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Abstract. In 2008 Budaghyan, Carlet and Leander generalized a known
instance of an APN function over the finite field F212 and constructed
two new infinite families of APN binomials over the finite field F2n , one
for n divisible by 3, and one for n divisible by 4. By relaxing conditions,
the family of APN binomials for n divisible by 3 was generalized to a
family of differentially 2t-uniform functions in 2012 by Bracken, Tan and
Tan; in this sense, the binomials behave in the same way as the Gold
functions. In this paper, we show that when relaxing conditions on the
APN binomials for n divisible by 4, they also behave in the same way
as the Gold function x2s+1 (with s and n not necessarily coprime). As
a counterexample, we also show that a family of APN quadrinomials
obtained as a generalization of a known APN instance over F210 cannot
be generalized to functions with 2t-to-1 derivatives by relaxing conditions
in a similar way.
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1 Introduction

Let n,m be natural numbers. A vectorial Boolean (n,m)-function, or simply
an (n,m)-function, or vectorial Boolean function, is a mapping from the n-
dimensional vector space Fn2 over the finite field F2 = {0, 1} to the m-dimensional
vector space Fm2 . Since the extension field F2n can be identified with an n-
dimensional vector space over F2, (n,m)-functions can be seen as functions be-
tween the Galois fields F2n and F2m . Vectorial Boolean functions have many
applications in mathematics and computer science. In cryptography, they are
the basic building blocks of block ciphers, and the choice of functions directly
influences the security of the cipher. In order to construct cryptographically se-
cure ciphers, it is necessary to understand what properties such functions need
to possess in order to resist various types of cryptanalytic attacks, and to find
methods for constructing functions having these desirable properties. In our
work, we mostly concentrate on the case when n = m, i.e. when the number of
input and output bits is the same. A comprehensive survey on (n,m)-functions
can be found in [4, 8].
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One of the most powerful attacks against block ciphers is differential crypt-
analysis, introduced by Biham and Shamir [1]. The attack is based on studying
how the difference in two inputs to a function affects the difference in the cor-
responding outputs. The resistance to differential attacks of an (n,m)-function
is measured by a property called its differential uniformity. The lower the differ-
ential uniformity, the more resistant the cryptosystem is to differential attacks.
The class of almost perfect nonlinear (APN) functions is defined as the class of
(n, n)-functions having the best possible differential uniformity, and thus pro-
vides optimal security against differential cryptanalysis.

Another powerful attack against block ciphers is linear cryptanalysis, intro-
duced by Matsui [12]. The property of a function which measures the resis-
tance to this kind of attack is called nonlinearity. The nonlinearity NL(F ) of an
(n,m)-function F is defined to be the minimum Hamming distance between any
component of F and any affine (n, 1)-function. An upper bound on the nonlin-
earity of any (n, n)-function can be derived, and the class of almost bent (AB)
functions is defined as the class of those functions that meet this bound with
equality and therefore provide the best possible resistance to linear attacks.

Recall that the Gold functions are APN power functions over F2n of the
form x2

s+1 for some natural number s satisfying gcd(s, n) = 1. Relaxing the
condition to gcd(s, n) = t for some positive integer t, the functions of the
form F (x) = x2

s+1 become differentially 2t-uniform, with all their derivatives
DaF (x) = F (x)+F (a+x) for a 6= 0 being 2t-to-1 functions. These functions are
permutations if and only if n/ gcd(s, n) = n/t is odd [13], and are (2t + 1)–to–1
functions otherwise. Their nonlinearity is 2n−1 − 2(n+t)/2 when n/t is odd, and
2n−1 − 2(n+2t)/2 otherwise.

