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1 Introduction

At high-energy particle colliders, such as the LHC at CERN, the exchanged momentum
is large enough to resolve and scatter fundamental partonic constituents of the matter.
These violent scatterings deviate the partonic constituents of nucleons and allow for intense
bremsstrahlung radiation that ultimately result in collimated bunches of hadronic particles
and energy. These so-called jets open a new perspective on the understanding of strong
interactions at intermediate energy scales between the scale of the hard partonic scattering
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and the hadronization scale. Jets can be calculated with high-precision within perturbative
QCD both in electron-positron and proton-proton collisions [1–3].

For accelerated heavy nuclei, processes involving large momentum exchanges between
the incoming partons have additionally the potential to be well-calibrated probes of the
hot and dense quark-gluon plasma (QGP) that is formed in the aftermath of such violent
collisions. In this context, jets are particularly interesting since their typical formation
time-scales overlap with the time-scales governing the creation and evolution of the QGP,
suggesting potentially substantial jet-medium interactions. While the strong separation of
the medium scale and the jet scale motivates a perturbative description of hard jet-medium
interactions, many aspects of this processes are in the realm of non-perturbative physics
and have to be modeled on the phenomenological level. A satisfactory description of jet
production in heavy-ion collisions would therefore allow us to separate perturbative from
non-perturbative phenomena. Besides, a well-controlled scale separation is an indispensable
insight when studying, e.g., jet-medium coupling, thermalization, or medium modifications
of hadronization.

Jet studies have a rich history and a wide selection of observables have been discussed.
This includes measurements of fully reconstructed jets and their substructure, for recent
reviews see [1, 2, 4]. A fundamental observable is the momentum spectrum of jets for dif-
ferent reconstruction parameters R [5, 6]. The nuclear modification factor RAA, compares
the spectrum in heavy-ion collisions (AA) to proton-proton (pp) at the same reconstructed
jet pT . However, jets that interact with a surrounding medium lose energy and end up
with smaller pT . Therefore — and it is not emphasized enough — the jet selection for RAA
compares two jet populations originated at different pT . The equal pT selection induces
a bias in the observables because the probability of creating a jet is steeply falling with
pT [7, 8]. This bias is explored in great detail below.

Recently, there has been efforts toward mitigating such bias effects by investigating
novel observables or by using machine learning techniques [9]. One alternative, that we
will investigate in detail in the current work, is to introduce a quantile procedure [10] to
reconstruct a pT that is closer to the initial jet pT before quenching sets in. In contrast to
RAA, the quantile procedure uses the tail-cumulative of the jet spectrum and momentum
ratio to reduce the bias coming from the steepness of the spectrum. We demonstrate the
properties of the quantile procedure within a versatile framework to incorporate quenching
effects and explain its robustness for the first time.

To improve the calibration of hard probes in heavy-ion collisions, new measurements
have been suggested, e.g., involving boson+jet events [11–14]. Bosons suffer little mod-
ification in the medium, and their momenta are strongly correlated with the initiator of
the recoiling jet. The jet spectrum in boson+jet events is slightly different from inclusive
QCD jets, and we will use it to illustrate the bias on the quenching. Moreover, quark- and
gluon-jet contributions in the inclusive and boson+jet samples differ. This can be used for
quark-gluon jet discrimination in a model-independent fashion [15]. Using arguments on
the cumulative, we improve the statistics of the classification task. Parallel with the works
mentioned above, some numerical studies has also appeared using Bayesian and machine
learning techniques to extract the energy loss properties from data [16].

– 2 –



J
H
E
P
1
0
(
2
0
2
1
)
0
3
8

During the evolution of jets inside a QGP, their constituents scatter elastically and
inelastically on the medium. The scatterings redistribute energy to larger angles out of the
jet cone, resulting in energy loss. The inelastic (or radiative) part describes the emissions
induced by the medium (medium-induced emissions, or MIE for short). The MIE has well-
known limits: (i) in the multiple soft scattering limit, the scattering centers act coherently,
resulting in suppression of emissions (QCD analog of the Landau-Pomeranchuk-Migdal
effect), captured by the BDMPSZ formula, which describes the induced emission of soft
gluons [17–19]; whil (ii) the single hard scattering limit is captured by the GLV formula,
which describes emissions of harder gluons [20]. Beyond the analytic limits, MIE is also
amenable to direct numerical methods, such as in refs. [21–23]. Recently, there has also been
a progression in the better understanding of the two regimes and the scales involved [24–26].
In our work, we adopt the latter strategy to explore the impact of the MIE spectrum. The
MIE can be resummed accounting for multiple induced emissions. The resulting formalism
is the quenching weight [27, 28]. It is easy to generalize for all jet constituents, including
coherence effects [29], spectrum shapes, and elastic energy loss. Within this framework,
we show the appearance of the spectrum bias.

The paper is organized as follows. In section 2, we define our novel framework to
calculate the jet spectrum in heavy-ion collisions. In section 3, we show, for the first
time, the properties of the cumulative spectrum, and we apply the quantile procedure. In
section 4 we give predictions for measurements, considering cone size dependence for the
single-inclusive jet sample produced in dijet and boson+jet events (we focus concretely
on Z+jet). We also show how to use cumulative arguments to improve quark-gluon dis-
crimination. Beside,. in appendix D, we use the quenching weight formalism for elastic
scatterings and in the hybrid weak/strong-coupling model.

2 Quenching effects in the spectrum

The main observable considered in this work is the single-inclusive spectrum of recon-
structed jets in heavy-ion collisions. In this work, we will both consider jets produced in
conventional QCD processes, that is dijet events, and jets produced in conjunction with a
photon or weak boson, so-called boson-jet events. In the context of high-energy collisions, it
is natural to assume a factorization of the partonic hard cross-section from the subsequent
medium processes. This can be justified by invoking the large separation of momentum
scales involved in jet production; typically the hard scattering Qhard ∼ 103 GeV, is much
bigger than the jet scale Qjet ∼ pTR ∼ 102 GeV, where pT is the reconstructed transverse
momentum of the jet and R is jet cone parameter. These scales are much bigger than the
typical medium scale, for instance, the temperature of the medium T ∼ 0.5GeV. Hence,
one can write the medium modification of the vacuum jet spectrum due to energy loss [27],

dσmed
R

dpT
(pT ) =

∫ ∞
0

dεP>(ε) dσvac
R

dp′T

∣∣∣∣∣
p′T=pT+ε

. (2.1)

The P>(ε) describes the probability of a vacuum jet to distribute (or lose) energy out of
the jet cone. Above, dσvac

R /dpT refers to the partonic cross-section to produce a jet with
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R in the collinear factorization and can be calculated up to high precision [5, 6]. In this
work, instead, we extract the spectrum using a Monte Carlo event generator, see section 4
for further details.

The vacuum spectrum is well approximated by a power-law, dσvac
R /dpT ∝ 1/pnT , and is

steeply falling, i.e. n� 1. Therefore, we approximate dσvac
R (pT + ε)/dpT = A (pT + ε)−n ≈

e−nε/pT dσvac(pT )/dpT , where A is a constant and n ≡ n(pT , R) is the power index of the
spectrum. In the last step, we additionally assumed that ε� pT . The cone-size dependent
nuclear modification factor defined as

Rmed(pT , R) ≡ dσmed
R

dpT

/
dσvac

R

dpT
, (2.2)

is consequently related to the quenching factor Q(ν ≡ n/pT ), which is the Laplace trans-
form of P>(ε), i.e.

Rmed(pT , R) ≈
∫ ∞

0
dεP>(ε) e−

nε
pT ≡ Q>(ν) . (2.3)

This approximation is precise within at most a few percent for realistic parameters in a wide
kinematic range 10 < pT < 1000GeV that we consider here. Therefore, in what follows,
we simply identify Rmed = Q>. For further details on such corrections, see appendix A.
In order to go from Rmed to the experimentally measured RAA, one needs to include a pT -
dependent quark and gluon jet production. Other differences are mostly due to geometry
(for a review see ref. [30]), and cold nuclear effects (nPDF), that we include in section 4.

The energy loss distribution P>(ε) — and therefore the quenching factor Q>(ν) —
depends on vacuum jet properties (like the jet pT and the cone size R) and the properties of
the medium (e.g., medium length L, and the jet transport coefficient q̂). Its normalization
condition,

∫∞
0 dεP>(ε) = 1, translates to Q>(0) = 1. The assumptions underlying eq. (2.2)

are quite robust for a wide range of applications. Therefore, one is flexible in defining the
precise nature of the energy loss distribution P>(ε). The introduction of a probability
distribution to describe effects of quenching in heavy-ion collisions has a long history in
the analysis of single-inclusive hadron [27, 28, 31] and jet spectra [29, 32–34].

We will derive the quenching factor Q> of the jet in several steps. First, we consider
the induced radiation spectrum of a single color-charge propagating through the medium
and how to account for their multiple emissions. We thus arrive at the quenching factor
for a single parton, Q(0)

> (ν). Next, we consider the effect of jet fragmentation which leads
to multiple vacuum-like emissions on short time-scales inside the jets. Partons from these
emissions contribute to the quenching of the full jet. This is accounted for by the so-
called collimator function that provides a fully resummed quenching factor Q>(ν). The
corresponding jet quenching probability distribution can then be found via an inverse
Laplace transform, but we will not pursue this further in this work.

In our numerical results in section 4, we will also include elastic energy loss, since it
potentially can contribute to the ∼ 10 − 30% level to the final jet suppression factor. As
we said, the formulation above is quite general and allows to separately formulate a) the
mechanism of quenching, and b) the phase space where the jet is affected. In appendix D,
therefore, we show how to formulate other energy loss models in terms of quenching weights.
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2.1 Constructing the quenching weight

We construct the radiative energy loss distribution P>(ε) (or the quenching factor Q>(pT ))
of a jet starting from a single parton, that we denote P(0)

> (ε). For the radiation of a single
medium-induced gluon, this energy loss probability is simply given by

P(0)
> (ε) ≈ dI>

dω

∣∣∣∣
ω=ε

+ δ(ε)
[
1−

∫ ∞
0

dω dI>
dω

]
, (2.4)

where dI>/dω is the spectrum of medium-induced gluon radiation spectrum that emerges
at angles larger than the jet cone, or

dI>
dω =

∫ ∞
(ωR)2

dk2 dI
dω dk2 . (2.5)

This is an important difference with respect to the more common use of the quenching
weights applied to single-hadron spectra in refs. [27, 28]. The first term in eq. (2.4) describes
an emission, while the second term is a virtual correction and provides the normalization.
Our starting point in section 2.2 is to discuss the specific details of this induced-emission
spectrum. Accounting for multiple such emissions in course of the medium propagation
allows us to derive the single parton quenching weight in section 2.3.

