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Abstract
A resolving set S of a graph G is a subset of its vertices such that no two vertices 
of G have the same distance vector to S. The Metric Dimension problem asks for 
a resolving set of minimum size, and in its decision form, a resolving set of size at 
most some specified integer. This problem is NP-complete, and remains so in very 
restricted classes of graphs. It is also W[2]-complete with respect to the size of the 
solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On 
the algorithmic side, a polynomial time algorithm is known for trees, and even for 
outerplanar graphs, but the general case of treewidth at most two is open. On the 
complexity side, no parameterized hardness is known. This has led several papers on 
the topic to ask for the parameterized complexity of Metric Dimension with respect 
to treewidth. We provide a first answer to the question. We show that Metric Dimen-
sion parameterized by the treewidth of the input graph is W[1]-hard. More refin-
edly we prove that, unless the Exponential Time Hypothesis fails, there is no algo-
rithm solving Metric Dimension in time f (pw)no(pw) on n-vertex graphs of constant 
degree, with pw the pathwidth of the input graph, and f any computable function. 
This is in stark contrast with an FPT algorithm of Belmonte et al. (SIAM J Discrete 
Math 31(2):1217–1243, 2017) with respect to the combined parameter tl + Δ , where 
tl is the tree-length and Δ the maximum-degree of the input graph.
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1  Introduction

The Metric Dimension problem has been introduced in the 1970s independently by 
Slater [22] and by Harary and Melter [13]. Given a graph G and an integer k, Metric 
Dimension asks for a subset S of vertices of G of size at most k such that every ver-
tex of G is uniquely determined by its distances to the vertices of S. Such a set S is 
called a resolving set, and a resolving set of minimum-cardinality is called a metric 
basis. The metric dimension of graphs finds application in various areas including 
network verification [2], chemistry [4], and robot navigation [18].

Metric Dimension is an entry of the celebrated book on intractability by Garey 
and Johnson  [12] where the authors show that it is NP-complete. In fact Met-
ric Dimension remains NP-complete in many restricted classes of graphs such as 
planar graphs  [6], split, bipartite, co-bipartite graphs, and line graphs of bipartite 
graphs  [9], interval graphs of diameter two  [11], permutation graphs of diameter 
two [11], and in a subclass of unit disk graphs [15]. Furthermore Metric Dimension 
cannot be solved in subexponential-time unless 3-SAT can [1]. On the positive side, 
the problem is polynomial-time solvable on trees [13, 18, 22]. Diaz et al.  [6] gen-
eralize this result to outerplanar graphs. Fernau et al.  [10] give a polynomial-time 
algorithm on chain graphs. Epstein et al. [9] show that Metric Dimension (and even 
its vertex-weighted variant) can be solved in polynomial time on cographs and for-
ests augmented by a constant number of edges. Hoffmann et al. [16] obtain a linear 
algorithm on cactus block graphs.

Hartung and Nichterlein  [14] prove that Metric Dimension is W[2]-complete 
(parameterized by the size of the solution k) even on subcubic graphs. Therefore an 
FPT algorithm solving the problem is unlikely. However Foucaud et al. [11] give an 
FPT algorithm with respect to k on interval graphs. This result is later generalized 
by Belmonte et al. [3] who obtain an FPT algorithm with respect to tl + Δ (where tl 
is the tree-length and Δ is the maximum-degree of the input graph), implying one 
for parameter tl + k . Indeed interval graphs, and even chordal graphs, have constant 
tree-length. Hartung and Nichterlein [14] presents an FPT algorithm parameterized 
by the vertex cover number, Eppstein  [8], by the max leaf number, and Belmonte 
et al. [3], by the modular-width (a larger parameter than clique-width).

The complexity of Metric Dimension parameterized by treewidth is quite elusive. 
It is discussed [8] or raised as an open problem in several papers [3, 6]. On the one 
hand, it was not known, prior to our paper, if this problem is W[1]-hard. On the 
other hand, the complexity of Metric Dimension in graphs of treewidth at most two 
is still an open question.

1.1 � Our Contribution

We settle the parameterized complexity of Metric Dimension with respect to tree-
width. We show that this problem is W[1]-hard, and we rule out, under the Expo-
nential Time Hypothesis (ETH), an algorithm running in f (tw)|V(G)|o(tw) , where G 
is the input graph, tw its treewidth, and f any computable function. Our reduction 
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even shows that an algorithm in time f (pw)|V(G)|o(pw) is unlikely on constant-
degree graphs, for the larger parameter pathwidth pw . This is in stark contrast 
with the FPT algorithm of Belmonte et al. [3] for the parameter tl + Δ where tl is 
the tree-length and Δ is the maximum-degree of the graph. We observe that this 
readily gives an FPT algorithm for ctw + Δ where ctw is the connected treewidth, 
since ctw ⩾ tl . This unravels an interesting behavior of Metric Dimension, at least 
on bounded-degree graphs: usual tree-decompositions are not enough for efficient 
solving. Instead one needs tree-decompositions with an additional guarantee that the 
vertices of a same bag are at a bounded distance from each other.

As our construction is quite technical, we chose to introduce an intermedi-
ate problem dubbed k-Multicolored Resolving Set in the reduction from k-Mul-
ticolored Independent Set to Metric Dimension. The first half of the reduction, 
from k-Multicolored Independent Set to k-Multicolored Resolving Set, follows 
a generic and standard recipe to design parameterized hardness with respect to 
treewidth. The main difficulty is to design an effective propagation gadget with a 
constant-size left-right cut. The second half brings some new local attachments to 
the produced graph, to bridge the gap between k-Multicolored Resolving Set and 
Metric Dimension. Along the way, we introduce a number of gadgets: edge, propa-
gation, forced set, forced vertex. They are quite streamlined and effective. Therefore, 
we believe these building blocks may help in designing new reductions for Metric 
Dimension.

1.2 � Organization of the Paper

In Sect. 2 we introduce the definitions, notations, and terminology used throughout 
the paper. In Sect. 3 we present the high-level ideas to establish our result. We define 
the k-Multicolored Resolving Set problem which serves as an intermediate step for 
our reduction. In Sect. 4 we design a parameterized reduction from the W[1]-com-
plete k-Multicolored Independent Set to k-Multicolored Resolving Set parame-
terized by treewidth. In Sect. 5 we show how to transform the produced instances of 
k-Multicolored Resolving Set to Metric Dimension-instances (while maintaining 
bounded treewidth). In Sect. 6 we conclude with some open questions.

2 � Preliminaries

We denote by [i, j] the set of integers {i, i + 1,… , j − 1, j} , and by [i] the set of inte-
gers [1, i]. If X  is a set of sets, we denote by ∪X  the union of them.

2.1 � Graph Notations

All our graphs are undirected and simple (no multiple edge nor self-loop). We denote 
by V(G), respectively E(G), the set of vertices, respectively of edges, of the graph G. 
For S ⊆ V(G) , we denote the open neighborhood (or simply neighborhood) of S by 
NG(S) , i.e., the set of neighbors of S deprived of S, and the closed neighborhood of 
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S by NG[S] , i.e., the set NG(S) ∪ S . For singletons, we simplify NG({v}) into NG(v) , 
and NG[{v}] into NG[v] . We denote by G[S] the subgraph of G induced by S, and 
G − S ∶= G[V(G)⧵S] . For S ⊆ V(G) we denote by S the complement V(G)⧵S . For 
A,B ⊆ V(G) , E(A, B) denotes the set of edges in E(G) with one endpoint in A and 
the other one in B.

The length of a path in an unweighted graph is simply the number of edges of the 
path. For two vertices u, v ∈ V(G) , we denote by distG(u, v) , the distance between u 
and v in G, that is the length of the shortest path between u and v. The diameter of a 
graph is the longest distance between a pair of its vertices. The diameter of a subset 
S ⊆ V(G) , denoted by diamG(S) , is the longest distance between a pair of vertices 
in S. Note that the distance is taken in G, not in G[S]. In particular, when G is con-
nected, diamG(S) is finite for every S. A pendant vertex is a vertex with degree one. 
A vertex u is pendant to v if v is the only neighbor of u. Two distinct vertices u, v 
such that N(u) = N(v) are called false twins, and true twins if N[u] = N[v] . In par-
ticular, true twins are adjacent. In all the above notations with a subscript, we omit it 
whenever the graph is implicit from the context.

2.2 � Treewidth, Pathwidth, Connected Treewidth, and Tree‑Length

A tree-decomposition of a graph G, is a tree T whose nodes are labeled by sub-
sets of V(G), called bags, such that for each vertex v ∈ V(G) , the bags containing v 
induce a non-empty subtree of T, and for each edge e ∈ E(G) , there is at least one 
bag containing both endpoints of e. A connected tree-decomposition further requires 
that each bag induces a connected subgraph in G. The width of a (connected) tree-
decomposition is the size of its largest bag minus one. The treewidth (resp. con-
nected treewidth) of a graph G is the minimum width of a tree-decomposition (resp. 
a connected tree-decomposition) of G. The length of a bag is the maximum distance 
in G between any pair of vertices in the bag. The length of a tree-decomposition 
is the maximum length of any bag. The tree-length of a graph G is the minimum 
length of a tree-decomposition of G. We denote the treewidth, connected treewidth, 
and tree-length of a graph by tw , ctw , and tl respectively. Since a connected graph 
on n vertices has diameter at most n − 1 , it holds that ctw ⩾ tl.

The pathwidth is the same as treewidth except the tree T is now required to be a 
path, and hence is called a path-decomposition. In particular pathwidth is always 
larger than treewidth. Later we will need to upper bound the pathwidth of our con-
structed graph. Since writing down a path-decomposition is a bit cumbersome, we 
will rely on the following characterization of pathwidth. Kirousis and Papadimitriou 
[19] show the equality between the interval thickness number, which is known to 
be pathwidth plus one, and the node searching number. Thus we will only need to 
show that the number of searchers required to win the following one-player game is 
bounded by a suitable function. We imagine the edges of a graph to be contaminated 
by a gas. The task is to move around a team of searchers, placed at the vertices, 
in order to clean all the edges. A move consists of removing a searcher from the 
graph, adding a searcher at an unoccupied vertex, or displacing a searcher from a 
vertex to any other vertex (not necessarily adjacent). An edge is cleaned when both 
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its endpoints are occupied by a searcher. However after each move, all the cleaned 
edges admitting a free-of-searchers path from one of its endpoints to the endpoint of 
a contaminated edge are recontaminated. The node searching number is the mini-
mum number of searchers required to win the game.

2.3 � Parameterized Problems and Algorithms

Parameterized complexity aims to solve hard problems in time f (k)|I|O(1) , where k 
is a parameter of the instance I  which is hopefully (much) smaller than the total size 
of I  . More formally, a parameterized problem is a pair (Π, �) where Π ⊆ L for some 
language L ⊆ Σ∗ over a finite alphabet Σ (e.g., the set of words, graphs, etc.), and � is 
a mapping from L to ℕ . An element I ∈ L is called an instance (or input). The map-
ping � associates each instance to an integer called parameter. An instance is said 
positive if I ∈ Π , and a negative otherwise. We denote by |I| the size of I  , that can 
be thought of as the length of the word I  . An FPT algorithm is an algorithm which 
solves a parameterized problem (Π, �) , i.e., decides whether or not an input I ∈ L is 
positive, in time f (�(I))|I|O(1) for some computable function f. We refer the inter-
ested reader to recent textbooks in parameterized algorithms and complexity [5, 7].