In 2008, two infinite families of (n, n)-APN binomials inequivalent to power
functions were introduced in [5] for values of n divisible by 3 or by 4 as gen-
eralizations of a known sporadic APN instance over F212 [11]. These were the
first known infinite families of APN functions that are inequivalent to power
functions. It was later shown in 2012 that the family of APN binomials for n
divisible by 3 can be generalized to functions with 2t-to-1 derivatives (for some
positive integer t) with nonlinearity equal to 2n−1 − 2(n+t)/2 for n+ t even, and
2n−1 − 2(n+t−1)/2 for n+ t odd by relaxing conditions [3]. Thus, the APN bino-
mials for n divisible by 3 behave in the same way as the Gold functions from the
point of view of differential uniformity, nonlinearity and properties of the image
set.

In this paper we show that the second class of APN binomials from [5] (for
n divisible by 4) also behaves in the same way as the Gold functions in this
respect. We note that all the constructed functions (much like the APN binomi-
als) are quadratic, and are therefore not directly suitable for cryptographic use
in practice. Nonetheless, the vast majority of known APN functions are given
by a quadratic representation, but contain representatives of higher algebraic
degrees in their CCZ-equivalence class. We also consider the family of APN
quadrinomials constructed by generalizing a known APN instance over F210 [7]
and computationally verify that they provide a counterexample to this approach,



Generalization of a class of APN binomials to Gold-like functions 3

in the sense that they cannot be generalized to functions with 2t-to-1 derivatives
by relaxing conditions in a similar way for any even dimension n in the range
6 ≤ n ≤ 14.

The paper is structured as follows. In Section 2, we recall the basic defini-
tions and results that we use throughout our work. In Section 3, we compute
the differential uniformity of the generalized families of binomials; an upper
bound on their nonlinearity is then derived in Section 4. Section 5, in which we
computationally show that the APN quadrinomials constructed in [7] cannot be
generalized to 2t-uniform functions over F2n with 6 ≤ n ≤ 14, concludes the
paper.

2 Preliminaries

Let n be a positive integer. Then F2n denotes the finite field with 2n elements,
and F∗2n denotes its multiplicative group. For any positive integer k dividing n,
the trace function Trnk is the mapping from F2n to F2k defined by Trnk (x) =∑n

k−1
i=0 x2

ik

. For k = 1, the function Trn1 : F2n → F2 is called the absolute trace
over F2n and is denoted simply by Trn(x), or by Tr(x) if the dimension n is clear
from context.

Let n and m be positive integers. An (n,m)-function is any function F
from F2n to F2m . For any (n,m)-function F and for any a ∈ F2n , the func-
tion DaF (x) = F (x+ a) + F (x) is called the derivative of F in the direction a.
Let δF (a, b) denote the number of solutions of the equation DaF (x) = b for some
a ∈ F2n and b ∈ F2m . The multiset {δF (a, b) : a ∈ F∗2n , b ∈ F2m} is called the
differential spectrum of F . The differential uniformity of F is the largest value
in its differential spectrum. We say that F is differentially δ-uniform if its differ-
ential uniformity is at most δ. The differential uniformity of any (n,m)-function
is clearly always even, since if x ∈ F2n is a solution to DaF (x) = b for some
a ∈ F2n and b ∈ F2m , then so is x + a. The lowest possible differential unifor-
mity of any function is thus 2. A function with differential uniformity equal to
2 is called almost perfect nonlinear (APN). Since a low differential uniformity
corresponds to a strong resistance to differential cryptanalysis, APN functions
provide optimal security against this type of attack.

A component function of an (n,m)-function F is any function of the form x 7→
Trm(cF (x)) for c ∈ F∗2m . The component functions are clearly (n, 1)-functions.
The nonlinearity NL(F ) of F is the minimum Hamming distance between any
component function of F and any affine (n, 1)-function, i.e. any function a :
F2n → F2 satisfying a(x) +a(y) +a(z) = a(x+ y+ z) for all x, y, z ∈ F2n . Recall
that the Hamming distance between two (n, 1)-functions f and g is the number
of inputs x ∈ F2n for which f(x) 6= g(x).