Then, having derived how one parton contributes to the energy loss of the whole jet,
we next turn to the calculation of how multiple partons in the jet, resolved by the medium
during their fragmentation process, add up to the total quenching effect. This will be
described in section 2.4.

2.2 The medium induced gluon spectrum at finite cone

The medium-induced spectrum from multiple scattering in a QCD medium was derived in-
dependently by Zakharov [18, 35] and Baier-Dokshitzer-Mueller-Peigne-Schiff (BDMPS) [17,
19, 36], see also refs. [37, 38]. In the limit of soft gluon emission with ω energy and k trans-
verse momentum, this spectrum can be written as

ω
dI

dωd2k
= αsCR

(2π)2ω2 2Re
∫ ∞

0
dt1

∫ ∞
t1

dt2
∫

d2x e−
∫∞
t2

ds v(x,s)

× ∂x · ∂yK(x, t2; y, t1)
∣∣
y=0 , (2.6)

where CR = CF if the radiator is a quark (CA for gluon), the path integral is

K(t2,x; t1,y) =
∫ r(t2)=x

r(t1)=y
Dr exp

{∫ t2

t1
ds
[
i
ω

2 ṙ2 − v(r, s)
]}

, (2.7)

and
v(x, t) = Nc

∫ d2q

(2π)2
d2σel
d2q

(
1− eix·q

)
, (2.8)

is related to the elastic scattering potential in medium. The leading logarithmic behavior
of the scattering potential reads for any hard Coulomb tailed elastic potential,

v(x, t)LL = 1
4 q̂0(t)x2 log

( 1
x2µ2

∗

)
+O

(
x4µ2

∗

)
, (2.9)
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where q̂0(t) is a local transport coefficient and µ∗ is related to the infrared scale that
regularizes the in-medium scattering potential d2σel/d2q. For example, the Gyulassy-Wang
scattering potential [39], describes scattering off a plasma made up of Yukawa-screened
quasi-particles, reads

d2σel
d2q

∣∣∣∣∣
GW

= g4n(t)
(q2 + µ2)2 , (2.10)

where µ is a screening mass, and n(t) is the density of scattering centers in the medium.
In this case q̂0(t) = 4πα2

sNcn(t), and µ2
∗ = µ2e−1+2γE/4.

The path integral in eq. (2.7) can be solved numerically, see e.g. in refs. [21–23], but
analytic solutions are available in limiting cases. Here, two of the most frequent schemes are
discussed. In the “harmonic oscillator” (HO) approximation, valid when the logarithm is
slowly varying around a constant scale, i.e. µ2

∗ � 1/x2 ∼ Q2, one can absorb the logarithm
in the definition of the transport coefficient so that v(x) ≈ q̂x2/4. This corresponds to a
purely Gaussian momentum broadening in transverse momentum given by 〈k2〉 = q̂t during
the propagation in the medium. In this case, eq. (2.7) describes a harmonic oscillator with
imaginary frequency Ω2 = q̂/(2iω) in transverse to the propagation, and whose solution
is well known. This approximation, however, fails to describe the hard tail of medium
emissions. On the other hand, one can also truncate the resummation of medium scatterings
at a fixed order N , giving rise to the so-called “opacity expansion” [20, 40]. The N = 1
approximation amounts to considering a single, incoherent scattering with the medium
during the propagation.

A discussion of the regions of validity of these approaches was recently addressed in
refs. [24–26, 41]. In the soft scattering regime, the formation time of emissions tf = 2ω/k2

becomes modified due to Gaussian broadening, i.e. tf ∼
√

2ω/q̂. For emissions with large
formation times tf ∼ L correspond to ω ∼ q̂L2/2 ≡ ωc. It follows that emissions with
ω > ωc cannot be produced by soft collisions and Gaussian broadening, and are dominated
by a single, hard scattering with the medium constituents. Similarly, at short formation
times of the order of the medium mean free path t ∼ λ � L, or ω ∼ q̂λ2/2 = ωBH � ωc,
the spectrum is again dominated by single scattering [40, 41]. Since this latter regime gives
a small contribution to energy loss, we will not discuss it further here.

Recently, the contribution of hard emissions has been shown to matter for precision
comparisons with high-pT single-hadron spectra at RHIC and LHC [42]. A systematic
procedure to calculate the spectrum for a large range of relevant emission energies ω >

ωBH was developed in the so-called “improved opacity expansion” (IOE) [24–26]. This
framework rewrites the leading-log scattering potential form eq. (2.9) as

vLL(x, t) = 1
4 q̂0x2

[
log

(
Q2
c

µ2
∗

)
+ log

( 1
Q2
cx

2

)]
= vHO(x, t) + δv(x, t) , (2.11)

where Qc is a separation scale of the harmonic potential. In the limit of Qc � µ∗, one
can then expand the solution of the path integral in eq. (2.7) around the HO solution
with an effective q̂(Q2

c) and treat hard scatterings with the medium, given by δv(x, s), as
higher-order perturbations. This approach is systematically improvable and, up to next-
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to-next-to-leading order in this expansion, the effective q̂ parameter is given by [26]

q̂(Q2
c) = q̂0 ln

(
Q2
c

µ2
∗

)1 + 1.013
ln
(
Q2
c

µ2
∗

) + 0.318
ln2
(
Q2
c

µ2
∗

)
 , (2.12)

where the scale Q2
c is itself found through an implicit equation, Q4

c = q̂0ω ln(Q2
c/µ

2
∗). This

equation has solution, if ω ≥ ωmin ≡ 2eµ4
?/q̂0, when Q2

c = µ2
? exp[−W−1(2µ4

?/(wq̂0))/2],
whereWi(x) is the Lambert function on the ith branch. Since jet quenching is not sensitive
to the details of very soft gluon emissions, in our numerical results we freeze the logarithms
at 1, i.e. lnQ2

c/µ
2
∗ ≥ 1.

The IOE has so far only been developed for the spectrum integrated over transverse mo-
menta, i.e. dI/dω, and for the momentum broadening of a single particle in the medium [43].
Since the contributions to jet energy loss rely on out-of-cone emissions, cf. eq. (2.5), we
instead have to consider the matching of the partially integrated spectrum dI>/dω between
the multiple-scattering HO and single-scattering N = 1 regimes. We use the quenching
parameter q̂ from eq. (2.12) which correctly connects the q̂0 parameter from the elastic po-
tential with the multiple scattering formalism. We propose a simple interpolation scheme
that relies on a single matching scale ω?, that is related to the broadening of soft gluons
and will be defined below. At small gluon energies, below the matching scale, the spec-
trum is described by the HO approach with the effective q̂. Above the matching scale, the
spectrum is given by the N = 1 spectrum.

We will treat the medium as a “brick” of constant q̂0 and fixed length L. In the
absence of the cone constraint, a natural matching scale is ω? ∼ ωc ≡ q̂L2/2. For the out-
of-cone spectrum, the effect of broadening after emission cannot be neglected. For Gaussian
broadening that presents in HO, a particle emitted at initial time accumulates 〈k2〉 ∼ q̂L

after propagating through the medium. This corresponds to an angle θ ∼
√
q̂L/ω in the

small-angle approximation. Demanding that this angle is larger than the jet cone R for
energy loss, a cut-off in energy arises ω < ωR ≡

√
q̂L/R, above which the HO spectrum falls

rapidly. For more details, see appendix B. It turns out that a relatively smooth matching
between the HO and N = 1 regimes is achieved by choosing

ω? = min
(
ωc, ωR

)
, (2.13)

where ωc and ωR are defined with the effective q̂ parameter in eq. (2.12). For our final
results, see the left and right panels in figure 1. The postulated matching works ex-
tremely well, up to some negligible discontinuities in the spectrum. The uncertainty in
this matching procedure is small compare to other approximation that we will make in the
following sections.

The regime of soft gluon emissions, ω < ω?, is dominated by multiple scattering where
we can employ the HO approximation. The spectrum in this approximation is given by

ω
dIHO

dω d2k
= ᾱ

π
Im
[
Rin-in +Rin-out

]
, (2.14)
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where ᾱ = αsCR/π and the two factors read [44]

Rin-in =
∫ L

0
dt (1 + i)

√
ωq̂ cot(Ωt)

q̂(L− t)− (1 + i)
√
ωq̂ cot(Ωt) exp

[
− k2

q̂(L− t)− (1 + i)
√
ωq̂ cot(Ωt)

]
,

(2.15)

Rin-out =
∫ L

0
dt 1

cos2(Ωt) exp
[
−i k2

2ωΩ tan(Ωt)
]
, (2.16)

where Ω = (1− i)
√
q̂/ω/2. The integrated spectrum in eq. (2.5) reads then

ω
dIHO
>

dω = ᾱ

ω
Im
[
Rin-in
> +Rin-out

>

]
, (2.17)

where now

Rin-in
> =

∫ L

0
dt (1 + i)

√
ωq̂ cot(Ωt) exp

[
− (ωR)2

q̂(L− t)− (1 + i)
√
ωq̂ cot(Ωt)

]
, (2.18)

Rin-out
> = −

∫ L

0
dt (1 + i)

√
q̂ω

cos(Ωt) sin(Ωt) exp
[
−i(ωR)2

2ωΩ tan(Ωt)
]
, (2.19)

We find that in the R→ 0 limit, eq. (2.17) yields

ω
dIHO

dω = 2ᾱ ln
∣∣∣∣cos(1− i)

√
ωc
2ω

∣∣∣∣ . (2.20)

which is the celebrated BDMPS-Z spectrum [18, 19].
As discussed above, at ω > ω?, the HO spectrum has to be corrected with the single

hard gluon emission spectrum (N = 1) [24–26], for which

ω
dIN=1

dωd2k
= 8πᾱNc

∫ L

0
dt
∫ d2q

(2π)2
d2σel
d2q

k · q
k2(k − q)2

[
1− cos (k − q)2

2ω t

]
. (2.21)

Using eq. (2.5) and the Gyulassy-Wang potential from eq. (2.10), we immediately find that
the integrated spectrum reads

ω
dIN=1
>

dω = ᾱ
q̂0L

2

ω

∫ ∞
0

du u− sin u
u2

1
[(ζ + u+ y)2 − 4ζu]1/2

, (2.22)

where ζ ≡ ωR2L/2 and y = µ2L/(2ω). Again, for R → 0, we recover the familiar form of
the integrated N = 1 spectrum [20, 28],

ω
dIN=1

dω = ᾱ
q̂0L

2

ω

∫ ∞
0

du u− sin u
u2

1
u+ y

, (2.23)

as expected.
The full spectrum is therefore postulated to be well approximated by the following

interpolation,
dI>
dω = Θ

(
ω? − ω

)dIHO
>

dω + Θ
(
ω − ω?

