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1. Introduction

The study and classification of topological phases of matter is a pervasive theme of contemporary
physics. Quasiparticles with exotic exchange statistics (called “anyons™) are a hallmark of two-
dimensional topological phases. The experimental realisation and control of anyons is a much
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sought-after goal, owing especially to proposed schemes for the robust processing of quantum
information [1-3].

The algebraic theory of anyons (of which various detailed accounts may be found [4-8]) is
considered mature [9,10]. It is well-understood that the statistical properties of anyons arise due to
the distinguished topology of exchange trajectories in two dimensions. In a given theory, anyons are
distinguished by their “topological charges” which characterise their mutual statistics. However, it is
further expected that these charges possess a fusion structure wherein the ‘combination’ (or fusion)
of two anyons effectively results in a single anyon that may possibly exist in a superposition of topo-
logical charges. In some expositions, fusion is motivated using flux-charge composite toy models.
Fusion structure is also readily apparent in 2D spin-lattice models such as the toric code. However,
a careful treatment of the emergence of this fusion structure in a general setting is lacking. We
therefore seek to provide a ground-up construction of the braiding and fusion structure of anyons.

Quantum symmetries is an umbrella term for the algebraic structures that are used to describe
topological quantum matter. Ribbon fusion categories provide the mathematical framework for
studying the statistical behaviour of anyons. Often, anyons are introduced through a discussion of
identical particles: the same arguments that lead us to conclude that there are only bosons and
fermions in three or more spatial dimensions, instead indicate the possibility of fractional statistics
in two dimensions. There is an unfortunate gulf between the language of identical particles and that
of ribbon categories. Our objective is to clarify the connection between quantum symmetries and
the elementary, yet profound principle of exchange symmetry in quantum mechanics. Superselection
sectors play a key role in our exposition.

A series of ‘assumptions’ or postulates A1-A3 are given throughout the text. They are proposed
as the minimal prescription needed to recover ribbon fusion categories (as an algebraic model for
anyons) from exchange symmetry in (2+1)-dimensions. Here, A2-A3 are presented in terms slightly
more simplified than in the main text. The “associativity condition” in A3 refers to (6.24).

A1l. Two-dimensional quasiparticles are spatially localised phenomena.

A2. (i) The Hilbert space of finitely many quasiparticles is finite-dimensional.
(ii) A theory of anyons has finitely many distinct topological charges.

A3. For any topological charge g, there exists a dual charge g such that a
certain associativity condition is satisfied with respect to their fusion.

The localisation condition A1 is a relevant physical consideration. Less satisfyingly, finiteness
assumption A2 appears to be prescribed for mathematical convenience. Some physical motivation
is provided for Kitaev's duality axiom A3 in [4]. The main results of this paper are presented in
Sections 4 and 5, where we show that A1 and A2(i) are sufficient to recover the core braiding and
fusion structure of 2D quasiparticles. In Section 6, we outline how A2(ii) and A3 are required to
make contact with ribbon fusion categories as algebraic models for anyons.

1.1. Relation to existing work

In attempting to derive fusion structure from some underlying physical principles, our work is
similar in spirit to [11] where the authors show that such structure may be recovered from the
entanglement area law

SA) =al—y (1.1)

where S(A) is the von Neumann entropy of a simply-connected region A, ! is the perimeter of A and
y is a constant correction term (which the authors also show to be equal to InD, where D is the
total quantum dimension of the anyon theory).
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Our approach Approach in [11]
Physical Exchange Entanglement area law
principle symmetry

Construction  Local representations of Information convex
coloured braid groupoid sets

While the construction in [11] may be more fundamental, the narrative of exchange symmetry
might be more familiar to the majority of readers. F and R symbols can be recovered from
our construction, and we are able to arrive at the usual formalism (of unitary ribbon fusion
categories) for modelling theories of anyons. Ultimately, the two approaches will offer different
insights and will appeal to different audiences. However, we suggest that they might be viewed
as complementing one another. By assuming (1.1) it follows that A2(i) implies A2(ii) [11, Theorem
4.1], and that for any topological charge q there exists a unique dual charge g such that they will
fuse to the vacuum in a unique way [11, Proposition 4.9]. Combining the two approaches, we arrive
at an alternative to A1-A3':

P1. Two-dimensional quasiparticles are spatially localised phenomena.
P2. The Hilbert space of finitely many quasiparticles is finite-dimensional.

P3. The system of quasiparticles satisfies entanglement area law (1.1).

1.2. Qutline of paper

In Section 2, we recap the notion of superselection rules and identical particles. This is followed
by a discussion of the difference between particle exchanges in two and three spatial dimensions. In
Section 3, we formulate exchange symmetry via the action of the motion group of a many-particle
system, and relate this to the boson-fermion superselection rule for fundamental particles.

In Section 4, we consider the action of braiding on a system of 2D quasiparticles. The localisation
condition A1 means that this action is generally not given by a representation of the braid group;
instead, it is given by a local representation of the “coloured” braid groupoid. This action is described
in Section 4.1, and we discuss its interpretation as a functor in Appendix A. The heart of our
construction is presented in Section 4.2, where we adapt the definition of exchange symmetry from
Section 3 to formulate an appropriate commutator via the braiding action. This gives rise to a notion
of exchange symmetry on all subsystems of quasiparticles. In Section 4.3, we see how the associated
superselection sectors of subsystems fit together to describe the Hilbert space of the whole system.

In Section 5, we present our main results. We show that the superselection sectors of an
n-quasiparticle system correspond to the eigenspaces under the action of an n-braid 8, which we
call the superselection braid (Theorem 5.1). We recover the core fusion structure amongst these
superselection sectors by showing that they exhibit the same statistical behaviour as quasiparticles,
allowing us to identify them as such (Theorem 5.5). The associativity and commutativity of fusion
is deduced in Corollary 5.7. We prove several braid identities pertaining to 8, and see that this
braid encodes the structure of all fusion trees for an n-quasiparticle fusion space (Theorem 5.9). We
finally show that B, is the unique braid (up to orientation) whose action specifies the superselection
sectors of an n-quasiparticle system (Theorem 5.11).

In Section 6, we review the braiding and fusion structure from Section 5 within the usual setting
of braided 6j fusion systems, and present the additional postulates required to make contact with
the framework of ribbon fusion categories. In Section 6.3, we observe some R-matrix identities that
follow from our construction: these reveal some information about the spectrum of 8,, and provide
an ansatz for the monodromy operator which is consistent with the categorical ribbon relation.

In Section 7, we give a concise summary of our exposition, and speculate on a possible extension
of our construction.

T The authors of [11] advocate for using two local entropic constraints [11, AO-A1] in lieu of (1.1).
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Fig. 1. Exchange trajectories in R? for (a) a clockwise tangle (right), and (b) single exchanges. When d > 3, deformations
‘~" lift the strands through the extra spatial dimension(s).

2. Preliminaries
2.1. Superselection rules and identical particles

Consider a system with Hilbert space #. A superselection rule (SSR) is given by a normal operator

~

J : H — H where
[0.j1=0 (2.1)

for all observables O of the system. Suppose that #’ and #” are any two distinct superselection
sectors (eigenspaces of J). Then (2.1) tells us that for any [¢') € #/, [") € #” and any observable
O on #H, we have

W01y =0 (22)

The defining feature of SSRs is that they preclude the observation of relative phases between states
from distinct superselection sectors: let |y) = a|y’) + Bly¥") and |¢,) = «|y’) +e?Bly") be
normalised states. We have

A

(O)y = (O)y, = tr(0p) forall 0,6 (2.3)

where p = |al*|y")(¥'| + |BI*|Y"){(y¥"| (ie. if superpositions vr, were to exist, we would be
incapable of physically distinguishing them from a statistical mixture).

Examples of superselection observables? include spin, mass® and electric charge. Notably, the
spin SSR concerns the superposition of integer and half-integer spins: by the spin-statistics theorem,
this is equivalent to the boson-fermion SSR. These two equivalent SSRs are sometimes referred to
as the univalence SSR.

The intrinsic properties of a particle may be characterised as corresponding to quantum numbers
with an associated SSR. Two particles are identical if all of their intrinsic properties match exactly
e.g. all electrons are identical.

2.2. Particle exchanges

Consider the exchanges of n identical particles* on a connected m-manifold M for m > 2.
The homotopy classes of exchange trajectories in M form a group G,(M) = m(Up(M)) under
composition (the fundamental group of the nth unordered configuration space of A). We will call
this the motion group. We are interested in two cases for M. Firstly, we have G,(RY) = S, (the
symmetric group) for d > 3. Here, a tangle5 is homotopic to 0 tangles and exchanges are insensitive
to orientation (Fig. 1).

2 5SRs for which | is an observable.

3 Bargmann's mass SSR arises through demanding the Galilean covariance of the Schrodinger equation: this only
pertains to nonrelativistic systems, since Galilean symmetry is superseded by Poincaré symmetry in special relativity.

4 1t will be assumed that particles are point-like.
5 We call two successive exchanges of the same orientation on a pair of adjacent particles a tangle.

4
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Fig. 2. Particles are considered as lying in some disc D C S. Since we are only interested in the topology of exchange
trajectories and B,(ID?) 2 B,(D), we can restrict our attention to particles in D?.

Secondly, for a surface S we have G,(S) = B,(S) (the surface braid group). Given any n points in
(the interior of) S, we can take some disc D C & such that all n points lie inside D. We know that
Gn(ID?) = B, where D? is the 2-disc and

Bn=( 015 -+, 0n-1

0i0i10i = 0i410i0i1
010} = 0j0 , [ — j| 2 ) (24)

is the Artin braid group. We will denote the identity element by e. The braid relations for B, thus
also hold in B,(S) [12]. When considering particle exchanges on a surface S, we henceforth restrict
our attention to B,(ID?) (see Fig. 2).

Remark 2.1. I[n particular, this means that what we learn about the exchange statistics of particles
on a disc is also applicable to particles on surfaces with arbitrary topology (see Fig. 3).

3. Exchange symmetry in three or more spatial dimensions

A permutation of n identical particles will be indistinguishable from the original configuration:
this is called exchange symmetry and may be concisely expressed by

[0, p(g)] =0 (3.1)

for all observables O on (the n-particle Hilbert space), and all g in the n-particle motion group G
where p : G — U(H) is the unitary linear representation describing the evolution in # under the
action of G. It is easy to see that if (3.2) holds for all generators g; of G, then (3.1) follows.

[0, p(gi)] =0 (32)

Recall that S, is the motion group of n particles in R? for d > 3. We write

s2=e
Sn=1{ S51,.-..501 5iSi415i = Sit15iSis1 (3.3)
sisp=sjsi, [i—jl=2
If dim(#) = 1, it is clear that p can only be one of p* where
e
Sy — U1
P~ Sn (1) (3.4)
Si > +1

If two identical particles are exchanged and their wavefunction is scaled by +1, they are called
bosons; if their wavefunction is scaled by —1, they are called fermions.

Letting dim(#) > 1, it is consistent to expect that statistical evolutions determined by higher-
dimensional representations of the symmetric group should be possible. Such exchange statistics
are referred to as parastatistics. However, ‘paraparticles’ have never been observed in nature, and
all known fundamental particles may be classified as being either a boson or a fermion. Indeed, the

5
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Fig. 3. A braid diagram with n strands will be interpreted as a worldline diagram for n particles on a disc. We will let
the time axis run downwards. The above diagram depicts this for the 3-braid oya;.

classification of identical particles as being either bosons or fermions is sometimes included as a
postulate of quantum mechanics (called the symmetrisation postulate). If this postulate is relaxed
then it can still be shown (under the pertinent constraints) that the boson-fermion classification
will hold [13-15].

