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Abstract

In this paper we present an interpolation-based decoding algorithm to decode a family of maximum rank distance codes
proposed recently by Trombetti and Zhou. We employ the properties of the Dickson matrix associated with a linearized polynomial
with a given rank and the modified Berlekamp-Massey algorithm in decoding. When the rank of the error vector attains the unique
decoding radius, the problem is converted to solving a quadratic polynomial, which ensures that the proposed decoding algorithm
has polynomial-time complexity.

I. INTRODUCTION

Rank metric codes were independently introduced by Delsarte [1], Gabidulin [2] and Roth [3]. Those rank metric codes
that achieve Singleton-like bound are called maximum rank distance (MRD) codes. The well known family of MRD codes are
the Gabidulin codes. Later this family was generalized by Kshevetskiy and Gabidulin [4] which is known as the generalized
Gabidulin (GG) codes. These codes are linear over Fqn . Sheekey [5] introduced a large family of Fq-linear MRD codes called
twisted Gabidulin (TG) codes, which were extended to generalized twisted Gabidulin (GTG) codes by employing arbitrary
automorphism [5, Remark 9], [6]. Later additive MRD codes were proposed by Otal and Özbudak [7] and they are known as
additive generalized twisted Gabidulin (AGTG) codes. AGTG codes contain all the aforementioned MRD codes as subfamilies.
There are also some other MRD codes that are not equivalent to the above codes, for instance the non-additive MRD codes
by Otal and Özbudak [8], new MRD codes by Sheekey [9], Trombetti-Zhou (TZ) codes [10], etc. For more constructions of
MRD codes, please refer to [11].

MRD codes have gained much interest in the last decades due to their wide applications in storage system [3], network
coding [12] and cryptography [13]. Efficient decoding of MRD codes is critical for their applications. There are different
decoding approaches for Gabidulin codes. Gabidulin [2] presented decoding based on a linearized equivalent of the Extended
Euclidean Algorithm. The generalized Berlekamp-Massey algorithm was given by Richter and Plass in [14]. Later Loidreau
[15] proposed the Welch-Berlekamp like algorithm to decode Gabidulin codes. Nevertheless, the above algorithms can not be
directly applied to the new MRD codes with twisted evaluation polynomials. Randrianarisoa and Rosenthal in [16] proposed a
decoding method for a subfamily of TG codes. Randrianarisoa in [17] gave an interpolation-based decoding algorithm for GTG
codes. He reduced the decoding problem to finding zeros of projective equations. Kadir and Li in [18] applied the interpolation
approach to decoding AGTG codes and studied the final projective equations in greater depth. Li [19] used a similar idea in
decoding the non-additive partition MRD codes in [8].

In this paper we propose an interpolation-based decoding algorithm for TZ codes. We also compare the interpolation-based
decoding algorithms for MRD codes when the rank of the error vector reaches the unique decoding radius, which shows that
decoding TZ codes requires less operations than decoding GTG and AGTG codes as the problem can be reduced to solving a
quadratic equation.

II. PRELIMINARIES

Definition 1. Let q be a power of prime p and Fqn be an extension of the finite field Fq . A q-polynomial is a polynomial of
the form L(x) = a0x+ a1x

q + · · ·+ ak−1x
qk−1

over Fqn . If ak−1 6= 0, then we say that L(x) has q-degree k− 1. The set of
these polynomials is denoted by Lk(Fqn).

When q is fixed or the context is clear, it is also customary to speak of a linearized polynomial as it satisfies the linearity
property: L(c1x + c2y) = c1L(x) + c2L(y) for any c1, c2 ∈ Fq and any x, y in an arbitrary extension of Fqn . Hence a
linearized polynomial L(x) ∈ Lk(Fqn) defines an Fq-linear transformation L from Fqn to itself. The rank of a nonzero
linearized polynomial L(x) =

∑n
i=0 aix

qi over Fqn is given by Rank(L) = n − dimFq (Ker(L)), where Ker(L) is the kernel
of L(x).



Proposition 1. Let L(x) =
∑n−1

i=0 aix
qi over Fqn be a linearized polynomial with rank t. Then its associated Dickson matrix

D =
(
aq

i

i−j(modn)

)
n×n

=


a0 aqn−1 · · · aq

n−1

1

a1 aq0 · · · aq
n−1

2

...
...