)dIN=1
>

dω , (2.24)
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Medium parameter Value
αs 0.3
T0 0.45GeV
q̂0 0.095GeV3

L 4 fm

Table 1. Choice of medium parameters corresponding to 0-10% central PbPb collisions with√
sNN = 5.02TeV.

where all parameters in the HO spectrum and in the matching scales contain the effective
q̂, given in eq. (2.12). Note that the spectrum dI>/dω depends on the initial energy only
in the combination ω = x(1− x)E ≈ xE.

At this point, we pause to discuss the choice of medium parameters. We choose the
medium coupling to be fixed at αs = αmed = 0.3, corresponding to gmed ≈ 1.94. The
IR cutoff scale is µ ≡

√
2/3gmedT0 ≈ 0.71GeV, and ωmin ≈ 1.5GeV. The remaining

parameters are chosen to reflect the conditions in 0–10% central PbPb events at √sNN =
5.02TeV, see table 1. As demonstrated below, this parameter set gives a good description
of the experimentally measured jet suppression factor, see section 4. Since our work does
not deal with the precise description of experimental data, we have not attempted to fix
these parameters from a model of the underlying medium nor fitted them to experimental
data, which was done in [34]. This choice finally leads to a matching scale Q2

c = (1−100)µ2
?

and q̂ = (1− 5)q̂0, depending on ω, in the IOE-matched spectrum eq. (2.24).
The MIE spectrum is shown in figure 1 for quarks (left) and for gluons (right). The

matching points ω∗ from eq. (2.13) are shown with bullets and below (above) the spectrum
is the HO (N = 1) spectrum. The matching works very well capturing the cone size
dependence, however it is not perfectly smooth (see R = 0). It is good enough to study
the integral of this spectrum, presented in the quenching factor. With different colors the
cone size dependence points out, it is less probable to lose energy by opening the cone (i.e.,
recapturing emissions). The difference in the quark and gluon spectrum is the color factor
CA/CF = 9/4, and thus gluons lose more energy. The dotted line in figure 1, represents
the energy scale which below secondary branching start to dominate [37], corresponding to
ω ∼ α2

s q̂L
2, see eq. (2.29) (for more details, see the next subsection). Finally, the grey band

in figure 1 corresponds to emissions with ω ∼ ωBH, which are given by the Bethe-Heitler
spectrum [40, 41]. In what follows, we will neglect such emissions since these emissions do
not contribute significantly to jet energy loss at high-pT [27, 28].

2.3 Single-parton contribution to out-of-cone energy loss

When the number of medium-induced gluon emissions becomes large,
∫∞
ω dω dI

/
dω >

1, one needs to go beyond (2.4) and account for multiple emissions to the energy loss
distribution. Assuming independent emissions, we can treat it as a Poisson process. This
allows to define a probability distribution of radiating energy ε off a single parton at angles
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Figure 1. The out of cone emission spectrum, matched at NNLO for quarks (left) and gluons
(right) from eq. (2.24) for different cone sizes. The dash-dotted (dashed) grey lines are the HO
(N = 1) spectra, the bullets show the matching points ω∗. The dotted line shows the region ωs

below in which emitted gluons thermalize during the broadening. The hatched band shows where
ω < T0, considered and neglected as background.

larger than the jet cone. This probability distribution reads

P(0)
> (ε) =

∞∑
n=0

1
n!

 n∏
j=1

∫
dωj

dI>
dωj

 δ
ε− n∑

j=1
ωj

 exp
[
−
∫

dω dI>
dω

]
, (2.25)

where the parton radiates n soft gluons with ωj energies summing up to ε, and there
is a Sudakov exponential factor to resum virtual contributions [27]. In eq. (2.25), we
only account for the primary emissions off the leading particle and neglect any secondary
splittings. Performing the Laplace transform, the quenching factor of a single parton
emitting multiple gluons can be calculated using

Q(0)
> (ν) ≡

∫ ∞
0

dεP(0)
> (ε) e−νε = exp

[
−
∫ ∞

0
dωdI>

dω
(
1− e−νω

)]
, (2.26)

where ν = n/pT .
It is here worth emphasizing the role of the hard emissions described by the N = 1

spectrum. Neglecting for the moment broadening, i.e. setting R = 0 in eq. (2.22), the
spectrum at large ω > ωc � µ2L/2 is simply

dIN=1

dω

∣∣∣∣∣
ω>ωc

= ᾱπ

4
q̂0L

2

ω2 . (2.27)

The resulting single-parton quenching factor for this regime behaves as

Q(0),N=1
> (ν) = exp

[
− ᾱπ2

q̂0
q̂

(
1− e−νωc + νωcΓ(0, νωc)

)]
, (2.28)

where Γ(s, x) =
∫∞
x dt ts−1e−t is the upper incomplete gamma function. At low pT , i.e.

pT � nωc, the quenching becomes at most Q(0),N=1(ν)|pT�nωc ≈ 1−αsCRq̂0/(2q̂) constant
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factor. Hence, we conclude that the impact of hard radiation at LHC, where we expect
q̂ > q̂0, is relatively small. However, at high-pT , i.e. pT � nωc, where the leading behavior
is Q(0)(ν) ≈ Q(0),N=1(ν)|pT�nωc ≈ 1 − αs

4 CR q̂0L
2ν(1 − γE − ln νωc), it becomes more

important. Also, since hard radiation takes place at small angles, the effect is even smaller
at R > 0.

Equation (2.26) also includes contributions from small energy gluons, and an important
modification should be included to improve their description in the medium. As mentioned
above, gluons emitted with energy ωBH < ω < ωs, where

ωs ≡ π
(
Ncαs
π

)2
q̂0L

2 , (2.29)

will thermalize quasi-instantaneously in the plasma via multiple branching [37]. Their
energy will basically be redistributed randomly over a cone with characteristic opening
angle Rrec ∼ π/2. Hence, instead of losing energy ω out of the cone, the jet loses ω[1 −
(R/Rrec)2], where the second power comes from the area proportionality. This process
describes the thermalization of soft jet particles. Moreover, if Rrec(ω, η, φ), where (η, φ)
describes the jet direction with respect to the reaction plane, one could use it to describe
back-propagation of the thermalized energy to the cone, and thus medium response. The
dashed line in figure 1 shows the location of ωs ≈ 8.5GeV for our parameters. Depending
on the medium and jet parameters, this scale can be below or above the matching scale
ω?. In ref. [34], the importance of Rrec was studied and small dependence in the result was
observed and thus we used Rrec = π/2.

Finally, after neglecting emissions below the Bethe-Heitler energy (we assume that it
is given by the plasma temperature ωBH = T0), our final form for the quenching factor of
a single parton inside the jet is therefore

Q(0)
> (ν) = exp

[
−
∫ ∞
T0

dωdI>
dω

(
1− e

−νω
(

1−Θ(ωs−ω) R2
R2

rec

))]
, (2.30)

where the cone size dependence is implicit in the integration limits of the out-of-cone
spectrum. The single parton quenching factor eq. (2.30) is shown in figure 2 with dashed
lines for quark and gluon initiators. By opening the cone, the emitted energy gets gradually
recovered, and thus the quenching factor becomes closer to 1. The difference in between
quark and gluon initiators is Q(0)

>,g = (Q(0)
>,q)CA/CF , resulting more quenching for gluon. We

expect our description to be less valid at smaller energies.

2.4 Quenching the whole jet

Having derived how one parton contributes to the energy loss of the whole jet, we next
turn to the calculation of how multiple partons in the jet, resolved by the medium during
their fragmentation process, add up to the total quenching effect.

Due to the large phase space for radiation between the jet scale ∼ pTR and the
hadronization scale ∼ ΛQCD, the jet forms through multiple emissions. It can be estimated,
from formation time arguments, that many of these emissions occur while the parton(s)
are interacting with the surrounding medium [29]. In the limit of complete decoherence,
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the constituents are expected to lose energy independently, following an incoherent super-
position of single-particle quenching factors in eq. (2.30). However, one has account for
coherence effects leading to a finite resolution power of the medium. As long as two par-
tons are closer to each other than the medium resolution length, the medium cannot resolve
them individually. The two partons are affected coherently (as a whole color charge) by
medium interactions and, in particular, by induced energy loss [45]. The relevant time-scale
can be estimated by comparing the size of a dipole, that in the small-angle approximation
roughly scales as r⊥ ∼ θt (where θ is the angle of the dipole and t is the propagation time),
to the resolution length of the medium, that scales as λ⊥ ∼ 1/〈k2

⊥〉1/2 ∼ 1/
√
q̂t, where we

assume Gaussian transverse-momentum broadening. The two transverse sizes are equal at
the decoherence time td ∼ (q̂θ2)−1/3.

This condition can be translated to emission times: emissions with formation times
smaller than the medium decoherence time tf < td are vacuum-like. In other words, they
are generated according to the probability distribution to split in the vacuum. The core
constituents should ultimately be resolved while they are still in the medium, i.e. td < L.
Therefore, jet constituents produced in the phase space delimited by tf � td � L, will be
resolved by the medium and are affected by quenching. The rest of the phase space stays
unaffected.

These two effects (vacuum fragmentation and medium resolution) are captured by the
collimator function C(pT , R) [29], which is a function of the jet and medium scales. It takes
into account the additional energy loss of resolved vacuum-like emissions in the medium
(see also ref. [46] for an application to heavy-quark jets). The total quenching of the jet
is therefore given as a product of the quenching of the total charge of the jet and the
collimator, that is

Q>,i(pT , R) = Q(0)
>,i

(
n

pT

)
Ci(pT , R) , (2.31)

where i = q, g indicates the dependence on the color charge. This is what we refer to as the
fully resummed quenching factor of a jet. The functions Ci obey a set of coupled, non-linear
evolution equations, see in ref. [29]. Here, we use its linear approximation, where the quark
and gluon solutions decouple, resulting in the resummation of all primary emissions off the
initiator. This allows to write the solution explicitly as

Ci(pT , R) = exp
[
−
∫ R

0

dθ
θ

∫ 1

0
dz αs(k⊥)

π
Pgi(z)Θres

(
Q(0)
>,g(n/pT )− 1

)]
, (2.32)

where αs is the 1-loop running coupling, the relative transverse momentum is k⊥ = z(1−
z)pT θ, and Pgi(z) is the Altarelli-Parisi LO splitting function. The finiteness of the integrals
is ensured by the phase space measure Θres = Θ(L− td)Θ(td − tf), with the corresponding
times tf = 2z(1 − z)pT /k2

⊥ and td = [12/(q̂0θ
2)]1/3. At large pT , pT & q̂0L

2, this implies
that the angular integral is directly regulated by θ > θc, where θc = [12/(q̂0L

3)]1/2. In
the opposite case, pT . q̂0L

2, the angular integral is regulated by θ & (q̂/p3
T )1/4. Finally,

if θc > R the jet is completely coherent and C(pT , R) = 1. The color dependence of
the collimator is not trivial. Color dependence appears in the splitting function Pgi and
bare quenching weight Q(0)

>,i, through the Casimir factors CR, and, most complicatedly, in
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Figure 2. The nuclear modification factor using the matched radiation spectrum for single parton
quenching form eq. (2.30) (dashed line), and quenching the whole jet with coherence effects from
eq. (2.31) (solid line). Quark jets on the left and gluon jets on the right panel with different
cone sizes.

the spectrum power indices ni(pT ). Therefore, the exact quark/gluon dependence of the
collimator is process and nPDF dependent.

