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Abstract: Autophagy is a highly conserved cellular degradation process that prevents cell damage
and promotes cell survival, and clinical efforts have exploited autophagy inhibition as a therapeutic
strategy in cancer. Chloroquine is a well-known antimalarial agent that inhibits late-stage autophagy.
We evaluated the effects of chloroquine on cell viability and proliferation of acute myeloid leukemia
acute myeloid leukemia (AML) cells derived from 81 AML patients. Our results show that chloro-
quine decreased AML cell viability and proliferation for the majority of patients. Furthermore,
a subgroup of AML patients showed a greater susceptibility to chloroquine, and using hierarchical
cluster analysis, we identified 99 genes upregulated in this patient subgroup, including several
genes related to leukemogenesis. The combination of chloroquine with low-dose cytarabine had an
additive inhibitory effect on AML cell proliferation. Finally, a minority of patients showed increased
extracellular constitutive mediator release in the presence of chloroquine, which was associated with
strong antiproliferative effects of chloroquine as well as cytarabine. We conclude that chloroquine
has antileukemic activity and should be further explored as a therapeutic drug against AML in
combination with other cytotoxic or metabolic drugs; however, due to the patient heterogeneity,
chloroquine therapy will probably be effective only for selected patients.

Keywords: acute myeloid leukemia; apoptosis; chemokine; chloroquine; cytokine; proliferation;
protein profiling

1. Introduction

Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults.
It is an aggressive malignancy characterized by the accumulation of immature leukemic
cells in the bone marrow [1,2]. Current treatment of AML relies largely on intensive
chemotherapy, possibly followed by allogeneic hematopoietic stem cell transplantation
(allo-HSCT), and intensive chemotherapy alone or combined with allotransplantation is
the only curative treatment of the disease. However, the median age of AML patients
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at diagnosis is 65–70 years, and elderly patients >70–80 years have a dismal outcome
because many elderly patients cannot tolerate the most intensive therapy, favorable genetic
abnormalities are less frequent, and chemoresistant disease (e.g., AML secondary to cyto-
toxic drugs or previous hematological malignancies) is more frequent [1–3]. Long-term
AML-free survival (i.e., overall and progression-free survival) is only 35–45% even for
younger patients below 60–70 years of age without severe comorbidity who can tolerate
the most intensive conventional therapy possibly including allogeneic stem cell trans-
plantation [1]. Although advances in treatment have significantly improved outcomes for
younger patients, there is still a strong need for new and more effective agents, or efficient
combinations of agents, with a less toxic effect, to treat AML, also including those patients
unable to tolerate intensive treatment [1,4].

AML is a very heterogeneous disease both with respect to karyotype as well as
molecular genetic abnormalities [2,3]. A wide range of mutations have been detected in
this disease, and some of these mutations (e.g., fms related receptor tyrosine kinase 3 (FLT3)
and isocitrate dehydrogenase (IDH) mutations) are targets for new pharmacotherapy [1],
and the B-cell lymphoma 2 (BCL-2) inhibitor venetoclax is another example of targeted
therapy [1]. The risk of relapse after intensive and potentially curative conventional therapy
varies between patients, and patients can be classified into various prognostic subsets (i.e.,
different risk of relapse) based on karyotypic and molecular genetic abnormalities [2,4].
Furthermore, patients who cannot receive the most intensive therapy should receive AML-
stabilizing treatment, usually with hypomethylating agents possibly in combination with
venetoclax [1,3]. The new targeted therapies can be tried either as a part of the conventional
intensive therapy (e.g., midostaurin for patients with FLT3 abnormalities) or as a part of
disease-stabilizing treatment (e.g., venetoclax, IDH inhibitors) [1]. Targeting autophagy is
another new therapeutic strategy being considered for treatment of cancer [5], including
AML [6,7].

Autophagy is a cellular recycle mechanism where cells digest their own cytoplas-
mic components; damaged proteins and organelles are thereby eliminated, and cellular
homeostasis is maintained. The autophagic process can be tumor suppressive through the
removal of damaged organelles or oncogenic substrates [8,9], but it can also contribute to
carcinogenesis by providing energy and maintaining metabolism for cancer cells under
stressful conditions [10] and sustain growth and survival when cancer cells are challenged
by cytotoxic therapies [11]. Given its essential role in cell growth and survival, autophagy
is therefore being investigated as a target for therapeutic intervention.

