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Abstract: Several experimental studies have shown significant improvement in heavy oil recovery
with polymers displaying different types of rheology, and the effect of rheology has been shown
to be important. These experimental studies have been designed to investigate why this is so by
applying a constant flow rate and the same polymer effective viscosity at this injection rate. The
types of rheology studied vary from Newtonian and shear thinning behavior to complex rheology
involving shear thinning and thickening behavior. The core flood experiments show a significantly
higher oil recovery with polyacrylamide (HPAM), which exhibits shear thinning/thickening behavior
compared to biopolymers like Xanthan, which is purely shear thinning. Various reasons for these
observed oil recovery results have been conjectured, but, to date, a clear explanation has not been
conclusively established. In this paper, we have investigated the theoretical rationale for these results
by using a dynamic pore scale network model (DPNM), which can model imbibition processes (water
injection) in porous media and also polymer injection. In the DPNM, the polymer rheology can
be shear thinning, shear thinning/thickening, or Newtonian (constant viscosity). Thus, the local
effective viscosity in a pore within the DPNM depends on the local shear rate in that pore. The
predicted results using this DPNM show that the polymer causes changes in the local flow velocity
field, which, as might be expected, are different for different rheological models, and the changes in
the velocity profile led to local diversion of flow. This, in turn, led to different oil recovery levels in
imbibition. However, the critical result is that the DPNM modelling shows exactly the same trend as
was observed in the experiments, viz. that the shear thinning/thickening polymer gave the highest
oil recovery, followed by the Newtonian Case and the purely shear thinning polymer gave the lowest
recover, but this latter case was still above the waterflood result. The DPNM simulations showed
that the shear-thinning/thickening polymer show a stabilized frontal velocity and increased oil
mobilization, as observed in the experiments. Simulations for the shear-thinning polymer show that,
in high-rate bonds, the average viscosity is greatly reduced, and this causes enhanced water fingering
compared to the Newtonian polymer case. No other a priori model of the two-phase fluid physics of
imbibition, coupled with the polymer rheology, has achieved this degree of predictive explanation, of
these experimental observations, to our knowledge.

Keywords: polymer rheology; viscous oil; pore network modelling; pore scale; enhanced oil recovery

1. Introduction

Polymer flooding is a mature, enhanced oil recovery (EOR) method applied to improve
the mobility ratio between oil and the injected aqueous fluid, and, thus, increase volumetric
sweep efficiency [1]. Water-soluble polymers are added to the injection water to increase
the viscosity of the injected solution, which reduces the water-oil mobility ratio.

More recently, it has been found that polymer flooding is very efficient even for oil
recovery of extra heavy viscous oil [2]. For example, polymer flooding applied in Pelican
Lake showed accelerated oil production at a very adverse mobility ratio. Many other stud-
ies have investigated the application of polymer flooding for such heavy viscous oils [3–12].
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These studies definitively established that, contrary to the conventional displacement the-
ory, significant incremental oil could be produced by injecting the polymer in very viscous
oils and this oil was produced in an accelerated manner. This acceleration has recently
been shown to occur by viscous crossflow of oil into established water fingers [8,13,14].

Polymer solutions are non-Newtonian fluids, which means that the effective viscosity
of a given polymer solution is dependent on the details of the flow conditions [15], and this
is especially true in the complex flow field within a porous medium [16]. Two main types of
polymers are used for EOR purposes: the synthetic polymer partially hydrolyzed polyacry-
lamide (HPAM) and the biopolymer xanthan. Biopolymers such as xanthan only exhibit
Newtonian and shear-thinning behavior [1]. However, due to its elasticity, HPAM shows
both shear thinning at lower flow rates and also shear-thickening behavior at moderate to
high flow velocities in porous media [17]. We refer to this as shear thinning/thickening
behavior. Since the earliest days of polymer flooding, HPAM has been, by far, the most
widely used material in the polymer flooding field and pilot projects [18].

There have been several studies on the effect of polymer flooding with different
rheological properties on oil recovery, both at the core scale [19–22] and in micro-model
channels [23,24]. Some experimental results found lower residual oil with the polymer [25]
and such results in numerical studies have attributed these findings to viscoelastic and shear
thickening effects [26–28]. Studies in China related to polymer application in the Daqing
field stated that the elastic properties of the polymer solution increased the oil recovery in
porous media with no increase in the pressure gradient and that the oil recovery of HPAM
is higher than that of xanthan [22]. Vermolen et al. (2014) [20] conducted polymer flooding
experiments using the same in-situ viscosity and flooding rate and observed a reduction
in residual oil saturation when injecting a highly viscoelastic polymer in cores with low
viscosity oil. However, they did not observe a reduction when high viscosity oil or low
viscosity elastic polymers were used. These workers did not include Newtonian (glycerol)
flooding experiments in their study. Levitt et al. (2013) [6] found that HPAM nearly doubled
the tertiary oil recovery compared to injection of xanthan and Newtonian fluid (Sucrose
solution). Vik et al. (2018) [21] utilized in-situ saturation measurements in their sandstone
slab flooding experiments to characterize the water/polymer oil displacements in great
detail. The results showed a difference in the displacement pattern for HPAM compared to
xanthan (shear thinning) and Newtonian fluids with same effective viscosity within the
porous medium.