This linearized version of the collimator function is analytically calculable, which is a
big advantage in comparison to the full, non-linear version. We also tested against the full
non-linear solution, which resulted in small, <10%, deviations even for big R ∼ 1 cones.

The resummed quenching weight Q>,i(pT , R) is shown in figure 2 with solid lines for
quarks (left) and gluons (right) for different cone sizes. It results in more quenching (with
the same medium parameters) compared to the single-parton quenching factor because
there are more jet constituents that contribute to the total energy loss. The R-dependence
is a result of two competing effects: a) the recapture of medium-induced gluons by opening
the cone, and b) the opening of phase space for vacuum-like emissions that source additional
energy loss. The combination of these effects balances out, leading to a very mild cone
size dependence. For a full discussion of the uncertainties related to the choice of medium
scales and parameters involved in the quenching, see also ref. [34].

We would like to emphasize the flexibility of the collimator function Ci, which is inde-
pendent of the particulars of the model of energy loss employed in the previous sections.
One could start with other models for single-parton quenching Q(0) and the resolved phase
space Θres, and then use the collimator to describe the quenching of the multiple resolved
sources inside the jet. As a concrete example, we provide an alternative calculation in the
context of the hybrid weak- and strong-coupling model [47] in appendix D.

3 Quenching effects in the cumulative spectrum

The jet suppression factor, defined in eq. (2.2), compares the jet spectra in heavy-ion
collisions (medium), to that in proton-proton collisions (vacuum) at the same final pT . In
this section, we turn to the discussion of other observables that could be constructed from
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the inclusive jet spectra measured in these two systems. One alternative is to compare the
cumulative of the jet spectra (i.e., integrated above a fixed pT cut). The cumulative is less
affected by the initial shape of the hard spectrum and has better statistical uncertainties.
Another approach is to estimate the pT -shift necessary to match the pp and AA spectra.
This is closely related to the typical amount of energy lost by a jet. Both of these procedures
are straightforwardly related to the quenching factors entering the jet spectrum and will
be discussed in further detail in section 3.3. Now, we turn to an observable that combines
the strength of the two examples given above, namely the quantile procedure.

3.1 The quantile ratio

The quantile procedure was introduced in ref. [10] and aims to unfold the average momen-
tum shift 〈ε〉 between vacuum and quenched jets. First, let us introduce the tail cumulative
of the spectrum,

Σ(pT , R) ≡
∫ ∞
pT

dp′T
dσR
dp′T

, (3.1)

which is a probability after dividing with the full integral. The quantile procedure com-
pares the medium and the vacuum spectrum at equal probabilities, Σmed(pq,med

T , R) =
Σvac(pq,vac

T , R). In heavy-ion collisions, for a fixed pq,med
T , this condition allows identifying

the corresponding pq,vac
T . Finally, the quantile momentum ratio is defined as

Qmed(pq,med
T ) ≡ pq,med

T

pq,vac
T

∣∣∣∣∣
Σ
. (3.2)

Therefore, pq,vac
T is the momentum of vacuum jets above which vacuum and medium jets

have equal probability to be produced.
For a quick estimate, let us assume a steeply falling spectrum with a fixed power

n = const, and neglect the R-dependence of the quenching. The tail cumulative cross-
sections in vacuum and in medium (see eq. (2.1)–(2.2)) are simply

Σvac (pq,vac
T )|n=const = 1

n− 1 (pq,vac
T )1−n

, (3.3)

Σmed
(
pq,med
T

)∣∣∣
n=const

=
∫ ∞
pmed
T

dpT p−nT Q(n/pT ) .

This results in the quantile momentum ratio

Qmed(pq,med
T )

∣∣∣
n=const

= pq,med
T

[
(n− 1)

∫ ∞
pq,med
T

dpT p−nT Q(n/pT )
] 1
n−1

. (3.4)

To get the feeling for this quantity, it is instructive to consider a few simplified scenarios
for the quenching factor Q(n/pT ). First, for a constant quenching factor Q(n/pT ) = Q0,
the quantile ratio is a trivial function of the quenching factor Qmed = Q1/(n−1)

0 . Next, we
will consider the single-parton quenching factor obtained by using the soft limit (ω � ωc
in eq. (2.20)) of the BDMPS-Z spectrum, which is derived in appendix B. The interplay
between the jet cone and the broadening introduces a characteristic energy scale ωR =√
q̂L/R which defines two regimes that we discuss below:
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• For pT � nωR, it scales parametrically as Q(0)
> (pT ) = exp[−

√
ω1n/pT ] where ω1 =

8ᾱ2πωc is a characteristic energy scale of the medium. In this case the quantile ratio
becomes

Qmed(pT ) ≈ exp
[
−
√
ω1/((n− 1)pT )

]
=
[
Q(0)
> (pT )

] 1√
n(n−1) . (3.5)

• In the high-pT regime, pT � nωR, we instead have Q(0)
> = exp[−ω2n/pT ] with

ω2 = 2ᾱ
√

2ωcωR. This pT dependence is similar to that of medium-induced single
hard scattering, cf. eq. (2.28), and elastic drag, cf. eq. (4.6). The quantile reads

Qmed(pT ) =
[
n− 1
yn−1 γ (n− 1, y)

] 1
n−1

, (3.6)

where y = nω2/pT is the scaling variable and γ(s, x) = Γ(s) − Γ(s, x) is the lower
incomplete gamma function.

Both the quantile ratio Qmed, and the jet suppression factor Rmed depends identically on
a dimensionless ratio of a medium scale over the jet transverse momentum. Strikingly,
the main difference resides in the n dependence. It turns out that the relation between
quantile and quenching factor Qmed ' Q

1/(n−1)
> holds approximately also for pT -dependent

quenching factors — at least for the case of fixed n. In particular, given that lnQ(0)
> ∝

1 − nω2/pT at pT � nωR, we should expect a reduced sensitivity of the quantile to the
details of the initial spectrum at high-pT , i.e. lnQmed ∝ 1− ω2/pT .

Here, we have mostly focused on the contribution from the out-of-cone, soft radiation
spectrum to quenching. However, both quenching by hard emissions, see eq. (2.28) and
discussion below, and elastic energy loss, see appendix D.1, behave in a similar fashion. For
a single parton species, we should therefore expect to see a universal behavior, independent
of the hard spectrum of the quenching at high-pT .

We study the onset of the independence of the power-index of the hard spectrum n in
figure 3. In these plots, we have computed the single-parton quenching factor Q(0)

> for a
single parton species, in this case quarks, using as input the full radiative spectrum from
eq. (2.24), which encompass both soft and hard medium-induced emissions (dashed lines).
We also plot the resummed quenching factor Q>, given in eq. (2.31), (solid lines). On the
left in figure 3, we plot quenching factor Rmed(pT ) for a wide range of constant n values,
3 ≤ n ≤ 9. Strikingly, the amount of quenching varies significantly with n as a function of
pT , encapsulating the strong bias effects. The quantile ratio, on the other hand, plotted on
the right in figure 3, is remarkably resilient to the details of the hard spectrum. This holds
both for the single-parton quenching factor, which was expected based on the discussion
above, and the fully resummed Q>.

This robustness to the details of the hard, partonic spectrum was observed but not
derived analytically in the original paper [10]. It is the result of the combined effect of using
a momentum ratio, and using the cumulative distribution instead of the spectrum. Note,
however, that we have observed scaling for quark and gluon contribution independently
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Figure 3. The quenching factor (left) and the quantile ratio (right) for quarks only, using single par-
ton quenching (dashed lines) and quenching the whole jet (solid lines) for different spectrum power.

which only makes sense for pure samples of quark and gluon jets.1 For realistic situations,
e.g. dijet or boson-jet events, one has first to add up these contributions to the total
spectrum (cf. eq. (4.2)), before computing the cumulative. In this case, the scaling features
of the quantile ratio are not necessarily as transparent. We will discuss these issues in more
detail in section 4.

In order to make contact with the main objective of this paper, namely to provide
predictions for the quantile in heavy-ion collisions at the LHC, we round off this section
by studying the R-dependence of the quantile for pure quark and gluon jets in figure 4
for fixed n = 5 and medium parameters given in table 1. As before, the dashed lines
correspond to using eq. (2.30) for the quenching factor, which assumes that the whole
jet is quenched as a single parton, while the solid lines employ the resummed quenching
factor eq. (2.31). The single parton quenching trivially results in less modification and thus
smaller momentum shift and quantile ratio for the same medium parameters. Generally,
the qualitative features follows the naive expectation Qmed ' Q

1/(n−1)
> , cf. figure 2. The

R-dependence is analogous to our previous discussion; less quenching results in a quenching
factor closer to 1, and thus a smaller difference between the quantile momenta.

3.2 Statistical advantage of the cumulative spectrum

Using the tail-cumulative distribution has certain advantages in statistical analysis. For
a steeply falling distribution f(pT ) ∼ p−nT (like the hadronic or jet spectrum), there are
fewer and fewer entries in the higher pT bins. This results in a rapid increase of the relative
statistical uncertainty with pT such as ∆f/f(pT ) ∼ pn/2T (N∆pT )−1/2, where N is the total
number of hits, and ∆pT is the size of a bin. By using Σf (pT ) ≡

∫∞
pT

dx f(x) tail-cumulative
distribution, the sum of the higher bins results in less uncertainty ∆Σf/Σf (pT ) ∼
p
−1/2
T ∆f/f(pT ). This can be further slowed down using ∆pT (pT ) ∼ pT logarithmic binning,

1The scaling of the “gluon quantile” follows the same trends as for the quarks in figure 3, the only
difference being the Casimir scaling of the quenching factors, Qq,> = (Qg,>)4/9.
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Figure 4. The quantile ratio using the eq. (2.30) for a single parton quenching (dashed line) and
quenching the whole jet with coherence effects from eq. (2.31) (solid line). Quark jets on the left
and gluon jets on the right panel for different cone sizes.

resulting in ∆f/f ∼ p
(n−1)/2
T and ∆Σf/Σf ∼ p

(n−2)/2
T . It is also true that the cumulative

is equivalent to the original distribution, therefore for a given set of statistical samples the
tail-cumulative distribution could be advantageous.2

We would like to note, however, that one also has to consider systematic uncertainties.
Some of them cancel in ratio observables, such as the nuclear modification factor RAA.
This cancellation is less trivial in the cumulative case.

