
1.  Introduction
During the last decades the Antarctic ice sheet encountered a net loss in mass (Rignot et al., 2019). Howev-
er, the spatial distribution of this overall ice-sheet mass loss exhibits stark contrasts, with reductions in the 
ice-sheet mass over West Antarctica being partly counterbalanced by increases in mass over East Antarctica 
(Andrew et al., 2018; King et al., 2012; Shepard et al., 2012). Boening et al. (2012) indicated that the lim-
ited mass loss over East Antarctica, in particular between 2009 and 2011, could be attributed to enhanced 
precipitation over the region. Moreover, recent observations show that extreme precipitation events are 
the dominant contributors to local snow-accumulation in this region (Boening et al., 2012; Gorodetskaya 
et al, 2014, 2015; Souverijns et al., 2018). Precipitation, predominantly as snowfall, is the only significant 
source term for the mass balance of the Antarctic ice-sheet (Bromwich, 1988). The majority of continental 
Antarctic precipitation is predestined for a long residency as part of the Antarctic ice-sheet and thus consti-
tutes the content of ice cores, our prime source of long-term climate information over the region (Landais 
et al., 2017; Schlosser et al., 2017; Stenni et al., 2016). While a significant fraction of the total precipitation 
over Antarctica, 35% over the interior increasing to 50%–70% toward coastal regions, is attributable to ex-
treme (>90th percentile) precipitation days (Turner et al., 2019). Thus, to contextualize snow-accumulation 
over Antarctica, including the role of the Antarctic ice-sheet in the global hydrological cycle during the 
present and future climate, insight into the drivers and processes responsible for these extreme precipitation 
events is instrumental.

By employing Lagrangian analysis Sodemann and Stohl (2009) identified moisture source regions for Ant-
arctic precipitation. In that study, contributions from surface evaporation to precipitation over East Ant-
arctica exhibit a maximum over the Southern Ocean around 40°S and decreases poleward. Furthermore, 

Abstract  We investigate an intense snowfall event between 15 and 18 February 2011 over the East 
Antarctic coastal region which contributed to roughly 24% of the annual snow accumulation. The event 
was previously associated with an atmospheric river, and here we use both Eulerian and Lagrangian 
analysis to gain an understanding of the processes contributing to the atmospheric river signature. The 
planetary-scale configuration during the event consisted of a persistent blocking situation resulting in a 
sustained meridional flow from the sub-tropics to the Antarctic ice sheet between 20 and 50°E. Within 
this configuration, synoptic-scale cyclogenesis contributed to slantwise ascent of moisture loaded air 
parcels toward Antarctica. Landfall of this cyclone’s warm sector coincided with the onset of Antarctic 
precipitation. Subsequently, a secondary cyclone developed along a pre-existing baroclinic zone. The 
rapid intensification and propagation speed of this mesoscale cyclone alongside the warm, moist air 
mass resulted in strong moisture flux convergence ahead of the cyclone, providing additional poleward 
moisture transport. The poleward progression of warm moist air and a corresponding decrease of 
sea-surface temperatures implied downward surface sensible and latent heat fluxes throughout the 
region of intense poleward moisture, roughly between 40 and 60°S. Hence, moisture uptake via surface 
evaporation was suppressed between the sub-tropics and the polar continent, favoring long-range 
transport. Identification of the surface moisture uptake region by tracing changes in moisture in air 
parcels confirmed the limited uptake of moisture during the poleward transport in this case study, with 
the primary moisture source for Antarctic precipitation located in the sub-tropics.
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the moisture source region for precipitation over East Antarctica is located westward of the precipitation 
location. Subsequent studies employing Lagrangian analysis confirmed the moisture source maximum 
along this latitude band for the EPICA ice-core site in East Antarctica (Drumond et al., 2016). The surface 
moisture source maximum centered around 40°S is collocated with the climatological latitude band of a 
strong meridional sea surface temperature (SST) gradient, which marks a latitudinal separation between 
regions of relatively weak and strong surface evaporation. Poleward of 40°S precipitation is larger than 
surface evaporation, resulting in a net freshwater input from the atmosphere over the Southern Ocean, with 
60%–75% of the precipitation in this region attributable to fronts and cyclones (Papritz et al., 2013). The dis-
tinct gap of several thousand kilometers between the moisture origin maximum and precipitation location 
underscores the role of long-distance meridional moisture transport in the atmosphere for precipitation 
over East Antarctica.

Zhu and Newell  (1998) pointed out that meridional moisture transport in the lower troposphere is pre-
dominantly organized in filamentary structures, a phenomena commonly referred to as an “Atmospheric 
River” (AR). Elongated structures of intense moisture transport are often embedded in the warm sector of 
an extra-tropical cyclone, where the process of cyclogenesis results in isentropic upgliding of warm moist 
air and local moisture convergence along the advancing cold front, both contributing to high values of ver-
tically integrated water vapor transport (IVT) (e.g., Cordeira et al., 2013). Clusters of cyclones can maintain 
and extend the elongated signature of ARs, where enhanced surface evaporation in the previous cyclone’s 
cold sector contributes to the moisture available for subsequent cyclones (Cordeira et al., 2013; Sodemann 
& Stohl, 2013). ARs are frequently associated with intense coastal precipitation (e.g., Gimeno et al., 2016). 
They supply the necessary moisture for intense and sustained precipitation with interactions between the 
flow and orography resulting in adiabatic cooling and local moisture convergence triggering precipitation 
(e.g., Ralph et al., 2010). The high-latitude regions are no exception, and AR signatures have been linked to 
intense precipitation events along the coastal region in East Antarctica (Gorodetskaya et al., 2014; Kurita 
et  al.,  2016). However, identification of anomalous tropospheric moisture transport prior to and during 
precipitation events provides only a limited understanding of the contribution to local precipitation. By 
combining observations and reanalysis data, Welker et al. (2014) stressed that intense precipitation events 
over East Antarctica are generally associated with above average IVT values, but that large IVT values do 
not necessarily result in intense precipitation. Their study further illustrates that the magnitude of IVT is 
secondary to the directionality of IVT, with directions perpendicular to the orography most favorable for 
precipitation formation. Thus, identification of the atmospheric pathways producing these favorable high 
IVT signatures potentially contributes to our understanding in the processes associated with extreme pre-
cipitation events over East Antarctica.

