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Abstract: In recent years, a number of machine learning models for the prediction of the skin
sensitization potential of small organic molecules have been reported and become available. These
models generally perform well within their applicability domains but, as a result of the use of
molecular fingerprints and other non-intuitive descriptors, the interpretability of the existing models
is limited. The aim of this work is to develop a strategy to replace the non-intuitive features by
predicted outcomes of bioassays. We show that such replacement is indeed possible and that as few
as ten interpretable, predicted bioactivities are sufficient to reach competitive performance. On a
holdout data set of 257 compounds, the best model (“Skin Doctor CP:Bio”) obtained an efficiency
of 0.82 and an MCC of 0.52 (at the significance level of 0.20). Skin Doctor CP:Bio is available free of
charge for academic research. The modeling strategies explored in this work are easily transferable
and could be adopted for the development of more interpretable machine learning models for the
prediction of the bioactivity and toxicity of small organic compounds.

Keywords: skin sensitization; toxicity prediction; in silico prediction; machine learning; random
forest; conformal prediction; bioactivity descriptors

1. Introduction

Substances that can induce allergic contact dermatitis after repeated contact to the
skin are called skin sensitizers [1,2]. In order to prevent the induction of skin sensitization,
exposure to skin sensitizers must be minimized [3–8]. The ability to detect and predict skin
sensitizers is therefore of significant importance for several sectors of industry to develop
safe and efficacious functional small molecules [9].

Until recent years, strategies to assess the risk of small molecules to induce skin sen-
sitization relied on animal experiments. Historically, an important animal experiment to
address skin sensitization potential is the guinea pig maximization test (GPMT), which was
used to determine the percentage of test animals that develop contact allergy symptoms
after repeated exposure to the test substance. Typically, a substance was classified as a
sensitizer if at least 15% of the guinea pigs developed allergic symptoms. The GPMT
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was later replaced by the murine local lymph node assay (LLNA) [10], an animal model
measuring the proliferation rate of cells in the draining lymph node in mice. The LLNA is
still regarded as the gold standard among the animal experiments to assess skin sensiti-
zation potential as it provides advantages concerning animal welfare (compared to other
animal models) and additional information to quantify the skin sensitization potency of
compounds (based on the EC3 value, defined as the substance concentration that induces a
3-fold stimulation of proliferation) [11,12].

Ambitious efforts are ongoing to fully replace animal experiments, and a diverse set
of alternative experimental and theoretical methods have been developed [13,14] to assess
skin sensitization potential and, to a limited degree, skin sensitization potency [15]. Among
others, these approaches include non-animal testing methods (i.e., in vitro and in chemico
assays) [16–19] and in silico methods [18–21].

Several OECD-validated non-animal testing methods address three out of four key
events of the adverse outcome pathway of skin sensitization induction: The first key event,
or molecular initiating event, describes the so-called haptenization, which is the covalent
binding of the substance to skin proteins or peptides. This is experimentally assessed by the
direct peptide reactivity assay (DPRA) [22]. The second key event, which is the activation
of keratinocytes [23], is covered by the KeratinoSens and LuSens assays, while the third key
event, which is the activation of the skin’s dendritic cells [24], is addressed, among others,
by the U937 cell line activation test (U-SENS) and the human cell line activation test (h-
CLAT). As all of these assays cover certain aspects of the adverse outcome pathway; none
of them is suitable as a standalone methodology for the prediction of the skin sensitization
potential of small molecules.

Computational methods that predict skin sensitization can be classified into expert
systems, similarity-based approaches, and (quantitative) structure–activity relationship
(QSAR) approaches [20]. These approaches offer fast predictions at low cost, enabling their
use also in early stages of research and development, where a large number of candidate
compounds may be under investigation. To be accepted as a component of regulatory risk
assessment, computational methods have to fulfill certain quality criteria. For example,
according to the OECD [25], a model should have a defined endpoint, an unambigu-
ous algorithm, a defined applicability domain, appropriate measures of goodness-of–fit,
robustness, and predictivity, and, if possible, a mechanistic interpretation.

No particular non-animal testing method or individual computational model has so
far yielded a level of performance, robustness, interpretability, and coverage to be accepted
as a standalone approach for skin sensitization prediction in the regulatory context. The
most promising strategy to advance alternative testing methods is the combination of ex-
perimental and computational tools [26] within defined approaches, integrated approaches
for testing and assessment (IATAs; for a review of IATAs and defined approaches see
Ref. [27]), or in “weight of evidence” considerations [28].

In our previous work [29], we presented Skin Doctor CP, a random forest (RF) model
for the prediction of LLNA outcomes for small molecules that complies with the above-
mentioned OECD principles to the furthest possible extent. The Skin Doctor CP model is
trained on a set of 1278 compounds annotated with binary LLNA outcomes (i.e., skin sensi-
tizer and skin non-sensitizer). To the best knowledge of the authors, this data set represents
the largest collection of high-quality LLNA data in the public domain at present. The data
set has been characterized regarding its composition and chemical space coverage [29]. The
RF model derived from this data set is wrapped into an aggregated Mondrian conformal
prediction (CP) framework, which ensures predictivity and robustness by a mathematically
founded measure of reliability [30–32]. More specifically, the CP framework guarantees an
observed prediction error of the model close to the error rate ε set by the user (this is as long
as the randomness assumption of the samples holds true; an assumption that is also made
for any classical machine learning model). The CP framework will only return a predicted
class membership for a substance if the prediction lies within the desired confidence level
1-ε. The measure of reliability offered by the CP approach can guide the use of Safety
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Assessment Factors of different levels and serve as a powerful, mathematically founded
alternative to applicability domain definitions [33].

Depending on the available data and computational capacities, different variants of
CP may be developed [34]. In the case of LLNA prediction, the data available for model
development are limited and imbalanced; hence, the use of an aggregated CP framework is
advised. The aggregated CP framework repeats the framework several times with different
proper training and calibration sets [35]. This reduces the variance in the model predictions
and allows every datapoint of the training set to be used for model development. It is
therefore best suited for modeling small data sets.

To address data imbalance in addition to data scarcity (such as in the case of the LLNA
data modeled in our previous study), the combination of the aggregated CP framework
with Mondrian CP is advised. Mondrian CP is tailored to describe imbalanced data as it
treats each of the classes independently and ensures the validity of their predictions [36–38].
This is especially beneficial in toxicity prediction, where the toxic class is usually the
minority class and therefore more difficult to predict [39].