3.3 Other types of observables based on the spectrum

So far we have discussed the nuclear modification factor and the quantile procedure. But
other observables related to the jet spectrum could also be defined (see also in refs. [10, 27,
48]). We demonstrate the relation between these observables within the quenching weight
formalism and show how these observables are related to the quenching factor Q(n/pT ) (or
Rmed) and the quantile ratio Qmed below.

• Pseudo-quantile [10]: is a version of the quantile procedure which matches directly the
spectrum instead of the cumulative, dσmed/dp̃q,med

T ≡ dσvac/dp̃q,vac
T . The condition

relates the two momenta, i.e. p̃q,vac
T (p̃q,med

T ). We obtain then,

Q̃med
(
p̃q,med
T

)
≡ p̃q,med

T

p̃q,vac
T

∣∣∣∣∣
σ

≈
[
Q>

(
p̃q,med
T

) ]− 1
n(p̃med

T
) . (3.7)

Because of the momentum ratio, this observable has similar n dependence to the
quantile ratio, and therefore it is more robust against the initial spectrum. The
statistical uncertainty, however, is similar to the Rmed since bins are not summed. It
is equivalent with the momentum shift parameter.

2Up to truncation in the domain or co-domain of the distribution.

– 17 –



J
H
E
P
1
0
(
2
0
2
1
)
0
3
8

• Momentum shift [27, 48]: is another interpretation of the pseudo-quantile, defined by
demanding

dσmed(pT )
dpT

≡ dσvac(pT + S(pT ))
dpT

. (3.8)

The trivial connection between the definitions is pvac
T = pT + S(pT ), therefore

Q̃med(pT ) = 1 + S(pT )
pT

. (3.9)

Therefore, the pseudo-quantile and the momentum shift are equivalent. The spectrum
shift can also be expressed with the quenching factor,

S(pT ) = pT

[
Q>(pT )−

1
n(pT ) − 1

]
, (3.10)

expressing the connection between the pseudo-quantile Q̃med and the shift parame-
ter S(pT ).

A different definition of the momentum shift parameter was used by the PHENIX
collaboration Sloss(pT ) [48]. Their definition, however, assumes n = const and pos-
tulates Sloss(pT ) = S0pT . The S(pT ) and Q̃(pT ) are more general. We found to
be necessary to consider changing power n(pT ) in the spectrum, see section 4 and
appendix A.

• Cumulative-Rmed (or pseudo-ratio [10]): is similar to the Rmed but uses the ratio of
the cumulative spectrum instead,

R̃med(pT ) ≡ Σmed(pT )
Σvac(pT ) , (3.11)

where the cumulative of the spectrum is defined in eq. (3.1), and where we have
suppressed the R dependence for now. The integral reduces bias effects from the
initial spectrum and improves the statistics as we showed in section 3.2. For a pT -
independent quenching weight, as in the single-parton P(ε) in the soft BDMPS-Z
limit, the cumulative R̃med can be written as

R̃med =
∫ ∞

0
dεP(ε)Σvac(pT + ε)

Σvac(pT ) . (3.12)

A deviation from this expectation indicates a pT dependence of the quenching weight.
Furthermore, for a spectrum with constant n, where Σvac(pT + ε)/Σvac(pT ) = (1 +
ε/pT )1−n, we simply get that R̃med = Q((n − 1)/pT ). Finally, a trivial connection
between the R̃med and the quantile ratio for constant n is R̃med(pT ) ≈ Qmed(pT )n−1.

In conclusion, we demonstrated the relationship between the different observables one
can construct from the jet spectrum. It turns out that the quantile procedure is partic-
ularly appealing due to the reduced sensitivity to the hard spectrum and because of the
improvement of the statistical uncertainties.
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4 Predictions

In the previous sections, we introduced the quenching weight formalism and showed the
way one can construct the quenched jet spectrum and its cumulative. In this section, we
extend our formalism to provide more reliable predictions for measurements in heavy-ion
collisions.

4.1 Including the realistic spectrum and elastic energy loss

A realistic calculation of quenching effects has to include the partonic cross-section for jet
production. This is evaluated at the hard scale of the collision, Qhard ∼ pT . The jet spec-
trum at a given cone size is computed then by including a DGLAP evolution to the scale
Qjet ∼ pTR [5, 49, 50]. Alternatively, the partonic cross-section that results in a jet with a
given cone can be parameterized using a Monte Carlo event generator in which the partonic
cross-section and the parton shower are matched. In our study, we generate events with
Pythia8 [51] to fit the pT -dependence of the spectrum with reconstruction parameter R, for
quark-, and gluon-initiated jets. The large-angle DGLAP radiation results in additional
R-dependence of the RAA, through the recapture of vacuum radiation. The spectrum pa-
rameterization, therefore, includes the vacuum radiation recaptured by the cone, resulting
in an additional R dependence [52], see appendix C and figure 10, in particular. Currently,
we restrict our study to inclusive jets in dijet samples, generated in pp, and 0–10% cen-
tral PbPb collision at √sNN = 5.02TeV, with pT = 20 − 1000GeV and |η| < 2.8, similar
to the kinematics used by ATLAS [53].3 The details of the event generation (excluding
ISR, MPI and including the effect of nuclear PDFs in Pb, jet selection, and quark/gluon
flavor assignment procedure) are described in appendix C. We also describe the proposed
functional form, following ref. [32], to fit the spectral indices nq(pT , R) and ng(pT , R), that
automatically parameterizes the (pT , R) dependence of the quark-gluon fraction.

The nuclear modification factor RAA, defined as

RAA(pT ) = dNAA(pT , R)/dpT
Ncoll dσpp(pT , R)/dpT

, (4.1)

whereNcoll gives the number of collisions in the nuclear overlap at a given impact parameter
and we identify dNAA/Ncoll = dσAA. The main difference between this ratio and the
previously defined Rmed, defined in eq. (2.2), is the addition of both quark and gluon jets
with their respective quenching factors and the nPDFs. As a result, in our framework,
we get

RAA(pT , R) =

∑
i=q,g

Qi
(
pT , R;nAA0

i (pT , R)
) dσAA0

i

dpT
(pT , R)

/∑
i=q,g

dσpp
i

dpT
(pT , R) , (4.2)

where the extracted spectra are dσpp/AA0
i (pT , R)/dpT , (i = q, g), and we have explicitly

written out the dependence of the quenching factor on the spectral index nAA0
i (pT , R).

3We refer the dijet RAA as single-inclusive because jets contribute independently.
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Similarly, the cumulative spectrum in vacuum and medium are given by

Σpp(pq
T , R) =

∫ ∞
pq
T

dpT
∑
i=q,g

dσpp
i

dpT
(pT , R) , (4.3)

ΣAA(pq
T , R) =

∫ ∞
pq
T

dpT
∑
j=q,g

Qj
(
pT , R, n

AA0
i (pT , R)

) dσAA0
j

dpT
(pT , R) . (4.4)

The quantile is finally defined as,

QAA = pq,AA
T

pq,pp
T

, (4.5)

where the two momenta are determined from the condition Σpp(pq,pp
T , R) = ΣAA(pq,AA

T , R).
In section 2, we focused our discussion on the quenching effects emerging from medium-

induced radiation and broadening. However, for realistic predictions we should also in-
clude quenching from elastic scattering. Elastic energy loss is described by the trans-
port coefficient ê, which is related to q̂ through Einstein’s fluctuation-dissipation relation
êg = q̂/(4T ) for gluons and êq = êgCF /Nc for quarks [54, 55]. Here, T = T0 is the local
temperature of the plasma. We model the single-particle energy loss distribution simply as
P(ε) = δ(ε − êL), where the flavor index is suppressed. Assuming that the energy lost in
elastic processes thermalize instantaneously, we also build in the possibility to recover part
of this energy through the phenomenological parameter Rrec, see eq. (2.30). This finally
results in a single-parton quenching factor from elastic energy loss, given by

Q(0)
el (ν) = exp

[
−êLnν

(
1− R2

R2
rec

)]
. (4.6)

The criteria for resolving the partons in the jet are based on geometry and are therefore
assumed to be identical for elastic and radiative processes. Therefore, the complete single-
particle quenching factor Q(0)

> , appearing in eqs. (2.31)–(2.32), should be replaced by

Q(0)
> (pT ) = Q(0)

>,rad(pT )Q(0)
>,el(pT ) , (4.7)

where Q(0)
>,rad(pT ) is given by eq. (2.30) and Q(0)

>,el(pT ) is given by eq. (4.6). Including elastic
effects has an important effect on the magnitude of the total quenching factor. For further
detalils see appendix D.1 and figure 11.

4.2 Numerical results for dijet events

The single-inclusive jet RAA, generated from a sample of dijet events, for a set of cone
sizes, 0.2 < R < 1, is shown in the left panel of figure 5 (solid curves). In the current work,
the medium is treated as a static brick with fixed q̂0 and length L, see table 1 for details
that is generally a good approximation even for expanding media, see ref. [56]. There is a
notable change of the curves at high pT due to the inclusion of nPDFs (see also in figure 10
in appendix C for only the nPDF effects). The overall R dependence is very modest and
will be discussed in more detail shortly.
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Figure 5. The RAA (left panel) and QAA (right panel) from eqs. (4.2) and (4.5), respectively, for
single-inclusive jets in dijets events in 0–10% PbPb collision at √sNN =5.02TeV. The parameters
are chosen to reproduce the R = 0.4 ATLAS [53] measurement. Data from ALICE [57] and CMS [58]
are also shown.