Poleward moisture transport requires, besides the atmospheric moisture content, a meridional orientated 
flow direction. Spatially and temporally sustained meridional flow conditions are associated with planetary 
scale waves, that is, meandering of the mean polar front, with atmospheric blocking events over the South-
ern Ocean in the East Antarctic regions generally lasting between 5 and 6 days (Mendes et al., 2008). The rel-
evance of the large-scale atmospheric configuration for sustained meridional moisture transport is demon-
strated by ARs reaching the Antarctic continent coinciding with blocking conditions (Wille et al., 2019), 
and several extreme precipitation cases over East Antarctica aided by blocking conditions (Gorodetskaya 
et al., 2014; Hirasawa et al., 2013; Schlosser et al., 2010).

The majority of meridional moisture transport over the Southern Ocean is associated with transient eddies 
(Tietäväinen & Vihma,  2008), though the dominant propagation direction for most of these cyclones is 
eastward (Uotila et al., 2013) and thus they are unlikely to contribute significantly to precipitation over the 
Antarctic continent. Sinclair and Dacre  (2018) considered the meridional moisture flux associated with 
poleward propagating cyclones over the Southern Ocean. They found that cyclones with genesis locations 
further equator-ward exhibited larger meridional moisture fluxes than cyclones that have their genesis lo-
cation closer to the Antarctic continent. Hence, in line with the maximum of moisture sources for Antarctic 
precipitation around 40°S, atmospheric loading of moisture via oceanic evaporation has smaller amplitudes 
closer to the continent. Yet, the strongest meridional moisture fluxes were associated with rapidly poleward 
propagating open frontal waves, akin to secondary cyclogenesis. Cyclones attain poleward directionality 
due to the effects of upper level vorticity gradients and diabatic heating (Tamarin & Kaspi, 2016), yet their 
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main translation speed and direction are closely tied to the background flow with blocking conditions favor-
ing poleward propagation (Booth et al., 2017).

In this study we analyze moisture transport and sources that contributed to an extreme precipitation event 
between 15 and 18 February 2011 over East Antarctica. Gorodetskaya et al. (2014) first identified this same 
event as an AR and showed its remarkable contribution to the local surface mass balance. Here we further 
explore the atmospheric evolution of the event, assess the role of air-sea interactions, and elucidate the 
synoptic and mesoscale contributions to long-range moisture transport. We start with briefly describing the 
spatial and temporal evolution of the continental precipitation and use local precipitation observations to 
assess the ability of reanalysis data to resolve the event (Section 3.1). Followed by a Eulerian description 
of the associated moisture transport toward Antarctica separating between synoptic (Section  3.2.1) and 
sub-synoptic scales (Section 3.2.2), which we complement with a Lagrangian approach (Section 3.3). Final-
ly we pinpoint the sub-tropical oceanic evaporation regions that contributed to the continental precipitation 
(Section 3.3.2) by tracing moisture changes in airparcels before arriving at the precipitation region.

2.  Data and Methods
2.1.  Reanalysis, Trajectories, and Feature Detection

For the analysis we use the latest reanalysis product of the European Centre for Medium Range Weather 
Forecast (ECMWF). ERA5 (Hersbach et al., 2020) is based on 4D-Var data-assimilation in ECMWF’s In-
tegrated Forecast System (IFS), and provides a best estimate of the state of the atmosphere by combining 
observations and numerical modeling. We used ERA5’s high resolution realization (HRES) interpolated to 
a horizontal resolution of 0.25° (≈28 km) with hourly temporal resolution.

Kinematic backward trajectories are initiated every 3 hours for the period 15–18 February 2011 using the 
LAGrangian ANalysis TOol (LAGRANTO, Sprenger & Wernli, 2015), and are based on ERA5 data interpo-
lated to 0.5° resolution with 3-hourly temporal resolution. The 10-day backward trajectories are initialized 
on an equidistant 30 km grid at pressure-intervals of 25 hPa between 1,000 and 750 hPa and 50 hPa intervals 
between 750 and 300 hPa over the continent in the region bounded by 65°S–76°S and 7°W–65°E. This region 
envelops the spatial area of the precipitation associated with the event.

We apply automatic detection of low-level cold and warm fronts based on Hewson  (1998) and Jenkner 
et al. (2010) to identify elongated structures of horizontal gradients >3 × 10−5 K m−1 in the potential tem-
perature at 850 hPa. Cyclone labels, L1 and LS1‥S3, are for guidance and identified by manually inspecting 
hourly meteorological fields.

2.2.  Precipitation Observations

Precipitation measurements are from the cloud-precipitation-meteorological observatory at the Belgian 
Princess Elisabeth (PE) research station in East Antarctica (Gorodetskaya et al., 2015). The PE observatory 
(71°57′S, 23°21′E, see Figure 1c) is located in the escarpment zone (≈180 km inland) of Dronning Maud 
Land (DML), just north of the Sør Rondane mountain chain at an elevation of 1,392 m above mean sea level. 
Precipitation rates are derived from the precipitation radar (Metek’s Micro Rain Radar, MRR-2) installed 
at PE station in February 2010 (Gorodetskaya et al., 2015). This is a frequency-modulated continuous-wave 
vertically profiling Doppler radar transmitting at 24 GHz frequency. The radar effective reflectivity (Z), Dop-
pler velocity and spectral width are calculated from the raw Doppler spectra measurements using the algo-
rithm of Maahn and Kollias (2012). The MRR-2 setup at PE provides precipitation profiles at 60 s temporal 
resolution up to 3,000 m above ground level with 100 m vertical resolution. The first useful range near the 
ground is at 400 m, which is used to calculate precipitation reaching the surface (Gorodetskaya et al., 2015) 
by converting the associated effective reflectivity (Z) to snowfall rates (S) using various Z-S relationships for 
dry snow (Grazioli et al., 2017; Kulie & Bennartz, 2009; Matrosov, 2007; Souverijns et al., 2017). To compare 
the observations with ERA5, we aggregate the derived snowfall rates over the previous hour, such that the 
observations are in agreement with ERA5 cumulative precipitation fields.
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2.3.  Identification of Moisture-Source Regions

Moisture sources are diagnosed from the backward trajectories using the software tool WaterSip (Sode-
mann, 2020; Sodemann et al., 2008). The Watersip method evaluates changes in specific humidity along 
the backward trajectories to identify periods of moisture uptake and loss in the traced air masses. If specific 
humidity increases by more than 0.1 g kg−1 in a 3 h period, a moisture source is identified. The method 
distinguishes between uptake events within a proximity of the surface that indicates a direct contribution 
from surface evaporation, and more indirect cases of moisture detrainment from the boundary layer. Eval-
uating the entire trajectory with this moisture accounting method provides a quantitative estimate of the 
entire fraction of moisture at the time of precipitation which can be related to its sources. The precipitation 
itself is estimated from the specific humidity decrease at the latest time step of the backward trajectories, 
and converted to precipitation in units of mm 3 h−1 by integrating over the regular x-y-p grid. Recently, in 
an evaluation of the WaterSip method, Sodemann (2020) pointed out that the results of the method are 
likely biased toward the more substantial moisture uptakes (contributing to the humidity of air masses on 
time scales of up to 10 days) due to applied thresholds and the limitations of trajectory calculations, while 
weaker events of mixing with humidity from surrounding or down welling air masses are under-estimat-
ed. Yet, evaporation contribution patterns identified by the WaterSip method show striking similarity with 
conceptually similar Eulerian diagnostics of strong large-scale ocean evaporation events (Aemisegger & 
Papritz, 2018), including the Southern Ocean regions.