In order for (3.1) to be consistent with the symmetrisation postulate, we must levy some
restrictions on p when G = S, and dim(#) > 1. The eigenvalues of p(s;) belong to a nonempty
subset of {+1}. We respectively denote the corresponding eigenspaces (one of which is possibly
zero-dimensional) by Hf: Since each such eigenspace defines a superselection sector and the n
particles are identical (and are thus either all bosons or all fermions by the postulate), p must be
such that ’Hli = ’Hji for all i, j. We thus have H = H @& # ™~ (i.e. the subscripts are dropped). Under
this restriction, we may thus recover the boson-fermion SSR from (3.1).

Remark 3.1. For a system of n bosons or fermions, there is typically no subspace describing a
subsystem of k < n particles. This is implicit in the structure of Fock space® (here Hgg) denotes the
space of (anti)symmetric states for k identical particles):

=P onPe®... (35)

E.g. ’H(f) Z ’H(f). For instance, states such as iz(lﬂl) —|10)) € #® do not describe a physical
entanglement, since the subsystem for an individual particle is physically inaccessible [16]. This is
in contrast to anyonic systems which have a well-defined description of state spaces for particle
subsystems (since anyons are localised phenomena). Nonetheless, there exist circumstances under
which some notion of distinguishability amongst n identical bosons or fermions may be recovered:
for instance, when their wavefunctions have (approximately) disjoint compact support. This can
happen if the particles are far apart, or separated by sufficiently strong potentials.

4. Exchange symmetry in two spatial dimensions
4.1. Quasiparticles and braiding

Although there are no fundamental particles in two spatial dimensions, it is well-known that
various two-dimensional systems are theoretically capable of supporting localised excitations with
fractional statistics [17-20]: these emergent phenomena are known as quasiparticles’; they have no

6 Asa consequence of the mass SSR, note that the sectors of Fock space correspond to a SSR for the particle number
operator in the nonrelativistic limit.

7 We will use the terms ‘quasiparticle’ and ‘particle’ interchangeably.

6
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internal degrees of freedom and may thus be considered as identical. The localised nature of these
excitations is instrumental in the emergence of fusion structure.

A1l. Two-dimensional quasiparticles are spatially localised phenomena. ‘

Recall that B, is the motion group of n particles on a disc. Then for a two-quasiparticle system
with Hilbert space V, the action of the motion group is given by a unitary linear representation

p By — U(V) (4.1)

The eigenvalues {e™x )x of p(o4) lie in U(1), and we have the corresponding decomposition vV =
Py vx where eigenspaces Vx define superselection sectors by exchange symmetry as expressed in
(3.1).8 The possibly arbitrary exchange phase e™* is what earns anyons their namesake [21].

Remark 4.1. Now consider an n-particle system for n > 2. A1 permits us to consider the Hilbert
space associated with a subsystem of k adjacent quasiparticles (where 2 < k < n). Consequently,
the action of the motion subgroup By on any such subsystem will be independent of the rest of the
system. The description of the superselection sectors and exchange statistics given by the action of
B, on some pair of quasiparticles is thus a property intrinsic to said pair.

Consider a 2-quasiparticle subsystem (of particles labelled g; and g, located at the ith and
i+ 1th positions respectively) of an n-quasiparticle system. Denote the Hilbert space of this
subsystem by V%-%+1} where {g;, g1} is an unordered set. Following Remark 4.1, (4.1) defines a
fixed action

Plaiaign) * B2 = UG} (42)

on g; and g;;1, and we write the eigenspace decomposition Vi4i+1} = @, v)[(q"'q"”} for pig; g 11(01).
We label the quasiparticles from 1 to n and let Sy;,... ) be the set whose elements are all possible
permutations of the string 12...n. Given some s € S, we write s = ¢;...q, Where g; is the
ith character of string s. We denote the Hilbert space for quasiparticles ¢ ...q, (in that order) by
Vi or V5, E.g, Va-Gidit1-n gpnd ya--din1d%i-In gre the state spaces assigned to the system in the
initial and final time-slices of Fig. 4 respectively.

Let ps|v5(or,v) be the unitary linear transformation describing the action of braid ¢; € B, on the
n-quasiparticle system (as shown in Fig. 4). For n > 2,

i1l cfip1Gi--ln ~ 9i.gi+1} o 7
V- 2 ATl o (R el @ i) (4.3)
X

where \7,((5) denotes the state space for the rest of the system when g; and g;;¢ are in superselection
sector X. The spaces V91--didi+1-n gpd y-d9i+1di-9n may be identified under the action of the
subgroup (o1, ..., Gi_2, Oi_1, Oi, Oiy1, Tig2, - - - On_1), but are only equivalent up to isomorphism
under the action of B,. This is because the action of B, on the system will generally depend upon
the order of the quasiparticles for n > 2. E.g. the action of o7 € B3 on V123 will differ from its action
on V2! (unless pjy,2) and pp,3; are the same). We must therefore distinguish between the spaces

+1y X +1 .
pS|VS(Gi = GX9 I:p{q,',fhﬂi(al )® ld‘:')(iij] o

X ; . ; : o {di.gi1)
where Plgiad 19 the subrepresentation given by restricting pyg; g, t0 V.

Definition 4.2. ps(oiil) denotes the action of (anti)clockwise exchanging g; and g1 on an n-particle
Hilbert space. It is therefore necessary that u € S;,.._ n) contains the substring gigi;1 or giy+1¢; for any

.....

8 It is assumed that the superselection sectors are finite-dimensional, and that the number of distinct superselection
sectors is finite. This assumption is later codified as A2 in Section 6.1.

7
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V¥ on which py(0;"") is defined. Following from (4.4), that is

+1 X +1 ;
V“(Gi = G)t(9 [p{qi,Qi-H I(Gl )® ldl'/)((”)] (45)

Ps

The above tells us that the right way to think about the action of braiding on an n-quasiparticle
system is as follows: let {V*}; be defined as above and let b(s) € S;1,._n) be the obvious permutation9
of s for any b € B,. We construct an action of the braids b € B, as linear transformations between
spaces {V*};. This action is defined through a collection of functions {ps}s such that (B0)-(B5) hold
for any s € Sy, and for all b, by, by € B,

(B0) The domain of ps is the braid group B,
(B1) The image of b under p; is a linear transformation

psb): P V" - @vf’ (4.6)

UEUs |y s’eS“ ‘‘‘‘‘ n}

where the elements u € U, € Sy, .y index the direct summands
{VU}, € {V¥)y that constitute the domain of py(h). We have

(B2) For any u € U p, we have linear isomorphism
ps|u(b) s VS VI (4.8)
and if u” ¢ U p then py(b) is undefined on vy,

(B3) Given b such that b = byby, then for any u such that u € ¢4, and
by(u) € U, (s),by» WE have

Ps| u(b2b1) = Poy(s) |y by (b2) © o ulb1) (4.9)
(B4) ps|,(b) is a unitary transformation i.e. for u € 4 the map ps|,,(b)
has Hermitian adjoint
(oslyu(®)" = pots |y (61 (4.10)
where
P (51 © 5] () = idva = s () (4.11a)
.Os}vu(b) o pb(s)lvb(u)(bil) = idybw = pb(s)lvb(u)(e) (4.11b)
(B5) ps|,.(0;"") is defined as in Definition 4.2 for u € U, 1

Let us unpack some details. Firstly, what constitutes 4 ,? (B4) tells us that p;
whence we must have

uelyp < blu)e Upsy p—1 (4.12)

yu(b)is invertible,"”

9 Eg. a!-i‘(ql v e-QiGit1---Gn) = Q1 -.-Gi+1Gi - - - Gn. That is, b(s) is the string obtained by reading off the labels of the
endpoints of braid b when its starting points are labelled (left-to-right) by the characters of s.

10 1n fact, it tells us that ps\vu(b] is a diagonalisable, norm-preserving map for any u € i p.

8
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Fig. 4. The clockwise exchange of quasiparticles g; and gj;1.

and therefore

ue usgaid:l — og(u)eu (s} (4.13)

ajl

Combining this with (B5), we deduce that i4; ,, contains all u € ;1 such that

,,,,,

(i) u contains the substring qigi+1 OT Gi;1;
(ii) u satisfies (4.13)

That is, U4 contains all u such that u contains the substring g;q;;1 or ¢iy1q; and for which said
substring does not begin at the i — 1% or i + 1" character of u.

Clearly, Us,o; = Uy -1 (B3) tells us that if u € tfp, and by(u) € Up,(s)p,. then u € i p,p,. One
can check that (B3) toéether with (4.]32 yields (4.12) as required. Also, by combining (B3) with our
knowledge of us,aiih we can find L(S,b.l

Remark 4.3 (Well-Definedness and Existence). We know that for u € 4, the map p5|vu(b) may
be parsed into a composition of maps of the form in (4.5). When n > 3, there exist braids b for
which there is more than one way to write b as a product of generators (i.e. as a braid word). This
results in ,os|vu(b) being given by distinct compositions. In order for the action {p}s to be well-
defined, we require that all distinct compositions for a given Pslvu(b) are equal.’? This intricate
requirement is known as a coherence condition: we later see that it is fulfilled by demanding
that matrix representations for maps of the form (4.5) satisfy the so-called hexagon equations (see
Remark 6.3). For the current purposes of our construction, we will just assume that such (nontrivial)
actions (satisfying this coherence condition) exist.

For any map p;

Pl (D) = o] ulb - €) = i) 0 s () (4.14)

whence it is clear that (4.7) must hold and that ps|w(e) = idyu. Also note that we always have
S € Us p, and so we may write

vu(b), we have

/

ps|ys  Ba — Hom | V°, @ Vs (4.15)

where ps| ,(b) : V* 5 VM) s a unitary linear transformation.

11 Note that in this construction of Us p, one considers all braid words of minimal length for b.

12 of course, there are cases where two distinct compositions may ‘automatically’ be equal by commutativity of
constituent maps.
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Take any b € B, whose image under the epimorphism # : B, — S, (whose kernel is the normal
subgroup PB, of n-strand pure braids) is a permutation of the form

1 - i—1 i i+1 i+2 - n
b(1) --- b(i-1) j j+1 bli+2) --- b(n)
or
1 - i1 i i+1 i+2 .- n
b(1) --- b(i—1) j+1 j  bi+2) --- bn)
Then for all u € Us o; N U(s).o;
Pslvu(U,-i]) = Pb(s)|vu(0jil) (4.16)

The above construction for the “action” {ps}; of n-braids on the spaces {V*}; can be thought
of as a unitary linear representation of the braid groupoid for n distinctly coloured strands. A further
discussion of this statement is provided in Appendix A.

4.2. Exchange symmetry for n quasiparticles

Recall that superselection sectors arise from exchange symmetry as in (3.1). A subtle but crucial
point in this equation is that the n-particle Hilbert space does not depend on the order of the
particles. This necessity becomes clearer when we try to write down a (naive) version of (3.1)
compatible with the braiding action described above:

.....

For starters, the image of ps(b) could be in any one of the spaces {V*};, so the space of observables
should be defined on the n-particle Hilbert space “modulo ordering”. Let us denote such a space
by V™ where [n] = (1,...,n} is an unordered set. This also makes sense physically, since
we should not have different sets of observables depending on the order of the particles (by
indistinguishability). This also excludes observables defined on subsystems (which is desirable as
we want to consider the exchange symmetry mechanism local to all n quasiparticles). However, in
order for the commutator to be well-defined, the braiding action must also be defined on V"I,
Altogether, the correct adaptation of (3.1) should be given by a commutator of the form

[0. pm(g)] =0 (4.17)
for all n-particle observables 0 defined on V™! and for all g € &, < By, where
P+ En — U(VIM) (4.18)

is some unitary linear representation.