. . .
...

an−1 aqn−2 · · · aq
n−1

0

 , (1)

has rank t over Fqn . Moreover, any t×t submatrix formed by t consecutive rows and t consecutive columns in D is non-singular.

The first part of Prop. 1 is given in [20], whereas the second part can be found in [17] and [21].

III. MAXIMUM RANK DISTANCE (MRD) CODES

The rank of a vector a = (a1, . . . , an) in Fn
qm , denoted as Rank(a), is the number of its linearly independent components,

that is the dimension of the vector space spanned by ai’s over Fq . The rank distance between two vectors a, b ∈ Fn
qm is defined

as dR(a, b) = Rank(a− b).

Definition 2. A subset C ⊆ Fn
qm with respect to the rank distance is called a rank metric code. When C contains at least two

elements, the minimum rank distance of C is given by d(C) = min
A,B∈C, A6=B

{dR(A,B)}. Furthermore, it is called a maximum

rank distance (MRD) code if it attains the Singleton-like bound |C| ≤ qmin{m(n−d+1),n(m−d+1)}.

The most famous MRD codes are Gabidulin codes [2] which were further generalized in [4], [22]. The generalized Gabidulin
(GG) codes GGn,k with length n ≤ m and dimension k over Fqm is defined by the evaluation of{ k−1∑

i=0

fix
qsi |fi ∈ Fqm

}
, (2)

where (s,m) = 1, on linearly independent points α0, α1, . . . , αn−1 in Fqm . The choice of αi’s does not affect the rank
property and it is customary to exhibit Gabidulin codes and its generalized families without the evaluation points as in (2).
For consistency with the parameters of MRD codes in [5], [7], [10], through what follows we always assume n = m.

For a linearized polynomial L(x) =
∑k

i=0 lix
qi over Fqn , it is clear that Rank(L) ≥ n− k if lk 6= 0. Gow and Quinlan in

[23, Theorem 10] (see also [5]) characterize a necessary condition for L(x) to have rank n − k as below, see [24], [25] for
other necessary conditions.

Lemma 1. [23] Suppose a linearized polynomial L(x) = l0x+ l1x
q + · · ·+ lkx

qk , lk 6= 0, in Ln(Fqn) has qk roots in Fqn .
Then Normqn/q(lk) = (−1)nk Normqn/q(l0), where Normqn/q(x) = x1+q+···+qn−1

is the norm function from Fqn to Fq .

According to Lemma 1, a linearized polynomial L(x) of q-degree k−1 has rank at least n−k+1 if the condition in Lemma
1 is not met. Sheekey [5] applied Lemma 1 and constructed a new family of MRD codes, known as twisted Gabidulin (TG)
codes, and the generalized TG codes are investigated in [6]. Later Otal and Özbudak [7] further generalized this family by
manipulating some terms of linearized polynomials and constructed the additive generalized twisted Gabidulin (AGTG) codes
which contains all the aforementioned MRD codes as subfamilies.

Below we recall from [10] the Trombetti-Zhou (TZ) code, which has been proved to be inequivalent to subfamilies of AGTG
codes, further generalized twisted Gabidulin codes [26], Sheekey’s new MRD codes [9] and those with minimum distance
equals to n − 1, such as [27], [28]. We are going to propose an interpolation-based decoding algorithm for TZ codes in the
next section.

Proposition 2. [10] Let n, k, s ∈ Z+ satisfying (s, 2n) = 1 and let γ ∈ Fq2n satisfy that Normq2n/q(γ) is a non-square
element in Fq . Then the set

Dk,s(γ) =

{
ax+

k−1∑
i=1

fix
qsi + γbxq

sk

| fi ∈ Fq2n , a, b ∈ Fqn

}

is an Fqn -linear MRD code of size q2nk and minimum rank distance 2n− k + 1.

The first and the last coefficients of the above polynomial are chosen independently from the base field Fqn . If q is even,
all the elements of Fq are square elements, so TZ codes exist only when the characteristic of Fq is odd.

IV. ENCODING AND DECODING OF TZ CODES

For the rest of this paper, we will denote [i] := qsi for i = 0, . . . , 2n− 1 , where (s, 2n) = 1, for simplicity.