Clark et al. (2016) [23] published a study suggesting that elastic turbulence was the
main reason for the reduction in residual oil saturation for HPAM compared to xanthan,
due to the generated fluctuating pressure field, which, in turn, destabilize trapped oil.
De et al. (2018) [24] extended this study and found that viscoelastic polymers could dis-
place more oil compared to Newtonian fluids and nearly inelastic shear-thinning polymers
at similar capillary numbers. It is of key importance to understand the effect of polymer
rheology on multiphase flow of polymers in porous media. This is both of scientific and
commercial importance since HPAM is being applied in the polymer flooding of a number
of fields around the world.

The aim of the study is to explain why polymers with different rheological behav-
ior, but the same average (or effective) viscosity within the porous medium, show large
changes in oil recovery. The change in microscopic displacement efficiency has earlier
been attributed to viscoelastic properties of some polymers. Here, we are addressing the
impact of a shear viscosity relationship on frontal displacement and possible local fluid
microscopic diversion of the injected fluids. These local flow properties need to be studied
at the pore level and we have used our recent developed dynamic pore network model
(DPNM) designed to handle variation in polymer rheology properties [29–31].

In more detail, we compare water (Newtonian fluid) injection with six fluids with
increased viscosity, i.e., xanthan polymer solution (Newtonian/shear-thinning), glyc-
erol (Newtonian fluid), and HPAM polymer solution (Newtonian/shear-thinning/shear-
thickening). The pore network model used in this paper is a dynamic imbibition model
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based on the work of Li et al. (2016, 2017) [30,31] as extended by Zamani et al. (2019) [29].
“Dynamic” in this context means unsteady state modelling of the imbibition (water in-
jection) process. This model includes both piston-like and film flow/snap-off pore scale
processes and the effects of both viscous and capillary forces are included. The dynamic
behavior of the network model is essential to model the effects of rheology, since it is the
polymer rheology, which changes the local balance between the viscous/capillary forces
that allows fluid microscopic diversion, and, hence, improved incremental recovery, to
emerge. For more details and a full description of the dynamic water flood network code,
we refer to the PhD thesis by Li (2016) [31], and, for the polymer implementation, we refer
to the Appendix A and the paper by Zamani et al. (2019) [29].

2. Experimental Data Used from Literature

In this paper, we utilize experimental data from previously reported viscous oil
displacement experiments (µo ≈ 430–490 cP/µo ≈ 430–490 mPas), which were all carried
out as secondary injections in 2D sandstone slabs, viz. the displacement of viscous oil
from initial water saturation, Swi, using water, xanthan polymer solution, glycerol solution,
and HPAM polymer solution [21]. The experimental data is based on published results
given in a paper by Vik et al. [21]. These experiments are consistent with other published
data [19–22], and we have chosen these data due to the detailed description of results. The
similar viscosity range and all experiments are direct injections of the polymer without any
prior waterflood. The rock material used in these 2D experiments was a fairly homogenous
Bentheimer sandstone with dimensions approximately 30 cm × 30 cm × 2 cm. The brine
composition used to establish the initial water saturations (Swi) contained 6.0 g/kg NaCl
and 1.0 g/kg NaHCO3, which gives a total of 7000 ppm (mg/kg) total dissolved salts.
A wettability study indicated that the system was in an intermediate wettability state.
Other characteristics of the experiments, which are relevant to this study, are summarized
in Table 1. The polymer concentrations were adjusted so that the in-situ viscosity was
comparable at the expected in-situ shear rates. The experimental setup is described in
detail in the paper by Vik et al. (2018), where more information about the experiment is
given [21].

Table 1. Summary of parameters for secondary flood experiments.

Unit Water Xanthan Glycerol HPAM

Viscous Behavior - Newtonian Shear-thinning Newtonian Shear-thinning and
thickening

Dimensions cm × cm × cm 30 × 30 × 1.99 30 × 30 × 2.00 30 × 30 × 1.97 30 × 30 × 2.16
Porosity % 25.9 24.8 24.3 22.2
Absolute

Permeability mD 1706 1554 1783 2510

Swi fraction 0.11 0.14 0.07 0.11
Oil Viscosity cP (mPas) 478 487 433 467

Injection Rate: Q = 0.05 mL/min

Water
Breakthrough PV inj. 0.09 0.24 0.17 0.55

Total Recovery % OOIP 31 56 67 72
dP @ end mbar 21 87 45 96

Pressure measurements were made at the inlet and outlet ends of the slab, as shown
in Figure 1, with fluid (water or polymer) injection at the bottom and production at the top.
The rock slabs were installed vertically in an X-ray scanner. Iododecane was added to the
oil to achieve contrast for the x-ray imaging. The x-ray images gave detailed information
on the dynamics during the displacement.
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Figure 1. Tubing placement for horizontal inlet and outlet. The differential pressure is measured
between inlet and outlet lines.

The experimental results of Vik et al. (2018) [21] for oil recovery and differential pres-
sure as a function of pore volumes (PV) injected is presented in Figure 2a,b, respectively.
The oil recovery is significantly increased when compared with the waterflood by the more
viscous (polymer or glycerol) injection fluid. Water flooding gives the lowest recovery,
which is followed by the shear-thinning polymer xanthan, and then the Newtonian glyc-
erol solution, with the shear thinning/thickening polymer HPAM yielding the highest
oil recovery. Thus, a significant difference in oil mobilization and recovery is observed
experimentally depending on the fluid rheology. The experimental flow rate was set at
0.05 mL/min, which was achieved by imposing a rapid but gradual build-up to this final
rate. The gradual buildup of flow rate counteracts the quick decline in differential pressure
seen in all other experiments. The total differential pressures near the endpoint stabilized
oil production do not display the same trend and cannot explain the large differences in
observed oil production. The rheological properties of the water-soluble polymers are well
documented in Sorbie [1], where Xanthan shows shear thinning, while HPAM display
shear thinning at a low shear rate, which changes to shear thickening at a high shear rate.