The parameters of the calculation are tuned to the measured inclusive jet data from
ATLAS [53] at pT ' 100GeV and R = 0.4 with |η| < 2.8, cf. table 1, resulting in good
agreement between data and theory for the whole pT range. The measured inclusive jet
RAA from ALICE [57] for R = 0.2 and R = 0.4 are also shown in figure 5, where the
rapidity range for the jet selection |η| < 0.5 is slightly different. The recent CMS [58]
results are also shown in figure 5 for various R, where the rapidity is |η| < 2. We would
like to note, there is a disagreement between the ATLAS and CMS data that was not
pointed out in the CMS’ latter publication. We would like to also note that the magnitude
of RAA(pT ) in any BDMPS-Z type of calculation is mostly sensitive to the combination
ωs ∼ α2

medq̂0L
2, as observed in refs. [27, 59]. The slope of the RAA(pT ) is quite robust

to changes in the parameters.4 Given our simplified modeling of the medium, we do not
attempt to reproduce the centrality dependence of the jet RAA at high-pT which will be
left to future work, see also in ref. [34].

Having constrained the medium parameters with RAA, we now turn to the predictions
for the quantile momentum ratio which is showed in the right panel of figure 5. There is no
drastic change due to the nPDFs in comparison to the RAA at high-pT , demonstrating the
robustness of the quantile procedure against modifications in the partonic cross-section.
The shape of the curves and even the R dependence is very similar to the RAA and is well
captured by the approximate relation QAA ∼ R

1/(n−1)
AA . To date, there are no experimental

measurements of the quantile ratio.
Our formalism accounts for the cone size dependence of jet quenching through compet-

ing effects related to the early vacuum shower and medium-induced elastic and radiative
processes. On the one hand, by opening the cone, one captures more of the particles that

4By including event-by-event fluctuations in the jet position and path length, the slope becomes flatter
in ref. [34].

– 21 –



J
H
E
P
1
0
(
2
0
2
1
)
0
3
8

102 103

pT [GeV]

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
R

A
A
/R

R
=

0.
2

A
A

0-10% PbPb @ 5.02 TeV, |η| < 2.8, dijets

Q(0)
>

Q>

CMS

ALICE

0.2

0.4

0.6

0.8

1.0

R

102 103

pq,AA
T [GeV]

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

Q
A

A
/Q

R
=

0.
2

A
A

0-10% PbPb @ 5.02 TeV, |η| < 2.8, dijets

Q(0)
>

Q>

0.2

0.4

0.6

0.8

1.0

R

Figure 6. Same plots as in figure 5, but taking the ratio of different cone sizes to enhance the
differences between single and multi-parton quenching. On the x-axis of the right panel we used
pq,AA

T instead of pq,pp
T from previous.

are affected by medium interactions and thus recover the lost energy. This is manifested
as a suppression of the spectrum dI>/dω at ω >

√
q̂L/R in figure 1, meaning it is less

probable to lose energy. For R ∼ Rrec all quasi-thermalized modes, both in the radiative
spectrum (ω < ωs) and due to elastic collisions, are recaptured within the jet cone. On
the other hand, opening the reconstructed jet cone results in more phase space for vacuum
fragmentation at an early stage of the evolution. This leads to a higher multiplicity of
vacuum-like emissions and, therefore, more sources for energy loss.

The overall effect is a relative cancellation of the R dependence (see figure 5). figure 6
shows the RAA (left) and quantile ratio (right) at a given R divided by the R = 0.2 results.
As an illustration, here the dashed curves are the results obtained by using the single-
parton quenching factors Q(0)

> , which amounts of treating the whole jet as a completely
coherent single parton that is not resolved by medium interactions. Their R-dependence
reflects directly the effect of recapturing energy at large angles without sourcing more
energy loss though vacuum fragmentation. The full curves are for the full quenching factors
which leads to a more complicated R dependence where, several effects contribute, such as
vacuum fragmentation and its recapture, color coherence effects and the thermalization of
the medium-induced emissions. This ratio was measured by ALICE [57] (for |η| < 0.5), and
CMS [58] (for |η| < 2), showing great agreement with our model. Reference [58] compares
many theory prediction and we can say, currently, our model has the best agreement.

The main differences between the “bare”, and “resummed” quenching factors is at
lower pT ∼ 50 − 100GeV. As we mentioned, in our model the RAA is mostly sensitive
to the ωs ∼ α2

medq̂0L
2 combination of the parameters. A precise measurement on the R-

dependence would help to constraint more parameters. The right side of figure 6 shows the
R-dependence of the quantile ratio. It is much less sensitive to the jet cone.
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Figure 7. The RAA and QAA from eqs. (4.2) and (4.5) for single-inclusive jets from dijet and Z+jet
events in 0–10% PbPb collision at 5.02TeV, keeping the same parameters as in figure 5. On the
x-axis of the right panel we used pq,AA

T instead of pq,pp
T like in previous plots.

4.3 Differences between dijets and Z+jets

At first glance, there should be no difference in the quenching mechanism in dijet and
boson+jet events.5 However, their RAA are not expected to be the same. In this subsection
we explain why, and what are the consequences for quark and gluon classification. The
Z+jet process is used as an illustration. We also show how can one use the cumulative
distribution for quark-gluon discrimination to perform better statistics.

4.3.1 Difference in the RAA

In recent years, a lot of effort has been put to measure and understand the boson+jet
processes both in pp and AA collisions. Firstly, it is a favorable process for quark-, and
gluon-jet discrimination, because it provides a natural definition of the initial jet flavor.
Secondly, measuring the boson momentum, one gets a label on the initial momentum of the
recoiling jet. This is especially advantageous in heavy-ion collisions, where the quenching of
bosons is suppressed,6 and one, therefore, gains knowledge about the jet before final-state
interactions with the medium.

Here, we focus on Z+jet process, but the arguments are valid for other boson+jet
processes. We generated the Z+jet events with Pythia and identified jets using the same
cuts as in the dijet study. Further details on the event generation and parameterization
are summarized in appendix C. We include the corresponding spectrum using eq. (4.2)
and the result is shown in figure 7. Dijet and boson+jet processes have different spectra
and thus their bias is different on the energy loss distribution. As discussed before, this
appears through the spectrum power n(pT ) in the quenching factor. For dijets n ≈ 6,

5The so-called “surface bias” is in our context built in due to the bias from the initial steeply falling
spectrum.

6The electro-weak bosons can still interact with the background for example through electromagnetism.
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for Z+jets n ≈ 4, therefore based on the approximate RAA ∼ exp(−2
√
πᾱ2ωcn/pT ), the

bigger the power, the stronger is the quenching. To stress this, the dijet-, and Z+jet-RAA
ratio is also shown. The ratio of two exponential remains to be exponential that looks
linear on the semi-log scale. Moreover, dijets are gluon dominated, while Z+jets are quark
dominated, see in figure 10 in appendix C. Therefore we expect Z+jets to have smaller
quenching, which is in agreement with figure 7. The pT dependence of the power is also
different, resulting in a different slope of RAA as high-pT . Note also that the Z+jet quark
contribution is relatively constant in pT in contrast to the increasing quark contribution
in dijets. Since the quenching roughly scales with the color charge (gluons have more
quenching), at higher pT , Z+jets has stronger quenching, which is in agreement with the
smaller slope in the plot. Although the Z+jet and dijet spectra are different, the relative
R dependence is similar.

The quantile ratio is also shown in the right panel of figure 7. The difference is smaller
between dijets and Z+jets than for the nuclear modification factor, pointing out the reduced
sensitivity to the details of the initial spectrum (see also figure 10). Using the cumulative
spectrum, and the ratio of momenta, one gets much less sensitive to the initial shape of the
spectrum. The degree of scaling the initial spectrum of the quantile is nevertheless not as
ideal as for the results in figure 3. This can be traced to the fact that the single inclusive jets
in neither dijet nor Z+jet events are pure samples of quark-, or gluon-initiated jets. The
different admixture of parton species, as well as the different level of quenching of the two
both, contribute to delaying the onset of scaling effects up to higher transverse momenta.
One also has to point out that figure 3 was obtained by assuming n =const, while for
realistic calculations nq and ng are complicated functions of pT and differ significantly for
dijet and Z+jet events, see figure 10.

All in all, our results are also qualitatively similar to the ones observed in ref. [10].
Similarly to dijets, the R-dependence is very similar to the Z+jet RAA and is to a great
degree captured by the approximate relation QAA ∼ R

1/(n−1)
AA .

4.3.2 Improving quark-gluon discrimination

As mentioned above, jets recoiling from a boson (γ or Z/W ) is the preferred process for
quark-gluon (q/g) discrimination, because the hard scattering naturally defines the initial
flavor of the jet at leading order in perturbation theory. Most q/g discriminators apply cut
on jet substructure observables, e.g., jet mass or soft-drop multiplicity, to classify jets, see
in refs. [1, 60]. While the best performance is achieved by machine learning algorithms,
these nonetheless rely on training sets resulting in model dependence. In pp, however,
the main description of jets is predominantly perturbative or it can be made perturbative
with grooming. Model dependence, therefore, is not as crucial as for heavy-ions, where the
description is not yet unique and where non-perturbative effects are more prominent.

The recently introduced topic modeling [15, 61, 62] is a data-driven method that is
largely model independent, and its outstanding performance was demonstrated for event
generator samples both in pp and AA. For this reason, it is also applicable to heavy-ions.
There are some caveats of the classifier; (i) it works only with certain observables for which
quarks and gluons are mutually irreducible (usually counting-type observables [63, 64]), (ii)
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it is heavily limited by statistical uncertainty, (iii) the performance is limited by the cuts
on the phase space, and (iv) it works on statistical samples.

Topic modeling aims to un-mix the sample probability distributions (e.g., dijet and bo-
son+jet samples) to a common basis (quark and gluon distribution). Consider, for example,

pZj(x) = fZj
q pq(x) + (1− fZj

q )pg(x) ,

p2j(x) = f2j
q pq(x) + (1− f2j

q )pg(x) , (4.8)

where p(x) is a probability density of some observable for which eq. (4.8) is true (mutual
reducibility), and f

Zj/2j
q and fZj/2jg are the weight factors. To un-mix, one uses the fact

that phase-space of x exists, where either the dijet or boson+jet (and thus the quark or
gluon) dominates the distribution. This usually happens on the domain border of the
observable (e.g., small/big jet multiplicity) [63, 64]. With this, called anchor-bin, one can
statistically decouple the basis using pZj(x)− κp2j(x) ≥ 0,

pq(x) = pZj(x)− κ(Zj|2j)p2j(x)
1− κ(Zj|2j) ,

pg(x) = p2j(x)− κ(2j|Zj)pZj(x)
1− κ(2j|Zj) , (4.9)

where the reducibility factor is

κ(i|j) ≡ inf
x

pi(x)
pj(x) , (4.10)

where i, j = Zj, 2j.
Equation (4.9) is true if eq. (4.8) is possible, and both infx pq(x)/pg(x) = 0 and

infx pg(x)/pq(x) = 0. However, for real data it has a finite minimum. The minimum
is typically on the edge of the x distribution, and thus the extraction of κ is limited by the
statistical uncertainty of this corner bin. Because of the linearity, one could integrate both
sides of eq. (4.8), and rewrite eq. (4.9) using the cumulative distribution of p(x),

κ̃(Zj|2j) ≡ inf
x

∫∞
x dx pZj(x)∫∞
x dx p2j(x) , (4.11)

κ̃(2j|Zj) ≡ inf
x

∫ x
0 dx p2j(x)∫ x
0 dx pZj(x) . (4.12)

Our cumulative method improves the statistical uncertainty by definition (see section 3.2)
that can be trivially tested with arbitrary combined distributions.7 We would like to note
the cumulative in this subsection refers to the p(x) distribution, and has nothing to do
with the cumulative of the jet spectrum.