3.  Results
In this study we examine the atmospheric pathway associated with an extreme precipitation event over East 
Antarctica. Prior to and during the precipitation event an elongated structure with anomalous high values 
of IVT extended from the sub-tropics to the Antarctic continent, as such the event was previously identified 
as an atmospheric river (Gorodetskaya et al., 2014). Here we aim to gain some understanding of the atmos-
pheric processes contributing to this high IVT signature. We focus in particular on long-range moisture 
transport and the interplay between atmospheric scales (planetary to mesoscale) and air-sea interactions 
therein. The event lasted about 4 days (between 15 and 18 February 2011) and contributed to roughly 24% 
of the total yearly accumulation observed at Princess Elisabeth Station (Gorodetskaya et al., 2014). Thus 
within a relative short period this event had a profound impact on the local snow-accumulation, underlin-
ing the relevance of these types of events for the total ice-sheet mass balance (Boening et al., 2012; King 
et al., 2012; Lenaerts et al., 2013).

3.1.  Precipitation

Based on ERA5-data, the event was associated with some of the largest peak values in precipitation over 
the DML-region in 2011 and exhibited sustained precipitation amounts in excess of the 95th percentile for 
2011 for ≈2.5 days (dashed line, Figure 1a). Virtually all precipitation in ERA5 resulted from large-scale 
(resolved) processes (Figure 1a), indicating the dominant role of non-convective processes in precipitation 
formation during the event over the Antarctic ice-sheet. The event comprised two phases of amplified pre-
cipitation. The initial onset of enhanced precipitation was around 15 February 03:00 UTC and culminates 
about 20 h later in a peak of precipitation (15 February 23:00 UTC), thereafter the precipitation decreases. 
Roughly 14 h later the precipitation increased again (16 February 13:00 UTC), peaking for the second time 
7 h later (16 February 20:00 UTC), followed by a longer lasting decay (approximately 22 h) marking the end 
of the event. Note that both stages contribute approximately equally to the total precipitation during the 
event, as is evident from the cumulative precipitation (solid line, Figure 1a).
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Figure 1.  (a) Time-series of hourly accumulated total precipitation (blue bars) and unresolved precipitation (yellow bars) over the DML-region during the 
event (units: m3 h−1), corresponding cumulative total precipitation (blue, units: m3), and the 95th percentile for hourly precipitation during 2011 (dashed line). 
(b) Spatial distribution of the accumulated total precipitation during the event (shading, units: mm) and orography (lines, units: m) over the DML-region. 
The box indicates the bounds for the DML-region (65°S–80°S, 20°W–70°E) and the location of Princess Elisabeth (71.95°S, 23.35°E) is marked with a star. (c) 
Precipitation at Princess Elisabeth station during the event for the nearest grid-box in ERA5 (blue bars), and derived from MRR measurements at the station 
(yellow bars, units: mm h−1), and corresponding cumulative precipitation (blue and yellow line, respectively, units: mm). DML, Dronning Maud Land; MRR, 
Metek’s Micro Rain Radar.
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The prominent role of orography in the formation of precipitation is evident from the spatial distribution 
of the total accumulated precipitation during the event. The majority of the precipitation is confined to the 
DML coastal region, with peak values (up to 100 mm) located in the proximity of steep orography, that is, 
north and east of PE and west of the Lützow-Holm Bay (Figure 1b).

To verify the representation of the event in ERA5 we compared the precipitation for the nearest grid-point 
in ERA5 with MRR observations made at PE during the event (Figure 1c). The magnitude of precipitation 
estimates at PE are comparable to ERA5 accumulated precipitation fields when using the Z-S relationship 
based on Matrosov (2007) (Figure 1c). Notice however that absolute values of precipitation estimates de-
rived from MRR observations are rather sensitive to the choices of the Z-S relation which depends on snow 
microphysical properties. For example, hourly accumulated peak values during the event based on Souver-
ijns et al. (2017) are around 7 mm whereas peak precipitation estimates based on Grazioli et al. (2017) at 
a similar point in time are just over 2 mm, more than a threefold difference in magnitude. However, these 
choices primarily affect the magnitude of the precipitation as for each Z-S relation the estimated precipi-
tation rates are proportional to the observed effective reflectivity. Hence, the temporal pattern of observed 
precipitation is not affected by the choice of the Z-S relationship, while assuming that snow microphysical 
properties do not differ significantly over space and time during the event.

The temporal evolution of the precipitation over PE is rather similar for the observation and ERA5. During 
the first phase of the event (roughly between 15 February 06:00 and 16 February 12:00) precipitation is 
present in both the observations and ERA5, with the precipitation in ERA5 showing a smoother evolution 
than the observations. As PE is located on the western side of the precipitation event, the first peak in pre-
cipitation has a stronger amplitude than the second peak, though also the second peak is clearly present in 
both ERA5 and the observations. Overall the temporal match between observation and ERA5 indicates that 
ERA5 captured the timing of the precipitation during the event, providing confidence that the atmospheric 
evolution associated with the event is sufficiently represented in the ERA5.

3.2.  Eulerian Perspective

In this section we use a Eulerian perspective to describe the atmospheric structure, in particular the distri-
bution of water vapor and associated moisture transport, during the onset of both precipitation peaks. We 
show that the initial onset of continental precipitation is associated with the landfall of the warm sector of a 
synoptic-scale cyclone, whereas the second peak is associated with the landfall of a secondary cyclone that 
developed along the persistent frontal zone of the main cyclone.