At first, this formulation of exchange symmetry appears rather abstract. In order to obtain a
better understanding of what is meant by (4.17)-(4.18), we will outline their construction from the
action {ps}s. Take &, to be the subset of n-braids such that for any g € &, b € B, and s € S(1,_ s
we have

Pis)(g) - ps(D)|Yr) = e |yr) (4.19)

where V¢ = @Q Vé is the eigenspace decomposition under the unitar_y operator ps(g) with
ps(@)lYyr) = e“e|y) for any |y) € V. Eq. (4.19) demands that V; is the e"'2-eigenspace of ps(g)
for all s. Since the e™¢-eigenspace (of the action of g € &) is stable under the action of all n-braids,
it is independent of the order of the particles: we thus denote it by Vg” where VI = @Q vgﬂ. The
action of g on V" is denoted by ppm(g) where

p(g) = ) _e“eP, (4.20)
2

10
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and where I3Q is a normalised projector onto Vg”. We will see that &, is a subgroup generated by a
single n-braid i.e.

En=(Bn) < By (4.21)

and we will therefore call 8, € B, the superselection braid. The n-quasiparticle Hilbert space “modulo
ordering” may therefore be understood as the representation space in (4.18), which in turn is
constructed through the action {p,}s of n-braids on the spaces {V*};.!> From the above, it is clear
that vg’] =V, for any s.

Since the action of the superselection n-braid does not depend on the order of the particles,
the braid itself should not favour any single particle over another. This hints that the braid should
realise (g) exchanges (i.e. each pair is exchanged once).

By the innate symmetry of the representation space V", we expect that the braid word g, should
also satisfy several internal symmetries. Indeed, we will subsequently see that these properties are
satisfied, and that the superselection braid is given by

/3,,:alog...an_l-0162...an_2~...~01 , n=2 (422)

and B; = e. Studying the action of this braid reveals the fusion structure amongst quasiparticles
and hints at their topological spin structure. This is key in connecting the narrative of exchange
symmetry to the framework of braided fusion categories.

4.3, Superselection sectors for n quasiparticles

Given a system V99 of n > 2 quasiparticles, note that exchange symmetry (4.17) is defined
with respect to all subsystems of k adjacent quasiparticles (where 2 < k < n) i.e.

[0, ppa(Bi)] = 0 (4.23)

for all observables O on V¥4 We therefore have a hierarchy of exchange symmetries. The next step
is to understand how these all fit together. Eq. (4.23) tells us that the eigenspaces {v}("’ bx of pp(Bx)
define superselection sectors. Take the k-particle subsystem V%1% and write the decomposition
into k-particle superselection sectors as @D, Vi % = V-,

(Q) How are {V,?""q" }x understood in the context of the full n-particle system?

Let k < n and write the decomposition into n-particle superselection sectors as @Q Vg“"q" =
Vai-n Suppose the n-particle state is in superselection sector Vg""q". The most general way to
decompose Vgl'“q" with respect to the k-particle subsystem is

Véhmqn o @ V;(nu«h ® Vé-qkﬂ---qn (4.24)
X

where Vé'q"“”'q" denotes the state space for the rest of the system when qi,...,q, are in
superselection sector X.

Let us compare (4.3) and (4.24) when i = 1 and k = 2. In this case, V'® = v,{(""qz’ and
Do Vo ™" = V. Spaces V' and V,2"! may be identified with Vi when considered as
representation spaces of B, but are distinguished between in the context of a larger system (since
we usually need to keep track of the particle ordering) and are thus only considered equivalent up
to isomorphism.

We can also partition an n > 3 particle system into subsystems V919 and V%+1-n where we
assume 2 < k < n — 2. Denote the superselection sectors of each by {V{""*}x and {V*+""""}y.

13 Recall from (4.5) that the action {p;}; can be formulated in terms of the pairwise action (4.2). The n-fold exchange
symmetry mechanism (4.17) may thus be thought of as emerging from the pairwise exchange symmetries among its
constituents.

14 |5 the instance of subsystems, [k] denotes the unordered set of labels for the k particles.

11
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Suppose the n-particle state is in superselection sector Vg""q". The most general way to decompose
Vg' ™ with respect to the two subsystems is

p o @ V-t v gy (4.25)
XY

The spaces {ng }x,v may be thought of as constraining the superselection sectors of the subsystems
by relating them to the n-particle superselection sector.

If dim(vé“’) = d, this may be interpreted as the superselection sector Q containing superselection
sectors X and Y in “d distinct ways”. We may have d = 0, but it is also clear that at least one of the
spaces {V,’l“’} must be nonzero.!® By comparing (4.24) and (4.25), we see that

X.Gk+1-Gn ~ XY Qhet1--qn
Vgt n @ VE @ vkt (4.26)
Y

Analogously to (4.24) we can write V3% = @, Vél"‘q"‘y ® V1" whence it similarly follows
that

Y ~
vt = vt o vy (4.27)
X

In light of the above, it is easy to check that a “1-quasiparticle Hilbert space” must be canonically
isomorphic to C. It is therefore standard practice to omit a 1-quasiparticle Hilbert space in a
decomposition.

Remark 4.4 (Superselection Sectors of Subsystems). Another salient feature emerges from the hier-
archy of superselection sectors in system of n quasiparticles for n > 2. To illustrate this, consider
decomposition (4.24). While the spaces {V)‘(’""q" }x still define superselection sectors locally (i.e. with
respect to the k-particle subsystem), they do not define superselection sectors in the context of
the larger system.!® This is because the k-particle exchange symmetry mechanism is superseded
by the n-particle mechanism. Indeed, the superselection sectors of the subsystem are entangled
with the rest of the system in (4.24).'7 Crucially, this means that when we consider the entire
system, it is possible to observe linear superpositions over the spaces {V;{’""q“}x. It is also possible
that interactions between the subsystem and the rest of the system induce transitions between
superselection sectors of the subsystem.

5. The superselection braid and fusion structure

In Section 4.2, we outlined the method for determining the superselection sectors using the
action {ps}s. The first task is to find the subset &, of all n-braids satisfying (4.19). For any candidate
braid g € B,, it suffices to check that (4.19) is satisfied by b = crl.:H for all i. It will be convenient to
define the following notation for braids:

Oiy.iy_qif = Oiy - Ojj_1 Oy, bj =012 for all) >1,and by == e (5])

We argued that a reasonable heuristic for an element of &, would be that it exchanges each pair of
quasiparticles once. Take the ansatz

Bo=bpabpa...by , n=2 (5.2)

E.g. B = 01, B3 = 0121, P4 = 0123121 etc. We also set 1 := e. In Theorem 5.1, we will show that
Bn € &, Therefore, (the action of) 8, specifies the superselection sectors; in fact, it does so uniquely
up to orientation (Theorem 5.11) which proves (4.21) i.e. & = {B;) < B,. For this reason, we will
refer to 8, as the superselection braid.

15 This is equivalent to saying at least one of the spaces [Vé‘q“"“""" }x must be nonzero in (4.24).

16 When we look at the whole system “from afar” we expect it to be in the ground state. This means that the
superselection sector of the whole system should correspond to the vacuum, which later motivates the notion of “dual
charges”.

17 Specifically, when X runs over > 1 index and at least two of the spaces [Vé'q"“’""q” }x are nonzero.

12
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™

Fig. 5. B, has length The above diagram depicts Bs.

5.1, The superselection braid
Theorem 5.1 (Superselection Sectors). We have the eigenspace decomposition V¥ = @Q Vfl under
Ps(Bn) where
ps(Ba) : Vg = Vg
|¥) > ee|w)
a (see Fig. 5).

v

(5.3)

forany s e S

.....

Let us recap the rest of the construction from Section 4.2. Theorem 5.1 allows us to identify the
spaces {Vfl}S as the e™2-eigenspace Vgﬂ under the action of g,. Write,

v = Hvy! (5.4)
Q

In particular, this corresponds to a unitary representation

Py © (Bn) < By — UOV™) (5.5)
where

pmi(Ba) : V3! — Vi .

o) > eg)

That is,

praiBa) = Y €ePy (5.7)

Q

where I3Q is a normalised projector onto Vf[l"]. Since the representation space V" is the n-
quasiparticle Hilbert space (modulo ordering), exchange symmetry is given by

[0, ppay(Ba)] =0 (5.8)

for all n-particle observables 0 on V"I, The spaces {vg']}q are superselection sectors of the system,
and we have shown by construction that each superselection sector is preserved under the action
of any n-braid. It follows that Vé defines a super-selection sector for any (s, Q). In conclusion, the
superselection sectors of an n-quasiparticle system are given by the eigenspaces of the action of the
braid 8.

Corollary 5.2. Given |¥) € V; as in Theorem 5.1,
ps(By W) = e M |w) (5.9)

13
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Proof. Let s := f,(s) (i.e. string s in reverse order). By Theorem 5.1,

5(Bn) s B)I¥)] = € [py(Bn)|¥)]

= p(Bl¥) = e"e|W)

= (B |¥) = 72 |w)

where the second line is well-defined since it can be shown that s € i 5,. O
In order to prove Theorem 5.1, we will need the braid identity in Lemma 5.3 (whose proof is

given in Appendix B.1).
Lemma 5.3. letn> 2 Thenfori=1,...,n—1,

Buoit! = o B (5.10)

Proof of Theorem 5.1. Take n-quasiparticle space V* for some chosen s € Sy
eigenspace decomposition V* = @Q Vi under ps(8n) where

po(Ba) : Vg — VG
| > e"e|ygr)
Thenfor1<i<n-1,

ps(ﬁncfﬂ)l‘P) = Pai(s)(ﬁn) [PS(U,':HNW)]

ny.- We write the

-----

n=>2 (5.11)

and
ps(Bo W) = pilo, iBu)I¥)  (by Lemma 5.3)
= " [ pgon ) 1¥))]

where o;(s) swaps the ith and (i + 1) characters of s, and 8,(s) reverses the order of the characters
in s. Then by (4.16), we have

Po T I = o))

It follows that the image of Vj; under ps(oiﬂ) is the ee-eigenspace of Pai(s)(Bn), S0 we write
piloi) (vg) = v

The result follows. [

5.2. Fusion structure

A composite collection of quasiparticles will exhibit the same statistical behaviour as a single
quasiparticle under exchanges: the scheme under which a collection of quasiparticles is considered
as a composite is known as fusion. In this section, we will carefully show the emergence of this
behaviour by considering the action of the superselection braid.

Definition 5.4. We define f;; to be the braid in By, that clockwise exchanges k strands with I
strands. Similarly, we define uy to be the braid in By, that anticlockwise exchanges k strands with
[ strands. Clearly, t,;‘ = u;x (see Fig. 6).

For any a € Ny, we have the homomorphism

Ta:Bp = By

(5.12)
0j > Ojyq
where rq, 0Ty, = I'g;4a,- We also have the anti-automorphism
1B, — B
S, (5.13)
g — Oj

14
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(1) k strands [ strands (11) k strands [ strands

S72N
N4

Fig. 6. (i) L1 (ii) Uk, .

which reverses the order of the generators in a braid word. Let ? = x(b). Note that
ty1 = TD(E] : TI(E) s rkfl(E)
=r1a(be) - - .. - r1(bk) - To(b)

and that Eﬁ =t

Consider some n-quasiparticle system Vé in fixed superselection sector Q for some s € S;1,__
where n > 2. Partition s into nonempty substrings m,, m; i.e. Vfl = Vg’"mz and denote the length
of string m; by |m;|. We write eigenspace decompositions

ym — @v;h Loym = @V;nz (5.15)
X Y

under pm,(Bjm,|) and pm,(Bjm,|)- Similarly to (4.25), we have the decompositions

(5.14)

Vé""'"z ~ 69 V;“ ® vé(Y ® V\T,"Z (5.16a)
XY

V(rlnz.rrq ~ @ V,',nz ® Vgx ® V)Z"l (5.16b)
X.Y

Theorem 5.5 (Fusion). For an n-quasiparticle system Vé with fixed superselection sector Q, consider its
decomposition as in (5.16a). Let (k, [) := (|m4], |m2]|) and take (X, Y) = (x, y) such that Vay is nonzero.
Take arbitrary |) := |1/fx)|11r3y)|1jfy) eV ® Vay ® Vy'* where we have eigenvalues

P (B = €™ 1Y) pmy(BIYy) = € 1Yy} Al Benl) = €™ [¥)
Then,
(i) ps(te)lP) = elta==t)y)

(ii) Eigenspaces are preserved under exchanges i.e.