Unfortunately, the jet spectrum is not mutually irreducible. One can see this from
eq. (4.2), where the quenching factor depends on the quark/gluon spectrum through their
n indices. However, the medium modified quark-gluon ratio of the jet spectrum is important
for any quark-gluon discriminator, and thus we provide it in figure 8, for both dijets

7Ref. [62] mentions the possibility to use the cumulative instead of the binned histogram.
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Figure 8. The quark and gluon ratio before and after quenching for dijets and Z+jets in pp and
PbPb.

and Z+jets. We observe that at high-pT the ratio barely changes, however, at lower pT
quarks start to dominate. This is the result of the stronger quenching of gluons, effectively
suppressing them in the samples. For future quark-gluon classification, this suppression
effect indicates that the Z+jet quark-gluon ratio will be less different from the dijet ratio,
making the separation, unfortunately, harder, in line with what was observed in ref. [65].

5 Conclusion

In heavy-ion collisions, the steeply falling jet spectrum, convolved with the probability
for quenching, biases the measured jet observables. In this paper, we studied the origin
of this bias and its presence in recently suggested observables, e.g., the quantile ratio
and its comparison of single-inclusive jet spectra in dijet and boson+jet events in heavy-
ion collisions.

We developed a novel analytic framework based on quenching factors to construct the
jet spectrum in heavy-ion collisions. Starting from single parton energy loss, we showed the
necessity to include the full medium-induced radiation spectrum, including both multiple-
soft (described by the BDMPS-Z spectrum) and single-hard (included in the GLV spec-
trum) scattering regimes. By keeping track of the jet cone size, the energy is only lost
if the emissions propagate out of the cone. We also account for the quenching of mul-
tiple jet partons resolved by the medium interactions through the collimator function,
see eq. (2.31). Therefore, opening the cone, vacuum-like jet fragmentation sources more
partons to quench, resulting in a relative cancellation of the cone-size dependence. It is
also important to use realistic jet spectrum for predictions by including the pT dependent
spectrum power n(pT ), pT -dependent quark-gluon jet ratio, and nPDFs. We revealed the
importance of elastic energy loss, and also included it in our quenching framework for jets.

Different observables have been introduced to study the jet spectrum in heavy-ion col-
lisions, e.g., spectrum shift, cumulative-RAA, quantile or pseudo-quantile procedure. We
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showed their relation to the nuclear modification factor, to each other, and elucidated
their dependence on the jet momentum pT , the spectrum power n, and the jet cone size
R. The cumulative-based observables reduce statistical uncertainty, and the momentum-
ratio-based ones change the spectrum power dependence. The quantile momentum ratio
maximizes both of these advantages, and we provided predictions for its cone-size de-
pendence for the first time. Our approximate formula for the quantile momentum ratio
QAA ∼ R

1/(n−1)
AA captures the rough properties of the observable: it is similar to RAA, with

reduced spectrum power index n.
Finally, we demonstrated the bias effect by comparing quenched dijet and Z+jet spec-

tra. For a pure sample of quark or gluon jets, the quenching factors for single-partons
scale like

− lnQ(0)
> ≈


ᾱ

√
q̂L2n

pT
for pT � nωR

ᾱ

√
ωRq̂L2 n

pT
for pT � nωR

, (5.1)

where ωR =
√
q̂L/R. This qualitative behavior is also numerically confirmed for the

resummed quenching factor Q>. As a direct manifestation of the bias effect, i.e. the n-
dependence in eq. (5.1), the jet spectrum in Z+jet events, which is less steep, results in a
smaller nuclear modification factor RAA than for dijet events, see figure 3 (left). In other
words, the steeper the spectrum the stronger the effect of quenching.

The quantile ratio QAA is much more resilient to details of the hard spectrum, both the
actual values of n and of the relative admixture of quarks and gluons. For pure samples
of quark-, and gluon-jets, the behavior in eq. (5.1) predicts an almost ideal scaling at
pT � nωR, which was largely confirmed in figure 3 for n =const. For realistic samples of
jets in dijet and Z+jet events, however, the universal behavior of the quantile ratio can
only be expected to be approximate, see figure 7 (right).

The dijet and Z+jet events are also useful for quark and gluon discrimination. Follow-
ing our cumulative spectrum experiences, we improved quark-, and gluon-jet discrimination
based on topics modeling in general. However, due to the n-dependence of the quenching
factors, quarks and gluons in the jet spectrum are not mutually irreducible. We will return
to the challenging of quark/gluon discrimination in heavy-ion collisions in future work.

Many of the assumptions underlying the concrete realization behind our numerical
results in section 2 are already implemented in varying degrees in various phenomenological
Monte Carlo models. Our framework, therefore, provides theoretical tools to organize the
effects of quark/gluon contributions, jet fragmentation, and finally, the details of medium
interactions. In the BDMPS-Z framework, these are, to a first approximation, all controlled
by a single transport coefficient q̂.
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A Corrections to the Laplace transformation and to the running power

Our objective in this paper, is to compute the ratio of medium to vacuum inclusive jet
spectra, which can be written as (see eqs. (2.1)–(2.2))

Rmed(pT ) =
∫ ∞

0
dεP(ε)

(
1 + ε

pT

)−n
, (A.1)

where we omit the R dependence for now, and assume that n = const. In eq. (2.3), we
took the (1 + ε/pT )−n ≈ exp(−nε/pT ) approximation. We can, however, easily include
corrections to this by noting that

Rmed(pT ) =
∫ ∞

0
dεP(ε)

[
1 + (νε)2

2n − (νε)3

3n2 +O
(
(νε)4)] e−νε

=
[
1 + ν2

2n
∂2

∂ν2 + ν3

3n2
∂3

∂ν3 +O
(
ν4∂4

ν

)]
Q(ν) , (A.2)

where Q(ν) ≡
∫∞

0 dεP(ε)e−νε is the Laplace transform of the energy loss distribution and
ν = n/pT . In this appendix, we investigate the impact of these higher-order corrections
for a concrete example that can be solved analytically, namely the energy loss distribution
obtained in the strictly soft limit of the BDMPS-Z spectrum. It is given by

P(ε) =
√
ωs
ε3 e−

πωs
ε , (A.3)

which only depends on the energy scale ωs and is properly normalized. In this case, its
Laplace transform is Q = exp(−2√πωsν). We can, in fact find any of the terms in eq. (A.2)
by noticing that

Im ≡
∂m

∂νm
Q(ν) = (−1)m2

(
ν

π

) 1−2m
4

ω
1+2m

4
s Km− 1

2
(2√πωsν) , (A.4)

where Km(x) is the modified Bessel function of the second kind and I0 = Q(ν). We can
therefore write

Rmed(pT ) =
∞∑
m=0

cmIm , (A.5)

where, c0 = 1, c1 = 0, c2 = ν2/(2n), c3 = ν3/(3n2) and so forth, by assuming Rmed(pT ) to
be analytic function. On the left of figure 9, we study the corrections by comparing to the
exact value from eq. (A.1). The parameters we use are ωs = 5GeV and ωs = 10GeV and
n = 5. For the realistic choice of ωs . 5GeV, the leading behaviour is already of the order
of O(10−2), even at low pT ∼ 100GeV.

– 28 –



J
H
E
P
1
0
(
2
0
2
1
)
0
3
8

102 103 104

pT [GeV]

0.90

0.92

0.94

0.96

0.98

1.00
R

at
io

to
th

e
ex

ac
t

O(1)

O(∂2
ν)

O(∂3
ν)

ωs = 5 GeV, n = 5

ωs = 10 GeV, n = 5

101 102 103 104

pT [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q
(r

ad
)

>
,q

(p
T

)

q̂0 = 0.08 GeV3, L = 4 fm, µ = 0.45 GeV

αmed = 0.3, T0 = 0.45 GeV, n = 5, R = 0.4

Laplace transform

with correction

Figure 9. Ratio of the truncated expansion of Rmed from eq. (A.2) to the exact value for the soft
BDMPS-Z model from eq. (A.1) (left), and the same with the full quenching weight from eq. (2.31).

Finally, the effect of the corrections from eq. (A.2) for the realistic quenching weight
employed in the main body of the paper is showcased in figure 9 (right) up to the lead-
ing correction O(∂2

ν). The sign of the correction depends on the concavity/convexity of
the quenching weight (note the second derivative in pT in eq. (A.2)). For our choice of
parameters, the correction is tiny < O(10−3), and can safely be neglected.

The conclusions from above also hold if we consider a pT dependent power n(pT ) of
the hard spectrum. One can trivially replace n 7→ n(pT ) in the quenching weight capturing
most of the effects of the running power. The correction to this simple replacement is

Rmed(pT ) ≈
[(

1− 1
pT

∂n

∂pT

∂2

∂ν2

)(
1 + ln(pT ) ∂n

∂pT

∂

∂ν

)]
Q(ν) , (A.6)

resulting in negligible � O(10−3) corrections similar to the corrections to the Laplace
transformation.

