matrix with n ∈ N. Accordingly, we have the
special orthogonal group defined by

SOn := {R ∈ On | det(R) = 1} ∼= On /O1 . (2)

The Lie algebra of On and SOn, i.e., the set of real skew symmetric (n×n)-matrices,
is denoted by

son := {X ∈ Rn×n | X = −X>}. (3)

The tangent space of On, analogously for SOn, at Q is then

TQ On
∼= sonQ ∼= Q son . (4)

In the sequel we will mainly use the first isomorphism in (4). The real compact
Stiefel manifold (from now on just Stiefel manifold) can be defined as the set of
orthonormal k-frames in Rn, i.e.,

Stn,k := {X ∈ Rn×k | X>X = Ik}, 1 ≤ k ≤ n. (5)

The tangent space TX Stn,k is characterized by

TX Stn,k = son ·X = {Z ∈ Rn×k | X>Z ∈ sok} = im(πtan
X ), (6)
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with projection operator

πtan
X : Rn×k → TX Stn,k, Z 7→

(
In − XX>

2

)
Z − XZ>X

2 . (7)

Besides (5), in a more abstract way, the Stiefel manifold can be considered in
several diffeomorphic ways. By applying the regular value theorem to the function
f : Rn×k → Symk defined by X 7→ X>X − Ik, where

Symk := {X ∈ Rk×k|X = X>} (8)

denotes the vector space of symmetric (k× k)-matrices, we see that Stn,k = f−1(0)
is a smooth Riemannian submanifold of dimension dim Stn,k = nk − k(k + 1)/2.
Here Rn×k is seen as the Riemannian manifold endowed with Euclidean metric, i.e.,
with the usual Frobenius inner product on each tangent space TXRn×k ∼= Rn×k

〈·, ·〉 : Rn×k × Rn×k → R, 〈A,B〉 := tr(A>B). (9)

Two possible further points of view are as follows. Firstly, the group On acts
transitively on Stn,k via left matrix multiplication

σ : On×Stn,k → Stn,k, (Q,X) 7→ QX, (10)

with associated map

σX : On → Stn,k, Q 7→ σX(Q) := σ(Q,X) = QX. (11)

Secondly, the product group On×Ok acts also transitively on Stn,k via

τ : On×Ok ×Stn,k → Stn,k,
(
(U, V ), X

)
7→ UXV >, (12)

and associated map

τX : On×Ok → Stn,k, Q 7→ τX(U, V ) := τ
(
(U, V ), X

)
= UXV >. (13)

The smooth maps σX and τX give rise to two quotient models, namely

Stn,k ∼=On
On /On−k, Stn,k ∼=On×Ok

(On×Ok)/(On−k ×Ok). (14)

For the arbitrary chosen X ∈ Stn,k the associated isotropy subgroup fixing X is
isomorphic to On−k, respectively to On−k ×Ok.

Instead of the On, respectively On×Ok, action, we could consider SOn, respec-
tively SOn×SOk, actions. However, the situation in this case is a bit more subtle, as
e.g., SOn does not act transitively on Stn,n ∼=On

On. We mention the special cases,
e.g., Stn,1 ∼= Sn−1, Stn,n−1

∼= SOn and Stn,k ∼=SOn
SOn / SOn−k for 1 ≤ k ≤ n− 1,

cf. [23].

3. Metrics on Stiefel manifolds. By the transitivity of σ, resp. τ , it follows that
σX , resp. τX , are submersions for all X ∈ Stn,k and in particular the derivatives
(tangent maps)

DσX(In) : son → TX Stn,k,

Ω 7→ ΩX,
(15)

D τX(In, Ik) : son× sok → TX Stn,k,

(Ω,Ψ) 7→ ΩX +XΨ> = ΩX −XΨ
(16)

are both surjective linear maps for all X ∈ Stn,k. These facts can be exploited
to define metrics on Stn,k. The corresponding constructions have several names in
the literature, (i) submersion metrics (for obvious reasons) or (ii) normal metrics
(becomes clear below). Note however, that in case of σX the resulting metric was
called ‘canonical’, cf. [9].
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Recall that the Killing form on the Lie algebra son, cf. [10], is the symmetric
bilinear form defined as

B : son× son → R, B(X,Y ) := (n− 2) tr(XY ). (17)

For n > 2 the Killing form is nondegenerate as son in this case has trivial center.
Moreover, it is negative definite as the semisimple group On is compact. Con-
sequently, one can take the negative of the Killing form in order to define a left
invariant Riemannian metric on On as follows

〈·, ·〉On
: TQ On×TQ On → R,

(Ω1Q,Ω2Q) 7→ −B(Ω1,Ω2)
n−2 = − tr(Ω1Ω2) = tr

(
(Ω1Q)>(Ω2Q)

)
.

(18)

Clearly, this Riemannian metric can equally be considered as the one which is in-
duced by the Euclidean (Frobenius) metric of the embedding space Rn×n ⊃ On. We
will now focus on the group action τ defined by (12). As the linear map D τX(In, Ik)

is surjective for all X ∈ Stn,k it induces an isometry between ker⊥D τX(In, Ik) and
TX Stn,k under an additional assumption on the value of α, see below. We proceed
as follows.

Definition 3.1. Define the following one-parameter family of indefinite inner prod-
ucts on son× sok

〈·, ·〉(α)
son×sok

: (son×sok)×(son×sok)→ R,(
(Ω1,Ψ1),(Ω2,Ψ2)

)
7→ − tr

(
Ω1Ω2)− 1

α tr(Ψ1Ψ2), α ∈ R\{0}.
(19)

Remark 1. The inner product defined in (19) is ad-invariant, that is, for all
A,B,C ∈ son× sok

−
〈
A, adCB

〉(α)

son×sok
=
〈
A,[B,C]

〉(α)

son×sok
=
〈
B,[C,A]

〉(α)

son×sok
=
〈
B, adC A

〉(α)

son×sok
. (20)

By making use of left translations the inner product (19) extends to a bi-invariant
(pseudo-)Riemannian metric on On×Ok

〈·, ·〉(α)
On×Ok

:T(U,V )(On×Ok)×T(U,V )(On×Ok)→R,(
(Ω1U,Ψ1V ), (Ω2U,Ψ2V )

)
7→
〈
(Ω1,Ψ1), (Ω2,Ψ2)

〉(α)

son×sok

= − tr
(
Ω1Ω2)− tr(Ψ1Ψ2)

α .