X-ray images were captured during secondary injections for the experiments con-
ducted by Vik et al. (2018) [21]. The X-ray images showed a clear difference in the
displacement process for water, Xanthan, glycerol and HPAM. The most extreme immis-
cible fingering of water into the oil was observed for the waterflood leading to the early
breakthrough of water and less efficient oil displacement. The displacement stability was
significantly different for the different and more viscous injection fluids. HPAM, with its
shear-thinning and thickening behavior, showed the most stable front and most efficient
production. The Xanthan resulted in a lower recovery compared to glycerol due to unswept
oil between the fingers or channels.
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3. Dynamic Pore Network Model (DPNM) Simulation

The parameters used in the DPNM simulations are given in Table 2. The pore network
itself is a 2D model, with injection from the left to the right. We initially show the 2D
results due to computational time, storage, and better visualization. However, very similar
results are observed in 3D [32]. The oil viscosity simulated was taken as the mean of the
experimental oil viscosities (Table 1), i.e., µo = 466 cP. All DPNM simulations were run for
one pore volume as all simulations had reached a steady state after 1PV of injection. Thus,
there is no need to inject more fluid.

Table 2. Pore network parameters.

Parameter Unit Value

Network size - 50 × 25 × 1
Coordination number - 4

Pore size distribution model µm r = 18, σ = 9
Minimum inscribed radius µm 10
Maximum inscribed radius µm 50

Permeability mD 2069
Distortion factor - 0.3

Average pore length µm 333
Pore half angles - 30, 30, 30

Wettability - Water wet
Water/oil contact angle Degree 0

Interfacial tension N/m 0.0004
Swi - 0

Injection rate m3/s 1 × 10−12

Capillary No. (waterflood) - 3.28 × 10−6

Oil viscosity cP (mPas) 466

Figure 3a shows the pore size distribution, together with the normal distribution of
pore sizes. The minimum and maximum pore size is 10 µm and 50 µm, respectively. The
pore network model is visualized in Figure 3b.
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The idea behind the experimental studies of Vermolen et al. (2014) [20], and also in the
DPNM numerical experiments presented here, was to use the same in-situ apparent poly-
mer viscosity and flooding rate for all flooding experiments. The rheological properties for
the DPNM simulations were chosen so that, at the chosen injection rate, the same apparent
viscosity was obtained in the 2D network in single-phase conditions (i.e., at Sw = 1) for
each of the model rheologies of the polymers (see below). The apparent viscosity of the
in-situ (polymeric) fluid, µapp, was calculated by the formula in Equation (1).

µapp =
∆Pp

∆Pw
µw (1)

where ∆P is the pressure drop across the model, where subscript p is polymer and w is
water. µw is the viscosity of water (µw = 1 cP in all calculations in this paper).

Six types of polymer solutions were simulated in our numerical DPNM study:
(i) shear-thinning, (ii) Newtonian only, (iii) combined shear-thinning and thicken-
ing, (iv) combined shear-thinning and thickening with reduced shear-thinning effect,
(v) shear-thickening only, and (vi) combined shear-thinning and thickening with a
shifted onset of shear-thickening. These are identified by the case number for clarity
in the analysis of results below. However, we note that all fluids are Newtonian at
sufficiently low flow rates. The single phase (Sw = 1) in-situ rheology curves for these
six cases are shown in Figure 4a. All cases have approximately the same average
apparent viscosity at the reference injection rate (Q = 1 × 10−12 m3/s) in the porous
medium. This value is ~ 5.5 cP, as seen from the crossing point in Figure 4a. However,
in a particular pore, the fluid may have a local viscosity different from the average
network value, according to the particular rheological model of that case. Figure 4b,c
show the distribution functions for the local viscosity and the local velocity at the pore
scale, respectively.
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Throughout this paper, we will refer to the water case and these six “polymer” cases
as:

• Case 1—Water flood,
• Case 2—Shear-thinning only (no shear thickening region),
• Case 3—Newtonian “polymer” with a fixed viscosity (~ 5.5 cP in this Case) equivalent

to the in-situ effective viscosity of the other polymers at the base Case flow rate
(Q = 1 × 10−12 m3/s),

• Case 4—Shear-thinning and thickening polymer (most like an HPAM),
• Case 5—Lower shear-thinning, like case 4 but a lower Newtonian plateau at a low

shear rate but the same shear-thickening region as case 4,
• Case 6—No shear-thinning—case with a lower viscosity Newtonian plateau going

into the shear-thickening region without showing any shear-thinning,
• Case 7—Shifted onset shear-thickening—the same curve as Case 4 (shear-thinning/

thickening) but moved to the right, as shown in Figure 4a.

Case 5—lower shear-thinning polymer shows the highest peak in viscosity distribution
at around 5.5 cP, as shown in Figure 4b, at approximately the same viscosity as case 4—
combined shear-thinning and thickening polymer. Case 2—shear-thinning and Case
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7—shifted onset of shear-thickening polymers show similar viscosity distribution in a
single-phase flow. The velocity distribution functions in Figure 4c indicate that all polymer
cases have a very similar velocity distribution.