Ps(ten) : VM @ VY @ V)2 = V2 @Vy eV (5.17)

(I”) me,m1(ti,k) [Pmymz(fk.i)“p)] = ef(uQ_ux_uy) [Pml,mz(tk.l)lil’)]r and S0

Ps(tik - bip)| W) = el e ty) |y, (5.18)
Corollary 5.6.
ps(Ulyr) = ey (5.19)
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(i) my ms (i)  my Mo ms m

Fig. 7. (i) The fusion diagram graphically depicting an arbitrary state in V"' ® V' ® Vy'* where [; e Vi, f € Vy? and
g e V&"’. (ii) Composite charges x and y are exchanged in superselection sector Q, so the fusion state acquires phase
elltla =) relative to (i).

Proof.

[sz.m](fr,k)]T Prmy,my Gk ) Py my (e W) = Oy my (B )W)
=> Prmy,my (i) [€2HQW) |y ] = el tW)|y) O

Theorem 5.5 tells us that the k and [-quasiparticle composites m; and m, (in eigenstates of
Pm,(Bx) and pm,(B) respectively) behave identically to a pair of quasi-particles under exchange: if
we fix eigenspaces Vy'' and V;" 2 such that Vsy is nonzero, then composites m; and m; behave as a
pair of quasiparticles in superselection sector Q with exchange phase ee~t—%)_ The eigenspaces
of pm,(Bi) and pm,(B;) may thus be considered as representing different ‘types’ of quasiparticles
(since the exchange phase depends on x and y). We will refer to the ‘type’ of a quasiparticle as
its (topological) charge. If e.g. k > 1, we say that the collection m; of quasiparticles fuses to a
quasiparticle of charge x.'® It follows that the possible (x, y) for which Véy is nonzero represent
the distinct possible fusion outcomes here.

Recall from Remark 4.4 that we can have a coherent superposition of distinct fusion outcomes
for an entangled subsystem of quasiparticles. Furthermore, since the eigenspaces of any px(f8n)
(where ¥ is an unordered set of quasiparticles of cardinality n) can be identified with quasiparticle
charges, it follows that the superselection sector of a system can be identified with a (composite)
quasiparticle of fixed charge. A complete system of quasiparticles thus has fixed total charge (fusion
outcome).

This lends the hitherto abstract factor V" in (5.17) a more tangible interpretation: V"' @ Vg’ ®
Vymz is the space of states describing the process where collection m; fuses to (a quasiparticle of
charge) x, collection m, fuses to y, and then x and y fuse to Q (see Fig. 7(i)). The interpretation of
any such tensor decomposition follows analogously. Such Hilbert spaces are thus known as fusion
spaces and their constituent states are called fusion states.

Corollary 5.7. Fusion is commutative and associative.

Proof. Commutativity follows from Theorem 5.1: the possible fusion outcomes for an
n-quasiparticle system correspond to the eigenspaces of pp(8,) on V™ (whence the order of the
n quasiparticles is irrelevant).

18 For k = 1, note that uy = 0 since the eigenvalue of pp,(8) is trivial. Let m; = gj. In (5.17), we write x = g; i.e. g;

‘fuses to itself’. Note that thj = V% since the eigenspace is the whole space, and recall that a 1-quasiparticle Hilbert space
is canonically isomorphic to C.
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NN N

Fig. 8. All possible fusion trees for 4 particles. For n particles, the number of possible fusion trees is given by

Coor = (37 ie. the (n — 1) Catalan number.

/’//. \\Q

Fig. 9. Winding a quasiparticle collection m; of charge x around collection m; of charge y in a region of total charge Q
accumulates statistical phase e"e~"~%)_This diagram illustrates the same process as on the left-hand side of Fig. 7(ii)
but with an additional exchange.

Associativity follows from recursive application of Theorem 5.5 i.e. further partitioning m; and
m, and so on until no further partitions can be made: we will view such a recursive choice of
partitions as a full rooted binary tree with n leaves. This provides us with a fusion tree illustrating the
order in which n quasiparticles are fused (see Fig. 8). Since Q corresponds to an arbitrary eigenspace
of ps(Bn), it follows that the set of possible fusion outcomes (i.e. the set of possible labels for the
root) does not depend on the order in which fusion occurs. 0O

By the associativity and commutativity of fusion, the charge of an unordered collection ¥ of
quasiparticles can be thought of as a property of any connected region of the system in which
solely the excitations in X are enclosed. This is one of the reasons that quasiparticle charge is
called ‘topological’ (as opposed to e.g. electric charge which is defined geometrically via the charge
density). Similarly to electric charge, we have seen that topological charge may correspond to a
superselection rule of a system; but unlike electric charge, we may also observe a superposition of
topological charges (for an entangled subsystem) (see Fig. 9).

Remark 5.8. Take care to note that statistical phases of the form e®¢ are not a property of charge Q
alone, but arise as eigenvalues of some p(8,) i.e. the phase also depends on the constituent charges
fusing to Q. To this end, a better notation for e™2 would be a)g € U(1) where X is the unordered
set of constituent characters of s. Nonetheless, we have opted for the former notation for sake of
presentation.

As indicated by Theorem 5.5, fusion generally does not correspond to a physical process but
rather describes how a collection of charges may be considered as a composite charge. Of course,
the measurement of a fusion outcome is physically significant.

In order to prove Theorems 5.5, we will need the braid identities in Theorem 5.9 (whose
proof is given in Appendix B.2). Theorem 5.9 shows that the superselection braid may be defined
recursively,!9-20

19 Choosing between forms (i)-(iv) at each decision (and permuting the terms in square brackets if desired) parses 8,
into a composition of braids of the form ry(t ). The braid word (5.2) for f, is recovered by choosing (ii) at every iteration
with = 1.

20 Note that B! is given by (i)~(iv) but with a superscript ‘—1' on each t and 8. This is easily seen by inverting (i)-(iv).
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Theorem 5.9 (Superselection Braid by Recursion). Let n > 2. For any positive integers k, [ such that
k+1=n, B, is given by

(i) [Br - i Bi)]
(i) ter[Br - k(B
(iii) By - b1 - Pr

(iv) ni(Be) - tri - el B1)

and By := e. The terms enclosed in square brackets commute.

Proof of Theorem 5.5. Let ¥ denote the reverse of a string v.
(i) Using Theorem 5.9(ii),
Ps(BlY) = Py iy (1) Pmy,my (B - Te(BID 197)
= Py, (tit) [ |yr) ]
Recalling that ps(8,)v¥) = e |y), we deduce that
Piny iy (L) : VI @ Vy @ Vi — Vg
|9) t> elllaljg)
(ii) We know that
pultin) VM @ VE ® V™ > Vg™ (5.20)

where Vg™ has decomposition (5.16b). We wish to show that the range of (5.20) is
restricted as in (5.17). Using Theorems 5.5(i) and 5.9(iii),

Ps(ﬂn)hff) = sz,ﬁul(.ﬁ!) pr"nbmz(rkii) pmlﬂmg(ﬁk”v’)
= Py (B) [V |y) ]
and since ps(8n)|¥) = e™e|v), we deduce that

Pinm(ti) VI @ VY @V — PV @ vy @ vy (5.21)
X
Similarly, by using Theorems 5.5(i) and 5.9(iv) we may deduce that
Pmyin(te)) 1 VM @ VR @ VI — DV @ v @ vim (5.22)
¥

Combining (5.21) and (5.22), the result follows.
(iii) By identities (i) and (ii) of Theorem 5.9,
B2 =tk [r(B) - B th (5.23)
whence
ps(BIIYY = €20 [ o (81k) - Prmyamy (tia) )]

= Py (t1k) [Py my (L)) ] = 2@ )

= Pmymy (L) [Py my (G )] = €™ [p o (b)) ]
where we used parts (i) and (ii) of Theorem 5.5 in the third and first lines respectively. O

superselection sectors), fix a fusion tree (as in Fig. 8): each of the n— 1 fusion vertices2! corresponds

21 By “fusion vertices”, we mean vertices in the fusion tree with two or more incident edges i.e. any vertex that is not
a leaf. Leaves correspond to initial quasiparticles.
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Fig. 10. The labels x;, x, and g correspond to eigenspaces of pg,q,(B2), £g,q2q:(B3) and pq, 4,54, (Ba) respectively. The triple
(X1, X2, q) of charges is an admissible labelling of the tree if the fusion subspace V,ﬂ‘ 42 ®V;2’q3®vaz’q“ C V91929344 js nonzero.

k leaves [ leaves k leaves [ leaves

- f ‘ ~, -
k,l \6
E¥3

~

Fig. 11. t;; clockwise exchanges the incoming branches of a fusion vertex that has k leaves and [ leaves stemming from
it.

to an eigenspace of py,)(Biswwy ), Where for a fusion vertex v we let s(v) denote the substring of s
given by the leaves descending from v, and [s(v)| denotes the length of s(v). Note that 2 < |s(v)| < n.

We thus label each fusion vertex v with an eigenspace of pg,)(Bs)) (recall that such a label
represents a fixed topological charge and is called a ‘fusion outcome’ in this context). Such a labelling
is called admissible if the corresponding fusion subspace of V* has nonzero dimension. Note that
the root label corresponds to the superselection sector of the system. Observe that fixing a fusion
tree specifies a decomposition of V* in terms of the eigenspaces of {o5y)(Bjs(vy)}v. We write such a
decomposition in the form yielded by recursive application of (5.16a) e.g. a fusion tree of the form
illustrated in Fig. 10 specifies the decomposition

V01929304 =~ @ V)‘(J:‘?z ® v)’(‘;-‘]‘a ® Véz,qfa (5.24)
X1.X2.Q

Theorem 5.9 provides a method for parsing g, into a composition of braids of the form ry(t ).
Any such parsing involves making a choice of n — 1 partitions. From any possible sequence of
partitions, we can always recover a fusion tree with which the parsing of f, is compatible. By
compatibility, we mean that it is readily apparent how the fusion tree will transform under the
action of B, i.e. B, can be parsed into a sequence of braids that each have a well-defined action
on the decomposed components of the system. The incoming branches of each fusion vertex in the
tree are clockwise exchanged and so the initial fusion tree is sent to its mirror image. The braid B,
is thus compatible with all n-leaf fusion trees (as expected) (see Fig. 11).

Remark 5.10. Given |¢) € V$, we know that ps(8,)|¥) = e™e|y). It is illuminating to examine
how the phase ee arises given a decomposition of Vg Consider any admissibly labelled fusion tree
in V&"“q” (whence the root has label Q). We know that ps(8,) will clockwise exchange the incoming
branches of every fusion vertex. For any fusion vertex, the clockwise exchange is given by
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T y T T y
/
\\\/ [ E— \/ = eilus=uz—uy) \ //
) %/

ot

where the phase evolution follows from Theorem 5.5. It is easy to see that the total phase
evolution acquired by clockwise exchanging the incoming branches of every fusion vertex will be
eflua—(ug, +-+ugy)] (phases associated to internal nodes of the tree will cancel). Finally, observe that
the ugy, are zeros (since they are arguments of eigenvalues under the action of 8; = e).

Theorem 5.11 (Uniqueness of the Superselection Braid). B! are the unique braids under whose action
the fusion space decomposes into the superselection sectors of an n-quasiparticle system.

A proof of Theorem 5.11 is outlined in Appendix C.
6. Theories of anyons

This section primarily serves to connect the narrative of Section 5 with the standard formalism
in the literature, by outlining the additional postulates (A2-A3) required to make contact with the
usual algebraic theory of anyons. Our presentation thus omits various details, and is not intended as
an introduction. For a more detailed treatment, we refer the reader to [4-8]. In relation to additional
insights arising from consideration of the superselection braid, we highlight Section 6.3.