3.2.1.  Synoptic-Scale Cyclogenesis

The atmospheric configuration prior to the onset of precipitation is characterized by a relatively steady 
trough located to the west of the precipitation region (Figure 2 and Figure S1). Upper-level conditions re-
semble anticyclonic wave breaking several days prior to the precipitation event, with undulations along the 
zonally directed part of the wave resulting in several smaller satellite cyclones accompanying the trough’s 
main synoptic-scale cyclone (L1, Figures 2a–2c). One of these mesoscale cyclones (LS1) merges with the 
main cyclone, whereafter the ridge extends poleward, thereby introducing a region with poleward orientat-
ed flow throughout the entire depth of the troposphere on the upstream side of the ridge (Figures 2d–2f). 
Note the presence of tropical cyclone “Bingiza” over Madagascar, which potentially contributed to the in-
tensification of the ridge. Upstream of the region dominated by this meridional flow a persistent high-pres-
sure system and cut-off low are present during the event (Figures 2e and 2f and Figure S1). These conditions 
are often associated with atmospheric blocking (e.g., Woolings et al., 2018) and contributed to maintain the 
meridional flow beyond typical synoptic time-scales.

Prior to the ridge-building several regions of enhanced IVT associated with the mesoscale cyclones and 
zonally orientated flow are located between 35° and 45°S (Figures 2a and 2b). During the ridge-building 
some of these regions aggregate into the elongated region of strong IVT in the warm sector of the mature 
cyclone, that is, on the warm side of the cold-front (Figures 2c–2f). As the cyclone’s warm sector translates 
toward Antarctica and the ridge amplifies (Figures 2d–2f), the band of high moisture transport becomes 
more meridionally orientated, eventually impinging on the Antarctic coastal region (Figure 2f). The onset 
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of precipitation over East Antarctica coincides with the moisture loaded warm sector, and thus the region 
of strong moisture transport, reaching the coastal zone of East Antarctica (Figure 2f).

Vertical cross-sections through the warm-sector at the onset of precipitation (15 February 03:00 UTC) pro-
vide some insights in the associated moisture transport toward East Antarctica (Figure 3). The maximum 
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Figure 2.  Overview of the temporal evolution prior to the first precipitation onset (every 12 h, timestamps in UTC as per title), showing vertically integrated 
vapor transport (shading and arrows, units: kg m−1 s−1), sea level pressure (blue lines, units: hPa), sea surface temperature (gray lines, units: K, pink line: 
SST = 292 K). Thick red and blue lines indicate low-level warm and cold fronts respectively, and the upper level configuration is depicted by the orange line 
representing 2PVU at 315 K). The main cyclone is marked as L1, the secondary cyclones as LS1 and LS2, and the location of the vertical cross-sections in Figures 3 
and 4 are indicated with lines on f). SST, sea surface temperature.

Figure 3.  Vertical cross-section through the warm sector of the cyclone, showing moisture flux (shading, units: g kg m s−1), potential temperature (black lines, 
units: K, pink-line = 292 K, specific humidity (blue lines, contour interval: 1.5 g kg−1) and (a) along cross-section wind speed and (b, c) orthogonal wind speed 
(tan lines, negative dashed, contour interval: 5 m s−1). Regions below the surface pressure are masked (black). The start and end point for the longitude of the 
cross-section in (a) are 20°E and 40°E, and for the latitude of the cross-section in (b) 42°S and 48°S, and both at 65°S for (c). The insert shows the location of the 
respective cross-section (black line) relative to the sea level pressure (lines) and vertically integrated moisture transport (shading), see also Figure 2f.
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of horizontal moisture transport in the vertical is found in the warm sector of the cyclone and roughly 
coincides with the 292 K isentrope. This isentrope intersects with the surface between 40° and 45°S (in a 
region with similar SSTs) and increases poleward in height from sea-level to around 800 hPa upon reaching 
the Antarctic coast, whereafter the isentropic steepness increases due to interaction with the steep topogra-
phy of Antarctica. Relatively high values of moisture are found throughout the depth of the troposphere in 
the warm sector region, with narrow plumes at the northern end of the warm sector indicating some local 
convection (Figure 3b), whereas closer to Antarctica the distribution of moisture lacks these deep narrow 
plumes of moisture (Figure 3c). Jointly with the maximum of moisture transport, the vertical distribution of 
moisture (specific humidity) in the warm sector peaks also roughly around the 292 K isentrope. The wind-
field exhibits poleward flow through the entire depth of the troposphere, with an upper level jet (≈400 hPa) 
to the west of a clearly distinctive low-level jet (enhanced wind speeds below 850 hPa) on the warm side 
of the cold front (Figures 3a and 3b). This low-level jet is primarily an ageostrophic feature associated with 
low-level horizontal convergence on the warm side of the cold front, and consequently amplifies low-level 
horizontal moisture convergence in the region of the low-level jet (Figure 4). The geostrophic flow does not 
exhibit a localized acceleration at the height of the LLJ (not shown).

Notice that toward Antarctica the height of the maximum wind speed associated with the low-level jet re-
mains below 900 hPa. Thus the low-level jet region does not coincide with the local moisture maximum, nor 
with the local moisture transport maximum, but rather resides in a drier atmosphere below the local mois-
ture maximum. This is clearly visible when comparing vertical cross-sections perpendicular to the warm 
sector. In the northern cross-section (Figure 3b), the 292 K isentrope, the maximum of specific humidity 
and low-level wind-maximum coincide around 950 hPa, thus establishing the maximum moisture trans-
port at this level. In the southern cross-section (Figure 3c) the maximum of specific humidity (≈800 hPa) 
is above the low-level jet (≈900 hPa), yet the maximum of moisture transport is still found roughly around 
the 292 K isentropic. Thus the highest absolute values of moisture reaching the coastal zone of Antarctica 
are not at the height of the low-level jet, but located at slightly higher levels during the precipitation onset 
over East Antarctica.