An important tool for analyzing any (n,m)-function F is the so-called Walsh
transform. The Walsh transform of F is the function WF : F2m × F2n → Z
defined as WF (a, b) =

∑
x∈F2n

(−1)Trm(aF (x))+Trn(bx).
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The nonlinearity of an (n,m)-function F can be expressed as NL(F ) =
2n−1− 1

2 max
a∈F∗

2m
,b∈F2n

|WF (a, b)|. The nonlinearity of any (n, n)-function is bounded

from above by 2n−1 − 2(n−1)/2 [10]. Functions attaining this bound are called
almost bent (AB). Clearly, AB functions exist only for odd values of n; when n
is even, functions with nonlinearity 2n−1−2n/2 are known, and it is conjectured
that this value is optimal in the even case. Nonlinearity measures the resis-
tance to linear cryptanalysis; the higher the nonlinearity, the better. Thus, AB
functions provide optimal security against linear cryptanalysis when n is odd.
Furthermore, all AB functions are necessarily APN [10], so that AB functions
are optimal with respect to differential cryptanalysis as well.

Due to the huge number of (n,m)-functions for non-trivial values of n and
m, they are typically classified up to some notion of equivalence. The most
general known equivalence relation which preserves differential uniformity (and
hence APN-ness) is Carlet-Charpin-Zinoviev (or CCZ) equivalence [6, 9]. We say
that two (n,m)-functions F and F ′ are CCZ-equivalent if there is an affine
permutation A of F2n × F2m that maps the graph G(F ) = {(x, F (x)) : x ∈ F2n}
of F to the graph G(F ′) of F ′. A special case of CCZ-equivalence is extended
affine (or EA) equivalence. We say that F and F ′ are EA-equivalent if there
are affine permutations A1 and A2 of F2m and F2n , respectively, and an affine
(n,m)-function A such that F ′ = A1 ◦ F ◦A2 +A.

In [5], Budaghyan, Carlet and Leander introduced the following two infinite
families of APN binomials:

1. For n = 3k:

F3(x) = x2
s+1 + w2k−1x2

ik+2mk+s

, (1)

where s and k are positive integers such that s ≤ 4k − 1, gcd(k, 3) =
gcd(s, 3k) = 1, i = sk mod 3, m = 3 − i and w is a primitive element
of the field F2n .

2. For n = 4k:

F4(x) = x2
s+1 + w2k−1x2

ik+2mk+s

, (2)

where s and k are positive integers such that s ≤ 4k − 1, gcd(k, 2) =
gcd(s, 2k) = 1, i = sk mod 4, m = 4 − i and w is a primitive element
of the field F2n .

The first class of APN binomials (for n divisible by 3) are permutations if and
only if k is odd.

As we show below, if the condition of k being odd is omitted, the binomials
for n divisible by 4 are EA-equivalent to the Gold functions. Indeed, let k be
even. Then i = sk mod 4 is also even. If i = 2, then

F (x) = x2
s+1 + w2k−1x2

ik+2mk+s

= x2
s+1 + w2k−1x2

2k+22k+s

=

x2
s+1 + w2k−1x2

2k(1+2s) = x2
s+1 + w2k−1(x2

s+1)2
2k
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which is EA-equivalent to x2
s+1 since x 7→ x+w2k−1x2

2k

is a linear permutation.

Indeed, if x+w2k−1x2
2k

= y+w2k−1y2
2k

and x 6= y, then we must have w1−2k =

(x + y)2
2k−1 which is impossible since 22k − 1 is a multiple of 5 under the

hypothesis, whereas 2k − 1 is not.
In the same manner, if i = 0, we get

F (x) = x2
s+1 + w2k−1x2

ik+2mk+s

= x2
s+1 + w2k−1x1+2s = x2

s+1
(

1 + w2k−1
)
.

The complete Walsh spectra of the functions F3 and F4 were determined in
[2].