(21)

For α > 0 this defines a Riemannian metric on the product group, whereas for α < 0
the metric becomes indefinite, i.e. pseudo-Riemannian.

At this stage we recall some terminology and facts from indefinite linear algebra,
cf. [12]. Let

(
V, 〈·, ·〉indef

)
be an indefinite inner product space. A subspace S ⊂ V

is called nondegenerate with respect to 〈·, ·〉indef if s ∈ S and 〈s, s′〉indef = 0 for all
s′ ∈ S imply that s = 0. The orthogonal companion of a subset S ⊂ V is defined
by

S⊥ :=
{
v ∈ V

∣∣〈v, s〉indef = 0 for all s ∈ S
}
. (22)

Clearly, S⊥ is a subspace of V . The following proposition is proved e.g. in [12].

Proposition 1. S⊥ is a direct (orthogonal) complement to S in V iff S is nonde-
generate.

By means of D τX(In, Ik) we will now define a one-parameter family of metrics
on Stn,k. Denote by KX the kernel of D τX(In, Ik)

KX := ker D τX(In, Ik) =
{

(Ω,Ψ) ∈ son× sok
∣∣ ΩX −XΨ = 0

}
. (23)
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Proposition 2. For any given X ∈ Stn,k the subspace KX is nondegenerate iff
α 6= −1.

Proof. Note that (Ω,Ψ), (Γ,Ξ) ∈ KX imply X>ΩX = Ψ and X>ΓX = Ξ as
X ∈ Stn,k. By the orthogonal invariance of the trace function we might assume

X =
[
Ik
0

]
. We partition Ω =

[
Ω11 Ω12

−Ω>12 Ω22

]
and Γ =

[
Γ11 Γ12

−Γ>12 Γ22

]
with Ω11,Γ11 ∈ sok.

By exploiting properties of the trace function and the fact that XX> =
[
Ik 0
0 0

]
is

an orthogonal projection matrix we get〈
(Ω,Ψ), (Γ,Ξ)

〉(α)

son×sok
= − tr(ΩΓ)− 1

α tr(ΨΞ)

= − tr(ΩΓ)− 1
α tr

(
ΩXX>ΓXX>

)
= −

(
tr
(
α+1
α Ω11Γ11

)
− 2 tr(Ω12Γ>12) + tr(Ω22Γ22)

)
.

(24)

Hence, a given (Ω,Ψ) ∈ KX with
〈
(Ω,Ψ), (Γ,Ξ)

〉(α)

son×sok
= 0 for all (Γ,Ξ) ∈ KX

implies (Ω,Ψ) = (0, 0) iff α 6= −1. The result follows.

For α 6= −1 we denote by K⊥X the orthogonal complement of KX with respect to
the metric (19)

K⊥X :=
{

(Ω,Ψ) ∈ son× sok
∣∣〈(Ω,Ψ),KX

〉(α)

son× sok
= 0
}
. (25)

Consequently, for every (Ω,Ψ) ∈ son× sok with α 6= −1 there is a unique additive
decomposition

(Ω,Ψ) =
(

ΩKX + ΩK
⊥
X ,ΨKX + ΨK⊥X

)
, (26)

where
(
ΩKX ,ΨKX

)
∈ KX and

(
ΩK

⊥
X ,ΨK⊥X

)
∈ K⊥X .

Lemma 3.2. For α 6= −1 and arbitrary X ∈ Stn,k, the unique orthogonal projection
operator

πX : son× sok → KX , (Ω,Ψ) 7→
(
ΩKX ,ΨKX

)
(27)

is given by

ΩKX =
(
In −XX>

)
Ω
(
In −XX>

)
+ α

α+1XX
>ΩXX> + 1

α+1XΨX>

= Ω−
(

ΩXX> +XX>Ω− 2α+1
α+1 XX

>ΩXX> − 1
α+1XΨX>

)
,

ΨKX = α
α+1X

>ΩX + 1
α+1Ψ

= Ψ− α
α+1

(
Ψ−X>ΩX

)
.

(28)

The complementary orthogonal projection operator is as

π⊥X := id−πX : son× sok → K⊥X ,

(Ω,Ψ) 7→
(
ΩK

⊥
X ,ΨK⊥X

)
=
(
Ω− ΩKX ,Ψ−ΨKX

)
,

(29)

given by

ΩK
⊥
X = XX>Ω + ΩXX> − 2α+1

α+1 XX
>ΩXX> − 1

α+1XΨX>,

ΨK⊥X = α
α+1

(
Ψ−X>ΩX

)
.

(30)
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Proof. In fact, a direct computation shows that π2
X = πX exploiting the fact

that In −XX> and XX> denote complementary orthogonal projection operators
Rn×k → Rn×k. Moreover, by using (28) and several times X>X = Ik, we compute

ΩKXX −XΨKX = α
α+1XX

>ΩX + 1
α+1XΨ−X

(
α
α+1X

>ΩX + 1
α+1Ψ

)
= 0,

(31)

as required.

Remark 2. Note that KX does not depend on the choice of the α-metric as it is
defined by the α-independent linear map D τX(In, Ik), only. The projection oper-
ator πX , however, depends on the α-metric, therefore we have the presence of the
parameter α in the components of

(
ΩKX ,ΨKX

)
∈ KX .