Figure 5 shows the calculated in-situ viscosity vs. fluid velocity for case 1—water
flood and the six polymer cases. Case 1—water and Case 3—Newtonian in-situ viscosities
are constant, as expected, as shown in Figure 5. The other polymer in-situ rheograms in
Figure 5 have the same shapes as the apparent viscosity curves in Figure 4a.
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4. Results and Discussion
4.1. Base Case Dynamic Network Simulations

The DPNM simulation have been performed to model water and polymer displace-
ment of oil in a 2D network model of the porous medium. The purpose of the simulations
is to understand the impact different rheology values have on oil mobilization. The central
objective is to understand the reason for the experimental observations by reproducing a
similar qualitative pattern of the results using a dynamic network model. If our DPNM
achieves this objective, then our explanation of these experiments qualified as a plausible
explanation. It is not a “proof”, but, at present, there is no other model which is currently
qualified even to this level.

The simulations are anchored on experimental data for displacement of a viscous oil
(µo = 466 cP). The results for oil recovery and differential pressure as functions of pore
volumes injected are presented in Figure 6. Figure 6a shows oil recovery vs. PV injected and
Figure 6b shows dP vs. PV. The simulation predictions clearly agree very well qualitatively
with the experimental results in Figure 2, when we compare case 1–4 with the experimental
results (Figure 2). To our knowledge, this result is novel in that no other model has achieved
even a qualitative explanation of these experimental findings. Furthermore, since we have
access to every aspect of the model, we are able to analyze exactly why we reproduce
exactly the same DPNM predictions, as observed experimentally. Our analysis (presented
below) shows that changes in local pore velocity due to the various rheology relationships
leads to different levels of local (pore-level) microscopic fluid diversion which, in turn,
impact oil recovery.
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Figure 6. (a) Oil recovery and (b) differential pressure for pore network modelling with an injection rate of 1 × 10−12 m3/s
as a function of pore volume injected. The differential pressure is the difference between inlet and outlet pressure of the
network model, analogous to the experimental data.

In addition, we have included cases 5–7 with slightly different rheologies compared
to case 2–4, which investigate how these polymers impact the recovery and fluid flow
field. The results in Figure 6a show that the final oil recovery increases in the order: water
flood < shear-thinning (xanthan like) polymer < Newtonian (glycerol like) = shifted onset
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of shear-thickening polymer < shear-thinning/thickening (HPAM like) = lower shear-
thinning = no shear-thinning polymer (i.e., Case 1 < Case 2 < Case 3 = Case 7 < Case 4 =
Case 5 = Case 6). These results show the same order as the experimental results in Figure 2.

4.2. Fluid Displacement Patterns

Figure 7 shows the fluid distribution of oil (red) and water (white) after 0.1 PV of
injected fluid for Case 1—water, Case 2—shear-thinning, Case 3—Newtonian polymer, Case
4—shear-thinning/thickening, Case 5—lower shear-thinning, Case 6—no shear-thinning,
and Case 7—shifted onset of shear-thickening injection (from left to right). The injection
fluid front has progressed further toward the production well for water flooding (Case 1)
and the shear-thinning case (Case 2) because of the viscous instability leading to mainly one
dominating channel. In the shear-thinning and thickening (Case 4), lower shear-thinning
(Case 5), and no shear-thinning cases (Case 6), the front appears more stable, with several
active flow channels, thus, sweeping the oil from the network in a more efficient manner.
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Figure 7. Fluid distribution (oil and water) after 0.1 PV of injected fluid.

The corresponding fluid distributions for the same 7 cases above are shown after 1 PV
of injected solution in Figure 8. As the total recovery is low, not much of the oil is displaced.
However, the more complex polymer (showing shear-thickening behavior—cases 4 to
6) displaces more than the other polymer cases and water. There is a more pronounced
fingering pattern in the water (Case 1) and shear-thinning (Case 2) fluid injections and
more bypassed oil, while the displacement process in the HPAM case (Case 4) is visibly
and significantly more efficient.
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Figure 8. Fluid distribution (oil and water) after 1.0 PV of injected fluid.

4.3. In-Situ Viscosity Distribution

Figures 9 and 10 show the in-situ viscosity distribution for the two-phase (water or
polymer solution→ oil) displacements as a function of pore radius and as a function of the
local velocity in the network bonds, respectively. Case 1—water has constant viscosity at all
radii (µw = 1 cP). All cases, except the water (Case 1), are influenced by dual occupancy of a
non-Newtonian polymer and Newtonian water in the network bonds. Case 3—Newtonian
polymer has viscosity of 5.44 cP. However, in some bonds, it is lower due to miscible mixing
of the “polymer” with water present in water films. The mixing occurs more in bonds
with a smaller pore radii. Case 2—shear-thinning and case 6—no shear-thinning polymers
experiences both high and low viscosity in narrow and wide pores, and they, therefore,
show a wide distribution in viscosity. Case 4—shear-thinning and thickening, case 6—
lower shear-thinning, and case 7—shifted onset of shear-thickening polymer experience a
wide range of viscosities across all pore radius values. However, they appear to rarely go
below a viscosity of approximately 4 cP.
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Figure 10. In-situ viscosity as a function of velocity for case 1—water, case 2—shear-thinning, case 3—Newtonian, case
4—shear-thinning and thickening, case 5—lower shear-thinning, case 6—no shear-thinning, and case 7—shifted onset of a
shear-thickening polymer.