2.4 � Exponential Time Hypothesis, FPT Reductions, and W[1]‑Hardness

The Exponential Time Hypothesis (ETH) is a conjecture by Impagliazzo et al. [17] 
asserting that there is no 2o(n)-time algorithm for 3-SAT on instances with n vari-
ables. Lokshtanov et al. [20] survey conditional lower bounds under the ETH.

An FPT reduction from a parameterized problem (Π ⊆ L, 𝜅) to a parameterized 
problem (Π� ⊆ L�, 𝜅�) is a mapping � ∶ L ↦ L� such that for every I ∈ L : 

(1)	 I ∈ Π ⇔ �(I) ∈ Π�,
(2)	 |�(I)| ⩽ f (�(I))|I|O(1) for some computable function f, and
(3)	 �(�(I)) ⩽ g(�(I)) for some computable function g.

We further require that for every I  , we can compute �(I) in FPT time h(�(I))|I|O(1) 
for some computable function h. Condition (1) makes � a valid reduction, condition 
(2) together with the further requirement on the time to compute �(I) make the map-
ping � FPT, and condition (3) controls that the new parameter �(�(I)) is bounded 
by a function of the original parameter �(I) . One can therefore observe that using � 
in combination with an FPT algorithm solving (Π�, ��) yields an FPT procedure to 
solve the initial problem (Π, �).

A standard use of an FPT reduction is to derive conditional lower bounds: if a 
problem (Π, �) is thought not to admit an FPT algorithm, then an FPT reduction 
from (Π, �) to (Π�, ��) indicates that (Π�, ��) is also unlikely to admit an FPT algo-
rithm. We refer the reader to the textbooks [5, 7] for a formal definition of W[1]-
hardness. For the purpose of this paper, we will just state that W[1]-hard are param-
eterized problems that are unlikely to be FPT, and that the following problem is 
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W[1]-complete even when all the Vi have the same number of elements, say t (see 
for instance [21]).

Every parameterized problem that k-Multicolored Independent Set FPT-reduces 
to is W[1]-hard. Our paper is thus devoted to designing an FPT reduction from k
-Multicolored Independent Set to Metric Dimension parameterized by tw . Let us 
observe that the ETH implies that one (equivalently, every) W[1]-hard problem is 
not in the class of problems solvable in FPT time (FPT≠W[1]). Thus if we admit 
that there is no subexponential algorithm solving 3-SAT, then k-Multicolored 
Independent Set is not solvable in time f (k)|V(G)|O(1) . Actually under this stronger 
assumption, k-Multicolored Independent Set is not solvable in time f (k)|V(G)|o(k) . 
A concise proof of that fact can be found in the survey on the consequences of ETH 
[20].

2.5 � Metric Dimension, Resolved Pairs, Distinguished Vertices

A pair of vertices {u, v} ⊆ V(G) is said to be resolved by a set S if there is a vertex 
w ∈ S such that dist(w, u) ≠ dist(w, v) . A vertex u is said to be distinguished by a set 
S if for any w ∈ V(G)⧵{u} , there is a vertex v ∈ S such that dist(v, u) ≠ dist(v,w) . 
A resolving set of a graph G is a set S ⊆ V(G) such that every two distinct vertices 
u, v ∈ V(G) are resolved by S. Equivalently, a resolving set is a set S such that every 
vertex of G is distinguished by S. Then Metric Dimension asks for a resolving set of 
size at most some threshold k. Note that a resolving set of minimum size is some-
times called a metric basis for G.

Here we anticipate on the fact that we will mainly consider Metric Dimension 
parameterized by treewidth. Henceforth we sometimes use the notation Π∕tw to 
emphasize that Π is not parameterized by the natural parameter (size of the resolving 
set) but by the treewidth of the input graph.

3 � Outline of the W[1]‑Hardness Proof of Metric Dimension/tw

We will show the following.



2612	 Algorithmica (2021) 83:2606–2633

1 3

Theorem  3.1  Unless the ETH fails, there is no computable function f such that 
Metric Dimension can be solved in time f (pw)no(pw) on constant-degree n-vertex 
graphs.

We first prove that the following variant of Metric Dimension is W[1]-hard.

In words, in this variant the resolving set is made by picking exactly one ver-
tex in each set of X  , and not all the pairs should be resolved but only the ones in 
a prescribed set P . We call critical pair a pair of P . In the context of k-Multi-
colored Resolving Set, we call legal set a set which satisfies the former condition, 
and resolving set a set which satisfies the latter. Thus a solution for k-Multicolored 
Resolving Set is a legal resolving set.

The reduction from k-Multicolored Independent Set starts with a well-estab-
lished trick to show parameterized hardness by treewidth. We create m “empty cop-
ies” of the k-MIS-instance (G, k, (V1,… , Vk)) , where m ∶= |E(G)| and t ∶= |Vi| . We 
force exactly one vertex in each color class of each copy to be in the resolving set, 
using the set X  . In each copy, we introduce an edge gadget for a single (distinct) 
edge of G. Encoding an edge of k-MIS in the k-MRS-instance is fairly simple: we 
build a pair (of P ) which is resolved by every choice but the one selecting both its 
endpoints in the resolving set. We now need to force a consistent choice of the ver-
tex chosen in Vi over all the copies. We thus design a propagation gadget. A crucial 
property of the propagation gadget, for the pathwidth of the constructed graph to 
be bounded, is that it admits a cut of size O(k) disconnecting one copy from the 
other. Encoding a choice in Vi in the distances to four special vertices, called gates, 
we manage to build such a gadget with constant-size “left-right” separator per color 
class. This works by introducing t pairs (of P ) which are resolved by the south-west 
and north-east gates but not by the south-east and north-west ones. Then we link 
the vertices of a copy of Vi in a way that the higher their index, the more pairs they 
resolve in the propagation gadget to their left, and the fewer pairs they resolve in the 
propagation gadget to their right.

We then turn to the actual Metric Dimension problem. We design a gadget which 
simulates requirement (i) by forcing a vertex of a specific set X in the resolving set. 
This works by introducing two pairs that are only resolved by vertices of X. We 
attach this new gadget, called forcing set gadget, to all the k color classes of the m 
copies. Finally we have to make sure that a candidate solution resolves all the pairs, 
and not only the ones prescribed by P . For that we attach two adjacent “pendant” 
vertices to strategically chosen vertices. One of these two vertices have to be in the 
resolving set since they are true twins, hence not resolved by any other vertex. Then 
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everything is as if the unique common neighbor v of the true twins was added to the 
resolving set. Therefore we can perform this operation as long as v does not resolve 
any of the pairs of P.

To facilitate the task of the reader, henceforth we stick to the following 
conventions:

•	 Index i ∈ [k] ranges over the k rows of the k -MRS/MD-instance or color classes 
of k-MIS.

•	 Index j ∈ [m] ranges over the m columns of the k -MRS/MD-instance or edges of 
k-MIS.

•	 Index � ∈ [t] , ranges over the t vertices of a color class.

We invite the reader to look up Table 1 when in doubt about a notation/symbol rela-
tive to the construction.

4 � Parameterized Hardness of k‑Multicolored Resolving Set/tw

In this section, we give an FPT reduction from the W[1]-complete k-Multi-
colored Independent Set to k-Multicolored Resolving Set parameterized by 
treewidth. More precisely, given a k -Multicolored Independent Set-instance 
(G, k, (V1,… ,Vk)) we produce in polynomial-time an equivalent k-Multicolored 
Resolving Set-instance (G�, k�,X,P) where G′ has pathwidth (hence treewidth) O(k).

4.1 � Construction

Let (G, k, (V1,… ,Vk)) be an instance of k -Multicolored Independent Set where 
(V1,… ,Vk) is a partition of V(G) and Vi ∶= {vi,� | 1 ⩽ � ⩽ t} . We arbitrarily number 
e1,… , ej,… , em the m edges of G.

4.1.1 � Overall Picture

We start with a high-level description of the k-MRS-instance (G�, k�,X,P) . For each 
color class Vi , we introduce m copies V1

i
,… ,V

j

i
,… ,Vm

i
 of a selector gadget to G′ . 

Each set Vj

i
 is added to X  , so a solution has to pick exactly one vertex within each 

selector gadget. One can imagine the vertex-sets V1
i
,… ,Vm

i
 to be aligned on the i-th 

row, with Vj

i
 occupying the j-th column (see Fig. 1). Each Vj

i
 has t vertices denoted 

by vj
i,1
, v

j

i,2
,… , v

j

i,t
 , where each vj

i,�
 “corresponds” to vi,� ∈ Vi . We make vj

i,1
v
j

i,2
… v

j

i,t
 

a path with t − 1 edges.
For each edge ej ∈ E(G) , we insert an edge gadget G(ej) containing a pair of verti-

ces {cj, c�j} that we add to P . Gadget G(ej) is attached to Vj

i
 and Vj

i′
 , where 

ej ∈ E(Vi,Vi� ) . The edge gadget is designed in a way that the only legal sets that do 
not resolve {cj, c�j} are the ones that precisely pick vj

i,�
∈ V

j

i
 and vj

i�,� �
∈ V

j

i�
 such that 

ej = vi,�vi�,� � . We add a propagation gadget Pj,j+1

i
 between two consecutive copies Vj

i
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Table 1   Glossary of the construction

Symbol/term Definition/action

{a
j

i,�
, �

j

i,�
} Critical pair of the propagation gadget Pj,j+1

i

A
j

i
Set of vertices 

⋃
�∈[t]{a

j

i,�
, �

j

i,�
}

bb
j

i
Bottom brown vertex, �(vj

i,t
, r

j

i
)

bc
j

i
Bottom cyan vertex (smallest index �)

bl
j

i
Neighbor of vj

i,t
 in Pj−1,j

i

Blue vertex One of the four neighbors of Vj

i
 in the propagation gadgets

br
j

i
Neighbor of vj

i,t
 in Pj,j+1

i

Brown vertex Vertices �(vj
i,1
, p

j

i
) and �(vj

i,t
, r

j

i
)

{cj, c
�
j
} Critical pair of the edge gadget G(ej)

Cyan vertex Neighbor of Vj

i
 in the paths to G(ej)