6.1. Labels and finiteness

In any standard theory of anyons, it is assumed that there are finitely many distinct topological
charges. A theory of anyons thus comes equipped with a finite set of labels £ whose cardinality
is called the rank of the theory. It is also assumed that the representation space in (4.2) is finite
which immediately tells us that dim(vc“’b’] is finite for any a, b, ¢ € £ (from which it easily follows
that a fusion space for finitely many quasiparticles is finite-dimensional). We package these two
assumptions into the finiteness assumption A2 below.

Definition 6.1. Given fusion space VC'Jb for any a, b, c € £, we write Né"’ = clim(Vg"). The quantities
{Nc“b }a.b.cee are called the fusion coefficients of the theory.

since dim(V*") = dim(V®) = dim(V*®) we have the symmetry
Nt“b = Nf" foralla,b,ce & (6.1)

which is consistent with the commutativity of fusion from Corollary 5.7. The quantity N% may be
thought of as counting ‘the distinct number of ways charges a and b can fuse to charge c’. Note
that dim(V®) = 3" _. N® and that if N = 0 then a and b cannot fuse to c. Consider VS for any
a, b, c,d € £ By associativity of fusion (Corollary 5.7), the decompositions of a fusion space must
be isomorphic

Drrovr =@ ovr 6
e f
and so the fusion coefficients satisfy the associativity relation
D ONENE =Y NINe (6.3)
el feg

A2. A theory of anyons has finitely many distinct topological charges and all fusion
coefficients are finite.

Any label set will include the trivial label (denoted by 0) which represents (the topological charge
of) the vacuum: the fusion of any charge with the vacuum yields the original charge i.e. qu o Sgr
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a b

I
C

Fig. 12. A graphical depiction of the fusion state |ab — c; ). We will implicitly assume that our fusion vertices are
normalised.

for any q, r € £. Since we always have the freedom to insert the trivial charge anywhere, we must
have

dim(V®) = dim(V®®) = dim(V?®) = dim(V*°) (6.4)

Associativity and (6.4) tell us that NN% = NN = N% and so N&® = N)® = 1 for alla,b € £.
Thus,

N%® =N¥ =4, foranygq,re g (6.5)

Following the presentation in [4], write V;O = spang{|ag)} and Vfb = spang{|Bp)}. The relation

between the spaces in (6.4) is characterised by trivial isomorphisms
. 0 . 0
o :C— V] Ay 1 G~ Yt (66)
Z > Zlag) Z > z|fy)

g By
eg V& 5 v @ veb and v = v @ v, By associativity we see that o, and B, are related (see
Remark 6.3 and Appendix D). Braiding with the vacuum must be trivial i.e. using the same notation
as in (4.2),

paloif=1 forallge £ (6.7)
6.2. Braided 6j fusion systems

We write orthonormal bases
v® = spang{lab — c; u)}, ., V™ = spanc{|ba — c; u)}, (6.8)

of fusion states given any a, b,c € £where 1 < u < Nfb for Nfb # 0 (see Fig. 12).
The dual space of a fusion space has natural interpretation as a ‘splitting space’ i.e.

a b c
rab f 7€ . are - Ngv t
Ve — Vi = spang{(ab — (./1\}”:1 : woo— ¢
a

a b (6.9)

for any a, b, ¢ € £. Fusion coefficients may thus also be thought of ‘splitting’ coefficients. Given an
orthonormal basis, we can use the graphical calculus to express the inner product and completeness
relation on V%:

(i) - (ii) a b a b

c a b (6.10)
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The R-matrices of a theory are given by a matrix representation of the unitary operators from
(4.2), typically in an eigenbasis: given any a, b € £ we have the eigenspace decomposition V1*? =
Doce V}f ' under pga 5 where

(o7 ) = e |y) (6.11)
for |¥) € Vé‘”b} with Q such that Ngb #+ 0. We write R-matrices

RY VY S Ve, R ViS5 vg (6.12)
where we let
NgP ‘
Ry = Ry = (Ple“e] (6.13a)
j=1
b . b ba .__ b
= P [RY] . **= P [rY] (6.13b)
Qes : Nab#v Qeg : NB“;&O

It is clear that R% = RP here.2? Following (6.7), we have
0 _ p0g _
Rg oy qu =1 (6.14)
for all g € £. We let (R~1)* denote the anticlockwise exchange i.e.
(Rab)—l - (R—l)ba (615)

For an n-quasiparticle fusion space V919 (where qy, ..., q, € £) let 2, and % be decomposi-
tions of this space corresponding to distinct fusion trees. By associativity, we have an isomorphism

F:19 — P (6.16)

Fixing a basis of fusion states, we see that F € Aut(V%1--9) is a change of basis matrix. Observe that
F is given by any sequence of so-called F-moves that transform between decompositions of the form

X/ -\

Such transformations are realised by the F-matrices of a theory. These are matrices F;’" €
Aut(VS) for any a, b, ¢, d € £ where

F Pt eve > P e v (6.17)
ecgl fegL

This is a unitary matrix representing the isomorphism in (6.2). That is, Fjbc transforms between the
bases

Ilab—>e; ©Sylec — d; ;J,;)] and ||af—>d; wylbe — f; u{>] (6.18)
o
This change of basis is graphically expressed as
a b c a b ¢
abe )
== Z [1 d ] [f.ulj.u_gj (e,pg.p5) f V{
f-f'{-"{ Vi

d’ (6.19)

22 R_matrices need not always be diagonal and symmetric in their upper indices. However, our construction has
implicitly ‘fixed a gauge’ where this is the case; see Remark 6.2 and (D.6).
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a b a b
\ (10
_ [r8], \K
|
Q Q

Fig. 13. Charges a and b are in a direct fusion channel with outcome Q. The above is a graphical expression of the
equation R®|ab — Q; p1) = [R®] |ab — Q; ) € spanc{|ba — Q; u)} € V5 where the matrix R® is defined as in (6.13a)
and (6.13b).

i

Distinct fusion trees specify distinct bases on the fusion space and are therefore also called fusion
bases. Since R® is defined for an eigenbasis of V", we must fix a fusion basis such that the factors
{VS”}QE,; appear in the decomposition of the fusion space: for any such fusion basis, we say that
‘a and b are in a direct fusion channel'. That is, R-matrices can only act on two charges in a direct
fusion channel (see Fig. 13).

We may obtain a (possibly non-diagonal) representation of the exchange operator for two
adjacent quasiparticles a and b in a system by considering its action with respect to a fusion basis
in which a and b are in an indirect fusion channel.?® Such a representation can be determined
by transforming into a fusion basis where the charges are in a direct fusion channel, applying the
R-matrix and then transforming back to the original fusion basis. Below is the simplest example of

a b

such a procedure.
J’ ('\‘
/ NN
alb) \( \
B, * spang ) M \¢ o

4 " spanc ,,;\,,)
¢ A
2 ' d g g
- = - = y.f/l,IA_,

\
=]
o

where
@ vab ® yec L @ Vﬂf ® Vbc
e e d fd f
Bz(bc) Rbe (6.20)
b
@ yac ® ng L @ Vaf ® V(‘b
g8 d fd i
That is,
B;(bc) _ (Fgcb)’f RbCF;bC (6.21)
where
Rbc _ @ RJl?c (622)

fee NngF‘ £0

A charge g € £ such that }_,_, Ni* = 1 for all x € £ corresponds to an abelian anyon (since its
exchange statistics with any other charge will always be given by a phase). Otherwise, q corresponds
to a non-Abelian anyon (since there exists a charge with which its exchange statistics are given by a

23 Non-diagonal representations arise since fixing an indirect fusion channel of two charges means that we are not in
an eigenbasis of the exchange operator for these charges. Since we are not in an eigenbasis, we cannot apply the R-matrix
directly.
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higher-dimensional unitary transformation). An abelian theory of anyons is one in which there are
no non-abelian anyons. Observe that given a fixed fusion basis and an explicit choice of orthonormal
basis for a fusion space of n identical charges, we obtain a unitary matrix representation of the braid
group B.

Remark 6.2 (Gauge Freedom). There is generally some redundancy amongst the F and R symbols?*
of a theory: this arises from the U(Ngb) freedom when fixing an orthonormal basis on the spaces
{Vcﬂb}ﬂ,byceg. A change of basis?® is called a gauge transformation. We can only attach physical
significance to gauge-invariant quantities.

Although R-symbols are generally gauge-variant, gauge transformations are defined to re-
spect the triviality of braiding with the vacuum (i.e. (6.14) is gauge-invariant by construction). A
monodromy is a composition

Rbe o RA® —. pob (6.23)

It can be shown that monodromies are gauge-invariant, whence it follows that the action of any
pure braid is gauge-invariant. We implicitly fixed a gauge where R® =R for all a,b € £ in
our construction: we will call this the symmetric gauge. R-matrices are not necessarily diagonal
and symmetric in their upper indices outside of this gauge. Nonetheless, monodromy matrices are
always diagonal and symmetric in their upper indices.

Remark 6.3 (Coherence Conditions). Isomorphisms between fusion spaces must be ‘compatible’ with
one another. That is, distinct sequences of isomorphisms (F-moves, R-moves and isomorphisms o
and B from (6.6)) between two given spaces should correspond to the same isomorphism. Such
compatibility requirements are called coherence conditions. Remarkably, all coherence conditions
are fulfilled if the triangle, pentagon and hexagon equations are satisfied. Some additional details
are provided in Appendix D.

(i) All isomorphisms « and g from (6.6) must be compatible with associativity (F-moves). This
coherence condition is fulfilled if the triangle equations (D.1) are satisfied.

(ii) Recall the isomorphism F from (6.16). It may be possible that multiple distinct sequences of
F-moves realise 7. Given some basis, the matrix re-presentation of 7 must be the same for
all such sequences. This coherence condition is fulfilled if all F-symbols satisfy the pentagon
equation (D.2).

(iii) Consider n-quasiparticle space V91 where qq, ..., q, € £and n > 3. Let s and s’ be any two
distinct permutations of the string gy . . . g,. Let D and D’ be any decomposition of V* and V¥
respectively. It may be possible that multiple distinct sequences of F and R moves realise the
isomorphism B : D — D’ corresponding to the action of some n-braid. Given some basis, the
matrix representation of 8 must be the same for all such sequences. This coherence condition
is fulfilled if all F and R symbols satisfy the hexagon equations (D.7).

For each charge in a theory of anyons, there exists a dual charge wihich with it may fuse to the
vacuum. More precisely, we incorporate Kitaev's duality axiom from [4]:

A3. For each q € £, there exist some g € £ and [£) € vg"’, n) € ng such that

(g @ NIF{YE @ Bg) # 0 (6.24)
where «g, B4 are as defined in (6.6).

Proposition 6.4 ([4, Lemma E.3.]). For q € £, there exists unique q € £ such that
N = NP = 855 (6.25)

24 Fand R symbols refer to the entries of F and R matrices. F-symbols are also called 6j symbols.
25 This is not to be confused with a change of fusion basis.
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This proposition follows from A3 and says that any charge has a unique dual charge with which
it annihilates in a unique way. Together with associativity, A3 tells us that for any a,b,c € £ we
have N®N{° = N$*NE° and so N# = N2°. we thus have

NP = Ni* = Ni° (6.26)
Corollary 6.5. Any topological charge q € £ may realise a superselection sector.