Chloroquine is a clinically available drug that is shown to inhibit the last stage of
autophagy. The drug was discovered in 1934 and initially used to treat malaria for which
it has obtained approval from the U.S. Food and Drug Administration (FDA). These last
decades, chloroquine and analogs have further been widely tested for their anticancer activ-
ity against a variety of cancer types [12]. The precise mechanism of the anticancer effects of
chloroquine remains unclear; however, scientific reports suggest that the autophagy-specific
mechanism of action of chloroquine is at least partially responsible, though other molecular
mechanisms independent of autophagy may also contribute [13]. Chloroquine inhibits au-
tophagy by raising lysosomal pH that leads to inhibition of the fusion of autophagosomes
with lysosomes, disrupting the lysosomal protein degradation [14]. As chloroquine and its
derivate hydroxychloroquine are FDA-approved drugs, they are therefore the main agents
that have been tested in the clinic to treat cancer through inhibition of autophagy. There
are multiple ongoing clinical trials with these drugs alone or in combination with other
anticancer agents [5,15]. In addition, chloroquine has been shown to have an effect on the
chemosensitization of cancer cells, independent of its autophagy-dependent anticancer
effects [16,17].

Several recent reviews have emphasized that the effect of autophagy in human
AML is context-dependent; autophagy can have a tumor-suppressive effect during early
steps of leukemogenesis through degradation of oncogenic proteins, while a tumor-
promoting effect has been described during proliferation of AML cells (i.e., disease de-
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velopment/progression), and autophagy can mediate prosurvival protective mechanisms
during chemotherapy or be induced as a protective cellular response during exposure to
antileukemic drugs [18,19]. Thus, the effect of autophagy in AML is context-dependent,
and because AML is a highly heterogeneous disease, our hypothesis is that the effect of
autophagy inhibition will vary between patients. Even though several clinical studies
have investigated the possible use of chloroquine in cancer treatment including AML
therapy [13,18–26], to the best of our knowledge, none of the previous AML studies have
characterized the patient heterogeneity with regard to susceptibility to chloroquine. Al-
though several chloroquine analogs have been developed, studies of chloroquine are still
relevant as this drug may serve as a model drug for this class of anticancer agents [24].
In the present study, we therefore aimed to evaluate the antileukemic effects of chloroquine,
in particular effects on cell proliferation, survival, and constitutive soluble mediator release
by primary AML cells derived from a large group of consecutive and thereby unselected
AML patients. Finally, we examined the antileukemic effects of chloroquine in combination
with cytarabine/cytosine arabinoside (AraC), and investigated whether we could identify
a subset among the heterogeneous AML patients that might benefit from chloroquine
treatment.

2. Materials and Methods
2.1. Preparation of Primary AML Cells

The study was conducted after approval by the Regional Ethics Committee (REK) III
060.02, (100602), REK Vest 2013-634 (190313), REK Vest 2015/1410 (190615), and samples
collected after written informed consent from all patients. The characteristics of AML
patients included in the study are shown in Table S1. Patients with the FAB M3 subtype
of AML were excluded. Peripheral blood mononuclear cells were isolated from patients
with at least 80% AML cells among circulating leukocytes. Leukemia cell preparation was
performed using density gradient separation (density 1.077 g/mL; Lymphoprep, Serumw-
erk Bernburg AG for Alere Technologies AS, Oslo, Norway), resulting in cell populations
with >90% leukemia cells for all patients, where contaminating cells were mainly small
lymphocytes [27–29]. The isolated AML blasts were immediately cryopreserved in RPMI
1640 medium (Sigma-Aldrich, St. Louis, MO, USA) with 10% dimethylsulfoxide and 20%
inactivated fetal bovine serum (Biowest, Riverside, MO, USA). Cells were stored in liquid
nitrogen until the cryopreserved cells were thawed, counted, and used directly in the
experimental studies.

2.2. Normal Cells

Umbilical cord blood (UCB) cells were obtained from five donors after written in-
formed consent (REK Vest 2015/1759 (051115), 2017/305 (070417)). Mononuclear cells
were enriched in a similar manner to AML cell populations, by using density gradient
separation, and stored in liquid nitrogen until used in experiments.