Next we will consider the mismatch between the height of the moisture transport maximum and the low-lev-
el jet. The increased elevation toward Antarctica of the moisture transport maximum is in agreement with 
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Figure 4.  Vertical cross-section through the warm sector of the cyclone, displaying moisture convergence (shading, units: kg kg−1 s−1), along-cross-section 
ageostrophic component of the velocity (indigo, units: m s−1, negative dashed), and potential temperature (black lines, units: K, pink-line = 292 K). The insert 
shows the location of the cross-section (black line) relative to the sea level pressure (lines) and vertically integrated moisture transport (shading), see also 
Figure 2f.
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the warm-conveyor belt concept (WCB) (Madonna et al., 2014, e.g.,) in which cyclogenesis directs warm 
moist air upward along isentropic surfaces in the warm sector of a cyclone. The moisture loaded air-parcels 
ascent along moist isentropic surfaces, which are slightly steeper in the warm sector than isentropic surfac-
es (not shown), whereafter the air-parcel is only indirectly influenced by air-sea interactions as it detaches 
from the surface with increased height. As the warm sector progresses poleward it experiences colder un-
derlying SSTs (Figure 5a). Roughly poleward of SST = 292 K, coinciding with a relative strong SST-gradient, 
the air-sea temperature and humidity differences in the warm sector result in negative (downward) surface 
sensible and latent heat fluxes (Figure 5a), both contributing toward cooling of the atmosphere. Cooling 
of the atmospheric boundary layer in the moisture loaded warm sector results in saturation and thus for-
mation of precipitation, hence these surface fluxes likely contribute to a drier boundary layer. Notice that 
latent heat release associated with condensation during the formation of precipitation potentially offsets the 
cooling. In addition to the drying due to the cooling, the negative surface latent heat flux also implies that as 
the warm moist air moves poleward, it is cut-off from local moisture supply due to lack of evaporation from 
the ocean, which occurs in this case poleward of SST = 292 K, roughly around 40°S or about 2,000 km away 
from the coastal zone of Antarctica. Hence the relatively dry lower part of the troposphere in the warm sec-
tor can be attributed to air-sea interactions, where the lack of moisture supply via surface evaporation and 
cooling both contribute to a relatively dry boundary layer, thereby enhancing the signature of an elevated 
maximum of moisture transport.

Neglecting moisture changes due to phase transitions, the local change in moisture can be described by the 
moisture flux convergence,


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Figure 5.  (a) Surface latent heat flux (shading, units: W m−2) and surface sensible heat flux (black lines, negative dashed (downward), units: W m−2). (b) 
Vertically integrated moisture flux convergence (shading, units: kg m−2 s−1) and total precipitation (green, contour interval: 1 mm). Sea-level pressure (blue 
lines, units: hPa) and sea surface temperature (gray lines, units: K, pink-line: SST = 292 K). Thick red and blue lines indicate low-level warm and cold fronts 
respectively, the main cyclone is marked as L1, and the secondary cyclone as LS2. SST, sea surface temperature.
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where q represents the specific humidity and u the velocity field. The moisture flux convergence is separat-
ed in contributions from moisture advection and moisture convergence (right hand side). Below the mois-
ture transport maximum, roughly below the 292 K isentrope, that is, the location of the low-level jet, there is 
a local moisture increase both by horizontal moisture advection (not shown) and by moisture convergence 
(Figure 4). However, this moisture increase does not seem to counterbalance the moisture lack/loss induced 
by air-sea interactions, as the specific humidity maximum is located above this region. Local maxima of 
moisture convergence at low-levels are located just upstream of the intersection of the 292 K isentrope with 
the surface (around 40°S), and over the coastal region of Antarctica (Figure 4). Thus we find the strongest 
moisture convergence over the sub-tropical moisture source region and at the polar precipitation region, 
whereas moisture convergence in between is relatively moderate. These features, combined with the elon-
gated structure of moisture transport, hint at long-range moisture transport between these two locations. 
Note that the moisture flux convergence pattern (not shown) is analogous to the moisture convergence, but 
in regions of strong horizontal moisture gradients it is enhanced with a similar magnitude by the moisture 
advection (not shown). However, peak values in moisture convergence (close to Antarctica and around 
40 S) are not matched in magnitude by the moisture advection.

Vertically integrated values of moisture flux convergence (Figure 5b) are most prominent along the eastern 
side of the entire warm-sector, which can be attributed to the overall zonal displacement of the warm-sec-
tor (see Figures 2e and 2f). Despite the dominant meridional flow direction, the horizontal gradients in 
moisture content are much larger in the zonal direction resulting in relative large local changes in moisture 
content in the zonal direction, and thus enhanced (suppressed) moisture flux convergence on the eastern 
(western) side of the warm sector. Upon approaching the steep orography of East Antarctica this pattern is 
disturbed, and local convergence due to interaction with the topography results in a broad region of strong 
moisture flux convergence which enhanced the local precipitation. Notice that upon reaching the Antarctic 
coastal region the atmosphere is much drier compared to lower latitudes (see Figure 3), thus similar values 
of moisture flux convergence are likely driven by strong local mass convergence.

3.2.2.  Secondary Cyclogenesis

Prior to and during the precipitation event the large-scale atmospheric configuration acts as a wave-guide 
for short-wave upper-level disturbances. If the conditions in the troposphere are favorable for cyclone de-
velopment, these upper-level disturbances result in cyclogenesis. As the main synoptic-scale cyclone starts 
to decay (around 15 February 12:00 UTC), the band of strong IVT associated with the first precipitation 
peak, ceases to reach Antarctica, though large values of IVT remain further North (Figure 6). At the same 
time, a small-scale upper-level disturbance, as evident from the wavy structure in the 2PVU isoline at 315 K 
(Figure 6a), approaches the region of remnants of high moisture content, initiating cyclogenesis along the 
western edge of the high-pressure system, just south of the main SST gradient. Coupling between a surface 
and upper-level cyclonic feature, which are slightly tilted toward each other, enforces cyclogenesis, akin 
to classical baroclinic development (Charney, 1948; Eady, 1949). The tilted direction is with respect to the 
baroclinic zone along the eastern side of the main cyclone (L1), which is in this case meridionally orientated 
(Figure 6 and Figure S2). The deepening and propagation speed of the secondary cyclone (labeled LS3, Fig-
ure 6) is remarkable, within 1 day it translates about 2,000 km and decreases ≈30 hPa in surface pressure. 
These features are likely a combined effect of coupling with the poleward intense upper-level jet associated 
with the trough, and the abundance of available moisture aiding rapid cyclogenesis via latent heat release. 
Notice that also this cyclone exhibits negative surface sensible and latent heat fluxes in the warm sector 
(Figure 7a). The effect of the secondary cyclone is strong moisture flux convergence ahead of the cyclone 
(Ls3, relative to the direction of propagation), thereby facilitating the transport of moisture toward East 
Antarctica (Figure 7b). The landfall of this secondary cyclone corresponds to the onset of the second precip-
itation maximum (16 February 09:00, see also Figure 1a).