Corollary 1. The special case X =
[
Ik
0

]
might be of interest. Partition an arbitrary

(Ω,Ψ) =
([

A −B>
B C

]
,Ψ
)
∈ son× sok, A ∈ sok, B ∈ Rk×(n−k), C ∈ son−k, (32)

accordingly. Then for this case, the explicit form of the decomposition (26) is as

(Ω,Ψ) =
([

Ψ+αA
α+1 0

0 C

]
, Ψ+αA
α+1

)
︸ ︷︷ ︸

=:(ΩKX ,ΨKX )∈KX

+
([

A−Ψ
α+1 −B

>

B 0

]
, α(Ψ−A)

α+1

)
︸ ︷︷ ︸

=:(ΩK⊥
X ,ΨK⊥

X )∈K⊥X

. (33)

Proof. Indeed,〈(
Ω
K⊥X
1 ,Ψ

K⊥X
1

)
,
(

ΩKX
2 ,ΨKX

2

)〉
=

〈([
A1−Ψ1

α+1 −B>1
B1 0

]
,α(Ψ1−A1)

α+1

)
,

([
Ψ2+αA2

α+1 0

0 C2

]
,Ψ2+αA2

α+1

)〉
= − tr (A1−Ψ1)(Ψ2+αA2)

(α+1)2 − 1
α tr α(Ψ1−A1)(Ψ2+αA2)

(α+1)2

= 0.

The claim follows by counting parameters in the matrices A1, A2, B1, C2,Ψ1,Ψ2.

Fix an arbitrary X ∈ Stn,k and denote

g := son× sok, k := KX , p := K⊥X . (34)

Then one has the following relations

g = p⊕ k, [k, k] ⊂ k, [p, k] ⊂ p, [p, p] ⊃ k. (35)

The direct sum in the first relation is orthogonal. The second relation reflects the
fact that k = KX is the Lie algebra of the isotropy group isomorphic to On−k ×Ok

that fixes the point X ∈ Stn,k. The third relation follows by〈
[p, k], k

〉(α)

son×sok
=
〈
p, [k, k]

〉(α)

son×sok
= 0, (36)

due to ad-invariance of the inner product and the first two properties in (35). For
the last property it is sufficient to show it at the point X =

[
Ik
0

]
. In this case we

denote D := Ψ+αA
α+1 in (33). Then(

[D 0
0 C ] , D

)
∈ KX = k,

( [
A−D B

−B> 0

]
, α(D −A)

)
∈ K⊥X = p. (37)

In the sequel, Ei,j denotes the (n×n)-matrix with entry (i, j) equal to 1, entry (j, i)
equal to −1 and all other entries equal to 0. The matrices Ei,j satisfy the following
commutator properties:

[Ei,j , Ef,l] = −δilEj,f − δjfEi,l + δifEj,l + δjlEi,f ,
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where δij denotes the Kronecker delta. Taking into consideration the structure of
the matrices in k and p, we see that

{Ei,j , 1 ≤ i < j ≤ k} ∪ {Ek+i,k+j , 1 ≤ i < j ≤ n− k} (38)

forms a basis for k, while

{Ei,j , 1 ≤ i < j ≤ k} ∪ {Ei,k+j , 1 ≤ i ≤ k, 1 ≤ j ≤ n− k} (39)

forms a basis for p. Moreover, for any Ek+i,k+j ∈ k with 1 ≤ i < j ≤ n − k there
are El,k+i, El,k+j ∈ p with 1 ≤ l ≤ k such that

Ek+i,k+j = [El,k+i, El,k+j ] . (40)

Analogously, for any Ei,j ∈ k, 1 ≤ i < j ≤ k, there are Ei,k+l, Ej,k+l ∈ p with
1 ≤ l ≤ n− k, such that

Ei,j = [Ei,k+l, Ej,k+l] .

Thus for any chosen X ∈ Stn,k we have decomposed the Lie algebra son× sok into
a direct sum, orthogonal with respect to the α-inner product, satisfying (36).

Definition 3.3. Let X ∈ Stn,k be arbitrary. Consider ξ1, ξ2 ∈ TX Stn,k with
ξi := ΩiX −XΨi, Ωi ∈ son, Ψi ∈ sok and i ∈ {1, 2}. We define a smooth family of
normal or submersion (pseudo-)Riemannian metrics on the Stiefel manifold Stn,k
via

〈·, ·〉(α)
St : TX Stn,k ×TX Stn,k → R,

(ξ1, ξ2) 7→− tr
(
Ω
K⊥X
1 Ω

K⊥X
2

)
− 1

α tr
(
Ψ
K⊥X
1 Ψ

K⊥X
2

)
.

(41)

For computational purposes it is certainly desirable to have an explicit formula

for ΩK
⊥
X and ΨK⊥X purely in terms of ξ ∈ TX Stn,k and X ∈ Stn,k.

Proposition 3. Let X ∈ Stn,k and ξ ∈ TX Stn,k, with ξ := ΩX −XΨ. Then,

ΩK
⊥
X = ξX> −Xξ> + 2α+1

α+1 Xξ
>XX>,

ΨK⊥X = − α
α+1X

>ξ.
(42)

Proof. Plug ξ = ΩX −XΨ into (42) and compare with (30), giving the result.

Corollary 2. The normal or submersion (pseudo-)Riemannian metric on the Stiefel
manifold Stn,k induced by the group action of On×Ok defined by (13) with On×Ok

endowed with the pseudo-Riemannian metric defined by (21) expressed exclusively
by X ∈ Stn,k and ξ ∈ TX Stn,k now boils down to〈

ξ1, ξ2
〉(α)

St
= tr

(
2ξ1ξ

>
2

)
− 2α+1

α+1 tr
(
ξ1ξ
>
2 XX

>). (43)

Hereafter we refer to the members of the α-parameter family of metrics as α-
metrics.