In addition to the OECD requirement for a model to produce results with defined
reliability (which we address by using a CP framework), model interpretability is a further
key factor to consider. Model interpretability depends on the types of descriptors employed
in model building. Most of the existing models for the prediction of the skin sensitization
potential of compounds, including our Skin Doctor CP models, rely on molecular finger-
prints [29,40–42]. Interpreting these fingerprints can prove challenging, but in general,
some links between chemical patterns and the biological outcomes can be identified [43].

In an attempt to generate predictive models from physically meaningful (and hence
more intuitive) descriptors, we previously investigated the capacity of physicochemical
property descriptors to produce predictive models for the prediction of the skin sensitiza-
tion potential [44]. However, the models trained on physicochemical property descriptors
do not perform as well as those trained on molecular fingerprints, and their interpretation
is still challenging due to the high number of descriptors required to obtain models with
an acceptable performance.

Recent studies have shown that in silico models for the prediction of complex in vivo
endpoints can benefit from the inclusion of measured or predicted biological data (i.e.,
in vivo and/or in vitro data) into the feature set. More specifically, descriptive models
have been built on small sets of hand-picked biological descriptors relevant to the endpoint
of interest [45], as well as on large sets of screening data that may or may not be directly
related to the endpoint of interest [46–50]. There are several examples of in silico models,
nearest neighbor approaches in particular, that are trained on predicted bioactivities [51,52].
For example, the RASAR models [53] are RF models that predict nine health hazard end-
points (including the skin sensitization potential) based on the distances of a compound of
interest to its nearest active and inactive neighbors in reference data sets for 19 toxicological
outcomes. Another computational approach utilizes a reasoning framework to build an
information-rich network based on assay knowledge, assay data, and predicted bioactiv-
ities [54]. The visualization of this network can provide guidance to researchers for the
assessment of the safety profile of small molecules.

Recently, Norinder et al. [55] presented a CP framework that utilizes predicted bioactiv-
ities as input for in silico models for bioactivity and cytotoxicity prediction. This approach
has the advantage of improving a model’s predictivity by the use of bioactivity data with-
out the need to perform additional experimental testing for a compound of interest. A
similar methodological framework was successfully applied to three in vivo toxicological
endpoints (i.e., genotoxicity, drug-induced liver injury, and cardiological complications) by
some of us [56].

The aim of this work is to investigate the capacity of predicted bioactivities to produce
simple, interpretable machine learning models for the prediction of the skin sensitization
potential of small organic compounds without compromising on performance. In order
to reach this goal, we explored strategies to replace the molecular fingerprints (MACCS



Pharmaceuticals 2021, 14, 790 4 of 21

keys) used in Skin Doctor CP by a small set of predicted bioactivities. We selected these
predicted bioactivities using Lasso regression from a panel of 372 published CP models
for compound toxicity prediction [56] plus three new, additional models for assays of
direct relevance to skin sensitization (i.e., DPRA, KeratinoSens assay, and h-CLAT). The
final classifiers for the prediction of the skin sensitization potential of compounds were
trained on 1021 compounds. They utilize only 10 predicted bioactivity descriptors but
perform comparably to the Skin Doctor CP models. The best model (“Skin Doctor CP:Bio”)
is available free of charge for academic research purposes.

2. Materials and Methods
2.1. Data Sets and Data Processing
2.1.1. Binary LLNA Data

This work is based on the identical LLNA data set that was used for the development
of Skin Doctor CP [29]. The random split into a training set (80%) and a test set (20%)
was also preserved. The chemical structures were processed with a refined preprocessing
protocol that was developed by Garcia de Lomana et al. [56]. This protocol includes
the removal of solvents and salts, annotation of aromaticity, neutralization of charges,
and mesomerization. Substances containing (i) different components with non-identical
SMILES or (ii) fewer than four heavy atoms or (iii) elements other than H, B, C, N, O, F, Si,
P, S, Cl, Se, Br, and I were removed from the data set.

The use of the new structure preprocessing protocol led to the rejection of 7 compounds
of the training set (and none of the test set) because they do not fulfill the requirements
for molecules to be composed of at least one carbon atom and to consist of at least four
heavy atoms. The processed training set consists of 1021 compounds and the test set of
257 compounds.

2.1.2. Non-Animal Data on Skin Sensitization

For the calculation of additional bioactivity descriptors, chemical information, and
binary assay data for 194 compounds measured in the DPRA, 190 compounds measured
in the KeratinoSens assay and 160 compounds measured in the h-CLAT were collected
from Alves et al. [57]. The chemical structures were preprocessed following the proto-
col described above. Preprocessing resulted in the removal of one particular substance
(formaldehyde) that is present in all three data sets. The final KeratinoSens assay, h-CLAT,
and DPRA data sets comprised 189, 159, and 193 compounds, respectively.

2.1.3. Data for Chemical Space Analysis

In preparation for chemical space comparison, the 7030 cosmetics and 4036 agro-
chemicals included in the CompTox Chemicals Dashboard [58] and the 2509 approved
drugs included in DrugBank [59] were downloaded and processed following the protocol
described above. This resulted in a data set of 4488 cosmetics, 2433 agrochemicals, and
2227 approved drugs (the significant reductions are related to the fact that many of the
listed cosmetics and agrochemicals are either inorganic salts or without a defined molecular
structure).

2.2. Descriptor Calculation and Normalisation

A set of 750 bioactivity descriptors related to 375 predicted binary assay outcomes
was calculated for all compounds of the LLNA data set and the three reference data
sets (the number of bioactivity descriptors is double that of the predicted binary assay
outcomes because the predicted class probabilities of the active and the inactive class were
included in the descriptor set independently from each other). More specifically, class
probabilities for 372 bioactivity assays were calculated with aggregated Mondrian CP
models that we trained on bioactivity assay data collected from ToxCast [60], eMolTox [61],
the eChemPortal [62], and literature, following the identical protocol published by Garcia de
Lomana et al. [56]. In addition, predicted class probabilities for three assays relevant to skin
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sensitization prediction (i.e., DPRA, KeratinoSens assay, h-CLAT) were computed using
Mondrian CP models generated by applying the identical model generation framework
as described for the other assays [56] to the three corresponding data sets retrieved from
Alves et al. Prior to modeling, the standard scaler of the preprocessing module of scikit-
learn [63] was used (with default settings) to normalize all bioactivity descriptors. The
standard scaler was trained on the LLNA training set only and applied to the full LLNA
data set (training and test set). In addition, MACCS keys were calculated with RDKit
version 2020.09.1 [64] for all compounds in the LLNA data set.