E
j

i
Vertices in the paths from Vj

i
 to G(ej)

e
j

i,�
Alternative labeling of the cyan vertices, neighbor of vj

i,�

F Set of all forced vertices, 
⋃

i∈[k],j∈[m] F
j

i
∪
⋃

j∈[m] Fj

F
j

i
Set of forced vertices attached to neighbors of {�j

i
, �

j

i
, nw

j

i
, se

j

i
}

Fj Set of forced vertices attached to neighbors of gj
f(v) Forced vertex attached to a vertex v
f �(v) True twin of f(v)
G(ej) Edge gadget on {gj, cj, c�j} between Vj

i
 and Vj

i′
 , where ej ∈ E(Vi,Vi� )

mc
j

i
Middle cyan vertex (not top nor bottom)

ne
j

i
North-east gate of Pj,j+1

i

nw
j

i
North-west gate of Pj,j+1

i

ne
j

i
 , swj

i
Resolve the critical pairs of Pj,j+1

i

nw
j

i
 , sej

i
Do not resolve the critical pairs of Pj,j+1

i

�(u, v) Neighbor of u in the path P(u, v)
P List of critical pairs

{p
j

i
, q

j

i
} Pair only resolved by vertices in Vj

i
∪ P(v

j

i,1
, p

j

i
) ∪ {q

j

i
}

�
j

i
Gate of {pj

i
, q

j

i
} , linked by paths to most neighbors of Vj

i

P
j,j+1

i
Propagation gadget between Vj

i
 and Vj+1

i

P(u, v) Path added in the construction expressly between u and v

{r
j

i
, s

j

i
} Pair only resolved by vertices in Vj

i
∪ P(v

j

i,t
, r

j

i
) ∪ {s

j

i
}

�
j

i
Gate of {rj

i
, s

j

i
} , linked by paths to most neighbors of Vj

i

se
j

i
South-east gate of Pj,j+1

i

sw
j

i
South-west gate of Pj,j+1

i

t Size of each Vi

tb
j

i
Top brown vertex, �(vj

i,1
, p

j

i
)

tc
j

i
Top cyan vertex (largest index �)

tl
j

i
Neighbor of vj

i,1
 in Pj−1,j

i

tr
j

i
Neighbor of vj

i,1
 in Pj,j+1

i
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and Vj+1

i
 , where the indices in the superscript are taken modulo m. The role of the 

propagation gadget is to ensure that the choices in each Vj

i
 ( j ∈ [m] ) corresponds to 

the same vertex in Vi.
The intuitive idea of the reduction is the following. We say that a vertex of G′ is 

selected if it is put in the resolving set of G′ , a tentative solution. The propagation 
gadget Pj,j+1

i
 ensures a consistent choice among the m copies V1

i
,… ,Vm

i
 . The edge 

gadget ensures that the selected vertices of G′ correspond to an independent set in 
the original graph G. If both the endpoints of an edge ej are selected, then the pair 
{cj, c

�
j
} is not resolved.

We now detail the construction.

4.1.2 � Selector Gadget

For each i ∈ [k] and j ∈ [m] , we add to G′ a path on t − 1 edges vj
i,1
, v

j

i,2
,… , v

j

i,t
 , and 

denote this set of vertices by Vj

i
 . Each vj

i,�
 corresponds to vi,� ∈ Vi . We call j-th col-

umn the set 
⋃

i∈[k] V
j

i
 , and i-th row, the set 

⋃
j∈[m] V

j

i
 . We set X ∶= {V

j

i
}i∈[k],j∈[m] . By 

definition of k-Multicolored Resolving Set, a solution S has to satisfy that for every 
i ∈ [k], j ∈ [m] , |S ∩ V

j

i
| = 1 . We call legal set a set S of size k� = km that satisfies 

this property. We call consistent set a legal set S which takes the “same” vertex in 
each row, that is, for every i ∈ [k] , for every pair (vj

i,�
, v

j�

i,� �
) ∈ (S ∩ V

j

i
) × (S ∩ V

j�

i
) , 

then � = � �.

4.1.3 � Edge Gadget

For each edge ej = vi,�vi�,� � ∈ E(G) , we add an edge gadget G(ej) in the j-th column 
of G′ . G(ej) consists of a path on three vertices: cjgjc′j . The pair {cj, c�j} is added to the 
list of critical pairs P . We link both vj

i,�
 and vj

i′,� ′
 to gj by a private path1 of length 

t + 2 . We link the at least two and at most four vertices vj
i,�−1

, v
j

i,�+1
, v

j

i�,� �−1
, v

j

i�,� �+1
 

(whenever they exist) to cj by a private path of length t + 2 . This defines at most six 

Table 1   (continued)

Symbol/term Definition/action

Vi Partite set of G

V
j

i
“Copy of Vi ”, stringed by a path, in G′ and G′′

v
j

i,�
Vertex of Vj

i
 representing vi,� ∈ V(G)

Wj Endpoints in Vj

i
∪ V

j

i�
 of paths from Vj

i
∪ V

j

i�
 to G(ej)

X Set containing all the sets Vj

i
 for i ∈ [k] and j ∈ [m]

Xj Neighbors of Wj on the paths to G(ej) (cyan vertices)

1  We use the expression private path to emphasize that the different sources get a pairwise internally 
vertex-disjoint path to the target.
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paths from Vj

i
∪ V

j

i�
 to G(ej) . Let us denote by Wj the at most six endpoints of these 

paths in Vj

i
∪ V

j

i�
 . For each v ∈ Wj , we denote by P(v, j) the path from v to G(ej) . We 

set Ej

i
∶=

⋃
v∈Wj∩V

j

i

P(v, j) and Ej

i�
∶=

⋃
v∈Wj∩V

j

i�
P(v, j) . We denote by Xj the set of the 

at most six neighbors of Wj on the paths to G(ej) . Henceforth we may refer to the ver-
tices in some Xj as the cyan vertices. Individually we denote by ej

i,�
 the cyan vertex 

neighbor of vj
i,�

 in P(vj
i,�
, j) . We observe that for fixed i and j, ej

i,�
 exists for at most 

three values of � . We add an edge between two cyan vertices if their respective 
neighbors in Vj

i
 are also linked by an edge (or equivalently, if they have consecutive 

“indices �”). These extra edges are useless in the k-MRS-instance, but will turn out 
useful in the MD-instance. See Fig. 2 for an illustration of the edge gadget.

The rest of the construction will preserve that for every v ∈ (V
j

i
∪ V

j

i�
)⧵{v

j

i,�
, v

j

i�,� �
} , 

dist(v, c�
j
) = dist(v, cj) + 2 , and for each v ∈ {v

j

i,�
, v

j

i�,� �
} , 

dist(v, cj) = dist(v, gj) + 1 = dist(v, c�
j
) . In other words, the only two vertices of 

V
j

i
∪ V

j

i�
 not resolving the critical pair {cj, c�j} are vj

i,�
 and vj

i′,� ′
 , corresponding to the 

endpoints of ej.

4.1.4 � Propagation Gadget

Between each pair (Vj

i
,V

j+1

i
) , where j + 1 is taken modulo m, we insert an identical 

copy of the propagation gadget, and we denote it by Pj,j+1

i
 . It ensures that if the 

V 1
1 V 2

1 V 3
1 V 4

1 V 5
1 V 6

1

V 1
2 V 2

2 V 3
2 V 4

2 V 5
2 V 6

2

V 1
3 V 2

3 V 3
3 V 4

3 V 5
3 V 6

3

P 1,2
1 P 2,3

1 P 3,4
1 P 4,5

1 P 5,6
1

P 1,2
2 P 2,3

2 P 3,4
2 P 4,5

2 P 5,6
2

P 1,2
3 P 2,3

3 P 3,4
3 P 4,5

3 P 5,6
3

P 6,1
1

P 6,1
2

P 6,1
3

G(e1) G(e2) G(e3) G(e4) G(e5) G(e6)

Fig. 1   The overall picture with k = 3 color classes, t = 5 vertices per color class, m = 6 edges, 
e1 = v1,3v2,4 , e2 = v1,4v2,1 , e3 = v1,5v3,1 , etc. The dashed lines on the left and right symbolize that the con-
struction is cylindrical (Color figure online)
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vertex vj
i,�

 is in a legal resolving set S, then the vertex of S ∩ V
j+1

i
 should be some vj+1

i,� �
 

with � ⩽ � ′ . The cylindricity of the construction and the fact that exactly one vertex 
of Vj

i
 is selected, will therefore impose that the set S is consistent.

P
j,j+1

i,
 comprises four vertices swj

i
 , sej

i
 , nwj

i
 , nej

i
 , called gates, and a set Aj

i
 of 2t ver-

tices aj
i,1
,… , aj

i,t
, �

j

i,1
,… , �

j

i,t
 . We make both aj

i,1
a
j

i,2
… a

j

i,t
 and �j

i,1
�
j

i,2
… �

j

i,t
 a path 

with t − 1 edges. For each � ∈ [t] , we add the pair {aj
i,�
, �

j

i,�
} to the set of critical 

pairs P . Removing the gates disconnects Aj

i
 from the rest of the graph.

We now describe how we link the gates to Vj

i
 , Vj+1

i
 , and Aj

i
 . We link vj

i,1
 (the “top” 

vertex of Vj

i
 ) to swj

i
 and vj

i,t
 (the “bottom” vertex of Vj

i
 ) to nwj

i
 both by a path of length 

2. We also link vj+1
i,1

 to sej
i
 by a path of length 3, and vj+1

i,t
 to nej

i
 by a path of length 2. 

Then we make nwj

i
 adjacent to aj

i,1
 and �j

i,1
 , while we make nej

i
 adjacent to �j

i,1
 only. 

We make sej
i
 adjacent to aj

i,t
 and �j

i,t
 , while we make swj

i
 adjacent to aj

i,t
 only. Finally, 

we add an edge between nej
i
 and nwj

i
 , and between swj

i
 and sej

i
 . See Fig. 3 for an illus-

tration of the propagation gadget Pj,j+1

i
 with t = 5.

Let us motivate the gadget Pj,j+1

i
 . One can observe that the gates nej

i
 and swj

i
 

resolve the critical pairs of the propagation gadget, while the gates nwj

i
 and sej

i
 do 

not. Consider that the vertex added to the resolving set in Vj

i
 is vj

i,�
 . Its shortest paths 

to critical pairs below it (that is, with index 𝛾 ′ > 𝛾 ) go through the gate swj

i
 , whereas 

its shortest paths to critical pairs at its level or above (that is, with index � ′ ⩽ � ) go 
through the gate nwj

i
 . Thus vj

i,�
 only resolves the critical pairs {aj

i,� �
, �i,� � } with 𝛾 ′ > 𝛾 . 

On the contrary, the vertex of the resolving set in Vj+1

i
 only resolves the critical pairs 

{a
j

i,� �
, �

j

i,� �
} at its level or above. This will force that its level is � or below. Hence the 

vertices of the resolving in Vj

i
 and Vj+1

i
 should be such that � ′ ⩾ � . Since there is also 

a propagation gadget between Vm
i

 and V1
i
 , this circular chain of inequalities forces a 

global equality.

4.1.5 � Wrapping Up

We put the pieces together as described in the previous subsections. At this point, 
it is convenient to give names to the neighbors of Vj

i
 in the propagation gadgets 

P
j−1,j

i
 and Pj,j+1

i
 . We may refer to them as blue vertices (as they appear in Fig. 4). 