As previously mentioned, relaxing the conditions allows the functions F3 to
be generalized to a family of 2t-differentially uniform functions in the same way
as the Gold functions [3]. In this paper, we show how the family F4 can be
generalized to functions with 2t-to-1 derivatives in a similar way. Further, we
provide a counterexample to the question of whether this construction can be
used to generalize any family of quadratic APN functions to a family of 2t-
uniform functions: for the family of quadrinomials from [7], we computationally
verify that relaxing conditions does not lead to functions with 2t-to-1 derivatives
for t > 1 over F2n for any 6 ≤ n ≤ 14.

For background on APN functions and cryptographic Boolean functions, we
refer the reader to [4] or [8].

3 Differential uniformity

In the following theorem, we show that by relaxing the condition gcd(s, 2k) = 1
in (2) to gcd(s, 2k) = t for some positive integer t, we obtain functions over F24k

all of whose derivatives are 2t-to-1 functions.

Theorem 1. Let s, k, t be positive integers and let n = 4k. Let gcd(s, 2k) = t,
2 - k, i = sk mod 4, m = 4− i, and w be a primitive element of F2n . Then all
derivatives DaF for a ∈ F∗2n of the function

F (x) = wx2
s+1 + w2kx2

ik+2mk+s

(3)

are 2t-to-1 functions. In particular, F is differentially 2t-uniform.

Proof. We first show that for i even, F is EA-equivalent to x2
s+1. To see this,

consider two cases depending on the value of i. First, suppose i = 2. Then

F (x) = wx2
s+1 + w2kx2

2k+22k+s

= wx2
s+1 + w2k(x2

s+1)2
2k

which is EA-equivalent to x2
s+1 since x 7→ wx+w2kx2

2k

is a linear permutation.

Indeed, suppose that wx+w2kx2
2k

= wy+w2ky2
2k

for some two distinct elements

x, y ∈ F2n ; then (x+y)2
2k−1 = w1−2k which is a contradiction since the exponent

on the left-hand side is a multiple of three, while the one on the right-hand side
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is not. Finally, note that the derivatives of x2
s+1 are all 2t-to-1 functions since

gcd(s, 4k) = gcd(s, 2k) = t.
If i = 0, then

F (x) = wx2
s+1 + w2kx1+24k+s

= wx2
s+1 + w2kx1+2s = x2

s+1
(
w + w2k

)
,

which is EA-equivalent to x2
s+1 (as w is a primitive element, we have w+w2k 6=

0), and hence all of its derivatives are 2t-to-1 under the conditions on s, t and k.
We now consider the case of i odd. Both possibilities for i produce functions

in the same EA-equivalence class. For i = 1, the function (3) takes the form

F (x) = wx2
s+1 + w2kx2

k+23k+s

. (4)

Consider the function F ′ defined by

F ′(x) = F (x)2
3k

=
(
wx2

s+1 + w2kx2
k+23k+s

)23k
= wx2

2k+s+1 + w23kx2
3k(2s+1).

Clearly, F ′ is EA-equivalent to F . From the condition ks = 1 mod 4 we get k
mod 4 = s mod 4, i.e. 2k + s = 3s mod 4, hence (2k + s)k = 3sk = 3 mod 4.

Thus, denoting 2k+ s by s′, we get F ′(x) = wx2
s′+1 +w2−k

x2
3k+2k+s′

, which is
precisely the function from (3) for i = 3.

It is thus enough to prove the theorem for i = 3, i.e. for the function F (x) =

wx2
s+1 + w2kx2

3k+2k+s

.
The derivatives of F are 2t-to-1 functions if and only if the equation F (x) +

F (x+ v) = u has either 0 or 2t solutions for any u, v ∈ Fn2 , v 6= 0. The left-hand
side of this equality takes the form

F (x) + F (x+ v) =

wx2
s+1 + w2kx2

3k+2k+s

+ w(x+ v)2
s+1 + w2k(x+ v)2

3k+2k+s

=

wx2
s+1 + w2kx2

3k+2k+s

+ wx2
s+1 + wv2

s+1 + wx2
s

v + wxv2
s

+ w2kx2
3k+2k+s

+

w2kv2
3k+2k+s

+ w2kx2
3k

v2
k+s

+ w2kv2
3k

x2
k+s

=

wv2
s+1 + wx2

s

v + wxv2
s

+ w2kv2
3k+2k+s

+ w2kx2
3k

v2
k+s

+ w2kv2
3k

x2
k+s

=

w2kv2
3k+2k+s

((x
v

)23k
+
(x
v

)2k+s
)

+ wv2
s+1

((x
v

)2s
+
(x
v

))
+ wv2

s+1+

w2kv2
3k+2k+s

.