B pT -scaling of the out-of-cone emission quenching factor

Consider the BDMPS-Z spectrum in the soft limit. In the short formation-time approxi-
mation the emission and subsequent broadening of a soft gluon factorizes, and we can write

ω
dI

dωdk2
⊥dt = ᾱ

√
q̂

ω
P(k⊥, L− t) , (B.1)

where P(k⊥, L− t) is the probability for a particle emitted at time t to acquire transverse
momentum k⊥ = ωθ through elastic scattering up to the end of the medium L. In the
Gaussian approximation, it reads

P(k⊥, L− t) = 4π
q̂(L− t)e−

k2
⊥

q̂(L−t) . (B.2)

– 29 –



J
H
E
P
1
0
(
2
0
2
1
)
0
3
8

For this simplified ansatz, the out-of-cone spectrum reads

dI>
dω = ᾱ

√
q̂L2

ω
B
(
ω2

ω2
R

)
, (B.3)

where ωR =
√
q̂L/R and the broadening factor B is given by

B(y) = 1
L

∫ L

0
dt
∫ ∞

(ωR2)
dk2
⊥ P(k⊥, L− t) = e−y − yΓ(0, y) , (B.4)

where y = ω2/ω2
R. Therefore, eq. (B.3) falls rapidly for ω > ωR, and thus we used ωR in

the matching definition in eq. (2.13). The single-parton quenching factor reads then

lnQ(0)
> (ν) = −ᾱ

√
2ωcν

∫ ∞
0

dx 1
x3/2

(
1− e−x

)
B
(
x2

x2
R

)
,

≈ −ᾱ
√

2ωcν
∫ xR

0
dx 1

x3/2
(
1− e−x

)
(B.5)

where we changed variables to x = ων and xR ≡ ωRν. We will solve this integral in two
limiting cases, namely xR � 1 and xR � 1. In the former case, which corresponds to the
high-pT regime where pT � ωRn, we can expand the terms in the bracket and find

lnQ(0)
> (ν)

∣∣∣
xR�1

= −2ᾱ
√

2ωcωRν . (B.6)

In the opposite limit, for pT � ωRn, we can extend the upper integration limit to infinity,
to obtain

lnQ(0)
> (ν)

∣∣∣
xR�1

= −2ᾱ
√

2πωcν , (B.7)

which is independent of the jet cone.

C Generating and parametrizing the jet spectrum

As we mentioned in section 2, the partonic cross-section to produce a jet with a given pT
and R is perturbatively calculable in the collinear factorization up to high precision [5, 6].
In our work, instead, we extract the spectrum using the Pythia8.235 event generator [51].
To generate dijet events we used default settings and tunes with HardQCD:All both in
pp and in 0–10% PbPb collision at 5.02TeV. This results in LO 2 → 2 matrix elements.
The nPDF was EPS09LO which has a relatively important effect on the RAA, see in
figure 10. The ISR, MPI, and hadronization were turned off to focus on final state radiation
only. We reconstructed jets using anti-kt algorithm with FastJet3 [66] for R = 0 − 1,
pT,jet = 10 − 1000GeV and |ηjet| < 2.8, similar to the kinematic cuts of ATLAS.8 To
label the flavors of the jets, we compared them to the outgoing partons from the hard
scattering, and we kept the closest in angle if it was less than 2R. We only associated one
jet (the hardest) with an initiator, and thus we only kept the two hardest associated jets.

8At this rapidity selection and jet cones, the ISR and MPI could contribute to jet production, that we
address in a future study.
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Figure 10. Left: the parametrized quark jet contribution in pp and in PbPb using the nPDF in
Pythia. Middle: the quenching factors for quarks and gluons resulting from nPDFs (no quenching).
Right: the quantile ratio resulting from nPDFs alone.

This selection detail becomes important for small R jets, where more than one jet can
be reconstructed for one initiator. We kept those events in which there no jet passing the
criteria, which are important in the proper RAA ratio (before quenching). We parametrized
the spectrum following [32],

dσpp/AA
i

dpT
(pT , R) = c0

(
pT
p0

)−npp/AA
i (pT ,R)

, (C.1)

n
pp/AA
i (pT , R) =

∑
n=1

cn logn
(
pT
p0

)
, (C.2)

where i is the flavor of the initiator of the jet and {p0, cn} are (pT , R, i, pp/AA) dependent
fitting parameters. We kept terms up to n = 3, achieving < 3% relative deviation. The
resulted parametrization is showed in figure 10. On the left, there is the quark contribution,
which increases with pT . The cone size dependence shows, gluons are emitted at larger
angles even in the vacuum. On the middle the RAA is shown, resulted by the nPDF (no
quenching on the plot). The inclusive jet spectrum would be similar to the dijets keeping
not only the two hardest jets, however, the flavor assignment would be less trivial especially
for smaller cone sizes, therefore we preferred to use the dijet samples.9 On the right, the
quantile ratio is shown resulted only from the nPDF effects. One can see that the ratio
is close to 1, in contrast to the quenching observed in figure 5. The pT dependence is
also different compared to quenching. At high pT & 300GeV, the nPDF suppresses the
spectrum (because of the EMC effect, see the RAA in the middle), resulting QAA < 1,
while at pT ≈ 20 − 300GeV, the nPDF enhances the spectrum (due to anti-shadowing),
resulting QAA > 1, see [68] for more details.

For the Z+jet samples, we followed the logic from previous. We used however the
WeakBosonAndParton:qg2gmZq and WeakBosonAndParton:qqbar2gmZg processes and we
forced the Z-boson to decay invisibly. In this case, we kept only the hardest recoiling jet
if it fulfilled the same criteria as before. In the Z+jet case, the spectrum power is smaller
in comparison to dijets nZj ≈ 4 < n2j ≈ 6. The quark and gluon ratio is different, in
comparison to dijets, but the cone size dependence is similar, see on the left in figure 10.

9For a recent development on jet flavor definition, see ref. [67].
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In both cases, opening the cone, one captures more gluons meaning, they are radiated at
larger angles. The RAA resulted from the nPDF is also shown in figure 10, relatively similar
for both dijet and Z+jet processes. The quark/gluon content is however slightly different.
On the right, the quantile ratio is also shown to be similar to dijets.

D Other models

As we mentioned in section 2 the quenching weight and collimator formalism are indepen-
dent of the energy loss description. To illustrate this we show how to use this formalism
to describe quenching of elastic scattering and within the strong coupling approximation.

D.1 Momentum shift and elastic energy loss

The simplest example for the jet energy loss probability P(ε) is to take a momentum shift
of vacuum jets P(ε) = δ(ε−S(pT )), resulting equivalent definition to the old fashioned mo-
mentum shift parameter dσmed(pT )/dpT ≡ dσvac(pT + S(pT ))/dpT [27, 48]. By expanding
the steeply falling spectrum in S(pT )� pT ,

dσmed
dpT

(pT ) =
∞∑
n

〈εn〉 dn
dpnT

(dσvac
dpT

)
≈ dσvac

dpT
(pT + 〈ε〉) , (D.1)

where we used 〈εi〉 ≈ 〈ε〉i. The shift parameter is roughly the mean energy loss

S(pT ) ≈ 〈ε〉 =
∫

dε εP(ε) ≡ ∆E . (D.2)

The quenching factor in the simple power-law case is

Rmed(pT ) = p
n(pT )−n(pT+S(pT ))
T

[
1 + S(pT )

pT

]−n(pT+S(pT ))
, (D.3)

which is well approximated by Rmed(pT ) ≈ [1 + S(pT )/pT ]−n(pT ) (see in appendix A). The
quantile ratio is straightforward by using eq. (3.2) with Q = [1 + S(pT )/pT ]−n(pT ). In the
constant power approximation it is

Qmed(pT ) ≈ pT
[
(n− 1)

∫ ∞
pT

dp (pT + S(pT ))−n
]− 1

1−n
. (D.4)

The elastic scattering is approximated by a constant momentum shift Pel,i(ε) = δ(ε−
êiL), where ê = −d〈E〉/dt ≈ Ciq̂0/(4NcT0), and T0 ≈ 0.45GeV [55, 69]. This can be
translated to an additional quenching weight compared to the form eq. (2.30),

Q(0)
>,el(pT , R) = exp

[
− êL n
pT

(
1− R2

R2
rec

)]
, (D.5)

where we included some energy recapture through the second term with Rrec = π/2.
Therefore in total Q(0)

>,tot = Q(0)
>,radQ

(0)
>,el. This factor runs slower with pT than the BDMPS-

Z, similar to the “N = 1” (or GLV) spectrum. We can also include the elastic energy
loss of each jet constituent, by using the collimator function form eq. (2.32), Q>,tot =
Q>,radQ>,el. Figure 11 shows eq. (D.5) with dashed lines and with the collimator with full
lines, indicating the importance of elastic scattering in the overall quenching. Therefore
we included this effect in section 4.

– 32 –



J
H
E
P
1
0
(
2
0
2
1
)
0
3
8

101 102 103 104

pT [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q
>
,e

l(
p T

)

q̂0 = 0.08 GeV3, L = 4 fm, µ = 0.45 GeV

αmed = 0.3, T0 = 0.45 GeV, n = 5, R = 0.4

Q(0)
>

Q>,q

Q>,g
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D.2 Hybrid weak-, strong-coupling

In the strong coupling approximation, the energy loss is assumed to be described by a
semi-classical string falling inside a black hole horizon [70]. This model does not use
dI/dω because there are no emitted gluons, and thus the energy loss is directly connected
with P(0)(ε). The average lost energy of a single parton traversing through an L sized, T
temperature strongly coupled medium is

∆E
E

= 1− 2
π

 L
xs

√
1−

(
L

xs

)2
+ cos−1

(
L

xs

) , (D.6)

where E is the initial energy, xs = E1/3/(2κscT
4/3) is the stopping length and κsc =

1.05 g1/3N
1/6
c . Using the definition of momentum shift from eq. (D.2), the single parton

quenching is estimated by

Q(0)(pT ) =

2− 2
π

 L

xs

√
1−

(
L

xs

)2
+ cos−1

(
L

xs

)−n , (D.7)

where the pT dependence is presented in xs. For high pT , Q(0)(pT ) ≈ 1 −
32nκ3

scL
3T 4/(3πpT ) the same pT dependence obtained from GLV (see eq. (2.28) and be-

low). We did not include here the broadening in and out of the cone due to the lack of
particles, however, one could include the linearized hydro response through Rrec(η, φ). We
include multi parton quenching and thus the R-dependence by using the collimator from
eq. (2.32). We used eq. (D.7) asQ(0)(pT ), and for Θres we used the resolution condition used
in the hybrid model [71], tf < td = (θµ)−1 < L, where µ = πT/2 is the IR screening scale
used in the hybrid model (the Debye mass would be gT ). eq. (D.7) is shown in figure 12
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Figure 12. The quenching and the quantile ratio in the strong coupling assumption with the
proper quark and gluon mixture using eq. (D.7) and including the collimator to consider multi-
parton effects from eq. (2.32).

with the Pythia spectrum, resulting similar quenching to the GLV assumption. The curves
in figure 12 similar to the results in [72] without the medium response, where the sharp
cutoff is where the medium fully absorbs the jet (the stopping length). The R-dependence
is simplified in our case, because we neglected the medium response. We also estimate the
quantile ratio using eq. (D.3). The parameters are T = 0.27GeV, L = 4 fm and κsc = 0.4.
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