A. Encoding

For a TZ MRD code with evaluation points α0, α1, . . . , α2n−1 that are linearly independent over Fq , the encoding of a
message f = (f0, . . . , fk−1) is the evaluation of the following linearized polynomial at points α0, α1, . . . , α2n−1:

f(x) = ax+

k−1∑
i=1

fix
[i] + γbx[k], (3)

where (a, b) ∈ Fqn × Fqn corresponds to f0 via an Fqn -basis of Fq2n . Let f̃ = (a, f1, . . . , fk−1, γb, 0, . . . , 0) be a vector of
length 2n over Fq2n and M =

(
α
[j]
i

)
2n×2n

be the 2n× 2n Moore matrix generated by αi’s, where 1 ≤ i, j ≤ 2n− 1. Then
the encoding of TZ codes can be expressed as

(a, f1, . . . , fk−1, γb) 7→ c = (f(α0), . . . , f(α2n−1)) = f̃MT , (4)

where MT is the transpose of matrix M . Here it is worth noting that in encoding process, one actually only needs to calculate
the multiplication of the (k + 1)-tuple (a, f1, . . . , fk−1, γb) and the first k + 1 rows of M . Here we express it as in (4) for
being consistent with the decoding procedure.
B. Decoding

For a received word r = c + e with an error e added to the codeword c during transmission, when the error e has rank
t ≤ b 2n−k2 c, the unique decoding task is to recover the unique codeword c such that dR(c, r) ≤ b 2n−k2 c.

Suppose g(x) =
∑2n−1

i=0 gix
[i] is an error interpolation polynomial such that

g(αi) = ei = ri − ci, i = 0, . . . , 2n− 1. (5)

It is clear that the error vector e is uniquely determined by the polynomial g(x) and denote g̃ = (g0, . . . , g2n−1). From (4)
and (5) it follows that

r = c+ e = (f̃ + g̃)MT .

This is equivalent to

r · (MT )−1 =(a, f1, . . . , fk−1, γb, 0, . . . , 0)+

(g0, g1, . . . , gk−1, gk, gk+1, . . . , g2n−1).

Letting β = (β0, . . . , β2n−1) = r · (MT )−1, we obtain

(gk+1, . . . , g2n−1) = (βk+1, . . . , β2n−1) (6)

and {
g0 + a = β0

gk + γb = βk
→

{
g0 − β0 = −a
γ−1(gk − βk) = −b.

With a, b ∈ Fqn , one obtains {
(g0 − β0)[n] = g0 − β0
(γ−1(gk − βk))[n] = γ−1(gk − βk).

(7)

which yields two linearized equations {
g
[n]
0 − g0 − θ1 = 0, (8)

g
[n]
k − γ

[n]−1gk − θ2 = 0, (9)

where θ1 = β
[n]
0 − β0, θ2 = β

[n]
k − γ[n]−1βk.

Therefore, the task of correcting error e is equivalent to reconstructing g(x) from the available information characterized
in (6), (8) and (9). This reconstruction process heavily depends on the property of the associated Dickson matrix of g(x) and
will be discussed in Subsection IV-C.



C. Reconstructing the interpolation polynomial g(x)

The Dickson matrix associated with g(x) can be given by

G =
(
g
[j]
i−j (mod 2n)

)
2n×2n

= (G0 G1 . . . G2n−1) , (10)

where the indices i, j run through {0, 1, . . . , 2n− 1} and Gj is the j-th column of G.
Since gcd(2n, s) = 1, Proposition 1 can be easily adapted for the Dickson matrix G in (10). Hence G has rank t and any

t× t matrix formed by t successive rows and columns in G is nonsingular. Then G0 can be expressed as a linear combination
of G1, . . . , Gt, namely, G0 = λ1G1 + λ2G2 + · · · + λtGt, where λ1, . . . , λt are elements in Fq2n . This yields the following
recursive equations

gi = λ1g
[1]
i−1 + λ2g

[2]
i−2 + · · ·+ λtg

[t]
i−t, 0 ≤ i < 2n, (11)

where the subscripts in gi’s are taken modulo 2n. Recall that the elements gk+1, . . . , g2n−1 are known from (6). Hence we
obtain the following linear equations with known coefficients and variables λ1, . . . , λt:

gi = λ1g
[1]
i−1 + λ2g

[2]
i−2 + · · ·+ λtg

[t]
i−t, k + t+ 1 ≤ i < 2n. (12)