We denote by tlj
i
 the neighbor of vj

i,1
 in Pj−1,j

i
 , trj

i
 , the neighbor of vj

i,1
 in Pj,j+1

i
 , blj

i
 , the 

neighbor of vj
i,t

 in Pj−1,j

i
 , and brj

i
 , the neighbor of vj

i,t
 in Pj,j+1

i
 . We add the following 

edges and paths.
For any pair i,  j such that ej has an endpoint in Vi , the vertices tlj

i
, tr

j

i
, bl

j

i
, br

j

i
 are 

linked to gj by a private path of length the distance of their unique neighbor in Vj

i
 

to cj . We add an edge between sej
i
 and sej+1

i
 , and between nwj

i
 and nwj+1

i
 (where 

j + 1 is modulo m). Finally, for every ej ∈ E(Vi,Vi� ) , we add four paths between 
se

j

i
, se

j

i′
, nw

j

i
, nw

j

i′
 and gj ∈ G(ej) . More precisely, for each i�� ∈ {i, i�} , we add a 

path from gj to sej
i′′

 of length dist(gj, sw
j

i��
) − 4 , and a path from gj to nwj

i′′
 of length 

dist(gj, nw
j

i��
) − 4 . These distances are taken in the graph before we introduced the 

new paths, and one can observe that the length of these paths is at least t. This fin-
ishes the construction.
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V 4
1

V 4
2

V 4
3

v41,1
v41,2
v41,3
v41,4
v41,5

e41,4

e41,5

g4

c4

c4

G(e4)

6

6

6

6

6

Fig. 2   The edge gadget G(e4) with e4 = v1,5v3,3 . Weighted edges are short-hands for subdivisions of the 
corresponding length. The edges between the cyan vertices will not be useful for the k-MRS-instance, 
but will later simplify the construction of the MD-instance (Color figure online)

vji,1

vji,2

vji,3

vji,4

vji,5

vj+1
i,1

vj+1
i,2

vj+1
i,3

vj+1
i,4

vj+1
i,5

V j
i V j+1

i

swj
i seji

nwj
i neji

6 | 7

7 | 8

6 | 7

5 | 6

4 | 5

6 | 6

7 | 7

7 | 7

6 | 6

5 | 5

aji,1 αj
i,1

aji,2 αj
i,2

aji,3 αj
i,3

aji,4 αj
i,4

aji,5 αj
i,5

2

32

2

Fig. 3   The propagation gadget Pj,j+1

i
 . The critical pairs {aj

i,�
, �

j

i,�
} are surrounded by thin dashed lines. 

The blue (resp. red) integer on a vertex of Aj

i
 is its distance to the blue (resp. red) vertex in Vj

i
 (resp. Vj+1

i
 ). 

Note that the blue vertex distinguishes the critical pairs below it, while the red vertex distinguishes criti-
cal pairs at its level or above (Color figure online)
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We recall that, by a slight abuse of language, a resolving set in the context of k
-Multicolored Resolving Set is a set which resolves all the critical pairs of P . In 
particular, it is not necessarily a resolving set in the sense of Metric Dimension. 
With that terminology, a solution for k-Multicolored Resolving Set is a legal 
resolving set.

4.2 � Correctness of the Reduction

We now check that the reduction is correct. We start with the following technical 
lemma. If a set X contains a pair that no vertex of N(X) (that is N[X]⧵X ) resolves, 
then no vertex outside X can distinguish the pair.

Lemma 4.1  Let X be a subset of vertices, and a, b ∈ X be two distinct vertices. 
If for every vertex v ∈ N(X) , dist(v, a) = dist(v, b) , then for every vertex v ∉ X , 
dist(v, a) = dist(v, b).

Proof  Let v be a vertex outside of X. We further assume that v is not in 
N(X), otherwise we can already conclude that it does not distinguish {a, b} . 
A shortest path from v to a, has to go through N(X). Let wa be the first ver-
tex of N(X) met in this shortest path from v to a. Similarly, let wb be the 
first vertex of N(X) met in a shortest path from v to b. Since wa,wb ∈ N(X) , 
they satisfy dist(wa, a) = dist(wa, b) and dist(wb, a) = dist(wb, b) . Then, 
dist(v, a) ⩽ dist(v,wb) + dist(wb, a) = dist(v,wb) + dist(wb, b) = dist(v, b) , and 
dist(v, b) ⩽ dist(v,wa) + dist(wa, b) = dist(v,wa) + dist(wa, a) = dist(v, a) . Thus 
dist(v, a) = dist(v, b) . 	�  ◻

Fig. 4   The forcet set gadget for 
V
j

i
 . The cyan vertices are the 

at most three neighbors of Vj

i
 

in the potential paths to G(ej) . 
The lengths of the paths from 
the neighbors of Vj

i
 to �j

i
 and �j

i
 

is defined in Sect. 5.1.1 (Color 
figure online)

V j
i

4

4
pji πj

i qji

rji ρji sji

5

9
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9
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We use the previous lemma to show that every vertex of a Vj

i
 only resolves critical 

pairs in gadgets it is attached to. This will be useful in the two subsequent lemmas.

Lemma 4.2  For any i ∈ [k] , j ∈ [m] , and v ∈ V
j

i
 , v does not resolve any critical 

pair outside of Pj−1,j

i
 , Pj,j+1

i
 (where indices in the superscript are taken modulo m), 

and {cj, c�j} . Furthermore, if ej ∈ E(G) has no endpoint in Vi ⊆ V(G) , then v does not 
resolve {cj, c�j}.

Proof  We first show that v ∈ V
j

i
 does not resolve any critical pair in propagation 

gadgets that are not Pj−1,j

i
 and Pj,j+1

i
 . Let {aj

�

i�,�
, �

j�

i�,�
} be a critical pair in a propagation 

gadget different from Pj−1,j

i
 and Pj,j+1

i
 . Let X be the connected component containing 

P
j�,j�+1

i�
 of G� − ({nw

j�−1

i�
, se

j�−1

i�
, nw

j�+1

i�
, se

j�+1

i�
} ∪ Ce) , where Ce comprises {c�

j
, g�

j
} if ej′ 

has an endpoint in Vi′ and {cj�+1, gj�+1} if ej�+1 has an endpoint in Vi′ . Thus Ce has size 
0, 2, or 4. One can observe that N(X) = {nw

j�−1

i�
, se

j�−1

i�
, nw

j�+1

i�
, se

j�+1

i�
} ∪ Ce , that 

V
j�

i�
∪ V

j�+1

i�
⊆ X , and that no “other Vj

i
 ” intersects X. In particular Vj

i
 is fully contained 

in G − X . We now check that no vertex of N(X) resolves the pair {aj
�

i�,�
, �

j�

i�,�
} (which 

is inside X).
For each u ∈ {nw

j�−1

i�
, nw

j�+1

i�
} , it holds that dist(u, aj

�

i�,�
) = � + 1 = dist(u, a

j�

i�,�
) (the 

shortest paths go through nwj′

i′
 ), while for each u ∈ {se

j�−1

i�
, se

j�+1

i�
} , it holds that 

dist(u, a
j�

i�,�
) = t − � + 2 = dist(u, a

j�

i�,�
) (the shortest paths go through sej

′

i′
 ). If they are 

part of Ce , gj′ and cj′ also do not resolve {aj
�

i�,�
, �

j�

i�,�
} , the shortest paths going through 

the gates nwj′

i′
 or sej

′

i′
 , and respectively gj and then the gates nwj′

i′
 or sej

′

i′
 . For the same 

reason, gj�+1 and cj�+1 do not resolve {aj
�

i�,�
, �

j�

i�,�
} . Then we conclude by Lemma 4.1 

that no vertex of Vj

i
 (in particular v) resolves {aj

�

i�,�
, �

j�

i�,�
} , or any critical pair in Pj′

i′
.

Let us now show that the pair {cj, c�j} is not resolved by any vertex of 
∪X⧵(V

j

i�
∪ V

j

i��
) such that ej ∈ E(Vi� ,Vi�� ) . Let 

Y ∶= {tl
j

i�
, tr

j

i�
, bl

j

i�
, br

j

i�
, tl

j

i��
, tr

j

i��
, bl

j

i��
, br

j

i��
, nw

j

i�
, se

j

i�
, nw

j

i��
, se

j

i��
} , and X be the connected 

component containing gj in G� − Y  . Again one can observe that N(X) = Y  , X con-
tains Vj

i�
∪ V

j

i��
 but does not intersect any “other Vj

i
 ”. We therefore show that no vertex 

of Y resolves {cj, c�j} , and conclude with Lemma 4.1. All the vertices of Y have a pri-
vate path to gj whose length is such that they have a shortest path to cj going through 
gj . Therefore ∀u ∈ Y  , dist(u, cj) = dist(u, gj) + 1 = dist(u, c�

j
) . 	�  ◻

The two following lemmas show the equivalences relative to the expected use 
of the edge and propagation gadgets. They will be useful in Sects. 4.2.1 and 4.2.2.

Lemma 4.3  A legal set S resolves the critical pair {cj, c�j} with ej = vi,�vi�,� � if and 
only if the vertex vj

i,�i
 in Vj

i
∩ S and the vertex vj

i′,�i′
 in Vj

i�
∩ S satisfy (� , � �) ≠ (�i, �i� ).

Proof  By Lemma 4.2, no vertex of S⧵{vj
i,�i
, v

j

i�,�i�
} resolves {cj, c�j} . By construction 

of G′ , vj
i,�

 (resp. vj
i′,� ′

 ) is the only vertex of Vj

i
 (resp. Vj

i′
 ) that does not resolve {cj, c�j} . 

Indeed the shortest paths of vj
i,� ′′

 , for � �� ⩾ � + 1 , to {cj, c�j} go through vj
i,�+1

 which 
resolves the pair. Note that a shortest path between Vj

i
 and Vj

i′
 has length at least 
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2t + 4 , so a shortest path from vj
i,� ′′

 to {cj, c�j} cannot go through Vj

i′
 . Similarly the 

shortest paths of vj
i,� ′′

 , for � �� ⩽ � − 1 , to {cj, c�j} go through vj
i,�−1

 which also resolves 
the pair. Thus only vj

i,�
 (resp. vj

i′,� ′
 ), whose shortest paths to {cj, c�j} go via gj , does not 

resolve this pair among Vj

i
 (resp. Vj

i′
 ). Hence, the critical pair {cj, c�j} is not resolved 

by S if and only if vj
i,�i

= v
j

i,�
 and vj

i�,�i�
= v

j

i�,� �
 . 	�  ◻

Lemma 4.4  A legal set S resolves all the critical pairs of Pj,j+1

i
 if and only if the ver-

tex vj
i,�

 in Vj

i
∩ S and the vertex vj+1

i,� �
 in Vj+1

i
∩ S satisfy � ⩽ � ′.