4. Special cases of α-metrics. For certain values of α we now put our results
into perspective with more or less recently published works.
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4.1. Case 1: The limit α → 0 and the normal or submersion metric in-
duced by σ. By taking the limit α → 0 in (43), the right hand side is remark-
ably still a Riemannian one. Actually this metric coincides with the normal or
submersion metric induced by the transitive group action of On on Stn,k by left
multiplication. Namely in this case we have

lim
α→0

〈
ξ1, ξ2

〉(α)

St
= tr

(
2ξ1ξ

>
2

)
− tr

(
ξ1ξ
>
2 XX

>). (44)

For convenience one might compare the above formula choosing X =
[
Ik
0

]
, ξi =[

Ai

Bi

]
∈ TX Stn,k where Ai ∈ sok and Bi ∈ Rn−k×k with formula (2.22) in [9] (up to

a factor 1/2), i.e. in the notation of Corollary 1

〈ξ1, ξ2〉(0)
St = tr(2A1A

>
2 + 2B1B

>
2 )− tr(A1A

>
2 ) = tr(A1A

>
2 + 2B1B

>
2 ). (45)

Let us look on the situation a little bit more carefully. Formula (30) implies that
1
αΨK⊥ = 1

1+α (Ψ−XTΩX)→ Ψ−XTΩX as α→ 0. Therefore

1
α tr

(
ΨK⊥

1 ΨK⊥
2

)
= α tr

(
1
αΨK⊥

1
1
αΨK⊥

2

)
→ 0 as α→ 0. (46)

It implies that the limit in (41) exists as α→ 0 and it is equal to − tr
(
ΩK⊥1 ΩK⊥2

)
=

tr(A1A
>
2 + 2B1B

>
2 ) by (45). Now consider the case X =

[
Ik
0

]
. Then according

to (33) we have

son× sok 3 (Ω,Ψ) = ([ Ψ 0
0 C ] ,Ψ)︸ ︷︷ ︸
∈KX

+
( [

A−Ψ −B>
B 0

]
, 0
)

︸ ︷︷ ︸
∈K⊥X

, (47)

where KX needs to be orthogonal to K⊥X with respect to the inner product (19) as
α→ 0, i.e., if we denote

(Ω1,Ψ1) = ([ Ψ 0
0 C ] ,Ψ) , (Ω2,Ψ2) =

([
A−Ψ −B>
B 0

]
, 0
)
, (48)

then 〈
(Ω1,Ψ1), (Ω2,Ψ2)

〉(α)

son× sok
= tr

(
(A−Ψ)Ψ

)
− 1

α tr(Ψ · 0) = 0. (49)

Since we know that the limit of the metric exists, it will correspond to the metric
space where Ψ = 0. In this case we obtain

son× sok 3 (Ω, 0) =
(

[ 0 0
0 C ] , 0

)
︸ ︷︷ ︸
∈KX=k

+
([

A −B>
B 0

]
, 0
)

︸ ︷︷ ︸
∈K⊥X=p

∈ son×{0} ∼= son . (50)

It indeed corresponds to the action of O(n) on the Stiefel manifold with son = p⊕k,
see [18, Formulas (17) and (18)].

4.2. Case 2: α = − 1
2 and the Euclidean metric induced by Stn,k ⊂ Rn×k. For

α = − 1
2 we start with a pseudo-Riemannian metric on On×Ok as α is negative. It

turns out, its restriction to the horizonal space K⊥X becomes Riemannian. Actually,
this metric is exactly the one you get by considering Stn,k ⊂ Rn×k as a Riemannian
submanifold of the Euclidean space Rn×k endowed with Frobenius inner product.
Explicitly, we get

〈ξ1, ξ2〉(−1/2)
Stn,k

= tr(2ξ1ξ
>
2 ), (51)

i.e., twice the usual Euclidean inner product on Rn×k. This result is not too sur-
prising. Indeed, consider the group action

β : On×Ok ×Rn×k → Rn×k,
(
(U, V ), X

)
7→ UXV >, (52)
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with

βX : On×Ok → Rn×k, (U, V ) 7→ UXV >. (53)

The orbits of β are precisely those matrix sets which have fixed singular values.
Certainly, on each of these orbits the product group acts transitively. Therefore the
restriction βX(I, I)|X−orbit is a submersion for any X. The Stiefel manifold is equal
to one of these orbits, the result follows by Proposition 3.

4.3. Case 3: The limit α→∞. This approach gives rise to quasi-geodesic curves
on Stn,k. For convenience, we only look at X =

[
Ik
0

]
. Indeed, if we take a limit as

α→∞ in (33) we come to the decomposition

son× sok 3 (Ω,Ψ) =
(

[A 0
0 C ] , A

)
︸ ︷︷ ︸
∈KX=k

+
([

0 −B>
B 0

]
,Ψ−A

)
︸ ︷︷ ︸

∈K⊥X=p

. (54)

This corresponds to the quasi-geodesic horizontal distribution in [18, formulas (20)
and (21)] generated by the p-subspace within the Cartan decomposition (35). The
inner product that makes the direct sum in (35) orthogonal was not presented in [18]
and this case was treated differently. See also [19] for a slightly different perspective.

Remark 3. Note that in the literature quasi-geodesics appear with different mean-
ings, not necessarily related in an obvious way.

In numerics, e.g., in [22], those curves are denoted by quasi-geodesics, which are
smooth curves approximating geodesics in some sense. Furthermore, in [1] and [20]
the connection of this type of quasi-geodesics to a retraction approximating the
Riemannian exponential map is made. See, e.g., [2] for the concept of retractions
applied to numerics.

The notion of quasi-geodesics in the sense of M. Gromov, however, is derived
from the general theory of metric spaces and the notion of quasi-isometries between
those spaces. This gives a precise mathematical meaning to coarse spaces and coarse
structures as part of geometry, i.e., studying metric spaces from a large scale point
of view, see e.g., [24], [25].

In our paper, the term quasi-geodesic refers to the former concept, i.e., quasi-
geodesics are considered to be smooth curves close to geodesics in some sense,
although nowhere we comment explicitly on corresponding retractions. More im-
portant, however, the curves we consider here, all have constant geodesic curvature.

4.4. Case 4: α = 1. This case is classical and corresponds to the submersion, where
the standard trace inner product on son× sok is considered, see, for instance, [11]
and [18].

4.5. Case 5: α < −1. In this case we always get a pseudo-Riemannian metric on
Stn,k which is not Riemannian. We are currently not aware of any applications.

Remark 4. We now briefly discuss two extreme cases, namely Stn,1 = Sn−1 and
Stn,n = On.