Proof. We know that it is possible for a fusion outcome to realise a superselection sector. Suppose
there exists a charge g € £ such that it is not a fusion outcome for any pau of charges. For any
charge b there exists a charge ¢ such that NC # 0. By (6.26) we have N,; = Nbc which gives a
contradiction. O

We see that the duality axiom permits any charge to realise a superselection sector. For this
reason, labels are often called topological charges and superselection sectors interchangeably in the
literature,

For a, b, ¢ € £ we define linear maps K and L%,

uh . al: 0 = ab ~v ab , yrab rab o 170 ~ y/a
K l 1mr & l ‘m Lr . \1 — 1 ‘M lyh

a b ., b a b ¢,

Y- Y-

| ' ¢ ¢ b (6.27)
These are clearly invertible (whence N® = N = N¢b), Observe that2®

bey 1 rab ;
NG
\ rap ‘ Foc Jé

[ fm

rr
(i)

(6.28)

where (i) corresponds to symmetries of the form in (6.26), and the composition of (i) and (ii) tells
us that N = N Together with (6.1), these identities generate all symmetries of the fusion
coefficients. Summarising these, for all a, b, c € £ we have

N =R (6.29a)
NZ® = N = Nf° (6.29b)
N = NDE (6.29¢)

Definition 6.6. Altogether, a finite label set £ with fusion coefficients, F-symbols and R-symbols
as described above satisfying the triangle, pentagon and hexagon equations is called a braided 6j
fusion system.

6.3. Eigenvalues of the superselection braid

In Remark 5.10, we examined the action of the superselection braid on any decomposition of the
space Va (where s is any permutation of some n fixed labels). We know that this action results in the

26 The isomorphisms Ko (Lgf)_1 oK and L% o (Kg")_1 o [ correspond to the CPT symmetry of V2. Indeed, in [4,
Theorem E.6.] it is shown that these two maps coincide (and are isometries), which is equivalent to the statement that
a unitary fusion category admits a pivotal structure.
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same statistical phase independently of the given permutation or decomposition. Our observations
from Remark 5.10 look more interesting when recast in terms of R-matrices. Namely, for any choice
of labels 1, 2, 3,4 € £ such that V123 is nonzero, the elements of the table below are equal for any
choice of e, f, g such that NJ2N¢, Nf3Nf1 and Ng”N4 are nonzero and where there exists a choice
of gauge such that the relevant R-matrices may be written as in (6.13a)—(6.13b).

Rg.l ® Rz3 R;Z ® Ri3 Rie ® R;Z Rze ® Rgl

RJ?"' ® R£ 1 Rjg3 ® RQ 1 R;f ® ij R,lf ® RF'Z

R'@R’ RPQR’ KPR’ KR

Let r"” denote the phase R“” = r"blk (where I, is the k x k identity matrix and k = N“b) Noting
that r“b = rb" in the fixed gauge, the above equivalences may be expressed as

r12r§3 _ rf3r” _ r13rfz (6.30)

for any choice of e, f, g as specified above. The identity (6.30) characterises the fact that the
statistical evolution under the action of the superselection braid is independent of the fusion basis
and order of quasiparticles. However, this identity also has the weakness of being gauge-dependent.
We easily obtain a gauge-invariant form of (6.30): writing M® = m®I, (where m® = m?® is the
monodromy phase),

mPmé = mﬁmf1 = Jrn'3m‘§2 (6.31)

for any choice of e, f, g as specified above. This gives us the following ansatz: for every q € £ we
may assign a quantity ¥, € U(1) such that

B,
® — ° forall a,b,c such that N #0 (6.32)
ﬁal’b

Indeed, this ansatz turns out to be correct (see Section 6.5): the quantity ¥, is called the topological
spin of g and is the phase evolution under a clockwise 2w -rotation of charge q. For a system of

3

charges ¢, . .., g, with overall charge Q, the gauge-invariant statistical evolution under the action
of the pure braid ,Br? is thus given by (6.33) (whose form is consistent with Remark 5.8).
v
e (6.33)
ﬂ‘h T 00:1

6.4. Fusion algebras and their categorification

Definition 6.7. Let ZB be a free Z-module with finite basis B = {b;}i;. We equip ZB with a bilinear
product

-:ZB x ZB — ZB
(b, bj) Zc by Ck € Np
kel
such that the following hold for all i,j, k € I:
(i
(11

iii
(

The unital, associative Z-algebra A = (ZB, - ) satisfying the above is called a fusion algebra. If we
also have (v) then A is called a commutative fusion algebra.

(V) b,"bj:bj-bi

There exists an element 1 := bg € Bsuch that 1-b;=b; -1 = b;
(b; - b) bx = b; - (bj - by)

> ¢ >0
There exists an involution i +> i* of I such that cg = C" = 8juj

vuvu
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SN ] e
28

q q q , 4 q

Fig. 14. (i) The ribbon relation illustrated through the deformation of worldribbons. Boundaries are fixed at the initial
and final time slices. (ii) Type-1 Reidemeister twists correspond to 2m-rotations.

The quantities {C,’(’},-J,kef act as the structure constants of a fusion algebra. We can also express
properties (i), (ii) and (v) in terms of these constants: (i) cj“ = CJ-O" = & (i) 3, ehed = 'Y il
and (v) ¢ = ¢}. The structure constants clearly have symmetries of the same form as in (6.29b)
(and (6.29a) for a commutative algebra). Observing that the *-involution may be extended to an
anti-automorphism of .4, it easily follows that the structure constants also have symmetry of the
form (6.29c).

A commutative fusion algebra .4 admits a categorification if there exists a braided 6j fusion

system with label set £ and a bijection ¢ : B — £ such that CE = Nﬂ,?fm for all i,j,k € B. It

is possible for a given .4 to admit more than one categorification, although only finitely many?®”
(up to gauge equivalence and relabelling). The categorification of A yields a braided fusion category
(whose skeletal data is given by the braided 6j fusion system). From a physical perspective, we are
only interested in categories for which (there exists a choice of gauge where) all associated F and
R symbols are unitary; namely, unitary braided fusion categories.

6.5. Ribbon structure

It is known that a unitary braided fusion category admits a unique unitary ribbon structure [22,
23]. In terms of the R-symbols of the category, this means that for every g € £, there exists a
quantity 9, € U(1) such that the ribbon relation (6.34) is fulfilled. This tells us that given a unitary
braided 6j fusion system, the ansatz (6.32) is correct and has a unique set of solutions.

Ve

> (R, (R, = g (6.34)
A

Physically, ¥, is the phase evolution induced by a clockwise 27 -rotation of a charge g, and is called
its topological spin. The topological spins are roots of unity [4,24] and are gauge-invariant, The ribbon
relation allows us to promote quasiparticle worldlines to worldribbons, or equivalently tells us how
to evaluate type-I Reidemeister moves on worldlines (Fig. 14).

To summarise, the algebraic structure arising from exchange symmetry in two spatial dimensions
(under assumptions A1-A3) corresponds to a unitary ribbon fusion category (also called a unitary
premodular category). A theory of anyons has all of its data contained in a such a category and
is determined (up to gauge equivalence) by the skeletal data of the category (fusion coefficients,
F-symbols and R-symbols). The underlying fusion algebra encodes the fusion rules of the theory.?®
The rank-finiteness theorem for braided fusion categories [25] tells us that there are finitely many
theories of anyons for any given rank. Finally, we note that the deduction in Remark 2.1 is verified,
for instance, by the toric code modular tensor category which describes quasiparticles on a torus.

27 This result is known as Ocneanu rigidity.
28 Note that for the basis B of the fusion algebra for an abelian theory of anyons, (B, - ) defines an abelian group.
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6.6. Modularity

Pursuing a classification of theories of anyons motivates that of unitary ribbon fusion cat-
egories [26]. Levying a nondegeneracy condition on the braiding results in a unitary modular
tensor category: the extra structure possessed by such categories makes their classification more
tractable [27-29].

Definition 6.8. Suppose monodromy operator My, is the identity for all labels g. The label x is then
said to be transparent. The braiding is called nondegenerate if the trivial label is the only transparent
one.

Nondegeneracy can be physically motivated as follows. R-matrices of the form R®® where a # b
are not gauge-invariant, and therefore cannot correspond to measurable quantities. On the other
hand, monodromies are gauge-invariant. Since the monodromy of any transparent label is trivial,
there is no reason to allow for nontrivial transparent labels in our algebraic models, as they cannot
be distinguished from the vacuum in practice,

However, nondegeneracy comes at a price. Let f be such that Néf € {0, 1} for all gq. R-matrices
of the form RY are gauge-invariant, and so assuming modularity has the undesirable effect of
discarding theories with transparent objects f such that —1 is an eigenvalue of RY (e.g. fermions).
Modular tensor categories are thus limited to describing (2 + 1)-dimensional bosonic topological
orders. Fermions are typically present in systems of interest (e.g. fractional quantum Hall liquids),
and so it is desirable to have an algebraic model that is “almost” modular i.e. where the only
nontrivial transparent object is a fermion. This has led to the development of spin modular
categories [30].

7. Concluding remarks and outlook

The majority of this paper is devoted to considering the action of braiding on quasiparticle
systems. To this end, the “superselection braid” proved to be central to our exposition. We saw that
its action uniquely specified the superselection sectors of a system, illuminated the fusion structure
amongst them and suggested the ribbon relation. Using exchange symmetry as our guiding physical
principle, we showed that postulates A1-A3 suffice to recover unitary ribbon fusion categories as
a framework for modelling anyons. Taking into account the results of [11], we also suggested an
alternative set of postulates P1-P3 in Section 1.1.

A motion group may be defined in a more general context than that found in Section 2.2 in
order to describe the ‘motions’ of a (typically disconnected) nonempty submanifold A in manifold
M [31]. If M = R? and W is given by n disjoint loops then the motion group is the loop braid
group LBy,. Physically, we expect £B, to play a similar role in describing the exchange statistics
of loop-like excitations in (3 + 1)-dimensions to that of the braid group for point-like excitations
in (2 + 1)-dimensions [32]. The next possible generalisation could be to consider the statistics of
knotted loops. The representation theory of motion groups and their relation to higher-dimensional
TQFTs and topological phases of matter is an active area of research. In the case of loop excitations,
various inroads have been made [33-38]. By formulating exchange symmetry in terms of the local
representations of motion groups, the methods presented in this paper might be extended by
adapting them to the setting of higher-dimensional excitations.
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-

Fig. 15. «(g) = 123 and w(g) = 321.

€ B3(S(1.23))

3

Appendix A. The coloured braid groupoid and its action

Definition A.1. A groupoid with base B is a set G with maps o, w : G — B and a partially defined
binary operation (-, -) : G x G — G such that for all f, g, h € G,

(i) gh is defined whenever a(g) = w(h), and in this case we have a(gh) = a(h) and w(gh) = w(g).
(ii) If either of (fg)h or f(gh) is defined then so is the other, and they are equal.
(iii) For each g, there are left and right identity elements respectively denoted by Ag, pg € G, for
which we have A8 =g = gp0,.
(iv) Each g has an inverse g~! € G satisfying g7'g = p, and gg=' = 2.

Note that a group is a groupoid G whose base contains a single element.

Consider the set of all possible n-braids where for any braid, each strand is assigned a distinct
colour (and we always have the same n colours to choose from). Equivalently, this may be thought
of as bijectively assigning a number from {1, ..., n} to each of the n strands in a given braid. Thus,
for any n-braid b € By, there are now n! distinctly ‘coloured’ versions of it contained in our set.

Under composition (i.e. stacking of braids), it is clear that our set possesses the structure of a
groupoid. In this instance, the base is B = Sy, yielding the braid groupoid B,(B) for n distinctly
coloured strands (see Fig. 15).

Remark A.2. Given any s € Sj1,_n;, the subset of all braids g € B,(B) such that w(g) = w(g) = s
defines a subgroup isomorphic to the pure braid group PB,,.

We can equivalently understand a groupoid G with base B as a category G whose collection of
objects Ob(G) is given by B, and where for any x, y € B we have

Hom(x,y) ={g € G: a(g) =x, w(g) =y} (A1)

where g € Hom(x, y) is a morphism from x to y. Note that all morphisms in the category G are
isomorphisms (by invertibility). When B = §;;,__ ), Remark A.2 is equivalent to saying that there is
a group isomorphism Aut(s) = PB,, for each s € B.