Proof  By Lemma 4.2, no vertex of S⧵{vj
i,�
, v

j+1

i,� �
} resolves a critical pair of Pj,j+1

i
 . Let 

us show that the critical pairs that vj
i,�

 resolves in Aj

i
 are exactly the pairs {aj

i,z
, �

j

i,z
} 

with z > 𝛾 . For any z ∈ [t] , it holds that 
dist(v

j

i,�
, a

j

i,z
) = min(t + 2 + z − � , t + 2 + � − z) = t + 2 +min(z − � , � − z) , and 

dist(v
j

i,�
, �

j

i,z
) = min(t + 2 + z − � , t + 3 + � − z) = t + 2 +min(z − � , � − z + 1) . So 

if z > 𝛾 , dist(vj
i,�
, a

j

i,z
) = t + 2 + � − z ≠ t + 2 + � − z + 1 = dist(v

j

i,�
, �

j

i,z
) . Whereas if 

z ⩽ � , dist(vj
i,�
, a

j

i,z
) = t + 2 + z − � = dist(v

j

i,�
, �

j

i,z
).

Similarly, we show that the critical pairs that vj+1
i,� �

 resolves in Aj

i
 are exactly the 

pairs {a
j

i,z
, �

j

i,z
} with z ⩽ � ′ . For every z ∈ [t] , it holds that 

dist(v
j+1

i,� �
, a

j

i,z
) = min(t + 3 + z − � �, t + 3 + � � − z) = t + 3 +min(z − � �, � � − z) , and 

dist(v
j+1

i,� �
, �

j

i,z
) = min(t + 2 + z − � �, t + 3 + � � − z) = t + 2 +min(z − � �, � � − z + 1)  . 

So if z ⩽ � ′ , dist(v
j+1

i,� �
, a

j

i,z
) = t + 3 + z − � � ≠ t + 2 + z − � � = dist(v

j+1

i,� �
, �

j

i,z
) . 

Whereas if z > 𝛾 ′ , dist(vj+1
i,� �

, a
j

i,z
) = t + 3 + � � − z = dist(v

j+1

i,� �
, �

j

i,z
) . This implies that 

all the critical pairs of Aj

i
 are resolved by S if and only if � ⩽ � ′ . 	 � ◻

We can now prove the correctness of the reduction. The construction can be com-
puted in polynomial time in |V(G)|, and G′ itself has size bounded by a polynomial 
in |V(G)|. We postpone checking that the pathwidth is bounded by O(k) to the end of 
the second step, where we produce an instance of MD whose graph G′′ admits G′ as 
an induced subgraph.

4.2.1 � k‑Multicolored Independent Set in G ⇒ Legal Resolving Set in G′.

Let {v1,�1 ,… , vk,�k} be a k-multicolored independent set in G. We claim that 
S ∶=

⋃
j∈[m]{v

j

1,�1
,… , vj

k,�k
} is a legal resolving set in G′ (of size km). The set S is 

legal by construction. Since for every i ∈ [k] , and j ∈ [m] , vj
i,�i

 and vj+1
i,�i

 are in S ( j + 1 
is modulo m), all the critical pairs in the propagation gadgets are resolved by S, by 
Lemma  4.4. Since {v1,�1 ,… , vk,�k} is an independent set in G, there is no 
ej = vi,�vi�,� � ∈ E(G) , such that (� , � �) = (�i, �i� ) . Thus every critical pair {cj, c�j} is 
resolved by S, by Lemma 4.3.
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4.2.2 � Legal Resolving Set in G′
⇒ k‑Multicolored Independent Set in G.

Assume that there is a legal resolving set S in G′ . For every i ∈ [k] , for every j ∈ [m] , 
the vertex vj

i,�(i,j)
 in Vj

i
∩ S and the vertex vj+1

i,�(i,j+1)
 in Vj+1

i
∩ S ( j + 1 is modulo m) are 

such that �(i, j) ⩽ �(i, j + 1) , by Lemma  4.4. Thus 
�(i, 1) ⩽ �(i, 2) ⩽ … ⩽ �(i,m − 1) ⩽ �(i,m) ⩽ �(i, 1) , and 
�i ∶= �(i, 1) = �(i, 2) = … = �(i,m − 1) = �(i,m) . We claim that {v1,�1 ,… , vk,�k} is a 
k-multicolored independent set in G. Indeed, there cannot be an edge 
ej = vi,�i vi�,�i� ∈ E(G) , since otherwise the critical pair {cj, c�j} is not resolved, by 
Lemma 4.3.

5 � Parameterized Hardness of Metric Dimension/tw

In this section, we produce in polynomial time an instance (G��, k��) of Metric 
Dimension equivalent to (G�,X, km,P) of k-Multicolored Resolving Set. The graph 
G′′ has also pathwidth O(k). Now, an instance is just a graph and an integer. There 
is no longer X  and P to constrain and respectively loosen the “resolving set” at our 
convenience. This creates two issues: (1) the vertices outside the former set X  can 
now be put in the resolving set, potentially yielding undesired solutions2 and (2) our 
candidate solution (when there is a k-multicolored independent set in G) may not 
distinguish all the vertices.

5.1 � Construction

We settle both issues by attaching new gadgets to G′ . Eventually the new graph G′′ 
will contain G′ as an induced subgraph. To settle the issue (1), we design a forced set 
gadget. A forced set gadget attached to Vj

i
 contains two pairs of vertices which are 

only resolved by vertices of Vj

i
 . Thus the gadget simulates the action of X .

There are a few pairs which are not resolved by a solution of k-Multicolored 
Resolving Set. To make sure that all pairs are resolved, we add vertices which need 
be selected in the resolving set. Technically we could use the previous gadget on a 
singleton set. But we can make it simpler: we just attach two pendant neighbors, 
that we then make adjacent, to some chosen vertices. A pair of pendant neighbors 
are true twins in the whole graph. So we know that at least one of these two vertices 
have to be in the resolving set. Hence we call that the forced vertex gadget, and one 
of the true twins, a forced vertex. It is important that these forced vertices do not 
resolve any pair of P . So we can only add pendant twins to vertices themselves not 
resolving any pair of P.

2  Also, it is now possible to put two or more vertices of the same Vj

i
 in the resolving set S.



2623

1 3

Algorithmica (2021) 83:2606–2633	

5.1.1 � Forced Set Gadget

To deal with the issue (1), we introduce two new pairs of vertices for each Vj

i
 . The 

intention is that the only vertices resolving both these pairs simultaneously are pre-
cisely the vertices of Vj

i
 . For any i ∈ [k] and j ∈ [m] , we add to G′ two pairs of verti-

ces {pj
i
, q

j

i
} and {rj

i
, s

j

i
} , and two gates �j

i
 and �j

i
 . Vertex �j

i
 is adjacent to pj

i
 and qj

i
 , and 

vertex �j
i
 is adjacent to rj

i
 and sj

i
.

We link vj
i,1

 to pj
i
 , and vj

i,t
 to rj

i
 , each by a path of length t. It introduces two 

new neighbors of vj
i,1

 and vj
i,t

 (the brown vertices in Fig. 4). We denote them by 
tb

j

i
 and bbj

i
 , respectively. The blue and brown vertices are linked to �j

i
 and �j

i
 in 

the following way. We link tlj
i
 and trj

i
 to �j

i
 by a private path of length t, and to �j

i
 

by a private path of length 2t − 1 . We link blj
i
 and brj

i
 to �j

i
 by a private path of 

length 2t − 1 , and to �j
i
 by a private path of length t. (Let us clarify that the 

names of the blue vertices blj
i
 and brj

i
 are for “bottom-left” and “bottom-right”, 

and not for “blue” and “brown”.) We link tbj
i
 (neighbor of vj

i,1
 ) to �j

i
 by a private 

path of length 2t − 1 . We link bbj
i
 (neighbor of vj

i,t
 ) to �j

i
 by a private path of 

length 2t − 1 . Note that the general rule to set the path length is to match the dis-
tance between the neighbor in Vj

i
 and pj

i
 (resp. rj

i
 ). With that in mind we link, if it 

exists, the top cyan vertex tcj
i
 (the one with smallest index � ) neighboring Vj

i
 to �j

i
 

with a path of length dist(vj
i,�
, p

j

i
) = t + � − 1 where vj

i,�
 is the unique vertex in 

N(tc
j

i
) ∩ V

j

i
 . Observe that with the notations of the previous section tcj

i
= e

j

i,�
 . We 

also link, if it exists, the bottom cyan vertex bcj
i
 (the one with largest index � ) to 

�
j

i
 with a path of length dist(v, rj

i
) where v is again the unique neighbor of bcj

i
 in 

V
j

i
.

It can be observed that we only have two paths (and not all six) from the at 
most three cyan vertices to the gates �j

i
 and �j

i
 . This is where the edges between 

the cyan vertices will become relevant. See Fig. 4 for an illustration of the forced 
vertex gadget.

5.1.2 � Forced Vertex Gadget

We now deal with the issue (2). By we add (or attach) a forced vertex to an 
already present vertex v, we mean that we add two adjacent neighbors to v, and 
that these two vertices remain of degree 2 in the whole graph G′′ . Hence one of 
the two neighbors will have to be selected in the resolving set since they are true 
twins. We call forced vertex one of these two vertices (picking arbitrarily).

For every i ∈ [k] and j ∈ [m] , we add a forced vertex to the gates nwj

i
 and sej

i
 of 

P
j,j+1

i
 . We also add a forced vertex to each vertex in N({�j

i
, �

j

i
})⧵{p

j

i
, q

j

i
, r

j

i
, s

j

i
} . This 

represents a total of 12 vertices (6 neighbors of �j

i
 and 6 neighbors of �j

i
 ). For 

every j ∈ [m] , we attach a forced vertex to each vertex in N(gj)⧵{cj, c�j} . This con-
stitutes 14 neighbors (hence 14 new forced vertices). Therefore we set 
k�� ∶= km + 12 km + 2 km + 14m = 15 km + 14m.
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5.1.3 � Finishing Strokes and Useful Notations

We use the convention that P(u, v) denotes the path from u to v which was spe-
cifically built from u to v. In other words, for P(u, v) to make sense, there should 
be a point in the construction where we say that we add a (private) path between 
u and v. For the sake of legibility, P(u, v) may denote either the set of vertices 
or the induced subgraph. We also denote by �(u, v) the neighbor of u in the path 
P(u, v). Observe that P(u, v) is a symmetric notation but not �(u, v).

We add a path of length dist(�(�j

i
, tr

j

i
), sw

j

i
) = t between �(�j

i
, tr

j

i
) and sej

i
 , and a 

path of length dist(�(�j

i
, bl

j

i
), ne

j−1

i
) = 2t − 1 between �(�j

i
, bl

j

i
) and nwj−1

i
 . Similarly, 

we add a path of length dist(�(�j
i
 , trj

i
), sw

j

i
) = 2t − 1 between �(�j

i
, tr

j

i
) and sej

i
 , and a 

path of length dist(�(�j
i
, bl

j

i
), ne

j−1

i
) = t between �(�j

i
, bl

j

i
) and nwj−1

i
 . We added these 

four paths so that no forced vertex resolves any critical pair in the propagation 
gadgets Pj−1,j

i
 and Pj,j+1

i
.

Finally we add an edge between �(gj, nw
j

i
) and �(cj, bc

j

i
) whenever Vj

i
 have exactly 

three cyan vertices. We do that to resolve the pair {�(cj, tc
j

i
), �(cj, bc

j

i
)} , and more 

generally every pair {x, y} ∈ P(cj, tc
j

i
) × P(cj, bc

j

i
) such that dist(cj, x) = dist(cj, y) . 