Cryopreserved human primary mesenchymal stem cells (MSCs) from the bone marrow
of a healthy donor (MSC24539, 24-year old female Caucasian) were purchased from Lonza
in passage two (Cambrex BioScience, Walkersville, MD, USA) and were expanded in
complete MSC growth medium (MSCGM™; Lonza) with 10% inactivated fetal bovine
serum (Biowest, Riverside, MO, USA) and 4 mM L-glutamine (Sigma-Aldrich, St. Louis,
MO, USA).

2.3. AML Cell Culture Medium

Serum-free Stem Span SFEM™ medium (Stem Cell Technologies, Vancouver, BC,
Canada) supplemented with exogenous granulocyte-colony stimulating factor (G-CSF),
stem cell factor (SCF), and fms-related tyrosine kinase 3 ligand (FLT3-L) was used in all cell
culture experiments with patient AML cells except coculture studies with MSCs (described
below). Growth factors were purchased from Peprotech (Rocky Hill, NJ, USA) and used at a
final concentration of 20 ng/mL. This medium has been designed for the culture of normal
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hematopoietic stem and progenitor cells, and it was supplemented with these three growth
factors for the culture of normal immature myeloid cells. Mononuclear umbilical cord
blood (UCB) cells include lymphoid cells, but also immature myeloid cells (e.g., umbilical
cord stem cells); control experiments showed that normal mature lymphoid cells show very
low or no proliferation when incubated in this medium. We therefore regard the UCB cell
population to include mainly proliferating immature myeloid progenitor and stem cells.

AML cell lines were cultured in RPMI-1640 medium supplemented with streptomycin-
penicillin (50 µg/mL), 2 mM L-glutamine, and 10% heat-inactivated fetal bovine serum.

2.4. Reagents

Chloroquine and bafilomycin A1 were purchased from Sigma-Aldrich (St. Louis,
MO, USA, cat. no. C6628 and 196000, respectively), and cytarabine (AraC) was obtained
from Pfizer (New York City, NY, USA). All drugs were prepared according to datasheets
provided by the distributors. Stock solutions of chloroquine were diluted in phosphate-
buffered saline (PBS), sterile-filtered (0.22 µm), and stored in small aliquots at −20 ◦C until
used. Aliquots were thawed only once and diluted with their respective solvents to obtain
the desired final concentrations.

2.5. In Vitro Cell Culture Studies

Suspension cultures of AML cells alone were seeded in triplicates (1 × 106 /mL, 200 µL
medium/well) in flat-bottomed 96-well microtiter plates (Nucleon™; Nunc, Roskilde,
Denmark), and cultures were then incubated with or without drugs in StemSpan medium
supplemented with exogenous cytokines. AML cell proliferation was investigated using a
3H-thymidine incorporation assay [30]. After 6 days of incubation at 37 ◦C in a humidified
atmosphere of 5% CO2, 20 µL of 37 kBq 3H-thymidine (TRA 310, Amersham, UK) in saline
was added per well, and nuclear incorporation was determined 22 h later. For each drug
concentration, the effect on proliferation was calculated by comparing cell proliferation
(cpm values) as the percentage of untreated cultures. The median of triplicate cultures was
used for all calculations, and detectable incorporation was defined as >1000 counts per
minute (cpm).

For cocultures of AML cells and primary mesenchymal stem cells (MSCs), the MSCs
were trypsinated and used in cocultures in passage four. Cocultures were prepared as
described previously [31], by adding MSCs to the lower chamber and AML cells to the
upper chamber of transwell plates (Costar 3401; 0.4µm pore size, Costar, Cambridge, MA,
USA) in complete MSC medium, thus allowing no direct MSC-AML cell contact. Cocultures
were incubated for 2 days with or without 5 µM chloroquine before 280 kBq/well 3H-
thymidine was added, and proliferation of both MSCs and AML cells after 3-day coculture
was determined as described in detail previously [32]. For cocultures, triplicates derived
from the same transwell culture were used for all calculations.