In summary, we identified two distinctly different mechanisms that contributed to the long-range moisture 
transport: on synoptic scales, transport was dominated by isentropic up-gliding in the warm-sector of a 
large scale cyclone, whereas on sub-synoptic scales the rapid intensification and propagation of mesoscale 
cyclones contributed to poleward transport of moisture. Yet, in both cases, local moisture uptake along the 
poleward moisture transport is limited, highlighting the prominent role of air-sea temperature differences 
and resulting humidity gradients above the water during such events. Moisture uptake is only possible in 
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Figure 6.  Overview of the temporal evolution prior to the second precipitation onset (every 6 h, timestamps in UTC as per title) showing vertically integrated 
vapor transport (shading and arrows, units: kg m−1 s−1), sea level pressure (blue lines, units: hPa), sea surface temperature (gray lines, units: K, pink line: 
SST = 292 K). The upper level configuration is depicted by the orange line representing 2PVU at 315 K. The main cyclone is labeled L1, and secondary cyclones 
are labeled LS2 and LS3. SST, sea surface temperature.

Figure 7.  (a) Surface latent heat flux (shading, units: W m−2) and surface sensible heat flux (black lines, negative dashed (downward), units: W m−2). (b) 
Vertically integrated moisture flux convergence (shading, units: kg m−2 s−1) and total precipitation (green, contour interval: 1 mm). Sea-level pressure (blue 
lines, units: hPa) and sea surface temperature (gray lines, units: K, pink-line: SST = 292 K). The main cyclone is labeled L1, and the secondary cyclone LS3. SST, 
sea surface temperature.
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regions with a conducive air-sea temperature difference, which in this case was several thousand kilometers 
away from the precipitation region, with limited surface evaporation between 40 and 60°S.

3.3.  Lagrangian Perspective

In the previous section we used snapshots of the atmosphere, with a spatial extent of several thousand 
kilometers, to evaluate the atmospheric state prior to and during the precipitation event. In this section we 
will use a complementary approach by back-tracking the temporal evolution of air parcels from the conti-
nental precipitation region. We use our collection of backward trajectories to evaluate the evolution of an 
air-stream linking the sub-tropics and Antarctic continent, and pinpoint the spatial and temporal character-
istics of the oceanic moisture sources that contributed to Antarctic precipitation.

3.3.1.  Coherent Air-Stream Linking Sub-Tropics to Antarctic

Figure 8 displays 5-day backward trajectories for air parcels arriving on February 16, 2011 00:00UTC, that is, 
during the first peak in precipitation, over the East Antarctic precipitation region and that exhibited a mois-
ture flux >250 g kg−1 m s−1 at sometime along the trajectory. These air parcels exhibit high values of mois-
ture flux sometime along their track, and could be designated as part of an atmospheric river. The selected 
trajectories follow a similar pathway for several days, and as such belong to a coherent air-stream located 
in the warm sector of the synoptic-scale cyclone (L1). Besides a few outliers, the air parcels are located on 
the warmer side of the sea-surface temperature gradient, that is, roughly equatorward of the SST = 292 K 
isoline, 5 days before landfall. The surface moisture source region (see Section 2), associated with the se-
lected trajectories, is located in the region around 40°S (yellow lines, Figure 8). The total moisture uptake 
in the boundary layer, established from all trajectories (pink lines, Figure 8) exhibits two distinct regions, 
one located in the sub-tropics (around 40°S) and another closer to the continent. The selected trajectories 
illustrate a pathway of long-range moisture transport from the sub-tropical moisture source region toward 
East-Antarctica. Notice however that they only account for a fraction of the total precipitation (14%) as only 
trajectories with high moisture flux are included. Reducing the selection threshold to 200 (150) g kg−1 m s−1 
accounts for 29 (47) % of the total precipitation, with all moisture uptake taking place in the sub-tropical 
moisture source region. Thus, a rather coherent air-stream plays a prominent role in the poleward moisture 
transport by linking the sub-tropical moisture source region to the Antarctic precipitation region, while 
exhibiting high moisture fluxes.
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Figure 8.  Kinematic backward trajectories (5 days) arriving on February 16, 2011 00:00 UTC (approximately during first peak in precipitation) over land in 
the region indicated by the box (which envelops the region of precipitation during the entire event) and exhibiting strong moisture transport (>250 g kg m s−1) 
sometime along their track. Trajectories are shaded by moisture transport (units: g kg m s−1), the background shading shows the sea-surface temperature (units: 
K). Moisture uptake in the boundary layer (units: mm 3 h−1) associated with precipitation inside the box on February 16, 2011, 00:00 UTC for all trajectories 
(pink lines) and for the selected trajectories (yellow lines).
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Figure 9 displays properties along the selected backward trajectories, that is, along trajectories exhibiting a 
moisture flux >250 g kg−1 m s−1 sometime prior to landfall. Up to approximately 2 days (t = −48 h) before 
landfall the selected air parcels reside at low-levels (between 950 and 800 hPa, Figure 9b), steadily gaining 
moisture (Figure 9d). During this period, their potential temperature remains rather constant and roughly 
equals the underlying SST (Figures  9a and  9c), resulting in negligible surface sensible heat fluxes (Fig-
ure 9e). During this phase, surface evaporation provides moisture input which increased the parcels’ specif-
ic humidity (Figure 9d and 9e), resulting in a steady increase in relative humidity (Figure 9d). Roughly 48 h 
before landfall these air-parcels are “gathered” by the warm sector of the synoptic scale cyclone (L1), and 
leave the sub-tropics on a poleward journey (Figure 9c). At this point, the air-parcels start to experience in-
creases in wind speed while being lifted (Figures 9b and 9f). As the moisture loaded air-parcels ascent (start-
ing at t = −48 h), saturation occurs due to adiabatic cooling, resulting in precipitation (Figure 9g), while the 
associated condensation resulting in increased potential temperature (Figure 9a). The slow rates of ascent 
and resolved precipitation indicate that the ascent is driven by isentropic up-gliding, as opposed to convec-
tively forced ascent. As the air parcels ascent and move poleward, the underlying SST decreases (Figure 9c), 
and the air mass underneath is experiencing negative surface sensible and latent heat fluxes (Figures 9d and 
9e), corroborating the lack of moisture input from surface evaporation and cooling by surface sensible heat 
fluxes that has been pointed out previously (see Section 3.2). Notice that the air parcels themselves are lifted 
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Figure 9.  Properties along selected backward trajectories (see Figure 8 for selection details) showing mean values (lines) and standard deviation (shading). 
Values on x-axis indicate hours, data is plotted such that t = 0 h corresponds to landfall. The values of the surface fluxes are time-mean values for the 
previous hour, and precipitation comprised accumulated values over the previous hour, both wrt. the trajectory-timestamp. Abbreviations: th = potential 
temperature, the = equivalent potential temperature, ps = surface pressure, p = pressure, SST = sea surface temperature, lat = latitude, q = specific humidity, 
RH = relative humidity, sshf = surface sensible heat flux, slhf = surface latent heat flux, wspd = windspeed, lsp = large scale precipitation, sf = snowfall 
(convective + stratiform) and mt = moisture transport.
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and thus moving away from the surface. While the parcels are lifted the wind speed increases, accompanied 
by an increase in moisture transport (Figures 9f and 9h). Around t = −30 h the moisture transport peaks 
whereafter it steeply declines as precipitation depletes the air parcels’ moisture content. Upon approaching 
the coastal regions the air-parcels are cooled to subfreezing temperatures (around t = −15 h, not shown) 
after which the dominant precipitation type changes from rain to snowfall (Figure 9g). Note that the air-par-
cels nearly lost all their moisture at this point, with the final enhanced ascent due to the steep orography 
over the continent resulting in a localized peak in snowfall (Figures 9b and 9g).