The above recurrence gives a generalized version of q-linearized shift register as described in [29], where (λ1, . . . , λt) is the
connection vector of the shift register. It is the key equation for the decoding algorithm in this paper, by which we shall
reconstruct g(x) in two major steps:

Step 1. derive λ1, . . . , λt from (6)-(9), and (12);
Step 2. use λ1, . . . , λt to compute gk, . . . , g0 from (11).

Step 1 is the critical and challenging step in the decoding process, and Step 2 is simply a recursive process that can be done
in linear time in Fq2n . The following discussion shows how the procedure of Step 1 works.

As discussed in the beginning of this section, for an error vector with Rank(e) = t ≤ b 2n−k2 c, i.e., 2t + k ≤ 2n, we can
divide the discussion into two cases.
Case 1: 2t+ k < 2n. In this case, (12) contains 2n− k− t− 1 ≥ t affine equations in variables λ1, . . . , λt, which has rank t.
Hence the variables λ1, . . . , λt can be uniquely determined. In this case, the code can be seen as a sub-code of an GG2n,k+1

code and any Gabidulin codes decoding algorithm is applicable. Here we assume the code has high code rate, for which the
Berlekamp-Massey algorithm is more efficient. In addition it is consistent with the notation used in Case 2. Although the
recurrence equation (12) is a generalized version of the ones in [14], [29], the modified Berlekamp-Massey algorithm can be
applied here to recover the coefficients λ1, . . . , λt.
Case 2: 2t+ k = 2n. In this case (12) gives 2n− k − t− 1 = t− 1 independent affine equations in variables λ1, . . . , λt. For
such an under-determined system of linear equations, we will have a set of solutions (λ1, . . . , λt) that has dimension 1 over
Fq2n . Namely, the solutions will be of the form

λ+ ωλ′ = (λ1 + ωλ′1, . . . , λt + ωλ′t),

where λ, λ′ are fixed elements in Ft
q2n and ω runs through Fq2n . As shown in [29, Th. 10], the solution can be derived from

the modified BM algorithm with a free variable ω. Next we will show how the element ω is determined by other information
in (6), (8) and (9).

Observe that in (11), by taking i = 0 and i = k + t and substituting the solution λ + ωλ′, one gets the following two
equations

g0 = (λ1 + ωλ′1, . . . , λt + ωλ′t) · (g
[1]
2n−1, . . . , g

[t]
2n−t)

T ,

gk+t = (λ1 + ωλ′1, . . . , λt + ωλ′t) · (g
[1]
k+t−1, . . . , g

[t]
k )T ,

where g0, gk and ω are the only unknowns. Re-arranging the equations gives

g0 = c0 + c1ω, (13)

and
gk+t = c2 + c3ω + (λt + λ′tω)g

[t]
k , (14)

where c0, c1, c2, c3 are derived from λ, λ′ and the known coefficients gi’s. Furthermore, from (8) and (9) we have g[n]0 −g0+θ1 =

0 and g[n]k − γ[n]−1gk + θ2 = 0. Substituting (13) in (8) gives

c1ω
[n] + β1ω + β2 = 0. (15)



If λt + λ′tω = 0 then we have the solution ω = −λt/λ′t. This solution can be further checked in (14) by gk+1, c2 and c3.
Otherwise, one can raise both sides of (14) to the [2n− t]-th power and obtain

gk =
a1 + a2ω

[2n−t]

a3 + a4ω[2n−t] . (16)

Replacing this value in (9), raising it to the [t]-th power and rearranging the terms implies

ζ1ω
[n]+1 + ζ2ω

[n] + ζ3ω + ζ4 = 0, (17)

where ζ1 = (a
[n]
2 a4 + θ2a

[n+t]
4 )[t]. Furthermore, by (15) and (17) we have the following quadratic equation over Fq2n

ζ1x
2 + ζ5x+ ζ6 = 0. (18)

When ζ1 = 0 and ζ2 6= 0, the unknown ω can be uniquely determined. When ζ1 6= 0, the above quadratic equation can be
reduced to

x2 + rx+ s = 0, (19)

where r = ζ5/ζ1 and s = ζ6/ζ1.
Since the characteristic of Fq is odd, Equation (19) can be solved explicitly as follows:

a) if r2 − 4s is a quadratic residue in Fq2n , then it has two solutions x = −r±
√
r2−4s
2 ;

b) if r2 = 4s, then it has a single solution x = −r/2;
c) it has no solution in Fq2n otherwise.