This finishes the construction of the instance (G��, k�� ∶= 15 km + 14m) of Metric 
Dimension (Fig. 5).

5.2 � Correctness of the Reduction

The two next lemmas will be crucial in Sect. 5.2.1. The first lemma shows how the 
forcing set gadget simulates the action of former set X .

Lemma 5.1  For every i ∈ [k] and j ∈ [m],

•	 ∀v ∈ V
j

i
 , v resolves both pairs {pj

i
, q

j

i
} and {rj

i
, s

j

i
},

•	 ∀v ∉ V
j

i
 , v resolves at most one pair of {pj

i
, q

j

i
} and {rj

i
, s

j

i
},

•	 ∀v ∉ V
j

i
∪ P(v

j

i,1
, p

j

i
) ∪ P(v

j

i,t
, r

j

i
) ∪ {q

j

i
, s

j

i
} , v does not resolve {pj

i
, q

j

i
} nor {rj

i
, s

j

i
}.

Proof  Let Y ∶= {tl
j

i
, tr

j

i
, bl

j

i
, br

j

i
} ∪ (Xj ∩ N(V

j

i
)) ∪ (N({�

j

i
, �

j

i
})⧵{p

j

i
, q

j

i
, r

j

i
, s

j

i
}) , and 

recall that Xj ∩ N(V
j

i
) is the set of cyan vertices neighbors of Vj

i
 (if they exist). 

Let us assume that these cyan vertices exist (otherwise the proof is just sim-
pler). In particular, there are at least two cyan neighbors tcj

i
, bc

j

i
∈ Xj ∩ N(V

j

i
) . 

Let X be the connected component of G − Y  containing {�j

i
, �

j

i
} . For every vertex 

u ∈ {tl
j

i
, tr

j

i
, bl

j

i
, br

j

i
, tc

j

i
, bc

j

i
} , by the way we chose the length of P(u,�j

i
) (resp. P(u, �j

i
) ), 

there is a shortest path from u to pj
i
 (resp. rj

i
 ) that goes through �j

i
 (resp. �j

i
 ). Thus 

dist(u, p
j

i
) = dist(u,�

j

i
) + 1 = dist(u, q

j

i
) and dist(u, rj

i
) = dist(u, �

j

i
) + 1 = dist(u, s

j

i
).

Let mc
j

i
 be the middle cyan vertex if it exists (the one which is not the top nor 

the bottom one). There is shortest a path from mc
j

i
 to pj

i
 (resp. rj

i
 ) going via tcj

i
 (resp. 

bc
j

i
 ) and then �j

i
 (resp. �j

i
 ). This is where the edges mc

j

i
tc

j

i
 and mc

j

i
bc

j

i
 are useful. 

Hence mc
j

i
 does not resolve {pj

i
, q

j

i
} nor {rj

i
, s

j

i
} , either. It is direct that no vertex of 

N({�
j

i
, �

j

i
})⧵{p

j

i
, q

j

i
, r

j

i
, s

j

i
} resolves {pj

i
, q

j

i
} nor {rj

i
, s

j

i
} . Thus no vertex of Y resolves 
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any of {pj
i
, q

j

i
} and {rj

i
, s

j

i
} . Therefore by Lemma 4.1, no vertex outside X resolves any 

of {pj
i
, q

j

i
} and {rj

i
, s

j

i
}.

We observe that X = V
j

i
∪ P(v

j

i,1
, p

j

i
) ∪ P(v

j

i,t
, r

j

i
) ∪ {�

j

i
, q

j

i
, �

j

i
, s

j

i
} . Because of the 

path from the top brown vertex to �j
i
 , vertices of P(vj

i,1
, p

j

i
)⧵{v

j

i,1
} ∪ {q

j

i
} , which do 

resolve {pj
i
, q

j

i
} , do not resolve {rj

i
, s

j

i
} . Similarly because of the path from the bot-

tom brown vertex to �j

i
 , vertices of P(vj

i,t
, r

j

i
)⧵{v

j

i,t
} ∪ {s

j

i
} , which do resolve {rj

i
, s

j

i
} , 

do not resolve {pj
i
, q

j

i
} . Finally for every u ∈ V

j

i
 , dist(u, qj

i
) = dist(u, p

j

i
) + 2 and 

dist(u, r
j

i
) = dist(u, s

j

i
) + 2 . Therefore vertices of Vj

i
 are the only ones resolving both 

{p
j

i
, q

j

i
} and {rj

i
, s

j

i
} , while no vertex of G − X resolves any of these pairs. 	�  ◻

We denote by f(v) the forced vertex attached to a vertex v. For Sect. 5.2.1, we also 
need the following lemma, which states that the forced vertices do not resolve criti-
cal pairs.

Lemma 5.2  No forced vertex resolves a pair of P.

Proof  We first show that no critical pair in some P
j,j+1

i
 is resolved by a 

forced vertex. We use a similar plan as for the proof of Lemma  4.2. Let 
Y ∶= {nw

j−1

i
, se

j−1

i
, nw

j+1

i
, se

j+1

i
} ∪ Ce , where Ce comprises {cj, gj} if ej has an end-

point in Vi and {cj+1, gj+1} if ej+1 has an endpoint in Vi . Let X be the connected 

V j
i

G(ej)

gj

cjcj

6

6

6

swj
i seji

nwj
i neji

swj−1
i sej−1

i

nwj−1
i nej−1

i

2

6

pji πj
i qji

rji ρji sji

8

6

Fig. 5   The different gadgets attached to Vj

i
 (recall that G(ej) is only optionally linked to Vj

i
 ). Gray edges 

are the edges in the propagation gadgets already depicted in Fig. 3. Black vertices are forced vertices. For 
the sake of clarity, we did not represent the paths already in the k-MRS-instance from the blue vertices 
to gj , and the full forced set gadget of Fig. 4 (it is only symbolized with the dash-dotted edges). A forced 
vertex is added to each neighbor of the red vertices, except pj

i
, q

j

i
, r

j

i
, s

j

i
, cj, c

′
j
 . Finally we will add four 

more paths and potentially two edges (see the finishing touches of Sect. 5.1.3) (Color figure online)
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component of G�� − Y  containing Pj,j+1

i
 . Note that the distances between the verti-

ces of Y and the critical pairs in Pj,j+1

i
 are the same between G′ and G′′ . Hence as 

we showed in Lemma 4.2, no vertex of Y resolves a critical pair in Pj,j+1

i
 . Thus by 

Lemma 4.1 no vertex outside X resolves a critical pair in Pj,j+1

i
.

We now check that no forced vertex in X resolves a critical pair in Pj,j+1

i
 . We show 

that every forced vertex in X has a shortest path to {nwj

i
, ne

j

i
} ending in nwj

i
 , and a 

shortest path to {swj

i
, se

j

i
} ending in sej

i
 . It is clear for f (nwj

i
) and for f (sej

i
) , as well 

as for all the forced vertices attached to neighbors of gj (in case ej has an endpoint 
in Vi ). Indeed recall that the length of P(gj, nw

j

i
) (resp. P(gj, se

j

i
) ) is four less than the 

distance to nwj

i
 (resp. swj

i
 ) ignoring the path P(gj, nw

j

i
) (resp. P(gj, se

j

i
) ). So the short-

est paths from the latter forced vertices go to gj and then to nwj

i
 (resp. sej

i
 ). Similarly 

in case ej+1 has an endpoint in Vi , the shortest paths from the forced vertices attached 
to the neighbors of cj+1 to {nwj

i
, ne

j

i
} (resp. {swj

i
, se

j

i
} ) go to gj+1 , then to nwj+1

i
 and nwj

i
 

(resp. then to sej+1
i

 and sej
i
).

Note that all the forced vertices attached to neighbors of �j

i
 and �j

i
 (resp. �j+1

i
 and 

�
j+1

i
 ) have a shortest path to {nwj

i
, ne

j

i
} ending in nwj

i
 (resp. to {swj

i
, se

j

i
} ending in sej

i
 ). 

Finally due to the paths P(�(�j

i
, tr

j

i
), se

j

i
) and P(�(�j

i
, tr

j

i
), se

j

i
) , all the forced vertices 

attached to neighbors of �j

i
 and �j

i
 have a shortest path to {swj

i
, se

j

i
} ending in sej

i
 . And 

due to the paths P(�(�j+1

i
, bl

j+1

i
), nw

j

i
) and P(�(�j+1

i
, bl

j+1

i
), nw

j

i
) , all the forced verti-

ces attached to neighbors of �j+1

i
 and �j+1

i
 have a shortest path to {nwj

i
, ne

j

i
} ending in 

nw
j

i
.
We now show that no critical pair {cj, c�j} is resolved by a forced vertex. We set 

Y � ∶= {tl
j

i
, tr

j

i
, bl

j

i
, br

j

i
 , tl

j

i�
, tr

j

i�
, bl

j

i�
, br

j

i�
, nw

j

i
, se

j

i
, nw

j

i�
, se

j

i�
,�

j

i
, �

j

i
,�

j

i�
, �

j

i�
} , with 

ej ∈ E(Vi,Vi� ) , and X′ be the connected component of G�� − Y � containing gj . We 
showed in Lemma 4.2, and it remains true in G′′ , that no vertex of Y �⧵{�

j

i
, �

j

i
,�

j

i�
, �

j

i�
} 

resolves {cj, c�j} . We observe that �j

i
 and �j

i
 have shortest paths to cj going through gj 

(via a vertex of {tlj
i
, tr

j

i
, bl

j

i
, br

j

i
} ). Similarly �j

i′
 and �j

i′
 have shortest paths to cj going 

through gj . Therefore no vertex of {�j

i
, �

j

i
,�

j

i�
, �

j

i�
} resolves the pair {cj, c�j} . Hence by 

Lemma 4.1, no vertex outside X′ resolves {cj, c�j} . The only forced vertices in X′ are 
attached to neighbors of gj , thus they do not resolve {cj, c�j} . 	�  ◻

5.2.1 � MD‑Instance has a Solution ⇒ k‑MRS‑Instance has a Solution

Let S be a resolving set for the Metric Dimension-instance. We show that 
S� ∶= S ∩

⋃
i∈[k],j∈[m] V

j

i
 is a solution for k-Multicolored Resolving Set. The 

set S⧵S′ is made of 14 km + 14 m forced vertices, none of which is in some 
V
j

i
∪ P(v

j

i,1
, p

j

i
) ∪ {q

j

i
} ∪ P(v

j

i,t
, r

j

i
) ∪ {s

j

i
} . Thus by Lemma  5.1, S⧵S′ does not resolve 

any pair {pj
i
, q

j

i
} or {rj

i
, s

j

i
} . Now S′ is a set of k�� − (14 km + 14m) = km vertices 

resolving all the 2 km pairs {pj
i
, q

j

i
} and {rj

i
, s

j

i
} . Again by Lemma 5.1, this is only pos-

sible if |S� ∩ V
j

i
| = 1 . Thus S′ is a legal set of size k� = km . Let us now check that S′ 

resolves every pair of P in the graph G′.
By Lemma  5.2, S⧵S′ does not resolve any pair of P in the graph G′′ . Thus S′ 

resolves all the pairs of P in G′′ . Since the distances between Vj

i
 and the critical pairs 
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in the edge and propagation gadgets Vj

i
 is attached to are the same in G′ and in G′′ , 

S′ also resolves every pair of P in G′ . Thus S′ is a solution for the k-MRS-instance.