For the sphere Sn−1 the α-metric becomes independent of α. Indeed, (43) reduces
to the scaled Euclidean inner product on TXS

n−1 ⊂ Rn as for i ∈ {1, 2} we have
TXS

n−1 3 ξi ⊥ X. Explicitly,〈
ξ1, ξ2

〉(α)

Stn,1
= tr

(
2ξ1ξ

>
2

)
− 2α+1

α+1 tr
(
ξ1 ξ
>
2 X︸︷︷︸
=0

X>
)

= 2ξ>2 ξ1.
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For the orthogonal group On the α-metric (43) simplifies to〈
ξ1, ξ2

〉(α)

Stn,n
= tr

(
2ξ1ξ

>
2

)
− 2α+1

α+1 tr
(
ξ1ξ
>
2 XX>︸ ︷︷ ︸

=In

)
= 1

α+1 tr
(
ξ1ξ
>
2

)
.

In particular, it becomes independent of X. Moreover, for any α ∈ R \ {−1} the
metric is either positive definite or negative definite. In other words, it is always
a nonzero multiple of the Killing form. In the limit α → ∞ the metric becomes
identical to zero.

5. Geodesics on Stn,k with respect to different values of α. The purpose
of this section is to derive a one-parameter family of Euler-Lagrange equations
describing the critical points of the energy functional on Stn,k with respect to the
metric (43). It is a remarkable fact that one is able to show, independent of the
value of α, that this family of nonlinear, second order matrix ODEs is equivalent to a
family of linear, time-invariant, second order matrix ODEs. To write down a closed
form solution for the corresponding initial value problem is then straightforward.

Rather than solving a variational problem directly on Stn,k where we would need
an α-dependent formula of the covariant derivative we proceed with a Lagrange
multiplier approach in the space of smooth curves in Rn×k.

Extend the metric (43) to a function TXRn×k×TXRn×k → R in a straightforward
way, saying 〈

ξ1, ξ2
〉(α)

Rn×k := tr
(
2ξ1ξ

>
2

)
− 2α+1

α+1 tr
(
ξ1ξ
>
2 XX

>) (55)

for any X ∈ Rn×k and any ξ1, ξ2 ∈ TXRn×k. We now study the following problem
from variational calculus. Find the critical points of

F : C∞(R,Rn×k × Symk)→ R,

(X,S) 7→ 1
2

∫ 1

0

(〈
Ẋ, Ẋ

〉(α)

Rn×k+tr
(
S(X>X − Ik)

))
dt.

(56)

Here S : R → Symk serves as a matrix-valued Lagrange multiplier. Following the
usual approach, cf. [28], consider an admissible variational family of the curves X
and S fulfilling boundary conditions

Xε(t) := X(t) + εY (t) ∈ Rn×k,
Sε(t) := S(t) + εT (t) ∈ Symk,

Y (0) = Y (1) = 0,

T (0) = T (1) = 0.
(57)

A critical point of (56) has to satisfy f ′(ε)|ε=0 = 0 where

f : (−δ, δ)→ R, f(ε) := F (Xε, Sε). (58)

We can therefore state f ′(0) = 0, iff for all admissible variations Y, T we have∫ 1

0

( 〈
Ẋ, Ẏ

〉(α)

Rn×k + 1
2 tr

(
T (X>X − Ik)

)
+ tr(SX>Y )

)
dt = 0. (59)

By partial integration, respecting the boundary conditions, equation (59) is equiv-
alent to the system

d
dt

(
(2In − 2α+1

α+1 XX
>)Ẋ

)
+ 2α+1

α+1 ẊẊ
>X −XS = 0,

X>X = Ik.
(60)

Exploiting the symmetry of S we get rid of S in (60). A byproduct of these calcu-
lations is the relation

X>Ẍ = Ẍ>X. (61)
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Moreover, using also

X>X = Ik =⇒ Ẋ>X +X>Ẋ = 0 =⇒ Ẍ>X +X>Ẍ + 2Ẋ>Ẋ = 0, (62)

we find an explicit form for the Lagrange multiplier

S = −2
(
Ẋ>Ẋ + 2α+1

α+1 (X>Ẋ)2
)
. (63)

We can now write down an α-family of Euler-Lagrange equations to the variational
problem (56), it is the set

Ẍ + 2α+1
α+1 (ẊẊ>X) +X

(
2α+1
α+1 (X>Ẋ)2 + Ẋ>Ẋ

)
= 0,

X>X = Ik.
(64)

Equations (64) discribe an explicit, time-variant, second order, highly nonlinear
matrix ODE on Rn×k with solutions lying on the Stiefel manifold. We want to look
for solutions of the associated α-family of initial value problems (IVP).

Ẍ = − 2α+1
α+1 (ẊẊ>X)−X

(
2α+1
α+1 (X>Ẋ)2 + Ẋ>Ẋ

)
,

X>X = Ik,

Ẋ(0) =: Ẋ0,

X(0) =: X0.
(65)

Theorem 5.1. For all α 6= −1 the IVP (65) is equivalent to a second order linear
time-invariant IVP.

Proof. We streamline notation a bit and introduce for convenience

v := 2α+1
α+1 . (66)

We rewrite the right hand side of the first equation in (65) and identify certain
invariants. Indeed,

− v
(
Ẋ · Ẋ>X︸ ︷︷ ︸
∈sok by (62)

)
−X

(
v(X>Ẋ)2 + Ẋ>Ẋ

)
= −v(ẊẊ>X)−X

(
v(X>Ẋ)2 + Ẋ>Ẋ

)
+ (ẊX>Ẋ − ẊX>Ẋ)︸ ︷︷ ︸

=0

= −Ẋ (1− v)(X>Ẋ)︸ ︷︷ ︸
= ΨK⊥

X (t) by (42)

−
(
vXX>ẊX> +XẊ> − ẊX>

)︸ ︷︷ ︸
= ΩK⊥

X (t) by (42)

Ẋ

= ΩK
⊥
X (t) · Ẋ − Ẋ ·ΨK⊥X (t),

(67)

setting ξ = Ẋ(t) for X(t) being the solution of (64).