2.3. Model Development
2.3.1. Aggregated Mondrian Conformal Prediction Modeling

In preparation for model generation, each training set was divided into a proper
training set (80%) and a calibration set (20%) by stratified random splitting utilizing the
train_test_split function of the Model_selection module of scikit-learn (data shuffling
was enabled prior to data set splitting). Then, a RF model was generated (with the
RandomForestClassifier function of scikit-learn; all parameters kept default, except for
n_estimators = 500 and random_state = 43) and applied to the corresponding calibration
and test set.

From the prediction probabilities obtained for the calibration set and the test set,
non-conformity scores (α-values) were calculated following Equation (1):

αi = 0.5−
P̂(yi|xi)−maxy 6=yi P̂(y

∣∣xi)

2
(1)

where P̂(yi|xi) is the class probability for class i returned by the model, and maxy 6=yi P̂(y|xi)
is the maximum class probability for any other class returned by the model.

The non-conformity scores of the calibration set were sorted class-wise (following the
Mondrian conformal prediction protocol), and the relative ranks of the non-conformity
scores of each compound of the test set in relation to these lists were retrieved as so-called
p-values.

Within the aggregated CP framework, the procedure was repeated for 20 times with
different stratified random splits into a proper training and calibration set, altering the
random state of the train_test_split function from 0 to 19. For every compound in the
test set, a p-value was derived during each run. The median over the p-values obtained
during all 20 runs was processed as the final p-value of the compound. The p-values denote
the probability of a compound belonging to the corresponding activity class. The model
assigns a compound to a specific activity class if the corresponding p-value exceeds the
selected error significance level ε.

2.3.2. Measurement of Model Performance

In this work, the classical performance measures (i.e., accuracy (ACC), Matthews corre-
lation coefficient (MCC) [65], correct classification rate (CCR), sensitivity (Sens), specificity
(Spec), negative predictive rate (NPV), and positive predictive rate (PPV)) are calculated
based exclusively on compounds that were assigned by the CP models to exactly one
activity class, i.e., “sensitizer” or “non-sensitizer”. This is to enable the application of
classic performance measures to CP and, at the same time, to ensure the comparabil-
ity of the classical performance measures and the results reported for classical non-CP
models elsewhere.

In contrast, the CP-specific performance measures (i.e., validity and efficiency) are cal-
culated for all models based on the full sets of compounds to fulfill the common definition
of these measures and enable the comparison with other CP models. Validity is defined as
the percentage of predictions that include the true class, independently of the prediction of
the other class (i.e., it includes “true” predictions as well as “both” predictions). A model is
deemed to be valid if the validity is close or equal to the expected value of 1-ε. Efficiency
can be understood as an equivalent to the term coverage for non-CP models. It is defined
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as the percentage of distinct predictions (i.e., predictions that predict exactly one class to
be true).

2.3.3. Feature Selection and Parameter Optimization

For feature selection (Figure 1), 10-fold cross-validation (CV) was performed on
the training set using the scikit-learn StratifiedKFold function (Model_selection module;
n_splits = 10, shuffle = True, random_state = 43).
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Figure 1. Schematic representation of the workflow for feature selection.

First, the relative importance of each feature within each fold of the CV was investi-
gated. Therefore, hyperparameters for a Lasso classifier were optimized by a 10-fold CV
within each fold of the outer CV. This was achieved with the scikit-learn LassoCV function
(Linear_model module; random_state = 43, cv = 10, max_iter = 3000, n_alphas = 200). The
optimized Lasso classifier was then used to obtain the Lasso coefficients of all bioactivity
descriptors within the corresponding fold. The relative importance of each descriptor was
calculated as the absolute value of the mean Lasso coefficient calculated over all folds of
the CV run.

Second, the optimum number of bioactivity descriptors for model generation was
determined. To do so, the 10-fold CV on the training data was repeated, this time without
feature selection with Lasso. Instead, a varying number of the most important bioactivity
descriptors (i.e., 1 to 66 descriptors; selected based on their coefficients obtained with Lasso)
were selected for model building. The mean performance during 10-fold CV in dependence
of the number of descriptors was used to select the number of features for the final model.

3. Results and Discussion
3.1. Identification of the Optimum Number of Bioactivity Descriptors for Model Building

In order to identify the most suitable number of bioactivity descriptors n for model
building, we investigated, within a 10-fold CV framework, the performance of models as a
function of the number of descriptors used (reflecting model interpretability/complexity).
Within each CV fold, we performed Lasso regression to rank the descriptors by their
corresponding Lasso coefficients (Table S1) and selected the n most important descriptors
for model building. In Figure 2, we show the improvement of model performance as more
bioactivity descriptors are added. In particular, for the first 10 descriptors, a steep increase
in MCC and efficiency is observed (see section “Measurement of model performance” of the
Methods for important information on how, and in particular on what data, the individual
performance measures are calculated). Beyond 10 descriptors, the improvements in model
performance are minor and reach a plateau at approximately 25 descriptors. This led us to
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the conclusion that models based on the 10 most relevant bioactivity descriptors offer the
best balance between model performance and complexity (Table 1). Validity is close to the
expected value of 1-ε for all the significance levels (i.e., ε = 0.05, 0.10, 0.20, and 0.30) and
numbers of descriptors (in this experiment, 1 to 66) investigated.
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Table 1. Ten-fold CV Performance of Models Based on 10 Bioactivity Descriptors 1.