Since the error e with rank t = 2n−k
2 = d−1

2 can be uniquely decoded, our quadratic equation should have roots w in
Fq2n that lead to solutions λ+ ωλ′ in (12) and (g0, gk) in (13). With the coefficients λ1, . . . , λt in Step 1 and the initial state
g2n−1, . . . , g2n−t, one can recursively compute g0, . . . , gk−1 according to (11) in Step 2. Note that even if the equation (18)
has two different solutions, they don’t necessarily lead to correct coefficients of the error interpolation polynomial. In fact,
by the expression of Dickson matrix of g(x), the correct g(x) should have the sequence (g2n−1, . . . , g2n−t, . . .) generated
from (11) has period 2n. In other words, if the output sequence has period 2n, we know that the corresponding polynomial
g(x) =

∑2n−1
i=0 gix

[i] is the desired error interpolation polynomial. For self-completeness, the decoding process of TZ codes
is summarized in Algorithm 1.

D. Complexity Analysis

As summarized in Algorithm 1, we have two major steps to construct the error interpolation polynomial g(x). The first step
is to use the modified BM algorithm for obtaining the coefficients λ1, . . . , λt. Calculating the interpolation polynomial at points
(αi, ri) has complexity in the order of O(n3), but according to [30], if α0, . . . , α2n−1 is taken as a self-dual normal basis, M
is orthogonal, which means MT =M−1 and computation of (MT )−1 is no longer required. So the complexity of computing
polynomial β is reduced to O(n2) over Fq2n . The second major component of the first step is the modified BM algorithm which
is known to have complexity in the order of O(n2) over Fq2n . The second step is to deal with the case t = b(2n− k)/2c by
investigating the solutions of the equation (18). This step involves checking whether (r2− 4s) is a quadratic residue or not. In
order to check whether an element a ∈ Fq2n is square or not, one calculates a

q2n−1
2 = a

q−1
2 ·(q

2n−1+···+q+1) = bq
2n−1+···+q+1

which has complexity O(n) over Fq2n , or directly check its exponent if in implementation an element in Fq2n is represented
in exponential form. As a result, the complexity of our decoding method is in the order of O(n2) over Fq2n .

Therefore, the previous two sections imply the following result.

Theorem 1. Consider the evaluation code obtained from Dk,s(γ) over an Fq-basis of Fq2n . Every received word can be
uniquely decoded up to rank t ≤ 2n−k

2 errors in polynomial time.

V. COMPARING THE KNOWN DECODING ALGORITHMS

Known decoding algorithms for Gabidulin codes can be generally classified in two different approaches: syndrome decoding
as in [2], [3], [13], [14] and interpolation-based decoding as in [15], [17]–[19], [31]. When the rank of the error vector reaches
the maximal unique decoding radius, syndrome decoding approach works only for Fqn -linear MRD codes. Since Sheekey [5]
introduced TG codes, which is not always Fqn -linear, a new (non syndrome) decoding algorithm for rank metric codes has been
required for the extreme case when t = bn−k2 c. When the rank of the error is not the maximal unique decoding radius, i.e.,
t < bn−k2 c, the syndrome decoding algorithms are still applicable. Loidreau [15] proposed the first interpolation-based decoding
approach for MRD codes and considered the analogue of Welch-Berlekamp algorithm, which was originally used to decode
Reed-Solomon codes. Later Randrianarisoa [17] employed Berlekamp-Massey algorithm as the main seed and introduced a
decoding algorithm for GTG codes. Later Kadir and Li [18], [31] used the same idea to decode AGTG codes. In the rest of
this section, we compare the existing interpolation-based decoding algorithms for MRD codes when t = bn−k2 c.