Soluble mediator levels were analyzed in both single culture and coculture super-
natants. AML cells were cultured for 48 h in cytokine-supplemented Stem Span SFEM™
medium (1 × 106 /mL, 1 mL per well) in 24-well culture plates (Nucleon™; Nunc) with or
without 5 µM chloroquine. All supernatants were collected and stored at −80 ◦C before
analysis. In addition, cell culture supernatants were harvested from MSC-AML cocultures
(prepared in MSC medium) with or without 5 µM chloroquine for two days. Subsequently,
19 mediators were analyzed by Luminex® bead-based multiplex assays strictly according
to the distributors’ protocol (LXSAHM-17, R&D Systems; Minnesota, MN, USA).

The CytoID® autophagy detection kit (ENZO, Life Sciences, Farmingdale, NY, USA)
was used to measure autophagic vesicles (pre-autophagosomes, autophagosomes, and
auto(phago)lysosomes) in two human AML cell lines, HL60 and MOLM-13 (obtained from
the American Type Culture Collection (ATCC); cell identity confirmed for both cell lines).
Cell lines were cultured for 18 h (106 cells/mL) in 24-well culture plates (Nucleon™, Nunc)
with or without chloroquine (2.5–60 µM) before analysis using the CytoID detection kit
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strictly according to the manufacturer’s instructions. The BD FACSVerse flow cytometer
(BD Biosciences) was used to collect 10,000 events for each sample.

2.6. RNA Preparation, Labeling, and Microarray Hybridization

All microarray experiments were performed using the Illumina iScan Reader, which
is based upon fluorescence detection of biotin-labeled cRNA. 300 ng of total RNA from
each sample was reversely transcribed, amplified, and Biotin-16-UTP–labeled, using the
Illumina® TotalPrep™ RNA amplification kit (Applied Biosystems/Ambion, Foster City,
CA, USA). Amount and quality of the biotin-labeled cRNA were controlled by both
NanoDrop® spectrophotometer (NanoDrop Technologies, Inc. Wilmington, DE, USA), and
Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Palo Alto, CA, USA). 750 ng of biotin-
labeled cRNA was hybridized to the HumanHT-12 V4 Expression BeadChip according to
manufacturer’s instructions. The HumanHT-12 V4 BeadChip targets 47,231 probes derived
primarily from genes in the NCBI RefSeq database (Release 38). The data from the scan-
ning of arrays on Illumina iScan Reader was investigated in GenomeStudio (Illumina Inc.,
Hayward, CA, USA) and J-Express 2012 (MolMine AS, Bergen, Norway) for quality control
measures [33]. Before being compiled into an expression profile data matrix, all arrays
within each experiment were quantile normalized to be comparable. We used the analysis
of variance (ANOVA), and by setting an F-score > 1.0 and a fold change (FC) value > 1.0,
we identified genes differently expressed between the two patient populations. The genes
encoding proteins with a known function were classified using the PANTHER (protein
annotation through evolutionary relationship) classification system (version 14.0) [34].

2.7. Flow Cytometric Analyses of Cell Viability

The percentage of viable, apoptotic, and necrotic primary AML cells were deter-
mined by flow cytometry using the ApoptestTM–FITC kit (NeXins Research, Kattendijke,
the Netherlands) in accordance with the manufacturer’s instructions as previously de-
scribed [35]. Cells were seeded into wells (1 × 106/mL) and added either 2.5 or 5 µM
chloroquine and/or 0.0125 µM cytarabine, while cells cultured in medium alone were used
as controls. After 48 h of incubation at 37 ◦C in a humidified atmosphere of 5% CO2, cells
were analyzed using a BD FACSVerse flow cytometer (BD Biosciences; Franklin Lakes, NJ,
USA). Doublets were excluded by gating forward scatter (FSC)-height and FSC-area, and
side scatter (SSC)-height and SSC-area. 10,000 events were collected for each sample.

2.8. Mutational Analyses

Submicroscopic mutation profiling of 54 genes frequently mutated in myeloid leukemias
was performed using the Illumina’s TruSight Myeloid Gene Panel as described in detail
previously [36].

2.9. Proteomic Analyses of Primary Human AML Cells

Our methods for the preparation of AML cell samples and the methods for proteomic
sample preparation and LC-MS/MS analysis have been described in detail previously [37].
The 16 LC-MS/MS raw files analyzed in the present study are a subset of the 41 raw files
previously used in this publication, deposited to the ProteomeXchange consortium via
the PRIDE partner repository with dataset identifier PXD014997. In the current study, we
have re-analyzed these 16 LC-MS/MS raw files also used in the previous publication [37].
The 16 raw files were searched in MaxQuant (version 1.6.17.0) against the concatenated
forward and reversed-decoy Swiss-Prot Homo sapiens database version downloaded
10 May 2021 [38–40]. MaxQuant parameters and statistical analyses were performed as
described in the previous publication [37].