Error
Significance ε Validity Efficiency ACC MCC CCR Sens Spec NPV PPV

0.05 0.95 (0.03) 0.38 (0.06) 0.88 (0.06) 0.76 (0.12) 0.88 (0.05) 0.87 (0.08) 0.89 (0.08) 0.92 (0.06) 0.85 (0.11)
0.10 0.89 (0.03) 0.61 (0.06) 0.83 (0.05) 0.66 (0.10) 0.83 (0.05) 0.83 (0.10) 0.83 (0.08) 0.88 (0.07) 0.77 (0.09)
0.20 0.79 (0.05) 0.86 (0.04) 0.76 (0.06) 0.51 (0.12) 0.76 (0.06) 0.75 (0.09) 0.77 (0.08) 0.82 (0.07) 0.69 (0.07)
0.30 0.69 (0.07) 0.92 (0.03) 0.74 (0.06) 0.47 (0.11) 0.74 (0.06) 0.72 (0.08) 0.75 (0.07) 0.79 (0.06) 0.67 (0.06)

1 Standard deviation in parentheses.

3.2. Investigation of the Ten Most Relevant Bioactivity Descriptors

With 10 identified as the optimum number of bioactivity descriptors for model build-
ing, we reiterated the above-mentioned descriptor selection process on the full training set
and analyzed the relevance and biological meaning of the 10 descriptors with the highest
absolute Lasso coefficients averaged over the 10 folds of the CV (Table 2).
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Table 2. Overview of the Top-10 Bioactivity Descriptors.

Descriptor Name Assay Title Mean Lasso
Coefficient 1

σ (Lasso
Coefficient)

Correlation to
Positive LLNA

Outcome 2

5-Fold CV Performance at
Significance Level of 0.20 Most Correlating Assays 3

Validity Efficiency MCC

p0 BSK KF3CT ICAM1 down

Bioseek human keratinocytes
and foreskin fibroblasts

intercellular adhesion molecule
1 assay

0.074 0.009 positive 0.80 0.83 0.41

BSK KF3CT SRB down (0.79)
BSK KF3CT TGFb1 down (0.78)
BSK KF3CT MCP1 down (0.78)
BSK KF3CT uPA down (0.78)

BSK hDFCGF TIMP1 down (0.77)

p1 BSK 4H uPAR down

Bioseek human umbilical vein
endothelium plasminogen

activator, urokinase receptor
assay

0.051 0.045 negative 0.81 0.82 0.46

BSK 3C uPAR down (0.83)
BSK LPS SRB down (0.81)
BSK 3C MCP1 down (0.81)

BSK 4H SRB down (0.8)
BSK SAg MCP1 down (0.8)

p0 Chromosome aberration Chromosome aberration assay 0.049 0.010 positive 0.79 0.70 0.30

Mammalian cell gene mutation (0.47)
AMES (0.41)

Inhibitors of Hepatocyte nuclear factor 4 (HNF4)
dimerization (0.35)

Modulator of Muscarinic acetylcholine receptor M4
(−0.33)

Modulator of Bradykinin B2 receptor (−0.33)

p1 DPRA Direct peptide reactivity assay 0.047 0.013 positive 0.74 0.71 0.30

h-CLAT (0.42)
Inhibitors of Hepatocyte nuclear factor 4 (HNF4)

dimerization (0.31)
KeratinoSens (0.31)

Inhibit CYP2C19 Activity (−0.29)
Modulator of Peroxisome proliferator-activated

receptor gamma (−0.29)

p1 Modulator of Dopamine
D1 receptor

Modulator of Dopamine
D1 receptor assay 0.045 0.006 positive 0.81 0.81 0.98

Modulator of Alpha-2b adrenergic receptor (0.37)
Modulator of Serotonin 1a (5-HT1a) receptor (0.32)
Modulator of Alpha-2a adrenergic receptor (0.31)

Modulator of Serotonin 2a (5-HT2a) receptor (0.31)
Modulators of myocardial damage (0.3)

p1 h-CLAT Human cell line activation test 0.043 0.013 positive 0.87 0.56 0.54

PGPinhibition (−0.48)
Caco2 (0.46)

LTEA HepaRG DDIT3 up (−0.46)
ATG TA CIS up (−0.46)

Modulator of P2X purinoceptor 3 (−0.45)
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Table 2. Cont.

Descriptor Name Assay Title Mean Lasso
Coefficient 1

σ (Lasso
Coefficient)

Correlation to
Positive LLNA

Outcome 2

5-Fold CV Performance at
Significance Level of 0.20 Most Correlating Assays 3

Validity Efficiency MCC

p1 BSK 3C
E-selectin down

Bioseek human umbilical
vein endothelium selectin

E assay
0.043 0.021 positive 0.79 0.77 0.41

BSK 3C VCAM1 down (0.82)
BSK 4H Pselectin down (0.81)
BSK 4H VCAM1 down (0.81)

BSK 3C MCP1 down (0.81)
BSK 4H SRB down (0.79)

p1 LTEA
HepaRG APOA5 dn

LifeTech/Expression
Analysis human HepaRG
apolipoprotein A-V assay

0.040 0.012 negative 0.82 0.77 0.51

LTEA HepaRG CYP4A22 dn (0.78)
LTEA HepaRG CYP4A11 dn (0.77)

LTEA HepaRG FMO3 dn (0.76)
LTEA HepaRG HMGCS2 dn (0.76)

LTEA HepaRG GSTA2 dn (0.75)

p1 KeratinoSens ARE-Nrf2 Luciferase
test method

0.039 0.004 positive 0.82 0.51 0.31

DPRA (0.31)
h-CLAT (0.31)

Inhibitors of Hepatocyte nuclear factor 4 (HNF4)
dimerization (0.29)

Inhibit CYP1A2 Activity (0.27)
Modulator of Monoamine oxidase A (0.27)

p0 ATG NRF2 ARE CIS up
Attagene human

HepG2 nuclear factor,
erythroid 2-like 2 assay

0.036 0.014 positive 0.81 0.87 0.55

ATG PPARg TRANS up (0.67)
ATG VDRE CIS up (0.66)
ATG MRE CIS up (0.65)

ATG PXR TRANS up (0.64)
ATG AP 1 CIS up (0.64)