Claim 5.2. For a fixed solution X(t) to (65), both linear operators ΨK⊥X (t) : R →
sok and ΩK

⊥
X (t) : R→ son are constant.

Proof. (Of Claim 5.2) Firstly,

Ψ̇K⊥X (t) = (1− v) d
dt (X

>Ẋ) = (1− v)(Ẋ>Ẋ +X>Ẍ) = 0, (68)

by combining (61) and (62). Secondly,

Ω̇K
⊥
X (t) = −v

(
Ẋ X>Ẋ︸ ︷︷ ︸
∈sok

X> +X d
dt (X

>Ẋ)︸ ︷︷ ︸
=Ψ̇K⊥

X (t)=0

X> +XX>ẊẊ>
)

− (ẊẊ> +XẌ> − ẌX> − ẊẊ>)

= −v
[
XX>, ẊẊ>

]
−XẌ> + ẌX> = 0.

(69)
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The last equality in (69) follows by inserting twice the Euler-Lagrange equation (64).

Consequently, ΨK⊥X (t) = ΨK⊥X (0) =: Ψ
K⊥X
0 and ΩK

⊥
X (t) = ΩK

⊥
X (0) =: Ω

K⊥X
0 . Now

we combine both constant operators to one single constant linear operator

∆0 : Rn×k → Rn×k, X 7→ ∆0 ◦X := Ω
K⊥X
0 X −XΨ

K⊥X
0 . (70)

The Euler-Lagrange equation can now be rewritten as

Ẍ = ∆0 ◦ Ẋ. (71)

Furthermore,

∆0 ◦X = Ω
K⊥X
0 X −XΨ

K⊥X
0

= −
(
vXX>ẊX> +XẊ> − ẊX>

)
·X −X · (1− v)X>Ẋ

= Ẋ.

(72)

Consequently, the Euler-Lagrange equations for our variational calculus problem
get the simple form

Ẍ = ∆0 ◦∆0 ◦X, X>X = Ik, (73)

a second order, explicit, time-independent, linear ODE on the Stiefel manifold.

Remark 5. Notice, that for convenience, throughout our paper the notation eX ≡
exp(X) means exclusively the matrix exponential for the square matrix X.

Corollary 3. The unique solution of the initial value problem

Ẍ = ∆0 ◦∆0 ◦X, X(0) = X0 ∈ Stn,k, Ẋ(0) = Ẋ0 ∈ TX0
Stn,k (74)

for finding extremal curves with respect to the α-metric defined by (43) on the Stiefel
manifold Stn,k is

X(t) =etΩ
K⊥X
0 X0 e−tΨ

K⊥X
0

=et(−vX0X
>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) ·X0 · e−t(1−v)X>0 Ẋ0

=et(−vX0X
>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) · e−t(1−v)X0X

>
0 Ẋ0X

>
0 ·X0

=exp
(
t
(
−2α+1
α+1 X0X

>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0

))
·X0 ·exp

(
t α
α+1X

>
0 Ẋ0

)
=exp

(
t
(
−2α+1
α+1 X0X

>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0

))
exp
(
t α
α+1X0X

>
0 Ẋ0X

>
0

)
X0.

(75)

Proof. The proof is by direct verification, alternatively see subsection 11 of chapter
1 in [8] for handling this type of linear time-invariant matrix-valued ODE.

We are now in the position to study the special cases for choosing certain values
for α from Section 4 again, this time in terms of closed formulas for extremal curves.

5.1. Case 1: The limit α → 0 and the normal or submersion metric in-
duced by σ. The corresponding Euler-Lagrange equation appeared already in [9],
but it was presented without proof. However, the closed form solution of the IVP

Ẍ = −ẊẊ>X −X
(

(X>Ẋ)2 + Ẋ>Ẋ
)
,

X>X = Ik,

Ẋ(0) =: Ẋ0,

X(0) =: X0.
(76)
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in terms of arbitrary initial values seems to be new,

X(t) =et(−X0X
>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) ·X0. (77)

Consider again the special isotropy point

X0 =
[
Ik
0

]
, (Ω,Ψ) =

([
A −B>
B C

]
,Ψ
)
∈ son× sok, Ẋ0 = ΩX0 −X0Ψ = [ AB ] . (78)

With this choice of initial values, the solution of IVP (76), i.e. (77), becomes

X(t) = e
t
[
A −B>
B 0

] [
Ik
0

]
, (79)

in accordance with [11] and [18].

5.2. Case 2: α = − 1
2 and the Euclidean metric induced by Stn,k ⊂ Rn×k.

Here the corresponding (surprisingly simple) Euler-Lagrange equation is well-known.
The closed form solution of the corresponding IVP appeared for the first time in
[15], [27], see also [13] for a low dimensional example.

Ẍ = −XẊ>Ẋ,

X>X = Ik,

Ẋ(0) =: Ẋ0,

X(0) =: X0.
(80)

The solution for (80) in terms of arbitrary initial values is as

X(t) =et(−X0Ẋ
>
0 +Ẋ0X

>
0 ) ·X0 · e−tX

>
0 Ẋ0

=et(−X0Ẋ
>
0 +Ẋ0X

>
0 ) · e−tX0X

>
0 Ẋ0X

>
0 ·X0.

(81)

Choose again (78) as initial values. Now (81) becomes

X(t) = e
t
[

2A −B>
B 0

] [
Ik
0

]
e−tA = e

t
[

2A −B>
B 0

]
e−t[

A 0
0 0 ] [ Ik

0

]
, (82)

again in accordance with [11] and [18].
One might compare the two alternatives in (81) with the cumbersome formula

appearing in subsection 2.2.2 of [9].

Remark 6. The IVP (80) appears also in a more general context in [7], where the
authors study variational problems on Stiefel manifolds with a very different family
of left invariant Riemannian metrics compared to ours’. Their family of Riemannian
metrics depends on an (n × n)-diagonal positive definite matrix Λ. However, for
Λ = In, (80) is equivalent to (21) and (22) in [7]. But note, our n corresponds to
an N in [7].