The categorical framework is convenient for understanding what is meant by a unitary linear
representation of B,(B). In our case, this will be a functor

Z : By(B) — EdHilb (A2)

where FdHilb is the category of finite Hilbert spaces, and where the image of any morphism under
Z is a unitary linear transformation.?®

Finally, it is worth mentioning the choice of base B for B,(B). The coloured braid groupoid B,(B) is
defined for a choice of base B = Sy, . ;,; where [; € £ (for some set of labels £). When constructing
the action {ps)s in Section 4, we do not assume any equalities among the representations {py j }i;

29 FdHilb is equipped with a dagger structure given by the Hermitian adjoint.
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in order to maintain generality. This means that all n strands in any given braid must be distinctly
labelled, and explains the choice of base B = Sy, .

e Suppose py1i = pyz,i for all i. This is equivalent to having B = S1,1,3.4,...m (i.e. n — 1 colours
for n strands, where only 2 strands have the same colour).

e Suppose py;j) coincide for all i, j. This is equivalent to having B = S;;, 1 (i.e. all strands have
the same colour). In this instance, B,(B) = B, and (A.2) is a unitary linear representation of B,,.

This suggests that a braided monoidal category ¢ with Ob(C) = £ is a sensible way to model a
theory of anyons. Indeed, this is the case (anyons are algebraically modelled using braided fusion
categories). The key step is to identify the existence of a fusion structure amongst the labels in £:
the primary objective of this paper is to show how such structure emerges as a direct consequence
of exchange symmetry.

Appendix B. Proofs

B.1. Proofs from Section 5.1

In order to prove Lemma 5.3, we must first show the identities in Lemma B.1.

Lemma B.1.

(') .ﬁno'n—l = O'l.Bn , n>2

(it) bpoy_i =0ny1-iby, i=1,...,n—1wheren > 2
Proof.

(i)
bﬁ = by_1by_20n00_10
= bp_1by_20n_10w00 1 = bﬁ_]gngn—l
= bi_z(anflan—z)(anan—l)
=...=bl02105...(000n_1) = G1baby_1
whence
Bron—1 = by—1bp—20n-18n—2 = b§,1‘5n—2
= o1bp—1bn—2Bn—2 = 015

(ii) For n = 2, the identity is simply o121 = 0313. Proceeding by induction, assume that the lemma
holds for some n. For 2 < i < n, we have

bri10ni1-i = bnoni10n1-1 = bpon1ion1 (Wheren+1—iefl,...,n—1})
= Opsa—ibpoyr1  (by induction hypothesis)
= Ong2-ibnt1
For i = 1, we show the result directly:

bron—1 = by_20q4_ 107001 = by_p040n_10n, = opb, O

Proof of Lemma 5.3. Let us first show that
Bnoi = on_ifn (B.1)

For n = 2, (B.1) is simply o1 = cr,z = o01/,. Proceeding by induction, assume that (B.1) holds for
some n. For 1 <i <n— 1, we have

Buir10i = bpBroi = bpoy_iBn  (by induction hypothesis)
= Opy1-ibnBn (by Lemma B.1(ii)) = Ont1-iPn+1
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For i = n, we want to show 16y, = &18np+1, which is just Lemma B.1(i). It remains to show that

ﬂno"_l = 0'_,]'1811 (B.2)
1 n—i
Lemma B.1 implies
ﬁno-n_,l'l = Cr1_];611 , n=2 (B.3a)
bro, =0, b, i=1,....,n—1wheren>2 (B.3b)

Using identities (B.3a)-(B.3b), the proof of (B.2) follows similarly to that of (B.1). O
B.2. Proofs from Section 5.2
In order to prove Theorem 5.9, we will first need to prove Lemmas B.2-B.5 and Proposition B.6.

Lemma B.2.
Br =Tia(br) - ..o ri(be2) - rolbr—1) , k=2 (B.4)
Proof.

bn+lbn =01.n+1°"01.n
= 01..n* 01.n-10n410n = bnbn—lo'n+lan
= bn—lbn—z(gndn—l)(on+10n)
=...=byby(o3r ... Onn_1-Ony1n)
01201(032 . .. - Onn—1* Ony1n)
021(02 - 032 - ... - Ot * Ony1n)

021(032 - 0343 - 054+ ... - Opg1n)

-+ =(021-032-043 ... " Ony10)0nt1
=02 pi1 - b1 =11(bn) - bnya
from which we see that
Be=Dbe1-...-by =(bg1bg2) be3z-... b
=rilbe2) be1-be3-... b
=ri(bk-2) br2 - bg3-... b1 -0k
= ri(bk-2) - Br—1- Ok
=...=n1be2)...-11(b1) - B2 (o2 ... - ok—1) =T1(Brk-1) - b1
whence
Br = r1(Bx—1) - bx—1
= ri(ri(Br=2) - be—2) - be—1 = r2(Br—2) - r1(br—2) - by
=...=na(f2) - r=3(bz) - ... - ri(br—2) - rolbi—y) O

Lemma B.3.

— <
brt—l brt = bn . rl(bn—l) (B.S)

Proof.

bp1bp = 0101001
« «—
=by 205100001 by 2 = op(bp_2 - on_1-bp2)oy

31



S.J. Valera Annals of Physics 429 (2021) 168471

<
=...=on.3(b;- by)oz n

= op,.3(01021)03..0 = (00,3021 N0203..0) O
Lemma B.4. 8, is a palindrome i.e. B, = E

Proof.
Onfn = Oubn_1Bn1 = (bn-2-0n) - On_1fn1
=...=(bpa2-0n) - (ba3-on1)-...-(0103) - 32/
<
=(bp-2-... - D1)NOnOn-1-...-03)0201 = Pn_1by
whence
<«
Bni1 = bufn = bp_1(onfn) = bu_1Bn_1bn
<« L
= Dp_2(0n—1Bn-1)bn = bn_2Bn—2bu_1 by

«—

=...=byBbs -...: by
«— —

opoa1 by ... by :EIHI O

Lemma B.5.

(i)oj-trr=tg-nloy), 1<i<l—1,k=1,1>1
(ii) tgg-or=rloy) tgy, 1<i<k—1,k>1,1>1

Proof (These identities are graphically obvious; see Fig. 16).

(i) Claim:
Forl > 1 andj > 0, we have

For I = 2, (B.6) is simply 01,;(024j0115) = (024j014)024j. For [ = 3,

i=14]j 1 014(034j024j0144) = 034j(014j024j014j) = (034j024j0141)024;
i=2+4] 1 024(031j024j014)) = 034j(024j034jO144) = (0340210 141)02+
Letl>4. For2+j<i<(—2)+]

o - G(E) = 0} Olyj. 14 = Olyj.it2 * Oi0i10i - Oj—1..14]
= Ol4j...it2 * Oip10i0it1 * Oi_1..14j= U(E) “ Ot
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(ii)
Propo

(i)

(ii)

where

Proof.

(i)

Fori=1+},

«— ‘-
O14 - T b ) = 0145 - Olgj 14§ = O1tj.345 * 140240145 = T b1 ) - 024
and fori=(—-1)+],

O(l-1)4j * FJ(E) = O 1) OO * O(-2)4..14] = '}'(E)Gw

This shows the claim. Recall from (5.14) that t;; = rO(E) e rk_](E) . By applying the

claim k times forj =0, ..., k— 1 (in increasing order) to g; - t; for 1 <i <1— 1, we obtain
<« <« «— «—

i+ [ro(b) o mia(B)] = [ro(b) - mia(B) | - ko (B8)

Applying anti-automorphism x to (i) and relabelling yields the result. O

sition B.6. Given any positive integers k, | such that k + 1 > 2, we have

Biy1 = [ Bx) - Br] b1
Bt =t [1i(Bi) - Ail

ri(Bx) and By commurte.

By Lemma B.2, we have

Brert = tepi2(b1) » Tey—s(b2) - - .- ro(Diepi—1) (B.9)
and
1i(Bx) = 11 (rk—2(b1) - 1e—3(b2) - . .. - ro(bx—1))
= Ti-2(b1) « Tier-a(ba) - oo mibr-a)
whence it suffices to show that

Fa(08) - FoBiri1) = rcalba) - ralbi-)] - [ro(B) - mea(B)] (B

where the right-hand side of (B.11) is §; - ty;. We prove (B.11) by induction.
First, perform induction on I for fixed k. The base case (k,1) = (k, 1) is

ro(bi) = ro(b1) - ... - Tk—1(b1) (B.12)

(B.10)

which is clearly true. Now suppose (B.11) holds for some [ given fixed k. Then we want to
show that (B.11) also holds for (k, I+ 1) i.e.

1)« Tolbesn) = [ria(01) - ro(b)] - [roBrr) - .- rea ()] (B.13)

Observe that

k1 = [Ul+1 'ro({f;)] : [Ul+2 . rﬂE)} s s [U!+k . rk—1(E)j|

<« <«
N [ro( br)- ... reea( by )] = ri(bi) - tey

and so the right-hand side of (B.13) is

Bt -t = by - (bt = bir(bi) - Bit,t

= by - Bty
B.A1
(Z}bk+f srei(h) - ro(brga—t)
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where the final equality follows by the induction hypothesis. Thus, in order to show (B.13),
we must show that

ﬁ(bk) R ro(bk+1) = bk+f . Tlf](bk) TP To(bkﬂfﬂ (B.14)

under the induction hypothesis. Lemma B.1(ii) tells us that b,o; = i 1b, for any n > 2 and
1 < i < n — 1. Applying this result to the right-hand side of (B.14), we see that by acts
on each r; term by ry as it moves to its right, yielding the left-hand side. This completes the
induction on [

Next, we perform induction on k for fixed I. The base case (k,I) = (1,1) is

ralby) - rolbr) = [rea(by) - rolbi)] - 1o Br) (B.15)
which we show via repeated application of Lemma B.3 on the right-hand side.
[ri-aby) .. rolbi-1)] - ro( br)
D [riatb)- o ralbi) ol b)) b
=[ri-a(ba) - Talby-a)] - [FiBr-2) - 1B | - ratbio)
D [rab) - ralbrs) b - b 2ol (i)
=[ri-aba) .- ra(bi-a)l - [rali-s) - ri(Bin)| - [ratbi-2don] - (i)
={ri-aba) .- 7albi-)] - [ ra(br-s) - a(Bi 2o | - Iratbiz)on ] - ra(bic)
@ [Tl—z(bl) oo T3(bi—a) - Tz(l;r:)] - [r3(bi—3) - 02] - [r2(bi—2)o1] - 1(bi—1)
== ab)  ris(B) - [na(b)ors] - [rs(ba)oral ...~ [ralbi-2)on] - ra(biy)
=[r-aba) -2z don 2] - In-alba)on 31 In-s(badon 4] .- [ralbr-2don] - (Br-1)
i o(by) - Inalb)on2] - [r2B2den 3] - Irs(bs)or-al - .- [ralby_2)on] - Ta(by 1)

=11-2(
Observe that o;ri(b;_;) = 0j6i11

«—
b

i = ri_1(bi_i11) for 1 <i < I, whence

.....

[ri—a(by) - ... - ra(bi-1)] - fo(E) = ﬁfz((’g) s 1-1(b1) « [r—a(bs) - ... - ro(by)]
= o1, - [n-a(b3) - ... - ro(by)]

=ri(b1) - 1a(b2) - ... - To(by)

which proves the base case. Now suppose (B.11) holds for some k given fixed l. Then we want
to show that (B.11) also holds for (k + 1, 1) i.e.