1. Mean over the 10 folds of the CV. Note that the feature importance rankings of the Lasso model and the RF model may differ. 2. Correlation of the positive assay outcomes and the skin sensitization potentials
measured in the LLNA. Since the probability of a compound to belong to the inactive class (p0) or the active class (p1) in a given assay are strongly correlated, either p0 or p1 is selected as an important descriptor
by the Lasso model for that assay. Depending on whether p0 or p1 has been selected, and depending on the algebraic sign of the mean Lasso coefficient, a positive predicted assay outcome can either be associated
with a positive or a negative LLNA result (i.e., if p0 has a positive correlation with the LLNA result this describes anticorrelation between the positive outcome of both endpoints). 3. Numbers in parentheses
report the Kendall τ correlation coefficients between the descriptor and the (most) correlated assay. The full names of the assays are provided in Table S2.
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The bioactivity descriptor ranked first by the Lasso model is the ToxCast assay “BSK
KF3CT ICAM1 down” (Lasso coefficient 0.074). This feature describes the expression
of ICAM1 in human keratinocytes. This ToxCast assay is observed to correlate with
predictions for other keratinocytes and foreskin assays from the ToxCast BSK family
(Kendall τ correlation coefficients between 0.77 and 0.79). The ICAM1 readout is also known
as CD54, which is a readout of the skin sensitization-related h-CLAT. The underlying model
shows good predictivity (validity = 0.80, efficiency = 0.83, MCC = 0.41 at the significance
level of 0.20) The nine further bioactivity descriptors all have similar Lasso coefficients,
between 0.036 and 0.051 (validities between 0.74 and 0.87; efficiencies between 0.51 and
0.87; MCCs between 0.30 and 0.98, respectively). Among these are the three assays that we
added to the descriptor set because of their direct relevance to skin sensitization: DPRA,
KeratinoSens assay, and h-CLAT. As expected, a direct correlation between a positive
outcome in any of these three assays and the probability of a compound being a skin
sensitizer is identified by the Lasso model. The fact that these assays do not show a
high correlation with any other bioactivity descriptors within our full set of descriptors
underlines the fact that these descriptors may add important additional information on
the skin sensitization potential of compounds. The models predicting these bioactivity
descriptors are built on comparably small data sets (<200 compounds). This is reflected by
a higher deviation of the significance of these models from the expected value of 0.80 at the
investigated significance level of 0.20, compared to the other models. The MCCs of these
models are between 0.30 and 0.54.

The ToxCast assay “ATG NRF2 ARE CIS up” describes the activation of NRF2 in
human liver cells. Being the fundamental concept of keratinocyte activation analysis via
KeratinoSens and LuSens assay, Nrf2 activation is known to play a vital role in the regula-
tion of cellular cytoprotective responses, metabolism, and immune regulation. Included
in the top-10 features are also the ToxCast assays “BSK 3C E-selectin down” and “BSK
4H uPAR down”, both of which describe inflammation-related biological processes in the
endothelium environment. As such, these assays might encode aspects of the immunologi-
cal response of the human body. “BSK 3C E-selectin down” correlates with other assays
associated with inflammation and immune reaction and which are often located in the
endothelium. While it shows a positive correlation with the skin sensitization potential
(which might indicate an activation of compounds or increased bioavailability), “BSK
4H uPAR down” is one out of only two bioactivity descriptors (among the top-10 fea-
tures) that show negative correlation with the skin sensitization potential. This assay may
therefore report processes involving the deactivation of a compound or the reduction of
its bioavailability.

The chromosome aberration assay may not be directly linked to skin sensitization, but
it may be relevant to the detection of reactive compounds. The feature is weakly correlated
with other assays that are linked to the detection of reactive molecules (e.g., mammalian cell
gene mutation assay or AMES mutagenicity assay). Chromosome aberration predictions
show no strong correlation with any other descriptors in the set of models.

3.3. Coverage of the Chemical Space Relevant to the Development of Cosmetics, Drugs
and Agrochemicals

In order to develop an understanding of to what extent the LLNA data set, which we
will use to develop the in silico models, represents drugs, cosmetics, and agrochemicals in
the feature space defined by the ten selected bioactivity descriptors, a principal component
analysis (PCA) was performed on the LLNA data set and the reference sets. As shown in
the PCA scatter plot in Figure 3 (PCA loadings plot provided in Figure S1), the LLNA data
set covers well the areas in feature space populated by cosmetics, approved drugs, and
agrochemicals.



Pharmaceuticals 2021, 14, 790 11 of 21

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 11 of 22 
 

 

3.3. Coverage of the Chemical Space Relevant to the Development of Cosmetics, Drugs and 
Agrochemicals 

In order to develop an understanding of to what extent the LLNA data set, which we 
will use to develop the in silico models, represents drugs, cosmetics, and agrochemicals 
in the feature space defined by the ten selected bioactivity descriptors, a principal compo-
nent analysis (PCA) was performed on the LLNA data set and the reference sets. As 
shown in the PCA scatter plot in Figure 3 (PCA loadings plot provided in Figure S1), the 
LLNA data set covers well the areas in feature space populated by cosmetics, approved 
drugs, and agrochemicals. 

 
Figure 3. PCA quantifying the coverage of the LLNA data by the reference sets of (A) cosmetics, (B) approved drugs, and 
(C) agrochemicals in the feature space of the 10 selected bioactivity descriptors. The percentages in parentheses report the 
variance explained by the respective principal component (PC). 

3.4. Analysis of the Distribution of Sensitizers and Non-Sensitizers in the Feature Space of the 
Ten Selected Bioactivity Descriptors 

To investigate the distribution of sensitizers and non-sensitizers within the feature 
space of the ten selected bioactivity descriptors, another PCA was performed, this time 
exclusively on the compounds of the LLNA data set (Figure 4). Three characteristic areas 
can be identified in the scatter plot resulting from this PCA (Figure 4A): Area 1, covering 
mainly sensitizers; Area 2, covering mainly non-sensitizers; and Area 3, showing intense 
mixing of sensitizers and non-sensitizers. 

 
Figure 4. LLNA data set analyzed by PCA in the feature space of the ten selected bioactivity de-
scriptors. (A) Scatter plot colored by the binary skin sensitization potential; (B) loadings plot of the 
ten descriptors. The percentages in parentheses report the variance explained by the respective prin-
cipal component (PC). Note that the axis sections differ for panels (A,B). 

Figure 3. PCA quantifying the coverage of the LLNA data by the reference sets of (A) cosmetics, (B) approved drugs, and
(C) agrochemicals in the feature space of the 10 selected bioactivity descriptors. The percentages in parentheses report the
variance explained by the respective principal component (PC).