5.3. Case 3: The limit α→∞. The associated Euler-Lagrange equation was to
the best knowledge of the authors never published before:

Ẍ = −2(ẊẊ>X)−X
(

2(X>Ẋ)2 + Ẋ>Ẋ
)
,

X>X = Ik,

Ẋ(0) =: Ẋ0,

X(0) =: X0.
(83)

The solution for IVP (83) in terms of arbitrary initial values is as

X(t) =et(−2X0X
>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) ·X0 · etX

>
0 Ẋ0

=et(−2X0X
>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) · etX0X

>
0 Ẋ0X

>
0 ·X0.

(84)

Choose once again (78) as initial values. Then (84) becomes

X(t) = e
t
[

0 −B>
B 0

] [
Ik
0

]
etA = e

t
[

0 −B>
B 0

]
et[

A 0
0 0 ] [ Ik

0

]
, (85)
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again in accordance with [18] and [19].

Remark 7. The curves (84) and (85) showed up recently in a different context, cf.
[18], [19] and [20]. In [20] the authors used these curves to solve a boundary value
problem, whereas in [18, 19] they were analyzed from a purely geometric point of
view.

5.4. Case 4: α = 1. The associated Euler-Lagrange equation is as

Ẍ = − 3
2 (ẊẊ>X)−X

(
3
2 (X>Ẋ)2 + Ẋ>Ẋ

)
,

X>X = Ik,

Ẋ(0) =: Ẋ0,

X(0) =: X0.
(86)

The solution for IVP (86) in terms of arbitrary initial values is as

X(t) =et(−
3
2X0X

>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) ·X0 · e

t
2X
>
0 Ẋ0

=et(−
3
2X0X

>
0 Ẋ0X

>
0 −X0Ẋ

>
0 +Ẋ0X

>
0 ) · e

t
2X0X

>
0 Ẋ0X

>
0 ·X0.

(87)

Choose (78) as initial values. Then (87) becomes

X(t) = exp
(
t
[
A/2 −B>
B 0

] ) [
Ik
0

]
etA/2

= exp
(
t
[
A/2 −B>
B 0

] )
exp

(
t
[
A/2 0

0 0

] ) [
Ik
0

]
,

(88)

again in accordance with [11] and [18]. However, (86) seems to be new.

5.5. Case 5: α < −1. In this case we always get a true pseudo-Riemannian metric
on Stn,k, i.e., one which is not Riemannian. We are currently not aware of any
application.

Remark 8. Again we comment on the two extreme cases Stn,1 = Sn−1 and Stn,n =
On.

For the sphere Sn−1 the geodesic curves (75) simplify to curves describing great
circles, independent of α. Indeed,

X(t) =exp
(
t
(
−2α+1
α+1 X0X

>
0 Ẋ0︸ ︷︷ ︸
=0

X>0 −X0Ẋ
>
0 +Ẋ0X

>
0

))
exp
(
t α
α+1X0X

>
0 Ẋ0︸ ︷︷ ︸
=0

X>0
)
·X0

= exp
(
t(Ẋ0X

>
0 −X0Ẋ

>
0 )
)
·X0 = X0 cos

(
t‖Ẋ0‖

)
+ Ẋ0

sin(t‖Ẋ0‖)∥∥Ẋ0

∥∥ .

Note that the last equality even makes sense for ‖Ẋ0‖ → 0 as the limit of the
quotient in the last summand nevertheless exists. Moreover, to see that these circles
are actually great circles, one might insert t = π

‖Ẋ0‖
to realize that X0 and −X0 as

well, i.e. antipodes, lie on the curve X(t).
For the orthogonal group On the geodesic curves (75) reduce to curves specified

by one-parameter subgroups acting on X0, independent of α. In fact, exploiting
Ẋ0X

>
0 = −X>0 Ẋ0 ∈ son we get

X(t) =exp
(
t
(
−2α+1
α+1 X0X

>
0︸ ︷︷ ︸

=In

Ẋ0X
>
0 −X0Ẋ

>
0 +Ẋ0X

>
0

))
exp
(
t α
α+1 X0X

>
0︸ ︷︷ ︸

=In

Ẋ0X
>
0

)
·X0

= exp
(
t(Ẋ0X

>
0 )
)
·X0.

These results are certainly fully in accordance with well-known facts.
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6. Curves of constant geodesic curvature with respect to α-metrics. The
relationship to a sub-Riemannian problem will be explained in this section. First
we present and adapt a result from [18] that was obtained earlier, cf. [17], [21].
Consider On×Ok endowed with the α-metric defined in (21). Let p ⊕ k be the
corresponding Cartan decomposition of son× sok as it is written in (34) and (35).
By making use of the translation we define an α-family of left invariant horizontal
distributions H on On×Ok that are orthogonal to the vertical distribution V with
respect to the bi-invariant α-metric (21). The vertical distribution V is equal to
k = KX at the identity whereas the horizontal distribution H is equal to p = K⊥X
at the identity. Thus T (On×Ok) = H ⊕ V, where H is the bracket generating
distribution according to the fourth condition in (35). We say that a smooth curve
c : [0, 1] → On×Ok is horizontal if ċ(t) ∈ Hc(t). From now on we assume that

〈· , ·〉(α) is positive definite when it is restricted to p. The sub-Riemannian distance
function dsubR(g1, g2) on the group On×Ok is defined as the infimum of the lengths
among all horizontal curves connecting the points g1 and g2 on On×Ok. The reader
can find more about sub-Riemannian geometry in [3, 21].

Definition 6.1. A sub-Riemannian geodesic g : [0, 1]→ On×Ok is a smooth hor-
izontal curve that locally realizes the sub-Riemannian distance function dsubR.

Proposition 4. A sub-Riemannian geodesic on On×Ok tangent to H is given by

g(t) = g0 Exp
(
t(Pp + Pk)

)
Exp(−tPk), g0 ∈ On×Ok, Pp ∈ p, Pk ∈ k, (89)

with initial velocity Pp + Pk and initial point g0 ∈ On×Ok, cf. [17, 21]. The
Riemannian geodesics on Stn,k = (On×Ok)/(Ok ×On−k) are exactly projections
of sub-Riemannian geodesics (89) for which Pk = 0, cf. [17].