Algorithm 1: Interpolation decoding of TZ codes
Input: A received word r with t ≤ b 2n−k

2
c errors and linearly independent evaluation points α1, . . . , α2n

Output: The correct codeword c ∈ Fn
q2n or “Decoding Failure"

1 Calculate β(x) =
∑2n−1

i=0 βix
[i] such that β(αi) = ri for i = 1, . . . , 2n;

2 Apply modified BM algorithm to (gk+1, . . . , g2n−1) = (γk+1, . . . , γ2n−1) and output L, Λ(2n−k−1)(x), B(2n−k−1)(x);
3 if L = (2n− k)/2 then
4 Denote ∆ = ω +

∑L
i=1 Λ

(2n−k−1)
i gq

si

2n−1−i with ω ∈ Fq2n ;
5 Express the coefficients of the polynomial

Λ(2n−k)(x) = Λ(2n−k−1)(x)− 1

∆
xq

s

◦B(2n−k−1)(x),

Derive the vector λ+ λ′ω by negating the coefficients of Λ(2n−k)(x);
6 if λt + λ′tω = 0 then
7 ω = −λt/λ

′
t;

8 else
9 Derive the polynomial P (x) = ζ1x

2 + ζ5x+ ζ6 as in (18);
10 if ζ1 6= 0 then
11 Solve P (x) = 0 by Cases a)-c) after (19);
12 else
13 The zero of P (x) is x = ζ6/ζ5;
14 end
15 end
16 Set (λ1, . . . , λt) = λ+ ωλ′ with ω as the zero of P (x);
17 Calculate g0, gk from (13) and (14);
18 end
19 for each i in {0, . . . , k} do
20 Calculate gi = λ1g

[1]
i−1 + · · ·+ λtg

[t]
i−t, where the subscripts of gj’s are taken modulo 2n;

21 end
22 if The sequence g0, . . . , g2n−1 derived from λ1, . . . , λt has period 2n then
23 Return the codeword c = (c0, . . . , c2n−1) with ci = ri − g(αi)
24 else
25 Return “Decoding Failure"
26 end

The goal of the WB algorithm is to find two linearized polynomials V and N with q-degrees less than or equal to t and less
than k+ t, respectively, which satisfy the system of equations V (ri)−N(αi) = 0 where i = 1, . . . , n. The system is a linear
system consists of n equations and n + 1 unknowns. This is equivalent to interpolating two pairs of linearized polynomials
(V0, N0) and (V1, N1). After an initialization step, the polynomials are interpolated via a loop with indices ranging from k to
n− 1. If one manages to bound the q-degree of the polynomials as degq(Vj) ≤ t and degq(Nj) ≤ k+ t− 1 for j = 0 or 1, it
is done. The complexity of the WB algorithm is in the order of O(n2) over Fqn .

The decoding algorithms in [17] and [18] interpolated the polynomial f(x) + g(x) where f(x) and g(x) correspond to
message vector c and error vector e, respectively. The decoding problem is reduced to the problem of solving an under-
determined system of linear equations with t − 1 equations and t unknowns. This approach benefits from the properties of
Dickson matrix associated with g(x), known coefficients of g(x) and the relation between f0 and fk which enable us to convert
the system of equations to a single projective polynomials of the form P (x) = xq

v+1 + u1x + u2 = 0 for GTG and AGTG
codes. The zeros of this polynomial were discussed in [18] when (v, n) = 1. Very recently Kim et al.in [32] provide the
complete solution of P (x) = 0 over Fqn for any power prime q and any integers n and v. Note that the relation between the
coefficients of the first and the last terms of f(x) in the decoding algorithm for TZ codes provides more useful information
than the corresponding equations for GTG and AGTG codes. It turns out that we only need to deal with a quadratic polynomial
instead of a projective polynomial. This makes the decoding algorithm for TZ codes faster than decoding GTG and AGTG
codes.

VI. CONCLUSION

In this paper we proposed an interpolation-based decoding algorithm for Trombetti-Zhou MRD codes. We have shown that
the decoding algorithm has polynomial time complexity as low as O(n2) over Fq2n . It involves Berlekamp-Massey algorithm
similar to the decoding approaches in [17], [18] but end up with a quadratic polynomial, rather than a projective polynomial,
which requires less operations (O(n)) to compute the zeros.
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