Dividing the last expression by wv2
s+1 and substituting vx for x, we get a linear

expression in x:

a
(
x2

3k

+ x2
k+s
)

+
(
x2

s

+ x
)

+ 1 + a,

where a = w2k−1v2
3k+2k+s−(2s+1). So, F (x) +F (x+ v) = u has 0 or 2t solutions

if and only if the kernel of the linear map

∆a(x) = a
(
x2

3k

+ x2
k+s
)

+
(
x2

s

+ x
)
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has 2t elements. Consider the equation ∆a(x) = 0. We use Dobbertin’s multi-

variate method and follow the computations from Theorem 2 of [5]. Let b = a2
k

and c = b2
k

. We get that

∆a(x) = 0 if and only if ab
(
bc+ 1

)2s+1(
x2

2s

+ x2
s
)

= 0,

assuming that P (a) = c(ab+ 1)2
s+1 + a2

s

(bc+ 1)2
s+1 6= 0.

We now show that bc + 1 6= 0. Clearly, bc + 1 = 0 if and only if ab + 1 = 0.

Suppose ab = 1, i.e. a2
k+1 = 1. From(

23k + 2k+s − (2s + 1)
)(

2k + 1
)

= (22k − 1)(2k + 2s) mod (24k − 1)

we get

1 = a2
k+1 =

(
w2k−1v2

3k+2k+s−(2s+1)
)2k+1

= w22k−1v(2
2k−1)(2k+2s) =(

wv2
k+2s

)22k−1
,

hence wv2
k+2s is a (22k+1)-st power of an element from F2n . On the other hand,

from ks = 3 mod 4 and 2 - k we have that k and s are odd, and k 6= s mod 4,
which means that k − s = 2p for some odd p. Thus, 2k + 2s = 2s(2k−s + 1) =

2s(22p + 1). Since p is odd, we have 5 | 22p + 1, and therefore u2
k+2s is the fifth

power of an element of the field, while wu2
k+2s is not. Thus wu2

k+2s is also
not a (22k + 1)-st power. Hence, we get a contradiction, and so we must have
ab+ 1 6= 0 and hence bc+ 1 6= 0. Therefore, we have

∆a(x) = 0 if and only if x2
2s

+ x2
s

= 0

when P (a) 6= 0.
By the statement of Theorem 1, k is odd and sk = 3 mod 4, so that s is

also odd, and from gcd(s, 2k) = t it follows that gcd(s, 4k) = t. Therefore the

equation x2
2s

+x2
s

= 0, which is equivalent to x2
s

= 1, has exactly 2gcd(s,4k) = 2t

solutions.
So we only have to show that P (a) = c(ab + 1)2

s+1 + a2
s

(bc + 1)2
s+1 does

not vanish.
Assume P (a) = 0, i.e.

c

a2s
=

(
bc+ 1

ab+ 1

)2s+1

.

We have that c
a2s

is the third power of an element of the field since 3 | 2s+1, 2n−1
(since s is odd and n is even). On the other hand,

c

a2s
= a2

2k−2s = a2
s(22k−s−1) =

(
w2k−1v2

3k+2k+s−(2s+1)
)2s(22k−s−1)

=

w(2k−1)2s(22k−s−1)v(2
3k+2k+s−(2s+1))2s(22k−s−1)
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and 23k + 2k+s − (2s + 1) = 2s(23k−s − 1) + (2k+s − 1) is divisible by 3 because
3 | 23k−s−1 and 3 | 2k+s−1 due to k and s being odd. But since k and 2k−s are

odd, we have 3 - 2k − 1 and 3 - 22k−s − 1, which means that w(2k−1)2s(22k−s−1)

is not a third power, therefore c
a2s

is not a third power either, and we get a
contradiction.