3.4. Analysis of the Distribution of Sensitizers and Non-Sensitizers in the Feature Space of the Ten
Selected Bioactivity Descriptors

To investigate the distribution of sensitizers and non-sensitizers within the feature
space of the ten selected bioactivity descriptors, another PCA was performed, this time
exclusively on the compounds of the LLNA data set (Figure 4). Three characteristic areas
can be identified in the scatter plot resulting from this PCA (Figure 4A): Area 1, covering
mainly sensitizers; Area 2, covering mainly non-sensitizers; and Area 3, showing intense
mixing of sensitizers and non-sensitizers.
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The corresponding loadings plot (Figure 4B) places the bioactivity descriptors for
the three skin sensitization assays (h-CLAT, DPRA, and KeratinoSens assay) and the
chromosome aberration assay in quadrant 2 (upper left). All four of these assays contribute
positively to PC2 and, to a lower degree, negatively to PC1. Since a positive outcome
in one or several of the skin sensitization assays should be correlated with a positive
skin sensitization potential, this is in agreement with the PCA scatter plot showing a
high accumulation of sensitizers in the upper left region. Since a positive outcome in the
chromosome aberration assay is likely correlated with a reactive compound, it is also within
the expectations that it will shift a compound towards this Area 1 in the PCA scatter plot.
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For the remaining six bioactivity descriptors, higher PC1 and PC2 values are expected
for compounds that are active in the corresponding assay. Thus, all ten bioactivity de-
scriptors contribute positively to PC2. This means that every compound predicted to be
positive in those bioactivity assays is moved towards Area 1 or 3 in the scatter plot. This
comes along with the increased probability of a compound to be a skin sensitizer (i.e., to be
located in Area 1). At the same time, every negative predicted assay outcome moves the
compound towards Area 2, where we mainly expect non-sensitizers to be located, or Area
3, where no prevalence in activity is detected. This positive contribution to PC2 is higher
for KeratinoSens, DPRA, chromosome aberration, h-CLAT, and ATG NRF2 than for the
other five bioactivity descriptors. In Area 3, we observe intense mixing of skin sensitizers
and non-sensitizers, hence posing a significant challenge to classification.

3.5. Model Based on Ten Selected Bioactivity Descriptors

Following the identification of the optimum model setup, a final, aggregated Mondrian
CP model based on the ten selected bioactivity descriptors was derived from the full
training set and evaluated on the holdout data set. From here on, we refer to this model as
the SkinDoctor CP:Bio model.

3.5.1. Performance on the Test Set

Within the standard deviation expected from CV, the SkinDoctor CP:Bio model was
valid at all four significance levels investigated (Table 3). The efficiencies of the model
ranged from 0.39 to 0.95 and the MCCs ranged from 0.72 to 0.49, depending on the
significance level.

Table 3. Performance of the model based on ten selected bioactivity descriptors on the test set.

Error Significance ε Validity Efficiency ACC MCC CCR Sens Spec NPV PPV

0.05 0.95 0.39 0.86 0.72 0.86 0.84 0.88 0.88 0.84
0.10 0.89 0.56 0.81 0.62 0.81 0.85 0.77 0.88 0.74
0.20 0.81 0.82 0.76 0.53 0.77 0.80 0.74 0.83 0.69
0.30 0.70 0.95 0.74 0.49 0.75 0.78 0.72 0.82 0.67

Class-wise performance analysis (Table 4) showed that the SkinDoctor CP:Bio model
was valid for sensitizers and non-sensitizers at all significance levels investigated. The
largest difference in validity between the two classes (0.08) was observed at the significance
level of 0.30. Efficiency was in general similar for both classes (largest difference 0.04).

Table 4. Class-wise performance of the model based on ten selected bioactivity descriptors on the
test set.

Error Significance ε Class Validity Efficiency

0.05
Non-sensitizer 0.95 0.38

Sensitizer 0.93 0.41

0.10
Non-sensitizer 0.87 0.55

Sensitizer 0.92 0.58

0.20
Non-sensitizer 0.79 0.82

Sensitizer 0.83 0.82

0.30
Non-sensitizer 0.67 0.94

Sensitizer 0.75 0.95

3.5.2. Comparison of the New Model with the Skin Doctor CP Model

The previously developed Skin Doctor CP model [29] is trained on MACCS keys
(166 features), whereas the Skin Doctor CP:Bio model is trained on ten selected bioactivity
descriptors. All other differences in the data and protocols used for model building and
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testing are minor (Table S3), thus enabling a direct, comparative assessment of the two
feature types and their impact on model performance and behavior.

On the holdout data set of 257 compounds measured in the LLNA (none of these
compounds is part of the training set of either model), both the Skin Doctor CP model and
the Skin Doctor CP:Bio model were valid at all significance levels investigated. For the sake
of clarity, we focus our discussion here on the commonly applied significance level of 0.20;
performance data on all significance levels are provided in Table S4. At the significance level
of 0.20, the Skin Doctor CP and Skin Doctor CP:Bio models yielded validities of 0.82 and
0.81, respectively. The efficiencies (0.78 vs. 0.82) and MCCs (0.55 vs. 0.53) obtained for the
Skin Doctor CP and Skin Doctor CP:Bio models were also comparable. The differences in
performance between the two models are slightly above the standard deviation observed
for the 10-fold CV experiments but small enough to consider the performance of the two
models similar.

3.6. Combination of Bioactivity Descriptors with MACCS Keys in an Attempt to Improve
Model Performance

MACCS keys encode structural patterns of molecules and thus information that is
very different from that encoded by the bioactivity descriptors. The use of MACCS keys in
combination with the ten selected bioactivity descriptors could hence yield better models.
However, a RF model derived from the combined set of MACCS keys and the ten selected
bioactivity descriptors (n_estimators = 500; all other parameters default) did not yield
better performance on the test set.

Therefore, we generated a model trained exclusively on MACCS keys plus a model
trained exclusively on the ten selected bioactivity descriptors (both models with
n_estimators = 500; all other parameters default), and, based on a simple set of rules
(see Figure 5), combined both models to form a consensus model. This set of rules follows
the idea that only unambiguous predictions by the single models (i.e., predictions assigning
a compound to exactly one class) are considered. If one model returns an unambiguous
prediction or if both models return an unambiguous prediction and are in agreement, the
unambiguous prediction is reported as the final result. In all other cases, the consensus
model does not return a prediction.
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Table 5 reports on the performance of this consensus model at different error signifi-
cance levels. Note that because the consensus model does not fulfill the definitions of a
pure CP model, validity and efficiency cannot be calculated for this model.