Overall the development of the coherent air-stream is in agreement with the Eulerian description in Sec-
tion 3.2, in which a warm-conveyor belt like feature is bridging the gap between the sub-tropical moisture 
source region and Antarctic precipitation. In addition to the Eulerian perspective, the trajectory analy-
sis confirmed limited surface evaporation and downward surface sensible heat fluxes along the poleward 
journey, underscoring the notion of long-distance moisture transport prior to and during the precipitation 
event. The role of WCB like moisture transport during ARs was previously observed by Sodemann and 
Stohl (2013), similarly Komatsu et al. (2018) associated slantwise ascent with intense poleward moisture 
transport in the Arctic.

3.3.2.  Moisture Sources

Using the methodology of Sodemann et al. (2008); Sodemann (2020) (see also Section 2) we account for 
moisture changes along all backward trajectories that arrived at the precipitation area during the event to 
identify the most likely moisture uptake region. The magnitude and spatial distribution of the estimated 
precipitation from this methodology is largely in agreement with the precipitation output from ERA5 (com-
pare Figures 1b and 10a), albeit ERA5 precipitation exhibits more localized peak values. This correspond-
ence provides confidence in the ability of this methodology to represent the changes in moisture along the 
backward trajectories.

During the event the primary moisture uptake via surface evaporation is over a several 100 km wide band 
centered around 40°S, about 2,000  km equator ward of the precipitation region (Figure  10a). This sub-
tropical region accounts for the bulk of the surface moisture uptake, with 2/3 of the total surface moisture 
uptake during the event taking place equator ward of 50°S and more than a quarter (28%) equatorward of 
40°S. A secondary moisture source region is located near the coast of East Antarctica. With only 16% of the 
surface moisture uptake taking place south of 60°S, moisture uptake in this secondary region contributes 
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Figure 10.  (a) Moisture uptake in the boundary layer during the event (15–18 February 2011, shading, units: mm), associated estimated precipitation (orange 
lines, contour interval: 20 mm), and sea surface temperature (mean during the event, gray lines, units: K, pink-line: SST = 292 K). (b) Hovmöller diagram (time-
latitude) displaying moisture uptake in boundary layer integrated per latitude band (shading, units: m3 h−1) and corresponding precipitation (orange lines, 
units: m3 h−1). The moisture uptake regions and precipitation are based on backward trajectories.
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little to the precipitation during the event. Furthermore, contributions to the precipitation from moisture 
sources in the vicinity of Antarctica occur predominantly toward the end of the event, that is, after the 
second precipitation peak. Note that the surface moisture uptake in Figure 10b is derived from backward 
trajectories associated with the estimated precipitation for each timestamp, hence the moisture uptake takes 
place before the plotted timestamp. The mean and standard deviation of the transport distance between the 
source region and precipitation region is 5,578 ± 533 km with a transport duration of 4.2 ± 0.3 days. This 
roughly equates to transport velocities around 15 m s−1. These somewhat high velocities are in agreement 
with the strong moisture transport along the poleward part of the coherent air-stream (see Section 3.3.1), 
and also with the rapidly propagating secondary cyclones (see Section 3.2.2). The large gap between the 
major uptake region and precipitation region confirms that the warm air mass that facilitated the moisture 
transport, as described in the previous sections, indeed experienced limited moisture uptake from surface 
evaporation during the poleward moisture transport. Furthermore, the Hövemuller diagram, showing the 
precipitation and moisture uptake as derived from backward trajectories (Figure 10b) clearly shows the two 
distinctive phases of the event. The concurrent occurrence of the two peaks in Antarctic precipitation and 
sub-tropical moisture uptake, indicate that both the synoptic and mesoscale cyclogenesis contributed to 
long-range moisture transport. In addition, it corroborates the previously pointed out (Section 3.2 and 3.3) 
limited local surface evaporation along the region of poleward moisture transport.

Besides the importance of the atmospheric configuration during the precipitation event, there is some ev-
idence that the distribution of the SST contributed to the pre-conditioning, that is, the high atmospheric 
moisture load prior to the poleward moisture transport. The local maximum of moisture uptake (south of 
the African coast) is roughly collocated with poleward excursion of warmer SSTs (see SST = 292 K, pink 
line, Figure 10a and Figure S3) during the event. This localized poleward excursion of warmer SSTs is locat-
ed in the Agulhas current leakage region, a region with frequent shedding of ocean surface eddies from the 
Agulhas current into the South Atlantic ocean (Durgadoo et al., 2017). Furthermore, the moisture uptake 
region at 40°S experienced climatological (with respect to 2006–2016 monthly mean) anomalously warm 
SSTs (see Figure S3), providing another indicator of the potential importance of the sub-tropical SST distri-
bution for extreme precipitation events over the Antarctic continent.

4.  Summary and Conclusions
4.1.  Summary

We provide a detailed analysis of the moisture transport and sources that contributed to an extreme precip-
itation event over East Antarctica. Coastal precipitation during the event exhibited sustained extreme pre-
cipitation rates for several days. The temporal evolution of the coastal precipitation comprised two phases of 
enhanced precipitation rates, both contributing roughly equally to the total precipitation during the event. 
A comparison of precipitation fields from ERA5 and local precipitation observations at Princess Elisabeth 
showed a good temporal agreement indicating that the event is reasonably well represented in ERA5.