As the following proposition illustrates, the binomials from (3) also behave
in the same way as the Gold functions from the point of view of bijectivity.

Proposition 1. A function of the form (3) is a permutation if and only if it is
EA-equivalent to a 2t-differentially uniform permutation of the form x2

s+1 for
some positive integer s.

Proof. Recall that the power function x2
s+1 over F2n is 2t-uniform for some

positive integer t if and only if gcd(s, n) = t, and it is a permutation if and only
if n/t is odd.

Let F (x) = wx2
s+1 + w2kx2

ik+2mk+s

be a function satisfying the conditions
of Theorem 1. If F is a permutation, then 4k/ gcd(s, 4k) is odd. Indeed, assume
that F is a permutation and 4k/ gcd(s, 4k) is even. Since k is odd, we have that
gcd(s, 4k) should be odd or gcd(s, 4k) = 2 mod 4. If gcd(s, 4k) is odd, then so
is s, and therefore 3 | 2s + 1. Since i = (sk mod 4) and s, k are odd, then i is an
odd number, and hence (m− i)k + s is also odd; hence 3 | 2ik(1 + 2(m−i)k+s) =
2ik + 2mk+s. Thus, for any γ ∈ F22 , we have F (γx) = F (x). On the other
hand, if gcd(s, 4k) = 2 mod 4, then s is even, and therefore i is also even
due to i = sk mod 4. Hence, as we discussed in the proof of Theorem 1, F is
EA-equivalent to x2

s+1 which is not a permutation since 4k/ gcd(s, 4k) is even.
Therefore 4k/ gcd(s, 4k) is necessarily odd if F is a permutation. However, when
4k/ gcd(4k, s) is odd, gcd(4k, s) is divisible by 4, and therefore s is also divisible
by 4 since k is odd. This means that F is EA-equivalent to a 2t-differentially

uniform permutation of the form x2
l+1 for some positive integer l.

4 Magnitude of the Walsh coefficients

In following theorem, we compute an upper bound on the absolute values of the
Walsh coefficients of the functions from (3). In the proof we make use of the
following result.

Lemma 1 ([14]). Let n, l, d be positive integers such that gcd(n, s) = 1 and let

G(x) =
d∑
i=0

aix
li ∈ F2n [x]. Then the equation G(x) = 0 has at most 2d solutions.

We are now ready to present the main result of this section.

Theorem 2. Let s, k, t be positive integers and let n = 4k. Let gcd(s, 2k) = t,
2 - k, i = sk mod 4, m = 4 − i and let w be a primitive element of F2n . Then
the Walsh coefficients of the function F from (3) satisfy

|WF (a, b)| ≤ 22k+t

for any a ∈ F∗2n and b ∈ F2n .
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Proof. For simplicity, instead of F (x) = wx2
s+1 + w2kx2

ik+2mk+s

, we consider

the EA-equivalent function F ′(x) = x2
s+1 + αx2

ik+2mk+s

, where α = w2k−1.
We are going to prove the theorem for i = 3, since as we already observed

in the proof of Theorem 1, if i is even, the function F (x) is EA-equivalent to
a Gold-like differentially 2t-uniform function; and if i is odd, the functions that
we obtain for i = 1 and for i = 3 are EA-equivalent.

We have

W 2
F ′(a, b) =

∑
x

∑
y

(−1)Tr(ax+ay+bF
′(x)+bF ′(y)).

Substituting x+ y for y, we get

W 2
F ′(a, b) =

∑
x

∑
y

(−1)Tr(ax+a(x+y)+bF
′(x)+bF ′(x+y)).