2.10. Statistical and Bioinformatical Analyses

Mann–Whitney U, Wilcoxon signed rank test and Kruskal–Wallis H-test with Dunn’s
post hoc test, and Fisher’s exact test were used for statistical comparisons of AML patient
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cells. ANOVA, using F-score > 1.0 and a fold change (FC) value > 1.0, was used to identify
genes in the gene expression analysis. Analysis and graphical presentations were done
using IBM Statistical Package for the Social Sciences® (SPSS®) v.23.0 (IBM SPSS statistics
Inc., Chicago, IL, USA) and GraphPad® prism version software v.5.02 (Graph Pad Software,
Inc., San Diego, CA, USA). The flow cytometry data was analyzed using FlowJo™ v.10.3
software (Tree Star, Inc., Ashland, OR, USA). Differences were regarded as significant when
p < 0.05.

3. Results
3.1. The Patient Population

As described in the material and methods section, we included 81 consecutive patients
in our present study; all these patients were included during a defined time period and from
a defined geographical area. The overall characteristics of the patients are summarized in
Table S1. The median age of the patients was 67.5 years, and the majority of patients were de
novo AML, while 14 patients had AML secondary to myelodysplastic syndrome/chronic
myeloproliferative disease. A normal karyotype was seen for nearly half of the patients,
whereas favorable karyotypes were observed for only a small minority of patients and
nearly one-third of the patients had FLT3-ITD, and 28 out of 73 patients had nucleophosmin
1 (NPM1) abnormalities. All these characteristics are as expected when investigating a
consecutive group of patients including a large subset of elderly patients above 70 years of
age [1–4]. Only 39 patients received intensive and potentially curative treatment, and only
15 of these patients had long-term AML-free survival (all patients observed for at least
3 years).

3.2. Initial In Vitro Screening of the Antiproliferative Effects of Chloroquine on AML Primary Cells
and Mononuclear Umbilical Cord-Derived Cells

Initial studies to evaluate the effects of various concentrations of the drug chloroquine
(2.5–100 µM) were conducted using the 3H-thymidine assay for AML cells derived from
17 patients Chloroquine had dose-dependent antiproliferative effects both for primary AML
cells, although the sensitivity toward drugs varied considerably between AML patients
at the lowest concentrations of 2.5 and 5 µM (Figure 1). None of the AML patient cells
showed any proliferation after treatment with 50 µM chloroquine or higher concentrations
(Figure 1). The aim of our study was to characterize patient heterogeneity, and we therefore
chose to use chloroquine concentrations of 2.5 and 5 µM in the following experiments.
Cytarabine concentrations were also based on dose-response experiments and we selected
relatively low levels that allowed detection of differences between patients (data not
shown).