5.2.2 � k‑MRS‑Instance has a Solution ⇒ MD‑Instance has a Solution

For every i ∈ [k] , j ∈ [m] , let

Let S be a solution for k-Multicolored Resolving Set. Thus |S| = km . Let 
F ∶=

⋃
i∈[k],j∈[m] F

j

i
∪
⋃

j∈[m] Fj . We show that S� ∶= S ∪ F is a solution of Metric 
Dimension. First we observe that |S�| = km + 14 km + 14m = k�� . Since the dis-
tances between the sets Vj

i
 and the critical pairs (of P ) are the same in G′ and in G′′ , 

the pairs of P are resolved by S. In what follows, we show that F resolves all the 
other pairs. For every i ∈ [k] , j ∈ [m] , we define the subset of vertices:

Informally Πj

i
 ( Rj

i
 , Gj , respectively) consists of the vertices on the paths incident to �j

i
 

( �j
i
 , gj , respectively). Our objective is the following result.

Lemma 5.3  Every vertex in G′′ is distinguished by S′.

We start with the forced vertices and their true twin. We denote by f �(v) the 
true twin of the forced vertex f(v).

Lemma 5.4  All the vertices f(v) and f �(v) are distinguished by F.

Proof  Any vertex f(v) is distinguished by being the only vertex at distance 0 of itself 
f (v) ∈ F . Since f(v) has only two neighbors f �(v) and v, it also resolves every pair 
{f �(v),w} where w is not v. The pair {f �(v), v} is resolved by any vertex f ∈ F⧵{f (v)} . 
Indeed dist(f , f �(v)) = dist(f , v) + 1 . Thus f �(v) is distinguished. 	�  ◻

In general, to show that all the vertices in a set X are distinguished, we pro-
ceed in two steps. First we show that every internal pair of X is resolved. Then, 
we prove that every pair of X × X is also resolved. Let us recall that X is the 

F
j

i
∶=

⋃

u∈{nw
j

i
,se

j

i
}∪N({�

j

i
,�

j

i
})⧵{p

j

i
,q

j

i
,r
j

i
,s
j

i
}

{f (u)}, and

Fj ∶=
⋃

u∈N(gj)⧵{cj,c
�
j
}

{f (u)}.

Π
j

i
∶=

⋃

u∈{tr
j

i
,tl

j

i
,br

j

i
,bl

j

i
,bb

j

i
,tc

j

i
}

P(�
j

i
, u) ∪ P(v

j

i,1
, p

j

i
) ∪ {q

j

i
},

R
j

i
∶=

⋃

u∈{tr
j

i
,tl

j

i
,br

j

i
,bl

j

i
,tb

j

i
,bc

j

i
}

P(�
j

i
, u) ∪ P(v

j

i,t
, r

j

i
) ∪ {s

j

i
}, and

Gj ∶=
⋃

u∈{tr
j

i
,tl

j

i
,br

j

i
,bl

j

i
,tl

j

i�
,tr

j

i�
,bl

j

i�
,br

j

i�
,nw

j

i
,se

j

i
,nw

j

i�
,se

j

i�
}

P(gj, u) ∪ E
j

i
∪ E

j

i�
∪ {c�

j
}.
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complement of x, here V(G��)⧵X . For instance, the two following lemmas show 
that every vertex of Πj

i
 is distinguished by S′.

Lemma 5.5  Every pair of distinct vertices x, y ∈ Π
j

i
 is resolved by S′.

Proof  Let Uj

i
 be the set {tlj

i
, tr

j

i
, bl

j

i
, br

j

i
, tc

j

i
, bb

j

i
} . We first consider two vertices 

x ≠ y ∈ P(�
j

i
, u) , for some u ∈ U

j

i
 . As distG�� (�

j

i
, u) is equal to the length of P(�j

i
, u) , 

it holds that distG�� (�
j

i
, x) = dist

P(�
j

i
,u)
(�

j

i
, x) ≠ dist

P(�
j

i
,u)
(�

j

i
, y) = distG�� (�

j

i
, y) . Without 

loss of generality, we assume that dist(𝜋j

i
, x) < dist(𝜋

j

i
, y) . If x ≠ �

j

i
 , then x and y have 

distinct distances to �(�j

i
, u) . Hence dist(f (�(�j

i
, u)), x) ≠ dist(f (�(�

j

i
, u)), y) and S′ 

resolves {x, y} . Now if x = �
j

i
 , then f (�(�j

i
, u�)) resolves {x, y} for any u� ∈ U

j

i
⧵{u}.

Secondly we consider x ∈ P(�
j

i
, u) and y ∈ P(�

j

i
, u�) , for some 

u ≠ u� ∈ U
j

i
 . If dist(�

j

i
, x) ≠ 2 + dist(�

j

i
, y) , then f (�(�

j

i
, x)) resolves {x, y} . 

Indeed dist(f (�(�
j

i
, x)), x) = dist(�

j

i
, x) ≠ 2 + dist(�

j

i
, y) = dist(f (�(�

j

i
, x)), y) . 

Else if dist(�
j

i
, x) = 2 + dist(�

j

i
, y) , then f (�(�

j

i
, y)) resolves {x, y} (since 

dist(�
j

i
, y) ≠ 2 + dist(�

j

i
, x)).

Two distinct vertices on P(vj
i,1
, p

j

i
) are resolved by, say, f (�(�j

i
, br

j

i
)) ∈ F . A ver-

tex of P(vj
i,1
, p

j

i
) and a vertex of P(�j

i
, u) , for some u ∈ U

j

i
 , are resolved by either 

f (�(�
j

i
, u)) or f (�(�j

i
, u�)) for a u� ∈ U

j

i
⧵{u} . Finally qj

i
 and a vertex in P(vj

i,1
, p

j

i
)⧵{p

j

i
} 

are resolved by, say, f (�(�j

i
, br

j

i
)) , whereas qj

i
 and a vertex in P(pj

i
, u) is resolved by 

either f (�(�j

i
, u)) or f (�(�j

i
, u�)) for a u� ∈ U

j

i
⧵{u} . Therefore every pair of distinct 

vertices in Πj

i
 is resolved by F, except {pj

i
, q

j

i
} which is resolved by S. 	�  ◻

Lemma 5.6  Every pair {x, y} ∈ Π
j

i
× Π

j

i
 is resolved by F.

Proof  Again let U
j

i
 be the set {tl

j

i
, tr

j

i
, bl

j

i
, br

j

i
, tc

j

i
, bb

j

i
} . We first assume x 

is in P(�j

i
, u) for some u ∈ U

j

i
⧵{tr

j

i
, bl

j

i
} . Let y be a vertex of Πj

i
 such that 

dist(f (�(�
j

i
, u)), x) = dist(f (�(�

j

i
, u)), y) , otherwise f (�(�j

i
, u)) already resolves {x, y} . 

Every shortest path from f (�(�j

i
, u)) to y go through �j

i
 . One can observe that there 

is a u� ∈ U
j

i
⧵{u} such that f (�(�j

i
, u�)) has a shortest path also going through �j

i
 . 

Hence f (�(�j

i
, u�)) has the same distance to y (as f (�(�j

i
, u)) ) but a larger distance to 

x. Hence f (�(�j

i
, u�)) resolves {x, y}.

We now consider an x ∈ P(�
j

i
, u) for some u ∈ {tr

j

i
, bl

j

i
} . Again let y be a ver-

tex of Πj

i
 such that dist(f (�(�j

i
, u)), x) = dist(f (�(�

j

i
, u)), y) . If all the shortest paths 

of f (�(�j

i
, u)) to y goes through �j

i
 , we conclude as in the previous paragraph. So 

they go through P(�(�j

i
, u), se

j

i
) (if u = tr

j

i
 ) or P(�(�j

i
, u), nw

j−1

i
) (if u = bl

j

i
 ). Since 

dist(f (�(�
j

i
, u)), x) ⩽ 2t − 1 , it also holds that dist(f (�(�j

i
, u)), y) ⩽ 2t − 1 . The path 

P(�(�
j

i
, tr

j

i
), se

j

i
) has length t and the path P(�(�j

i
, bl

j

i
), nw

j−1

i
) has length 2t − 1 . There-

fore one of f (sej
i
) , f (sej−1

i
) , f (nwj

i
) , f (nwj−1

i
) resolves {x, y}.

We now assume x is in P(vj
i,1
, p

j

i
) ∪ {q

j

i
} and y ∈ Π

j

i
 . Then f (�(�j

i
, br

j

i
)) resolves 

{x, y} if y is not in the path P(�(�j

i
, tr

j

i
), se

j

i
) or P(�(�j

i
, u), nw

j−1

i
) . Otherwise at least 

one of f (�(�j

i
, br

j

i
)) , f (�(�j

i
, tr

j

i
)) , f (�(�j

i
, bl

j

i
)) resolves {x, y} . In conclusion, every 

pair of vertices {x, y} ∈ Π
j

i
× Π

j

i
 is resolved by F. 	�  ◻
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Lemmas 5.5 and 5.6 prove that every vertex in Πj

i
 is distinguished by S′ . Using 

the same arguments, we get symmetrically that every vertex of Rj

i
 is distinguished 

by S′.

Lemma 5.7  All the vertices in the paths P(�(�
j

i
, tr

j

i
), se

j

i
) , P(�(�

j

i
, tr

j

i
), se

j

i
) , 

P(�(�
j

i
, bl

j

i
) , nwj−1

i
) , P(�(�j

i
, bl

j

i
), nw

j−1

i
) are distinguished by F.

Proof  Any vertex x ∈ P(�(�
j

i
, tr

j

i
), se

j

i
) is uniquely determined by its distances to 

f (se
j

i
) , f (sej−1

i
) , and �(�j

i
, tr

j

i
) . Any vertex x ∈ P(�(�

j

i
, bl

j

i
), nw

j−1

i
) is uniquely deter-

mined by its distances to f (nwj

i
) , f (nwj−1

i
) , and �(�j

i
, bl

j

i
) . The two other cases are 

symmetric. 	�  ◻

So far we showed that the vertices added in the forced set and forced vertex gadg-
ets are all distinguished. We now focus on the vertices in propagation gadgets. Let 
Δi ∶= A

j

i
∪ {nw

j

i
, ne

j

i
, sw

j

i
, se

j

i
}.

Lemma 5.8  Every pair of distinct vertices x, y ∈ Δ
j

i
 is resolved by S′.

Proof  Since the distances between vertices of Vj

i
 and vertices of Δj

i
 are the same 

between G′ and G′′ , S resolves all the critical pairs {aj
i,�
, �

j

i,�
} . Thus we turn our atten-

tion to the pairs which are not critical pairs. Since dist(nwj

i
, a

j

i,�
) = � and 

dist(nw
j

i
, �

j

i,�
) = � , every pair {aj

i,�
, a

j

i,� �
} , {aj

i,�
, �

j

i,� �
} , or {�j

i,�
, �

j

i,� �
} , with � ≠ � ′ is 

resolved by f (nwj

i
).