By straightforward calculations, the exponent from the previous expression
becomes

Tr
(
ax+ a(x+ y) + bF ′(x) + bF ′(x+ y)

)
=

Tr
(
ay + b

(
x2

s+1 + αx2
3k+2k+s

+ (x+ y)2
s+1 + α(x+ y)2

3k+2k+s
))

=

Tr
(
ay + by2

s+1 + bαy2
k+s+23k

)
+ Tr

(
bx2

s

y + bxy2
s

+ bαx2
3k

y2
k+s

+ bαy2
3k

x2
k+s
)

=

Tr
(
ay + by2

s+1 + bαy2
k+s+23k

)
+ Tr(xL(y)),

where L(y) = (by)2
−s

+by2
s

+(bα)2
−3k

y2
s−2k

+(bα)2
3k−s

y2
2k−s

= (by)2
−s

+by2
s

+

(bα)2
2k

y2
s+2k

+ (bα)2
3k−s

y2
2k−s

is a linear function.
Thus

W 2
F ′(a, b) = 2n

∑
{y|L(y)=0}

(−1)Tr(ay+by
2s+1+bαy2

k+s+23k ).

The next step is to show that the cardinality of the kernel of L(y) is at most
22t, where t = gcd(2k, s). Following the computations of [2], we have

b2
−s+2k

L(y) + (bα)2
3k−s

L22k(y) = 0 and b2
2k

L(y) + (bα)2
k

L22k(y) = 0,

from where we get

Ay2
s

+By2
−s

+ Cy2
s+2k

= 0, (5)

B2sy2
s

+A22ky2
−s

+ Cy2
−s+2k

= 0, (6)

where

A = b2
−s+2k+1 + (bα)2

−k+23k−s

6= 0,

B = b2
−s+2−s+2k

+ (bα)2
k−s+23k−s

, and

C = b2
−s+2k+2kα2k + b2

2k+23k−s

α23k−s

6= 0,



10 Diana Davidova and Nikolay Kaleyski

with B = 0 if and only if B2s−1 is a cube.
Assume that B 6= 0, i.e. B2s−1 is not a cube. Then from (5) and (6) we get

B22sC2−s

y2
2s

+ C2−s

A22k+s

y +B2−s

C2sy2
−2s

+A2−s

C2sy = 0.

Denote the last expression by G(y). For some v 6= 0 in the kernel of G(y),
consider the expression Gv(y) = yG(y) + vG(v) + (y + v)G(y + v) , i.e.

C2sB2−s
(
y2
−2s

v + v2
−2s

y
)

+ C2−s

B22s
(
y2

2s

v + v2
2s

y
)
.

Note that the kernel of L(y) is contained in that of Gv(y). Then from Gv(y) = 0
we get

C2−s−2sB22s−1
(
y2
−2s

v + v2
−2s

y
)22s−1

= B2s−1.

If y2
−2s

v + v2
−2s

y = 0, i.e. yv−1 = (yv−1)2
2s

, then yv−1 ∈ Fgcd(2s,4k) = F22t

and therefore L(y) = 0 has exactly 22t solutions. Otherwise, if y2
−2s

v + v2
−2s

y
does not vanish, then the right-hand side of the previous equation is not a cube
by our assumption, while the left-hand side is. Hence, L(y) = 0 has exactly 22t

solutions, where t = gcd(2k, s).
Suppose now that B = 0. Following the computations of [2], the equation

L(y) = 0 becomes(
b+ (bw)2

k

v2
2k+s−2s

)
y2

s

+
(
b2
−s

+ (bw)2
3k−s

v2
2k−s−2−s

)
y2
−s

= 0.

If both coefficients (in front of y2
s

and in front of y2
−s

) in the above equation
are nonzero, then raising both sides to the power 2s, we get(

b+ (bw)2
k

v2
2k+s−2s

)2s
y2

2s

+
(
b2
−s

+ (bw)2
3k−s

v2
2k−s−2−s

)2s
y = 0.