We also investigated the effects of chloroquine on umbilical cord blood-derived cells
(Figure 1). Chloroquine showed a dose-dependent antiproliferative effect on these normal
cells that was similar to the effect on AML cells. This observation shows that chloroquine
has an antiproliferative effect also toward normal cells, probably also for the normal
myeloid stem/progenitor cells found in the mononuclear UCB cell populations.
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loid leukemia (AML) cells derived from 17 patients were treated with chloroquine at six different concentrations (2.5, 5, 
10, 25, 50, and 100 µM), and (B) Umbilical cord blood (UCB) mononuclear cells from four donors were treated with chlo-
roquine at five different concentrations (2.5, 5, 10, 25, and 50 µM). Detectable incorporation was defined as >1000 counts 
per minute (cpm). Results are shown as the percent proliferation of chloroquine-treated cultures compared to their respec-
tive untreated control cultures (set to 100%). At lower concentrations (2.5 and 5 µM) there was a varied sensitivity towards 
chloroquine, but at higher concentrations (10–100 µM) all samples showed decreased proliferation compared to untreated 
controls, * = p-value < 0.05, ** = p-value < 0.01, *** = p-value < 0.0001, Kruskal–Wallis, Dunn’s post-hoc test. (C) The figure 
shows the overall mean cell proliferation with SD, for all 17 AML patients (solid line) and four UCB donors (stippled line). 
There were no significant differences between the anti-proliferative effects of chloroquine on AML compared to UCB cells. 
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Figure 1. Initial in vitro drug screening study of chloroquine on patient-derived AML cells and UCB mononuclear cells.
Cells were treated with chloroquine for six days before 3H-thymidine was added to cultures for an additional 22 h of
incubation, before proliferation (nuclear incorporation) was determined by liquid scintillation counting. (A) Acute myeloid
leukemia (AML) cells derived from 17 patients were treated with chloroquine at six different concentrations (2.5, 5, 10, 25, 50,
and 100 µM), and (B) Umbilical cord blood (UCB) mononuclear cells from four donors were treated with chloroquine at five
different concentrations (2.5, 5, 10, 25, and 50 µM). Detectable incorporation was defined as >1000 counts per minute (cpm).
Results are shown as the percent proliferation of chloroquine-treated cultures compared to their respective untreated control
cultures (set to 100%). At lower concentrations (2.5 and 5 µM) there was a varied sensitivity towards chloroquine, but at
higher concentrations (10–100 µM) all samples showed decreased proliferation compared to untreated controls, * = p-value
< 0.05, ** = p-value < 0.01, *** = p-value < 0.0001, Kruskal–Wallis, Dunn’s post-hoc test. (C) The figure shows the overall
mean cell proliferation with SD, for all 17 AML patients (solid line) and four UCB donors (stippled line). There were no
significant differences between the anti-proliferative effects of chloroquine on AML compared to UCB cells.

3.3. AML Cell Proliferation Is Inhibited by Chloroquine Alone and in Combination
with Cytarabine

We investigated the effects of chloroquine alone (2.5 and 5 µM) on AML cell pro-
liferation for 81 patients, using the 3H-thymidine incorporation assay. The two lowest
concentrations (2.5 and 5 µM, see above) were chosen to characterize patient heterogeneity
and also to be able to test chloroquine in combination with cytarabine. Detectable cell
proliferation (>1000 cpm) was observed in drug-free controls (cells cultured in medium
alone) for 69 patients, and further statistical analysis was therefore based on the results for
these patients. When comparing the overall results, a highly significant antiproliferative
effect of chloroquine was observed with both concentrations of chloroquine compared to
untreated control cultures (p-value < 0.0001, Mann–Whitney U-test; Figure 2). As expected,
cytarabine (0.0125 µM) also had a significant inhibitory effect on AML cell proliferation
compared to untreated controls (Figure 2). However, the effect of cytarabine was not
significantly different from any of the chloroquine concentrations tested alone when com-
paring overall effects on all patients (Kruskal–Wallis test, Dunn´s post hoc test; Figure 2).
Furthermore, we combined chloroquine (2.5 and 5 µM) with cytarabine (0.0125 µM), and
both concentrations of chloroquine in combination with cytarabine 0.0125 µM showed an
additional inhibitory effect compared to chloroquine or cytarabine alone (p-value < 0.05,
Kruskal–Wallis test, Dunn´s post hoc test; Figure 2).

Despite the statistical significances observed for the overall results (Figure 2), we
emphasize there were exceptional patients in all the compared groups. The median and
variation ranges illustrate this, i.e., proliferation in percent after drug treatment compared
to the medium control. The effect of treatment with chloroquine 2.5 µM showed a wide vari-
ation between patients ranging from growth enhancement to a proliferation corresponding
to only 3% of the drug-free control (median effect 47% of the control, range 3–183%); this
variation is similar to the observations in our initial dose-response experiments (Figure 1).
A wide variation toward drug treatment was also seen for chloroquine 5 µM (median
24%, range < 1–491%), AraC/cytarabine (median 43%, range 3–148%), chloroquine 2.5 µM
plus AraC 0.0125 µM (median 21%, range < 1–147%) and chloroquine 5 µM plus AraC
0.0125 µM (median 9%, range < 1–128%). However, as can be seen from Figure 2, the
exceptional patients with increased proliferation after drug treatment were relatively few.
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Figure 2. Effect of chloroquine (CQ) alone or in combination with cytarabine (AraC) on cytokine-
dependent AML cell proliferation. AML cells from 81 consecutive patients were cultured for seven
days in medium alone (control cultures) or treated with CQ (2.5 and 5 µM), cytarabine/AraC
(0.0125 µM) or CQ in combination with cytarabine/AraC. The 3H–thymidine assay was used to
measure cell proliferation. Detectable proliferation defined as >1000 cpm in untreated control cultures,
was observed for 69 patients. Proliferation is shown as the median levels (with 25–75% percentiles),
and proliferation in treated cultures is shown as percent proliferation of the drug-free controls (set
to 100%). Significant effects were calculated using Mann–Whitney U-test for comparisons between
drug-containing and drug-free controls (shown as asterisks above bars), and Kruskal–Wallis with
Dunn’s post hoc test for comparison between the different groups (asterisks above brackets) (ns = not
significant, * p-value = 0.05, *** p-value = 0.0001).