Remark 9. Here, Exp denotes the exponential map for the product group On×Ok,
at this stage not to be confused with the ordinary matrix exponential eX ≡ exp(X).

Proof. Translated into our terminology, the sub-Riemannian geodesics (89) on the
product group On×Ok (only at the identity for convenience) are of the form

R→ On×Ok,

t 7→
(

exp
(
t(Ω

K⊥X
0 +ΩKX

0 )
)
,exp

(
− t(ΨK⊥X

0 +ΨKX
0 )

))
◦
(
exp
(
− tΩKX

0

)
, exp

(
tΨKX

0 )
)

=
(
exp
(
t(Ω

K⊥X
0 +ΩKX

0 )
)
exp
(
− tΩKX

0

)
, exp

(
−t(ΨK⊥X

0 +ΨKX
0 )

)
exp
(
tΨKX

0 )
)
,

which, for Pk = 0, i.e.,
(
ΩKX

0 ,ΨKX
0

)
= (0, 0), project to Riemannian geodesics on

Stn,k, which start at X and emanate in direction Ω
K⊥X
0 X −XΨ

K⊥X
0 , as

R→ Stn,k, t 7→ etΩ
K⊥X
0 X e−tΨ

K⊥X
0 . (90)

This is in accordance with Corollary 3, namely the first line of (75), as required.

We rephrase here a result from proposition 5 in [18], adapted to our notations
but there under more general assumptions.

Proposition 5. The projection of the sub-Riemannian geodesic (89) onto the Stiefel
manifold Stn,k = (On×Ok)/(Ok ×On−k) is a curve of constant geodesic curvature
relative to the Riemannian α-metric defined in (41). The geodesic curvature of
the projection is equal to ‖[Pp, Pk]‖, where the norm is understood in terms of the
α-metric.
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As a consequence of Proposition 5 we immediately obtain

Corollary 4. For any X ∈ Stn,k and any (Ω,Ψ) ∈ son× sok all smooth curves of
type

R→ Stn,k, t 7→ etΩX e−tΨ (91)

are curves of constant geodesic curvature relative to the Riemannian α-metric de-
fined in (41).

6.1. Alternative approach to obtain formula (89). Equation (89) for a sub-
Riemannian geodesic tangent to the left invariant distribution obtained from p can
be also obtained by variational methods, incorporating Lagrange multipliers for
both, holonomic and nonholonomic constraints, [14]. To give an outline of that
approach, we first embed On×Ok into the space R(n+k)×(n+k) of square (n, k)-block
diagonal matrices with square (n×n) and (k× k)-blocks on the main diagonal. By
making use of left translations we identify the tangent space TX(Rn×n ⊕ Rk×k) ∼=
Rn×n ⊕ Rk×k with the Lie algebra g := gln ⊕ glk of (n, k)-block diagonal matrices.
We decompose

g = Symn⊕Symk ⊕son ⊕ sok = Symn⊕Symk ⊕p⊕ k, (92)

where p ⊕ k is the Cartan decomposition of son × sok. The direct sums (92) are
orthogonal with respect to the inner product

〈A,B〉(α) = tr(A>1 B1) + 1
α tr(A>2 B2). (93)

Here A = (A1, A2), B = (B1, B2) ∈ g, meaning that A1, B1 ∈ gln and A2, B2 ∈
glk. The product 〈· , ·〉(α) is ad-invariant, indefinite, and non-degenerate for α 6=
−1. We define the bi-invariant indefinite metric on T (Rn×n ⊕Rk×k) by taking left
translations of the product 〈· , ·〉(α). Define the functional

X(t) 7→ 1
2

∫ 1

0

(〈
Ẋ, Ẋ

〉(α)
+
〈
S,XTX − In+k

〉(α)
+
〈
Pk, X

T Ẋ
〉(α)

)
dt. (94)

Here 1
2

∫ 1

0
〈Ẋ, Ẋ〉(α)dt is the energy functional that is equal to the square of the

α-norm of a curve X(t) ∈ Rn×n ⊕Rk×k. The summand 1
2

∫ 1

0
〈S,XTX − In+k〉(α)dt

is a requirement that X(t) ∈ On×Ok and S is an (n, k)-block diagonal symmetric
matrix in Rn×n⊕Rk×k, that serves as a Lagrange multiplier to enforce the holonomic

constraint. It implies that XT Ẋ ∈ son× sok. The last term 1
2

∫ 1

0
〈Pk, X

T Ẋ〉(α)dt
incorporates the Lagrange multiplier Pk ∈ k to enforce the nonholonomic constraint.
It will ensure that XT Ẋ ∈ p.

By making calculations similar to those in section 4 of [14] and looking for the
critical point of (94), we obtain the geodesic equation

Ẍ(t) = X(t) Exp(tPk)
(
P 2
p + [Pk, Pp]

)
Exp(−tPk), (95)

on On×Ok for a sub-Riemannian geodesic. Here Pk ∈ k, and Pp ∈ p, can be
considered as data for specifying an initial velocity vector. It is a result of the
corresponding calculations showing that the Lagrange multiplier Pk is actually con-
stant. By the substitution

Y (t) := X(t) Exp(tPk) (96)

the equation (95) is reduced to the linear second order differential equation with
constant coefficients

Ÿ (t)− 2Ẏ (t)Pk + Y (t)
(
P 2
k − P 2

p − [Pk, Pp]
)

= 0, (97)
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having the unique solution

Y (t) = Y (0) Exp
(
t(Pp + Pk)

)
, (98)

with Y (0) = X(0). Combining (96) and (98) we obtain (89). Note that, eventually,

in this subsection as X ∈ On×Ok was realized as a matrix X =
[
X1 0
0 X2

]
with

X1 ∈ On and X2 ∈ Ok, we got Exp(X) = exp
( [

X1 0
0 X2

] )
=
[

eX1 0
0 eX2

]
.
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