79— «—
a(isn) - Tolbuss) = noaba) - rolbroa)] - [ro(Br) - b)) (8.16)
Observe that ty 1,1 = g - rk(E). and so the right-hand side of (B.16) is

B ter1,1 = (B tia) - el by )
B.11 “—
" rabe) - rolbiaa)] -l br)
where the second equality follows by the induction hypothesis. Thus, in order to show (B.16),
we must show that

<—
b

<«

ri—1(brg1) - .- rolbryr) = [r—a(be) - .. - rolbigi—1)] - re( by ) (B.17)
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under the induction hypothesis. For | = 1, (B.17) is

<
ro(bis1) = ro(bk) - re(b1) (B.18)
which is clearly true.
Claim:
— —
i1 (bryi—i) * Teyica(biip1) = Tepilbi) - ric1(begi—iz) (B.19)

where 1 <i <[—1and[ > 2. Expanding the left-hand side, we get

Oi. k-1 " Okl kt+i = Oi k+l * Ok+l-1..k+i

= 0 kt1—2 - (Okti=1 - Okl = Okgl—1) - Okti—2. ki

(B.20)
= O k+1-2 * (Ok+1 * Okt=1 * Oktl) * Oktl—2..keti
= Okt - (O kel - Okpl—2. k+ti)
It can be shown that
PR L
it (brimie1) - Tkrim1(Di—ijr1) = Okgljs1 (J‘i—1(bk+J—j+1) : Tk+i—1(b1—i—j)) (B.21)

for 1 < j < | — i which we can recursively apply (for j = 2 to | — i) to the parenthesised
expression in the last line of (B.20) to obtain

O k+l * Oktl-2.. k+i = Ok+l—1..k+i+1 - Oi k+l

This proves the claim (B.19).
We recursively apply (B.19) to the right-hand side of (B.17) fori=1to [ — 1:

[ria(bi) - - - - Folbupi—1)] - riel br)

O e abi) - ... r1(Drti—2)] Tk+1(l;:) - To(Dryr)
O O bk - resica(Br) - [riealbiga) - . - rolbieqs)]
= ri—1(bis1) - ria(brg2) - - . - ro(brg)

which is the left-hand side of (B.17). This completes the induction on k.
(ii) Applying the anti-automorphism y to (i), we get

Bk: = Fi-c_i [73_1 'ﬁ(a)]
=ty [Br - i Br)]

where the second line follows by Lemma B.4 and Fﬁ = t;. It is clear that §; commutes with
11(Bk). The result follows. O

Proof of Theorem 5.9. Expressions (i) and (ii) were already proved in Proposition B.6. From

Lemma B.5, it easily follows that for any positive integers>" k, I, we have
Bt =ty - 1 Br) (B.22a)
tkt - B = 1(Bx) - i (B.22b)

Expressions (iii) and (iv) are implied by (i) and (ii) using either one of (B.22a),(B.22b). O

30 LemmaB5 implies (B.22a) and (B.22b) for I > 1 and k > 1 respectively. However, it is trivial to see that (B.22a) and
(B.22b) also hold for I = 1 and k = 1 respectively.
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Appendix C. Uniqueness of the superselection braid

Proof of Theorem 5.11. Consider any fusion tree for an n-quasiparticle system. Label each of the
(n — 1) fusion vertices in the tree with an admissible fusion outcome: in particular, the root is
assigned label Q corresponding to a superselection sector of the system.

Any superselection braid A, must be some composition of braids of the form rd(t;f,‘) (since it
must be compatible with the fusion trees). Recall that such braids have associated exchange phase
of the form in Theorem 5.5(i) (and Corollary 5.6). The statistical phase induced by A, should not
depend on the labels of any internal vertices, and should only depend on the root label Q (since the
associated eigenspaces should correspond to the n-quasiparticle superselection sectors): we thus
denote this phase by A,(Q). We know A{ = e and A, is uniquely given by oy (up to orientation).

Take an arbitrary fusion vertex v in the tree, and suppose that A, does not contain the braid
that exchanges its incoming branches. This introduces the dependence of A,(Q) on (a) the labels of
the immediate children of v (unless they are leaves), and (b) the labels of the parent and sibling of
v (unless v is the root). It follows that A, must either (i) exchange every pair of incoming branches
once, or (ii) exchange no branches. Since A, does not act trivially for n > 1, it must do the former.

By similar considerations, we see that unless the orientation of the branch-exchanging braid act-
ing on a fusion vertex v matches that of the branch-exchanging braids acting on its parent (unless v
is the root) and immediate children, then A,(Q ) acquires a dependence on some labels other than Q.

We thus know that A, must exchange every pair of incoming branches once, and that every such
exchange must be oriented the same. By construction, all possible superselection braids have the
same associated eigenspaces (namely the super-selection sectors of the system). The above further
tells us that all possible super-selection braids whose orientations match have identical associated
spectra {A,(Q)}q (while all possible superselection braids of the opposite orientation have identical
associated spectra {A;(Q)}o).

Next, observe that any A, must contain the braid that exchanges the incident branches of the
root node. Thus, any given A, of clockwise orientation must be of one or more of the following
forms for any k, | such thatn = k+ [

) [AL - 1(A)] by

)t [ A - (A

) Ay -ty - Ag

(4) n(Ag) -t - re(Ay)

where for any fixed one of the above four forms, the expressions for all possible k, | must be equal.
By Theorem 5.9, we know that all four forms are equal and are precisely A, = ﬁn,31 O

Appendix D. Coherence identities

(i) The triangle equations are given by

(i) (ii) (iii)

sab sab sab
% Ve v

o / \if, j’/ B o, / \
/ , /N

a0 o 1/7al rab o 1/ Ha o y/ak e o 1/ ab rab o 17c0 rab o, 1740
1,”11 ® ‘ rm Um ® 1”‘1)." l‘” a ® 'l,"' "‘.4 ® "(:1 “_ b @ l.’ "m ® 1 A

}T(-l“l'! Fl.i"'h I_-,_,m
commute for all a,b,c € £.
(D.1)

31 for A, anticlockwise, simply append a superscript ‘—1’ to each ¢ in (1)-(4). By Theorem 5.9, they are all equivalent
to B,
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It can be shown that triangle Eqgs. (D.1) (ii) and (iii) follow as corollaries of fundamental
triangle equation (i) and the pentagon equation [4].
Illustrating the fusion trees in (D.1),

(i) “\(” (ii) "\/’ (iii) ”\/‘J
AN N LT

where dashed lines denote the vacuum, Independently of the gauge, symbols Fc““b, Ff’“b and
Fg’m correspond to the identity map.32 Then following (6.6), it is clear that the triangle
equations will be trivially satisfied.

(ii) We have the pentagon equation’3:

rab o P o 1/ed rabr o
§ idyae ® Fred . @ ‘l:“ @ ‘i"([” & l’,.” s E I‘,” T ® l(l"v”t
P € " " T
P /’/ P ‘\\1
o

T~

T T

7ab o 17pc o 1704 ras o 1/7r o 17cd
Pvravrevs Pvrevirey

Pa

~ab : . ;
Z JL; e 2 1r11;w Z idya @ Finr!‘
q F]

rat o 1rbe o 170d ras o 17be o 17td
Prrevrey, Pvrev-ev,
ot Z F,""’ ® idys 5.t
t

commutes for all a,b,c,d,e € £.
(D.2)

Illustrating the fusion trees in (D.2),

a b c d
/ \p( T \
a b ¢ d a b e d
\ / : N NS
/ e X
: )
q 8
€ \ / [
d
/

b
t
€

a b c d a
b
W, (,/ /
q s
&

32 1n the 6j fusion system formalism, this requirement is referred to as the triangle axiom [8].

33 This has a nice interpretation in terms of associahedra (convex polytopes whose vertices and edges respectively
correspond to distinct fusion bases and F-moves between them); see [4].
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(iii)

a b c b ¢ a
AV VAN
b« d b ¢

Py d a

X/ kY4
d d
\ b a ¢ b a ¢ /
X/ —\/
d d

Fig. 17. An illustration of the fusion trees in (D.7).

The pentagon equation (D.2) may be written

D (FE @ idyea Midyg ® FE™) = > (idys ® FF)(FM @ idype )(Fg™ @ id, q0) (D.3)
p,r q,s.t

Fixing the fusion states in the initial and terminal fusion basis, we obtain an entry-wise form
of (D.3) which is useful for direct calculations. Fix initial state

lab — p;a)lpc — q; B)lgd — e; A)
and terminal state
las — e; p)|br — s; 8)|cd — 1; ¥)

This gives us

Z [ngr](s,ﬁ,p)(p,a,o) [F‘fm](r.y,o)(q,ﬁ,h)
a

B rz [Fsbtd](r‘v,ﬂ)(t.wn) [F:w](s,n,p)(q,v.l) [F;bc](r,u,v)(p,a,ﬂ)
TR

(D4)

In a multiplicity-free theory (a theory where all fusion coefficients are either 0 or 1), (D.4) is
simply

(7], ], = R, [, 2], .
t

The pentagon equation is also known as the Biedenharn-Elliot identity.

R-matrices are transformations between bases of the form in (6.8). In the graphical calculus,
a b a b b a
X
Hfh . Y s = Z [1{’6} v
" 5 v
[
¢ & c (D.6)

(D.6) is the gauge-free description of an R-matrix. Note that the matrix R is block-diagonal
with block dimensions {N;”’}C (see Fig. 17).
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We have the hexagon equations>*:

69 (i(ll-j,. ® H;}l") - swap
ray o ysbe  w rbe o 7 Ya
P eV, P viev
¥

mabe y
1 rf/
l/'Uh-‘;” L,V.n'
% =2vd

xr :
EP R*® 'uh;;\ %‘9 idy: ® RS

rba o yrre sha A
vrew Durove”

)_ JL:;J!H'

@ (i:h“j*‘ 2 (R I):;’”) - swap
@rors Brrov
y

abe y ~bea
f‘r/ Qt

rab o 17xc rbz oy 70
@‘b,r ‘Z*"rl @ldi L"":‘”
-1 &

T
@ ‘.,':m ® ":l” @ ‘r”;;“ ? l’,':m'
x

I:{f]mn .
commute for all a,b,c,d € £.

(D.7)

Note that the only difference between the two hexagon equations is the orientation of the
R-moves. Fix initial state |ab — x; a}|xc — d; A) and terminal state |bz — d; p)|ca — z; y)
in (D.7). This gives us

DD Ll S L O L P
VB0 (D.8a)

= Z [Rgc]ye [Ft’;ac](z,e,p)(x,a,l) [Rgb]aa

L [(Rq)ﬂw L PR

y.B.1.0
B i (D.8b)
=[] T [(E],,

34 we roughly sketch the origin of the hexagon equations. Consider the set F, of n-leaf fusion trees. Let .%, be the set
whose elements are given by those in F, but with all possible permutations of the string g, . .. g, labelling the leaves (so
that |.%5,| = n!- |F|). We define a digraph KR, to have vertex set £, and edges given by all F and (identically oriented)
R moves transforming between the elements of .%,. Any pair of adjacent vertices will share precisely one edge. In order
to have compatibility between all F and R moves, it suffices to demand that the Yang-Baxter equation is satisfied: we
thus only need to consider subgraphs of the form KRy i.e. the Franklin graph. This graph may be drawn as a dodecagon
containing six hexagons and three (automatically commutative) quadrilaterals. The Yang-Baxter equation holds if the
dodecagon commutes: imposing the hexagon equations ensures that the hexagons commute, and consequently that the
dodecagon commutes. We remark that by restricting the edges of KR, to only permit R-moves acting on two leaves in a
direct fusion channel, we obtain the graph corresponding to the nth permutoassociahedron [39].
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which in the construction from (6.13a)-(6.13b) becomes

y% [Ffm](z,y,p)(y.ﬁ,u)[Rsy] [ngc](%ﬁ-ﬂ)(x-“'“ (D.9a)

= [Rﬂf] [Fbﬂc](z y.p)x,a,1) [ ub]cm

2 Eleriesm [R_1) ] [F2* Ly et

VB (D.9b)

- [(Ril)zc] [ bac](z y.p)x.,R) [(Ril);b]m

and which in a multiplicity-free theory becomes

DR, [RETIES ], = (R [FE 1, [RY] (D.10a)

y

S [, (@021, = [ ) [, e )] (51059
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