The antiproliferative effect induced by chloroquine 2.5 µM among the various patients
showed no significant association with differentiation (FAB classification, CD34 expression),
karyotype, NPM1 or FLT3 mutations), and it did not differ between patients with secondary
and de novo AML (data not shown). Finally, 33 patients completed intensive induction and
consolidation treatment (some including allogeneic stem cell transplantation) according to
the ELN guidelines [4], but the antiproliferative effect of chloroquine 2.5 µM did not differ
between long-term AML-free survivors observed for at least 5 years and patients dying
from leukemia relapse (data not shown).

Additional mutational analyses were available for 15 patients; these patients were
randomly selected from a consecutive group of patients admitted to our hospital for
AML therapy (Table S2). All these 15 patients were unfit for intensive therapy, including
hypomethylating agents. As expected, these patients had relatively high age (median age
73 years, range 48–78 years) and many of them had high-risk disease, e.g., secondary AML,
complex karyotype, TP53 mutations. Although these additional mutational data were
available only for this small group of patients, the results illustrate that patients both with
strong and weak antiproliferative effects of chloroquine 2.5 µM (i.e., less or more than 50%
reduction of cytokine-dependent cell proliferation) are very heterogeneous with regard to
AML-associated mutations.

Taken together, these overall results show that the antiproliferative effect of chloro-
quine 2.5 µM shows a considerable variation between patients, but this variation is not
associated with any of the established biomarkers of high-risk AML (i.e., karyotype, NPM1
or FLT3 mutations) or with the survival of patients receiving potentially curative intensive
therapy.

Additional experiments suggest that chloroquine inhibits/modulates autophagy in
AML cells. First, we investigated whether chloroquine inhibits autophagy in the AML
cell lines HL60 and MOLM-13 using the CytoID autophagy detection kit, and then a



J. Pers. Med. 2021, 11, 779 9 of 23

dose-dependent accumulation of autophagic compartments was observed with increasing
amounts of chloroquine (Figure S1). Accumulation of autophagic compartments reached
statistical significance for both cell lines when using chloroquine 60 µM and a more than
four-fold increase was seen for MOLM-13 indicating a higher autophagy flux for this cell
line compared to HL60 (Figure S1; p < 0.0001). These observations show that chloroquine
modulates autophagy in AML cells, but the level of autophagy and the effect of chloroquine
vary between AML cell lines. Second, the effect of bafilomycin A1 on AML cell proliferation
was investigated for an unselected subset of 33 patients. Bafilomycin was tested at 1, 5, and
10 nM, and the highest bafilomycin concentration had an antiproliferative effect ranging
from no inhibition to >90% inhibition. Both bafilomycin A1 10 nM and chloroquine 2.5 µM
had a strong anti-proliferative effect (i.e., corresponding to >50% reduction compared with
the corresponding medium controls) for 11 patients, both drugs showed a weaker inhibition
for 12 patients and divergent effects (i.e., strong effect for only one of the two drugs) for
10 patients; this association between the effects of bafilomycin A1 and chloroquine reached
statistical significance (Fisher’s exact test, p = 0.033; data not shown).