Figure 10 shows the corresponding viscosity distribution for each of the above cases as
a function of the local velocity in the network bonds for the two-phase displacements. The
velocity field for water injection (Case 1) (which has a constant µw = 1 cP) show constant
viscosity for all velocities, as expected for Newtonian fluids. All polymers are influenced by
mixing with resident water in the bonds, like in Figure 9. The mixing with water appears
at lower local velocities, and, if we combine with the information for Figure 9, mixing also
appear for smaller pore radii. The in-situ viscosity in these two-phase displacements as a
function of velocity is, when we exclude the mixing effect, broadly similar in shape as the
single-phase cases in Figure 5.
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A comparison of shear-thinning (Case 2—Xanthan like) and shear-thinning and thick-
ening (Case 4—HPAM like) is included in Figure 11. The in-situ viscosity is compared both
for a single-phase flow and two-phase flow situation. Single phase data (I) show there is
a larger span in viscosity function of bond velocity for case 2 as the shear thinning only
extends to lower viscosity, while case 4 has a minimum viscosity (4.3 cP) at the apparent
Newtonian plateau. The two-phase viscosity for variation in bond radius (II) has a larger
variance for shear-thinning due to water-polymer mixing in two phase flow and the span in
viscosity seen in a single phase. Furthermore, these factors explain the variance in viscosity
for the velocity plot (III). In summary, shear-thinning (Case 2) has a larger variance in
viscosity and has deceasing viscosity at the largest velocity, while shear-thinning and
thickening (Case 4) show increases for the largest bond velocities.
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The velocity profile in Figures 10 and 11 showing higher viscosity for case 4 (shear-
thinning and thickening) compared to case 2 (shear-thinning) and the fluid displacement
pattern in Figures 7 and 8 showing more bypassed oil and more of a finger pattern for case
2 than case 4, which helps to explain why there is more fluid diversion and, thus, more
efficient oil displacement for the case 4 polymer.

4.4. In-Situ Velocity Distributions

The in-situ velocity and viscosity distributions presented above can help to explain
the order of oil recovery. As shown in Figure 12b, all of the normalized frequency curves
for water and polymer peak at approximately the same velocity. The lower the velocity
frequency, the broader is the velocity distribution. This result in lower viscosities for
case 2—shear-thinning polymer (see Figure 12a) as it goes towards water viscosity at
higher rates (Figure 4a). A similar trend is observed for case 7—shifted onset of shear-
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thickening polymer. However, this has a higher frequency of higher viscosities, resulting
in higher oil recovery. The viscosity distribution is different from the single-phase viscosity
distribution in Figure 4b, showing both a lower frequency and wider distribution. Hence,
the velocity (and, therefore, the viscosity) field changes going from a single-phase flow to a
multi-phase flow.
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4.5. Pore Occupancy Statistics—Base Case Simulations

The pore occupancy statistics of the water and oil phases at the end of simulation are
given in Figure 13. In this figure, the overall histogram is the frequency distribution of
“pores” of a given size interval, as shown in Figure 3a. The final fractional phase occupancy
of oil and water for each pore size are shown in yellow and blue, respectively. There is
50% filling criteria that implies that the additional water saturation of the pore is ≥ 50%.
This is required since the dynamic imbibition model of Li et al. (2017) [30] can have both
oil and water in both bulk and films, and this criterion registers that significant water
diversion into these pores has occurred. The phase occupancy of water and oil is shown
at the end of the waterflood (Case 1) at the top of Figure 13. The relatively small amount
of water occupancy is because of the low recovery in the 2D network. However, it is the
comparison of the other network simulations relative to the water flood case that is relevant
here. These simulations represent the different rheological models for the “polymer” and
all the cases described above are shown in Figure 13. The main point to note from these
simulations is that the Newtonian (Case 3) and purely shear-thinning polymer (Case 2)
certainly improve upon the waterflood, but it is the cases which have a shear thickening
region in their rheological mode that divert more water into the mainly intermediate-sized
pores in the network, thus, improving the oil recovery in accord with the results shown
above in Figure 6. The importance is that the order of improved recovery from the highest
to lowest is case 4—shear thinning-thickening (and other models with a shear thickening
region—case 5, 6, and 7), which is followed by the Newtonian polymer (Case 3), then the
shear-thinning (Case 2), and then followed by the waterflood (Case 1). This is the same as
the order observed experimentally.
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4.6. Lower Flow Rate Results—Recoveries

In the base case simulations presented above, the rheological functions shown in
Figure 4a were chosen, such that they gave the same effective viscosity at a given fixed
flow rate (Q = 1 × 10−12 m3/s). A set of simulations was carried out for three of these
rheological models at a lower flow rate, Q = 1 × 10−13 m3/s; viz. Case 3—Newtonian
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polymer, case 4—shear-thinning and thickening polymer, and case 6—no shear-thinning
polymer (but with a shear thickening region). The rheology curves for these three polymers
are still the same as previously (Figure 4a). Thus, they do not have the same apparent
viscosity at the given injection rate.

Figure 14 shows the oil recovery and the differential pressure as a function of pore
volumes for the three polymer cases, compared with the corresponding low rate water-
flood. Note that the oil recoveries are even smaller than the base case since capillary
forces are relatively stronger and make it more difficult for viscous forces to displace
the oil. In these low rates and dynamic simulations, the oil recovery increases in the
order Waterflood < Newtonian < shear-thinning and thickening < the no shear-thinning
(i.e., Case 1 < Case 3 < Case 4 < Case 6). In the base case (Q = 1 × 10−12 m3/s), the com-
bined shear-thinning and thickening (Case 4) and no shear-thinning (Case 6) resulted in
approximately the same oil recovery, but, at this lower rate, the case 6—no shear-thinning
(but with a thickening region) gives higher oil recovery and a higher differential pressure.
It is not clear why this is the case. It is counter-intuitive since we are lowering the flow rate
and, at this lower flow rate, the no shear-thickening case (Case 6) has a lower Newtonian
viscosity. This situation might be expected to result in a lower oil recovery. However, it
appears that the oil phase displacements by the “polymer”—the degree of fluid diversion
relative to the waterflood—is governed by a complex coupled interaction between the
rheology of the fluid and the local balance of the viscous/capillary forces in the imbibition
process. It is shown below in the fluid displacement patterns (Figure 15) that, for the no
shear thinning case (Case 6), then more diversion and finger suppression occurs due to this
coupled interaction.
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4.7. Lower Flow Rate Results—Fluid Distributions