Note that 2s = 2t st and gcd( st , 4k) = 1. Then, applying Lemma 1, we get that
L(y) = 0 has at most 22t solutions. If exactly one of the coefficients is not
zero, then the equation will have exactly one solution, namely y = 0. If both
coefficients are equal to zero, then raising them to the power of 2s and of 2−s, and

adding these powers together, we get v2
2k−1 = b2

3k−2k−s

w−2
k−s

= b1−2
3k

w−2
3k

which implies C = 0, a contradiction.
Thus, the kernel of L(y) consists of at most 22t elements, where t = gcd(2k, s),

and therefore |W 2
F (a, b)| ≤ 2n22t and |WF (a, b)| ≤ 22k+t .

The next corollary immediately follows from Theorem 2.

Corollary 1. Let s, k, t be positive integers and let n = 4k. Let gcd(s, 2k) = t,
2 - k, i = sk mod 4, m = 4 − i and let w be a primitive element of F2n . Then
the nonlinearity of the function F from (3) satisfies

NL(F ) ≤ 2n−1 − 22k+t−1.
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5 A counterexample: generalizing a family of APN
quadrinomials to 2t-uniform functions

As discussed above, both families of APN binomials from [5] can be generalized
to functions all of whose derivatives are 2t-to-1 by relaxing conditions; further-
more, the two families are obtained as generalizations of a previously unclassified
sporadic APN instance over F212 . Another sporadic APN instance, this time over
F210 , was recently also generalized into an infinite family [7]. This immediately
raises the question of whether the same approach, i.e. relaxing conditions in or-
der to obtain functions with 2t-to-1 derivatives, could be applied to the latter
family. In this section, we summarize our experimental results, which suggest
that this is impossible.

The functions in the infinite family from [7] are defined over F2n with n = 2m
with m odd such that 3 - m, and have the form

F (x) = x3 + β(x2
i+1)2

k

+ β2(x3)2
m

+ (x2
i+1)2

m+k

, (7)

where k is a non-negative integer, and β is a primitive element of F22 . It is shown
that the function in (7) is APN for i = m− 2 and i = (m− 2)−1 mod n, as well
as for i = m and i = m − 1 (however, the last two values yield functions that
are trivially EA-equivalent to known ones).

We computationally go through all functions of the form

F (x) = x2
j+1 + β(x2

i+1)2
k

+ β2(x2
j+1)2

m

+ (x2
i+1)2

m+k

(8)

with 0 ≤ i, j ≤ n− 1 for all values of n = 2m with 6 ≤ n ≤ 14, disregarding the
conditions of 3 - m and of m being odd. For each such function, we test whether
all of its derivatives are 2t-to-1 functions for some positive integer t. We restrict
ourselves to the cases k = 0 and k = 1, as the APN functions constructed for
k ∈ {0, 1} appear to exhaust all CCZ-equivalence classes [7].

Besides the already known APN functions, for k = 0, we only encounter
functions with 2t-to-1 derivatives when j = i, i.e. when all exponents are in the
same cyclotomic coset. In the case of k = 1, the only exceptions are for n = 12
where each pair (j, i) with 2 ≤ j, i ≤ 12 and i, j even yields a 22-to-1, i.e. 4-to-
1 function. However, since we do not observe other such non-trivial functions
for other dimensions n, this does not suggest that (7) can be generalized to
2t-functions in general.

These computational results constitute convincing evidence that the quadri-
nomials of the form (7) cannot be generalized to 2t-to-1 functions in the same
way as the binomials from [5].

6 Conclusion

The APN binomial x3 + αx258 over F212 was generalized in 2008 to two infinite
APN families over F2n , one for 3 | n, and one for 4 | n. The family for 3 | n
was generalized to a family of functions with 2t-to-1 derivatives in 2012 [3] by
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relaxing conditions. We have shown that the same approach can be applied
to the family for 4 | n, and have computed the differential uniformity of the
resulting functions. We have also given an upper bound on their nonlinearity,
and have shown that this construction cannot be applied to any infinite family
of quadratic APN functions by computationally verifying that the quadrinomial
family from [7] constitutes a counterexample.
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