Gate nwj

i
 (resp. sej

i
 ) and any other vertex in Δj

i
 is resolved by f (nwj

i
) (resp. f (sej

i
) ). 

Gate nej
i
 (resp. swj

i
 ) is resolved from any vertex of Δj

i
⧵{a

j

i,1
, �

j

i,1
} (resp. Δj

i
⧵{a

j

i,t
, �

j

i,t
} ) 

by f (nwj

i
) (resp. f (sej

i
) ). Finally, nej

i
 (resp. swj

i
 ) and a vertex of {aj

i,1
, �

j

i,1
} (resp. 

{a
j

i,t
, �

j

i,t
} ) is resolved by f (sej

i
) (resp. f (nwj

i
) ). 	�  ◻

Now when we check that a pair made of a vertex in Δj

i
 and a vertex outside Δj

i
 is 

resolved, we can further assume that the second vertex is not in some Πj

i
∪ R

j

i
 since 

we already showed that these vertices were distinguished.

Lemma 5.9  Every pair {x, y} ∈ Δ
j

i
× Δ

j

i
 is resolved by S′.

Proof  We may assume that y is not a vertex that was previously shown distin-
guished. Thus y is not in some Πj

i
∪ R

j

i
 nor in a path of Lemma 5.7. Then we claim 

that the pair {x, y} is resolved by at least one of f (sej
i
) , f (sej−1

i
) , f (sej+1

i
) , f (nwj

i
) . 

Indeed assume that f (sej
i
) does not resolve {x, y} , and consider a shortest path from 

f (se
j

i
) to y. Either this shortest path goes through sej−1

i
 (resp. sej+1

i
 ), and in that case 

f (se
j−1

i
) (resp. f (sej+1

i
) ) resolves {x, y} . Either it takes the path to gj (if ej has an end-

point in Vi ) or to tlj+1
i

 , and then f (nwj

i
) resolves {x, y} . Or it takes a path to Vj

i
 , and 

then f (sej−1
i

) resolves {x, y} . 	�  ◻

Lemmas 5.8 and 5.9 show that that every vertex in Δj

i
 is distinguished by S′ . The 

common neighbor of sej−1
i

 and tlj
i
 is distinguished by {f (sej−1

i
), f (�(�

j

i
, tl

j

i
))} . We are 
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now left with showing that the vertices in the edge gadgets, in the sets Vj

i
 , and in the 

paths incident to the edge gadgets, are distinguished.

Lemma 5.10  Every pair of distinct vertices x, y ∈ Gj is resolved by S′.

Proof  Let vi,� and vi′,� ′ be the two endpoints of ej , and Uj

i
∶= {tl

j

i
, tr

j

i
, bl

j

i
, br

j

i
, tl

j

i�
, tr

j

i�
, bl

j

i�
 , 

bl
j

i′
, nw

j

i
, se

j

i
 , nwj

i�
, se

j

i�
, v

j

i,�
, v

j

i�,� �
} . Every pair in 

⋃
u∈U

j

i

P(gj, u) is resolved. Indeed, 
similarly to Lemma  5.5, two distinct vertices x,  y on a path P(gj, u) ( u ∈ U

j

i
 ) are 

resolved by f (�(gj, u)) , while two vertices on distinct paths P(gj, u) and P(gj, u�) 
( u ≠ u� ∈ U

j

i
 ) are resolved by at least one of f (�(gj, u)) and f (�(gj, u�)).

We now show that any pair in Γj

i
∶= E

j

i
∪ E

j

i�
⧵{P(gj, v

j

i,�
),P(gj, v

j

i,�
)} is resolved. 

Two distinct vertices x, y ∈ Γ
j

i
 are resolved by, say, f (�(gj, se

j

i
)) if they are on the 

same path, or more generally if they have different distances to cj . Thus let us 
assume that x and y are at the same distance from cj . If x ∈ E

j

i
 and y ∈ E

j

i�
 (or vice 

versa) then the pair {x, y} is resolved by the vertex in S ∩ V
j

i
 or the vertex in S ∩ V

j

i�
 . 

If x ≠ y ∈ E
j

i
 (resp. ∈ E

j

i�
 ), then {x, y} is resolved by f (�(gj, nw

j

i
)) (resp. f (�(gj, nw

j

i�
)) ). 

This is the reason why we added an edge between �(gj, nw
j

i
) and �(cj, bc

j

i
) (recall 

Sect. 5.1.3).
We now consider pairs {x, y} of 

⋃
u∈U

j

i

P(gj, u) × Γ
j

i
 . Any of these pairs are 

resolved by at least one of f (�(gj, u)) , f (�(gj, u�)) , f (�(gj, nw
j

i
)) , f (�(gj, nw

j

i�
)) , where 

x is on the path P(cj, u) and u′ is any vertex in Uj

i
⧵{u, nw

j

i
, nw

j

i�
} . Finally c′

j
 is distin-

guished from all the other vertices in G′′ but cj by the forced vertices attached to the 
neighbors of gj.

Thus every pair {x, y} in Gj is resolved by F, except {cj, c�j} which is resolved by 
S. 	�  ◻

Lemma 5.11  Every pair {x, y} ∈ Gj × Gj is resolved by F.

Proof  Consider an arbitrary pair {x, y} ∈ Gj × Gj . We can assume that x is not c′
j
 , 

and that y is in one different Gj′ or in one Vj′′

i′′
 (since we already showed that the other 

vertices are distinguished). Again let vi,� and vi′,� ′ be the two endpoints of ej , and 
U

j

i
∶= {tl

j

i
, tr

j

i
, bl

j

i
, br

j

i
, tl

j

i�
, tr

j

i�
, bl

j

i�
 , blj

i�
, nw

j

i
, se

j

i
, nw

j

i�
, se

j

i�
, v

j

i,�
, v

j

i�,� �
} . If x is on a path 

P(gj, u) , then at least one of f (�(gj, u)) and f (�(gj, u�)) , with u′ being any vertex in 
U

j

i
⧵{u} , resolves {x, y} . If instead x is on a path P(cj, u) with 

u ∈ {v
j

i,�−1
, v

j

i,�+1
, v

j

i�,� �−1
, v

j

i�,� �+1
} , then at least one of f (�(gj, nw

j

i
)) , f (�(gj, nw

j

i�
)) , 

f (�(gj, u
�)) , with u′ being any vertex in Uj

i
 , resolves {x, y} . 	�  ◻

Lemmas 5.10 and 5.11 show that every vertex in Gj is distinguished by S′ . We finally 
show that the vertices in Vj

i
 are distinguished. A pair of distinct vertices x, y ∈ V

j

i
 is 

resolved by f (nwj

i
) . We thus consider a pair {x, y} ∈ V

j

i
× V

j

i
 . We can further assume 

that y is in some Vj′

i′
 , since all the other vertices have already been shown distinguished. 

Then {x, y} is resolved by at least one of f (nwj

i
) , f (nwj�

i�
) , the vertex in S ∩ V

j

i
 , and the 

vertex in S ∩ V
j�

i�
 . This finishes the proof of Theorem 5.3. Thus S′ is a solution of the 

Metric Dimension-instance.
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The reduction is correct and it takes polynomial-time in |V(G)| to compute G′′ . The 
maximum degree of G′′ is 16. It is the degree of the vertices gj ( nw

j

i
 and sej

i
 have degree 

at most 11, �j

i
 and �j

i
 have degree 8, and the other vertices have degree at most 5). The 

last element to establish Theorem 3.1 is to show that pw(G��) is in O(k). Then solv-
ing Metric Dimension on constant-degree graphs in time f (pw)no(pw) could be used to 
solve k-Multicolored Independent Set in time f (k)no(k) , disproving the ETH.

5.3 � G′′ has Pathwidth O(k)

We use the pathwidth characterization of Kirousis and Papadimitriou [19] men-
tioned in the preliminaries, and give a strategy with O(k) searchers cleaning all the 
edges of G′′ . A basic and useful fact is that the searching number of a path is two.

Lemma 5.12  Two searchers are enough to clean a path u1u2 … un.

Proof  We place two searchers at u1 and u2 . This cleans the edge u1u2 . Then we move 
the searcher in u1 to u3 . This cleans u2u3 (while u1u2 remains clean). Then we move 
the searcher in u2 to u4 , and so on. 	�  ◻

Lemma 5.13  pw(G��) ⩽ 90k + 83.

Proof  For every j ∈ [m] , let 
Sj ∶= N[gj] ∪ Xj ∪

⋃
i∈[k] N[{v

j

i,1
, v

j

i,t
,�

j

i
, �

j

i
}] ∪ {nw

j

i
, ne

j

i
, sw

j

i
, se

j

i
} . We notice that 

|Sj| ⩽ 17 + 6 + 30k + 4 = 30k + 27 . Another important observation is that S1 ∪ Sj 
disconnects the first j columns of G′′ from the rest of G′′ . Finally the connected com-
ponents G�� − (Sj ∪ Sj+1) that are not the main component (i.e., containing more than 
half of the graph if m ⩾ 4 ) are all paths.

We now suggest the following cleaning strategy with at most 90k + 83 search-
ers. We place one searcher at each vertex of S1 ∪ S2 ∪ S3 . This requires 90k + 81 
searchers. By Lemma 5.12, with two additional searchers we clean all the connected 
components of G�� − (S1 ∪ S2 ∪ S3) that are paths. We then move all the searchers 
from S2 to S4 , and clean all the connected components of G�� − (S1 ∪ S3 ∪ S4) that are 
paths. Since S1 ∪ S3 is a separator, the edges that were cleaned during the first phase 
are not recontaminated when we move from S2 to S4 . We then move the searchers of 
S3 to S5 , and so on. Eventually the searchers reach S1 ∪ Sm−1 ∪ Sm , and the last con-
taminated edges are cleaned. 	�  ◻

6 � Perspectives

The main remaining open question is whether or not Metric Dimension can be 
solved in polynomial time on graphs with constant treewidth. In the parameter-
ized complexity language, now we know that MD/tw is W[1]-hard, is it in XP or 
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paraNP-hard? We believe that the tools and ideas developed in this paper could 
help answering this question negatively. The FPT algorithm of Belmonte et al. [3] 
also implies that Metric Dimension is FPT with respect to tl + k were k is the size 
of the resolving set, due to the bound Δ ⩽ 2k + k − 1 [18]. What about the param-
eterized complexity of Metric Dimension with respect to tw + k ? We conjecture 
that this problem is W[1]-hard as well, and once again, treewidth will contrast 
with tree-length.

It appears that bounded connected treewidth or tree-length is significantly 
more helpful than the mere bounded treewidth when it comes to solving MD. We 
wish to ask for the parameterized complexity of Metric Dimension with respect 
to ctw only (on graphs with arbitrarily large degree). Finally, it would be inter-
esting to determine if planarity can sometimes help to compute a metric basis. 
Therefore we also ask all the above questions in planar graphs.
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