Figure 15 shows the fluid distribution of oil (red) and water (blue) after 0.1 PV polymer
injected for the Case 1—water flood, Case 3—Newtonian, Case 4—shear-thinning and thick-
ening, and Case 6—no shear-thinning cases for the lower flow rate, Q = 1 × 10−13 m3/s.
The displacement front has progressed further in the Newtonian polymer case (Case 3),
and the shear thinning-thickening case (Case 4) suppresses this fingering to some extent.
However, the no shear-thinning case (Case 6) has a more stable front than either of the
other two cases, which leads to more efficient oil displacement.

The fluid distribution after 1 PV for waterflood and the three polymer cases with an
injection rate of Q = 1 × 10−13 m3/s is given in Figure 16. Very little oil has been displaced.
However, there is an observable difference in fluid distribution, especially between the
Case 3—Newtonian and Case 6—no shear-thinning polymer, with the Newtonian polymer
(Case 3) leaving more oil behind.
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4.8. Lower Flow Rate Results—Fluid and Velocity/Viscosity Distributions

The in-situ viscosity as a function of pore radius is given, for waterflood and the three
polymer cases run at the lower flow rate (Q = 1× 10−13 m3/s) in Figure 17. The Newtonian
polymer (Case 3) shows some pore level viscosity values lower than 5.44 cP, due to the
mixing with water films. However, the viscosity never increased above 5.44 cP (at a full
input of polymer concentration). The shear-thinning and thickening polymer (Case 4)
experiences higher viscosities in the same pores as the no shear-thinning polymer (Case 6),
which has a higher frequency of lower viscosities in all pores.
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Figure 17. In-situ viscosity as a function of radius for Case 1—water, Case 3—Newtonian, Case 4—shear-thinning, and Case
6—thickening and no shear-thinning.

Figure 18 shows the pore-by-pore viscosity as a function of velocity for water and
the three polymer cases, and these are similar in shape to the rheology curves in Figure 4a.
Compared to the viscosity versus velocity for Q = 1 × 10−12 m3/s in Figure 10, both the
combined shear-thinning and thickening (Case 4) and no shear-thinning polymers (Case 6)
do not reach the higher Newtonian plateau at higher velocities. From the viscosity versus
velocity plots, it would be expected that the shear-thinning and thickening polymer (Case 4)
increased recovery the most, due to higher viscosities. We would normally expect that
the higher viscosities in Case 4—shear thinning-thickening would give a more efficient
displacement, which is not the case here. We believe that this is because of the complex
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interaction between the flow field and the oil displacement referred to above. It also
appears that the span of the viscosity distribution influences local flow diversion. This
may occur because the polymer in the pores where it is shear thickening, in turn, diverts
the aqueous fluid to displace oil in other (possibly adjacent) pores. However, if this direct
displacement is by a low shear viscous polymer, then it will be efficient, but the local
(higher low shear) viscosity will slow the direct displacement (it is a dynamic pore network
model). In Case 6—no shear thinning case (but with shear thickening), the diverted lower
pore flow rate aqueous phase, which is displacing oil, will have a lower viscosity. This may
allow the displacement to occur more rapidly. This analysis is currently our conjectured
explanation for these observations and we are currently investigating this complex coupled
mechanism in more detail.
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The Case 6—no shear-thinning polymer peaks at around 3 cP and has a quite narrow
distribution in viscosity (see Figure 19a). The case 3—Newtonian polymer peaks a little
over 4 cP, while the case 4—combined shear-thinning and thickening polymer peaks at
just under 8 cP. However, the peak is much lower compared to the two other polymers
and it also has a wider distribution. The normalized velocity distribution is similar for
all polymer cases. However, case 3—Newtonian and case 6—no shear-thinning polymer
has a slightly wider distribution than case 4—shear-thinning and thickening polymer (see
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Figure 19b). The velocity distribution for case 1—waterflood is much broader and the peak
in frequency is much higher than the polymer cases.
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4.9. Lower Flow Rate Results—Phase Occupancy Statistics

The pore occupancy of water and oil at the end of the simulation at the lower flow
rate (Q = 1 × 10−13 m3/s) for water and the three polymer cases is given in Figure 20. Due
to the lower recoveries at this flow rate, 20% filling criteria is applied for considering water
entering a pore. Case 6—no shear-thinning polymer fills more bonds with the polymer
(water) than case 4—shear-thinning and thickening and case 3—Newtonian polymer, as
expected from the oil recovery results in Figure 14a.
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4.10. Longer Model Results

PNM simulations were also carried out on a longer model with dimensions of 200× 25× 1
and the oil recovery and differential pressure results are shown in Figure 21. The oil recovery
is in exact agreement with the smaller base case model both for oil recovery values and the
order of oil recovery, Case 1—Water < Case 2—Shear-thinning < Case 3—Newtonian < Case
4—Shear-thinning and thickening polymer.
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Figure 21. (a) Oil recovery and (b) differential pressure versus pore volumes injected for the longer (200 × 25) pore
network model.