Table 5. Performance of the consensus and the combined models on the test set.

Consensus Model Based on a Set of Rules

Error significance ε 1 Coverage ACC MCC CCR Sens Spec NPV PPV

0.05 0.51 0.86 0.72 0.86 0.84 0.88 0.88 0.84
0.10 0.71 0.79 0.59 0.80 0.83 0.77 0.88 0.70
0.20 0.89 0.77 0.54 0.78 0.82 0.73 0.85 0.68
0.30 0.83 0.78 0.56 0.79 0.85 0.72 0.88 0.68

Combined Model Based on Mean p-Values

Error significance ε Validity Efficiency ACC MCC CCR Sens Spec NPV PPV

0.05 0.97 0.24 0.89 0.77 0.89 0.92 0.86 0.94 0.82
0.10 0.93 0.46 0.86 0.72 0.87 0.94 0.80 0.95 0.76
0.20 0.82 0.79 0.77 0.56 0.78 0.85 0.72 0.87 0.69
0.30 0.71 0.95 0.75 0.50 0.76 0.80 0.72 0.84 0.66

1 Error significance of the underlying model, not of the combined model itself.

When running the two CP models underlying the consensus approach at a significance
level of 0.20, the consensus approach reached a coverage of 0.89 and an MMC of 0.54. Hence,
compared to the Skin Doctor CP:Bio model (efficiency 0.82 and MCC 0.53 at a significance
level of 0.20), the consensus model obtained only slightly better coverage while maintaining
the MCC.

A second, combined, model was constructed by averaging the p-values returned for
each class by the model based on MACCS keys and the model based on bioactivity descrip-
tors. The model was valid to over-predictive at the four significance levels investigated. At
the significance level of 0.20, the validity was 0.82. The efficiency at this significance level
was 0.79 (vs. 0.82 for the Skin Doctor CP:Bio model) and the MCC was 0.56 (vs. 0.53 for
the Skin Doctor CP:Bio model). Hence, compared to the Skin Doctor CP:Bio model, this
combined model obtains a slightly higher MCC, at the cost of efficiency.

In order to obtain a better understanding of the advantages and disadvantages of the
two combined models over the single models, we investigated the relationship between
classification performance (MCC) and coverage. From Figure 6, it can be seen that the
combined models tend to obtain better MCC values at a given coverage than the single
models. At higher coverages, the combined model based on averaged p-values has slightly
better MCCs than the combined model based on the set of rules. A further advantage of
the combined model based on p-value averaging is that users can select a confidence level;
this is not possible with the combined model based on the set of rules.

Overall, the p-value averaging approach seems to be preferable over the rule-based
approach. Compared to the single model (i.e., the Skin Doctor CP:Bio model), the advan-
tages of the combined approach with respect to performance are outweighed by the fact
that the single model has much lower complexity and, hence, better interpretability.
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3.7. Investigation of the Influence of Experimental Skin Sensitization Assay Results on Predictivity

Feature selection with Lasso and the RF algorithm identified the three bioactivity de-
scriptors derived from the three skin sensitization-specific assays (i.e., DPRA, KeratinoSens
assay, h-CLAT) as important for modeling the LLNA. In order to obtain a better under-
standing of the role and significance of these three bioactivity descriptors, we investigated
them from different perspectives.

First, we determined the (5-fold) CV performance of the CP models for the DPRA,
KeratinoSens assay, and h-CLAT descriptors on the (i) 194 compounds measured in the
DPRA, (ii) 190 compounds measured in the KeratinoSens assay, and (iii) 160 compounds
measured in the h-CLAT. The KeratinoSens and h-CLAT models (Table 6) were valid at a
significance level of 0.2 (validities of 0.82 and 0.87, respectively) while the DPRA model
showed a slight underperformance (validity 0.74). The efficiencies of the models were fairly
low (0.51 to 0.71) in comparison to most of the other CP models for bioactivity prediction.
We assume that the low efficiency is related to the fact that the training sets for these
CP models are small (<200 compounds). The other evaluated performance measures are
within expectations (e.g., MCC between 0.30 and 0.54). Overall, we conclude from these
results that the predicted assay outcomes from these three models could make a substantial
contribution to models predicting the skin sensitization potential.

Table 6. Five-fold CV performance of the CP models for DPRA, KeratinoSens assay, and h-CLAT at the significance level
of 0.20 1.

Assay to be
Predicted

No. Compounds
in Data Set Validity Efficiency ACC ACC

(Sensitizers)
ACC (Non-
Sensitizers) F1 Score MCC

DPRA 194 0.74 (0.09) 0.71 (0.14) 0.64 (0.07) 0.60 (0.06) 0.69 (0.20) 0.64 (0.07) 0.30 (0.18)
KeratinoSens 190 0.82 (0.11) 0.51 (0.08) 0.67 (0.19) 0.66 (0.24) 0.68 (0.23) 0.64 (0.19) 0.31 (0.35)

h-CLAT 160 0.87 (0.03) 0.56 (0.56) 0.78 (0.05) 0.76 (0.15) 0.75 (0.29) 0.74 (0.06) 0.54 (0.08)
1 Standard deviation in parentheses.

Second, we investigated (by 10-fold CV on the full LLNA data set) whether the high
importance attributed by Lasso to the skin sensitization-specific assays could be a result of
overlaps in the training or test data of the LLNA model (SkinDoctor CP:Bio model) and
the training data of the DPRA/KeratinoSens assay/h-CLAT models. For the overlapping
compounds, the p-values used as bioactivity descriptors should be accurate (since the
experimental value of the in vitro assays is known) and therefore more informative. In
order to investigate this, we determined the performance of the SkinDoctor CP:Bio model in



Pharmaceuticals 2021, 14, 790 16 of 21

dependence of the number of compounds overlapping between the LLNA data set (i.e., the
test data within each fold) and the training data of the DPRA/KeratinoSens assay/h-CLAT
models. We found that six compounds of the LLNA data set were present also in exactly
one of the DPRA/KeratinoSens assay/h-CLAT training sets, 45 compounds were present
in exactly two of these assays, and 132 compounds in each of these three assays. Note that
the number of compounds present in the LLNA data set and in exactly one of the three
non-animal assay data sets is too low to make any meaningful observations, for which
reason this case was not further pursued. For the remaining two subsets of compounds,
the performances of the models were comparable to each other as well as to the subset
containing the compounds that are not present in any of three assay data sets (Table 7).
For this reason, we are confident that the importance attributed to the predicted DPRA,
KeratinoSens assay, and h-CLAT outcomes is genuine and not a result of a bias in the data.