The planetary-scale atmospheric configuration during the event consisted of a blocking situation which 
introduced a sustained meridional flow direction from the sub-tropics to the Antarctic continent. Along 
this meridional flow, synoptic-scale cyclogenesis provided a warm-conveyor belt alike isentropic up-gliding 
of moisture loaded air parcels. As the warm moist air started to progress poleward, the air-sea temperature 
differences reversed due to decreasing SSTs. As a consequence, the underlying air mass experienced nega-
tive (downward) surface sensible and latent heat fluxes, effectively providing a cut-off from surface evapo-
ration, and inducing cooling of the lower troposphere during the poleward moisture transport. Landfall of 
the moisture loaded warm sector in East Antarctica corresponded to the onset of enhanced precipitation 
over the coastal region. The established warm moist corridor provided favorable conditions for secondary 
cyclogenesis, which was initiated by transient short-waves along the meridionally orientated upper-level jet. 
The mesoscale cyclone had a remarkable deepening rate and propagation speed, likely attributable to the 
coupling with the upper levels and the abundance of available moisture at low levels aiding cyclogenesis via 
latent heat release. This mesoscale cyclone induced strong moisture flux convergence ahead of the cyclone, 
and landfall of this region corresponded to a second enhancement of coastal precipitation. Evaluation of 
the moisture source regions by accounting for moisture changes in traced air parcels confirmed the limited 
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surface evaporation between the oceanic moisture source and continental precipitation during the event, 
with the primary moisture source region located in the sub-tropics.

4.2.  Concluding Remarks

The elongated structure of high IVT values associated with this case study was previously labeled as an AR 
(Gorodetskaya et al., 2014), and would be classified as such by most AR feature detection algorithms (see 
Rutz et al., 2019 and references therein). Yet, the detection of AR-features provides only limited insight in 
the associated processes. In this case study, initially the elongated region of high IVT values was predom-
inantly attributable to slantwise ascent of moisture loaded air parcels, whereas at later stages the rapid 
propagation of a mesoscale cyclone contributed to the collocation of moisture and strong wind speeds. The 
development of mesoscale features is not uncommon during ARs. For example, the AR-case investigated by 
Ralph et al. (2010) was accompanied by a frontal-wave which contributed to heavy precipitation, and also 
Luo and Tung (2015) concluded that embedded mesoscale convective systems played a significant role in 
the moisture transport during two AR-cases. Moreover, a study by Sinclair and Dacre (2018) points to the 
relevance of mesoscale cyclones for poleward moisture transport. They showed that among extratropical 
cyclones, rapidly propagating open frontal-waves, resembling secondary cyclones, exhibited the strongest 
poleward moisture fluxes in the Southern Hemisphere. Embedded mesoscale features and the interplay 
between different scales highlights the complex nature of AR-signatures, pinpointing the need for future 
investigation on the role of mesoscale features and scale interactions during ARs.

Our analysis, that is, Eulerian snapshots of the atmosphere, the Lagrangian airstream exhibiting AR-char-
acteristics, and identification of the most likely moisture source region, indicate that the case described here 
exhibited long-range moisture transport from the sub-tropics to the Antarctic continent. This is in contrast 
to case studies in the Northern Hemisphere (e.g., Bao et al., 2006; Cordeira et al., 2013; Ralph et al., 2010; 
Sodemann & Stohl, 2013), in which only a fraction of the moisture is transported along the entire AR length. 
In these case studies the AR moisture sources are, besides a (sub)tropical source, attributed to horizontal 
moisture convergence along the AR-structure and local surface evaporation. Furthermore, AR-signatures 
in the North Atlantic seems to be maintained by a continuous process of local surface evaporation and pre-
cipitation (Dacre et al., 2015), whereas in the case presented here this mechanism was absent due to a lack 
of surface evaporation. Overall our case study shows that the underlying dynamical pathways for AR-signa-
tures cover a broad spectrum of mechanisms, and include distinct hemispheric differences which are likely 
introduced by the distribution of SSTs.

While we did not perform a climatology of extreme precipitation events over East Antarctica, other climato-
logical research provides some context for individual case studies. There are several indicators that the case 
studied here is rather representative for ice-sheet accumulation events over Antarctica coastal regions. As 
pointed out by Turner et al. (2019), climatologically extreme precipitation events contribute to 50%–70% of 
coastal precipitation in Antarctica. Furthermore, the Lagrangian analysis by Sodemann and Stohl (2009) in-
dicated that climatologically moisture source regions related to Antarctic precipitation exhibit a maximum 
around 40°S at similar longitudes. In addition, Sinclair and Dacre (2018) found that from their collection of 
extra-tropical cyclones the strongest poleward moisture transport occurred in fast propagating frontal-wave 
cyclones, akin to our rapidly propagating mesoscale cyclone. As our case study features typical climatolog-
ical conditions for coastal Antarctic precipitation, including sustained extreme precipitation, a sub-tropical 
moisture source and rapidly propagating open-wave cyclones, it seems reasonable that other features, most 
prominently the limited surface evaporation during long-range moisture transport, is also typical for such 
events.

Sustained periods of significant precipitation over the coastal region of Antarctica requires poleward ex-
cursions of warm moist air masses to account for a sufficient moisture load. Yet, as the underlying SSTs 
decrease poleward, such events will be cut-off from surface evaporation, hence almost by default extreme 
precipitation events over coastal Antarctica depend on long-range moisture transport. This also implies 
that, as the moisture is loaded to the atmosphere in the sub-tropics, the conditions in this region, in particu-
lar the SST distribution, produce an imprint on Antarctic precipitation. Based on the similarities of our case 
study with typical climatological conditions and the above reasoning, we hypothesize that also in a clima-
tological framework the distribution of sub-tropical SSTs are linked to coastal precipitation over Antarctica. 
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This in turn affects ice-sheet accumulation, with shifts in the Southern Ocean SST-gradients or local SST 
anomalies in the sub-tropics conceivably modulating the Antarctic ice-sheet growth, which potentially has 
implications for climate interpretation from such sources.

Data Availability Statement
Data for this study is provided by the European Center for Medium-Range Weather Forecasts (ECMWF) 
and is available via the Copernicus Climate Change Service Climate Data Store (https://cds.climate.co-
pernicus.eu/cdsapp). The Belgian Science Policy Office (BELSPO; projects BR/143/A2/AEROCLOUD and 
HYDRANT EA/01/04AB) supported observations at Princess Elisabeth Station, the observational data set is 
accessible via https://ees.kuleuven.be/hydrant/aerocloud/.
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