Figure 22 shows the fluid distribution of oil (red) and water (white) after 0.1 PV of
injected fluid for case 1—water, case 2—shear-thinning, case 3—Newtonian polymer, and
xase 4—shear-thinning/thickening polymer injection (from top to bottom, respectively).
The injection fluid front has progressed further toward the production well for water
flooding (Case 1) and shear-thinning (Case 2) polymer because of the viscous instability (in
agreement with the fluid distribution in Figure 7). In the shear-thinning and thickening
(Case 4), the front appears more stable, with several active flow channels, thus, sweeping
the oil from the network in a more efficient manner.
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Figure 22. Fluid distribution (oil and water) after 0.1 PV of injected fluid with Q = 1 × 10–13 m3/s for the longer (200 × 25)
pore network model.

Figure 23 shows the water saturation as a function of distance from the injection at dif-
ferent pore volumes injected for case 1—water, case 2—shear-thinning, case 3—Newtonian,
and case 4—shear-thinning and thickening. These plots confirm the observations in
Figure 22 with case 4 (Shear-thinning and thickening) showing the development of a
more stable water “front.” This case 4 displacement is clearly more efficient, especially com-
pared to water (Case 1) and the shear-thinning (Case 2) polymer. The Newtonian polymer
(Case 3) also exhibits a more stable frontal displacement than cases 1 and 2. This is shown
in Figure 23 at 0.1 PV (grey) and 0.2 PV (yellow) for case 3. All the frontal displacement
results in Figure 23 agree with the fluid distribution observations in Figure 22.
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5. Summary and Conclusions

This paper presents a clear and consistent theoretical explanation of why polymers
with different shear rheology, but having the same effective viscosity within the porous
medium at a constant injection rate, can lead to very significant changes in the oil recovery
efficiency. This was achieved by applying a dynamic pore network model (DPNM) of
imbibition, which allowed us to implement any model for the aqueous phase rheology of
the applied polymer solution. We consider that the aqueous polymer can be purely shear-
thinning (like xanthan), shear-thinning, and thickening (like HPAM) or Newtonian (like
glycerol). Viscous oil displacement behavior for these polymer types has been modelled in
a 2D DPNM and compared with the corresponding waterflood case. It is demonstrated
that our DPNM simulations give a prediction that agrees in the order of recovery with
the experiment.

The main specific findings/conclusions from this work are as follows.

i. In the dynamic viscous oil network displacement simulations, all polymers (shear-
thinning, shear-thinning/thickening, and Newtonian) gave improvements in oil
recovery compared with the (lower viscosity) waterflood. The viscosification of the
polymer was adjusted in the model until they had the same in-situ effective viscosity
(at Sw =1). Simulations predicted that the oil recovery performance was highest
for the more complex polymer solutions including both shear-thinning/thickening
behavior (i.e., HPAM-like). This, in turn, was predicted to better than the Newtonian
(glycerol) “polymer”, and this was predicted to be better than for the purely shear-
thinning polymer (i.e., xanthan-like polymer). This is in exact agreement with the
literature experimental observations.

ii. The reason for this behavior in the DPNM simulations has been established by
performing a detailed analysis of the flow field and its effect on the local pore
viscosities for the various rheologies. The pore network model shows that the shear-
thinning polymer experience higher flow velocity. Thus, lower viscosity approaches
water viscosity at higher flow rates. As a result, a more severe and inefficient finger
pattern is observed for a shear-thinning polymer (xanthan) compared to combined
shear-thinning and thickening, in our DPNM simulations.

iii. In the most efficient oil recovery case for the shear-thinning/thickening (HPAM
like) polymer, it was shown that this rheology results in more pore-scale fluid
diversion, leading to more stable fluid displacement fronts and more efficient oil
displacement.

The efficient oil recovery mechanism in the DPNM calculations by improved pore-
scale diversion is demonstrated using pore occupancy statistics. Examining the pore scale
occupancies, it is evident that the best performing shear-thinning/thickening (HPAM like)
case causes a more injected phase fluid diversion at the local scale displacing more oil from
the intermediate-sized pores (for the case studied here).
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Appendix A. Model Description

Appendix A.1. The Dynamic Imbibition Pore Network Model for EOR

The pore network model applied was first developed by Li et al. (2017) [30] as a dy-
namic imbibition model, which includes both piston-like displacement and snap-off events
that may occur simultaneously. Both viscous and capillary forces are considered, which
is more appropriate for studying enhanced oil recovery methods at the pore scale. In this
model, a switch parameter, λ, is used, as defined by Equation (A1). It is a rate-dependent
parameter expressing the ratio of the capillary force to the total (capillary + viscous) forces
acting in a local pore filling event. This parameter simulates the local competition between
capillary and viscous force to determine primary pore filling mechanisms, which can be
piston-like displacement, snap-off/film swelling, or a combination of these two mecha-
nisms. The limits of λ are—when λ = 1 only capillary forces are present, and if λ = 0, only
viscous forces operate.

λ =
Pc

Pc + ∆P
(A1)

In more water-wet conditions, water occupies the corners of pores as a (“thick”) film
and provides connected pathways. Thereby, during the imbibition processes, both piston-
like displacement and snap-off may occur, while, for a drainage process, only piston-like
displacement can happen. In this model, piston-like displacement can proceed if upstream
adjacent bulk water is available and pressure drop from the water-filled end to oil-filled
end of the pore is larger than entry capillary pressure (∆P ≥ −Pc). During snap-off, water
will accumulate in water films in the corners and, if it swells sufficiently, the fluid-fluid
interface becomes unstable and snap-off then occurs. The decision on volume of water
which contributes to either piston-like displacement or film swelling is determined by the
switch parameter, λ.