Table 7. Performance of the SkinDoctor CP:Bio model during 10-fold CV on the full LLNA data set in dependence of the
number of skin sensitization assays for which experimental data are available.

Error
Significance ε Validity Efficiency MCC Validity Efficiency MCC Validity Efficiency MCC

For Compounds Exclusive to the
LLNA Data Set

For Compounds Present in the LLNA Data Set Plus Exactly
Two Three

of the DPRA/KeratinoSens Assay/h-CLAT Training Sets

0.05 0.97 0.33 0.77 0.98 0.44 0.79 0.98 0.45 0.77
0.10 0.91 0.56 0.64 0.96 0.62 0.74 0.93 0.65 0.67
0.20 0.81 0.83 0.52 0.91 0.84 0.66 0.86 0.81 0.51
0.30 0.69 0.94 0.45 0.82 0.93 0.68 0.73 0.93 0.42

Third, we tested the capacity of a model trained only on DPRA, KeratinoSens assay,
and h-CLAT assay data to predict the outcomes of the LLNA. This experiment is particularly
interesting because a number of existing in silico models for the prediction of the skin
sensitization potential are trained exclusively on data from these three assays [66–68].

In five-fold CV, our CP model trained exclusively on DPRA, KeratinoSens assay, and
h-CLAT assay data descriptors (n_estimators = 500; all other parameters default) was valid
at all error significance levels investigated (Table 8), but its efficiency (0.21 at ε = 0.05;
0.88 at ε = 0.30) and MCC (0.48 at ε = 0.05; 0.37 at ε = 0.30) were substantially lower than
those of the CP model derived from the ten selected bioactivity descriptors. These results
indicate that the bioactivity descriptors derived from other assays add relevant, additional
information to the models that is needed to obtain good classifiers.

Table 8. Test set performance of the classifier trained exclusively on predicted values of the DPRA, KeratinoSens and
h-CLAT assays.

Error Significance ε Validity Efficiency ACC MCC CCR Sens Spec NPV PPV

0.05 0.94 0.21 0.71 0.48 0.72 0.92 0.52 0.88 0.63
0.10 0.90 0.40 0.75 0.51 0.76 0.82 0.69 0.84 0.67
0.20 0.80 0.70 0.72 0.44 0.72 0.76 0.69 0.81 0.61
0.30 0.72 0.88 0.68 0.37 0.69 0.71 0.66 0.78 0.59

3.8. Impact of the Limitation of the Available Experimental Data on Model Performance

Most of the freely available models for the prediction of the skin sensitization potential
of small molecules are trained on LLNA data, and the evaluation reports for many of these
models indicate that their performance is comparable [29,40,44,57]. It is plausible that the
observed plateauing of model performance is related to the limited quantity and quality of
the data available for model development. In order to investigate whether our classifiers
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could benefit from additional LLNA data, we investigated the relationship between model
performance and the size of the training data.

As expected, and shown in Figure 7, the performance of models increases with the
number of training instances, regardless of the type of descriptors used. The MCCs of the
models based on bioactivity descriptors improve from an average of 0.41 to an average of
0.50, respectively. Consistent with our initial CV experiments, the use of more than ten
bioactivity descriptors yields minor improvements in model performance that we believe
are outweighed by higher model complexity.
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The MCC of the model based on MACCS keys improves from 0.28 (when trained on
115 compounds) to 0.47 (when trained on 1150 compounds), indicating that the models
trained on MACCS keys require substantially more training data than the models trained on
bioactivity descriptors to obtain good performance. In this particular case, the MACCS keys
model reaches a comparable performance to the model based on bioactivity descriptors
only when all the available LLNA data are used for modeling. This leaves the MACCS keys
model clearly more data-hungry than the models based on predicted bioactivities, with
the benefit of showing the potential to surpass the model based on predicted bioactivities
given the availability of sufficient amounts of data.

4. Conclusions

In this work, we report on the development and validation of a new machine learning
model for the prediction of the skin sensitization potential of small organic molecules: Skin
Doctor CP:Bio. Whereas the previously reported models are mostly based on molecular
fingerprints (which in general are difficult to interpret), Skin Doctor CP:Bio utilizes just
ten bioactivity descriptors to reach competitive performance. Most of these bioactivity
descriptors are known to be directly or indirectly linked to skin sensitization, which adds
to the interpretability of the model and supports its meaningfulness.

At the significance level of 0.20, Skin Doctor CP:Bio obtained an efficiency of 0.82 and
an MCC of 0.53 on the holdout data set of 257 compounds. These results demonstrate
the good performance of the model and, hence, the relevance of the selected bioactivity
descriptors. Analysis of the LLNA training data projected into the new feature space
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proves that cosmetics, drugs, and agrochemicals are well embedded in the data, hence
corroborating the relevance of the model to different industries.

In an attempt to further improve model performance and coverage, we explored
different strategies to exploit the information contained in molecular fingerprints (MACCS
keys) and biological descriptors. The models obtained from these experiments showed
minor improvements in performance that are outweighed by the costs of higher model
complexity and limited interpretability.

An important observation to make was that models based on MACCS keys are clearly
more data-hungry than models based on predicted bioactivities. Only when using all of the
available LLNA data, the model based on MACCs keys was able to catch up with the model
based on predicted bioactivities. This highlights the relevance of the presented approach
to the development of strategies to address the many questions in biology, pharmacology,
and toxicology where measured data are scarce. We believe that the modeling strategies
presented in this work could be easily adopted to address many of these research questions.
The Skin Doctor CP:Bio model is available free of charge for academic research purposes.
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Abbreviations

ACC accuracy
CCR correct classification rate
CP conformal prediction
CV cross validation
DPRA direct peptide reactivity assay
GPMT guinea pig maximization test
h-CLAT human cell line activation test
IATA integrated approach for testing and assessment
LLNA local lymph node assay
MCC Matthews correlation coefficient
NPV negative predictive rate
PC principal component
PCA principal component analysis
PPV positive predictive rate
(Q)SAR (quantitative) structure activity relationship
RF random forest
Sens sensitivity
Spec specificity
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