After defining the filling mechanisms and fluid configurations inside each pore, the
bond conductance can be calculated. Li et al. (2017) [30] describe the calculation procedure
based on fluid configurations inside each bond. Based on the bond conductivity, the water
flow rate in each bond can be described by Equation (A2) without bulk menisci and by
Equation (A3) with menisci. In these equations, q is the bond flow rate, g is the bond
conductivity, Pc is the entry capillary pressure, and Pi and Pj are the pressures of nodes at
two ends of the corresponding bond.

q = g
(

Pi − Pj
)

(A2)

q = g
(

Pi − Pj + Pc
)

(A3)

By considering mass conservation law for each node (
z
∑

i=1
qi = 0), a set of linear

equations of the form of A·p = b arise and are solved numerically, where A is a matrix of a
(known) coefficient and includes conductance of bonds, b is the ‘right hand side’ (known)
vector and includes boundary conditions as well as entry capillary pressures, and p is the
(unknown) vector of pressures at each node. By solving this system of linear equations,
the pressure at each node is obtained and, consequently, the flow rate will be updated for
each bond.

To solve the system of the equation, boundary conditions are at a constant pressure
at the inlet and outlet. However, similar to lab experiments, constant global pressure
drop along the sample should be so that it maintains a predefined constant injection rate
(Qinj). To do so, an iterative approach is used. Based on Aker’s method [33], the governing
equation can be simplified as Q = a

(
∆P + Pc, entry

)
= a ∆P + b. To obtain parameters a

and b, an iterative approach is used as follows.

a. Choose arbitrary Pin and Pout (∆Pinit = Pin − Pout) and calculate QI
inlet

b. Choose Pin = Pout and calculate QI I
inlet
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c. Based on the calculated QI
inlet and QI I

inlet in the above two steps, calculate using
Equations (A4) and (A5).

b = QI I
inlet (A4)

a =
QI

inlet −QI I
inlet

∆Pinit
(A5)

d. Update pressure at the inlet using the following equation (A6).

Pin =
Qinj − b

a
+ Pout (A6)

e. Repeat the above four steps until a satisfactory accuracy between a predefined
injection rate (Qinj) and QI

inlet is obtained.

After calculating pressures for each node, bond flow rates are then updated. Bond
flow rates are used to calculate the minimum time steps and the new local λ values to
update water volume in each bond, through the appropriate (λ dependent) mechanism.
The minimum time step is chosen so that, in each time step, water can only fill, at most,
one complete pore.

Appendix A.2. Modifying the Dynamic Imbibition Model to Include Polymer Displacements

As noted already, polymer solutions are non-Newtonian and may demonstrate one of
the following behaviors in terms of flow.

(a) Newtonian behavior: Polymer viscosity depends on polymer concentration but is
independent of a shear rate (flow rate).

(b) Shear thinning behavior: Polymer viscosity decreases as the shear rate increases.
(c) Shear thickening: polymer viscosity increases as the shear rate increases.
(d) Combination of all or some of the previously mentioned behaviors.

All the above can be modelled using Equation (A7), which is a general form of viscosity
behaviour as a function of shear rate, which includes Newtonian, shear thinning, and shear
thickening behaviour and combinations of these, by an appropriate choice of parameters.

µ = µ∞ + (µ0 − µ∞)
[
1 +

(
λp

.
γ
)2
](n−1)/2

︸ ︷︷ ︸
shear viscosity

+ µmax

[
1− exp

(
−
(
τr

.
γ
)n2−1

)]
︸ ︷︷ ︸

Extensional viscosity

(A7)

where µ∞ is the high shear Newtonian plateau viscosity and is considered here as water
viscosity (1 cP), while µ0 is the upper low shear Newtonian plateau, which is the maximum
polymer viscosity at low shear rates. µmax is the maximum polymer viscosity at high
shear rates when polymer solution demonstrates shear thickening properties. λp and τr
define the onset of shear thinning and shear thickening behaviours, respectively. n and
n2 define the slope of shear thinning and shear thickening parts, respectively. Possible
rheology models arising from this formulation are shown schematically in Figure A1. All
the parameters in Equation A are functions of a polymer concentration [16]. However,
among all, only µ0 and µmax are considered as a linear function of polymer concentration
and the rest are constant predefined values.

.
γ is the local shear rate (in a pore) and, in this

work, the shear rate is linearly related to local velocity (
.
γ = α v). α is a parameter to relate

the shear rate to velocity, which is a function of microscopic properties of porous media
and polymer properties. Zamani et al. (2017) [34] have described in more detail how to
relate the shear rate to local velocity.
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Figure A1. Schematic demonstration of both shear thinning and thickening fluid behaviour in
porous media.

To include the polymer rheology in the two-phase dynamic imbibition model, we first
needed to calculate the local polymer concentration, which is modelled by incorporating
a transport equation for the polymer in the aqueous phase in the network model. A
dimensionless polymer concentration, C, is defined where 0 ≤ C ≤ 1, with C = 1 being the
injected polymer concentration. The polymer is injected at the inlet in one of following
ways: (a) continuous injection starting from time = 0 of network simulation, (b) polymer
injection after some period of water injection, and (c) polymer injection for some period,
which is followed by water injection. In all cases, concentrations are updated using mass
conservation law based on concentration/flow field. We assume that the polymer can flow
through both bulk and water films.
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