3.4. Proteomic Comparison of Primary AML Cells Derived from Patients with High and Low
Susceptibility to Chloroquine

Our present study included primary cells derived at the first time of diagnosis for
30 patients that completed AML treatment with intensive induction therapy, 2 or 3 consol-
idation cycles, and possibly allogeneic stem cell transplantation as a final consolidation
treatment [1,4]. All these patients were below 65 years of age. Our proteomic studies
were based on a consecutive subset of 19 (out of the 30) patients who completed the in-
tensive treatment; two of these patients did not show cytokine-dependent proliferation.
We investigated the proteomic AML cell profiles for eight patients where treatment with
chloroquine 2.5 µM had an antiproliferative effect less than 40% compared to the prolif-
eration of drug-free control cultures, the profiles for these eight patients were compared
with eight other patients where chloroquine showed a stronger antiproliferative effect
corresponding to at least 50% inhibition compared with the controls. One of the 17 patients
with detectable cytokine-dependent proliferation showed an intermediate antiproliferative
effect corresponding to 46% inhibition and was excluded from the proteomic comparison.
Thus, we compared the proteomic profiles for two contrasting groups that included eight
patients each.

A total of 5476 proteins could be quantified and only 55 of them differed significantly
when comparing AML cells with strong and weak antiproliferative effects of chloroquine.
However, autophagy is a complex multistep process involving organellar trafficking and
fusion, and several of the differing proteins important for regulation of autophagy are
localized to lysosomes or endosomes/endoplasmic reticulum, or they are involved in
mitophagy/mitochondrial metabolism (Table 1). A subset of proteins is important for
intracellular signaling or transcriptional regulation, whereas relatively few of the proteins
are extracellular proteins or cell surface proteins/adhesion molecules. Thus, several of the
proteins showing significantly different levels are important for the regulation of autophagy,
but the levels of proteins included in autophagy-associated molecular complexes (i.e., the
ULK1, PI3K, Atg9, and Atg12 conjugation complexes; see the Autophagy Database www.
tanpaku.org/autophagy/index.html, accessed on 20 May 2021) did not differ between
the two groups. Taken together, these results suggest that differences in the susceptibility
to the antiproliferative effect of chloroquine depend on differences in the regulation of
autophagy.

www.tanpaku.org/autophagy/index.html
www.tanpaku.org/autophagy/index.html
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Table 1. A classification of proteins that show significantly different levels when comparing AML cells with strong and
weak antiproliferative effects of chloroquine. The gene names are shown to the right. The proteins are described in detail in
Table S3 and the results of the proteomic analyses are summarized in Table S4.

Classification Proteins
(Referred to by Their Corresponding Gene Names)

Autophagy regulation SIGIRR, PGPEP1, STK38L, DAP3, YBX1, CSDE1, PRMT1, HGSNAT, FAF1, FAM105A

Mitophagy regulation ATPIF1, PGPEP1, STK38L

Cytoskeletal protein DNAJC1, SIGIRR, TUBA1A, NUDCD3, TUBB6, TPPP3

Intracellular trafficking SYTL1, WDR81

Endoplasmic reticulum WDR81, LEPRE1, DPM3, CALU, SERPINH1, LY75

Lysosomal protein WDR81, LY75, HGSNAT

Mitochondria, metabolism SARDH, SLC2A5, ATPIF1, H6PD, DAP3, MMS19, HK2

Extracellular release PPBP, YBX1

Cell surface/adhesion HLA-E, EPB41L2, ITGB3, ITGA2B, DPYSL3

Intracellular signaling DNAJC1, SIGIRR, STK38L, FAF1, TSTD1

Transcription SUGP2, SAP30L, PGPEP1, GTF2E2, NPM3, CRIP2

3.5. Chloroquine Inhibits AML Cell Proliferation in Cocultures with MSCs

We further investigated the antiproliferative effect of chloroquine on AML cells when
the leukemic cells were cocultured in the presence of normal MSCs derived from a healthy
donor. The two cell populations were separated by a semipermeable membrane where
direct contact between AML cells and MSCs was not possible; the 3H-thymidine incorpora-
tion assay was then used to measure proliferation of cells in cocultures after incubation
with or without 5 µM chloroquine for three days. Of the 18 patients tested, 14 showed
detectable AML cell proliferation in the medium controls (cpm > 1000). As expected, MSCs
increased AML cell proliferation for the majority of patients (data not shown) [31]. Still,
AML cell proliferation was decreased after treatment with 5 µM chloroquine in cocultures
for most patients (p-value = 0.017, Wilcoxon signed rank test) (Figure 3). Chloroquine also
inhibited MSC proliferation (derived from one donor), and this inhibitory effect on MSCs
was stronger than the effect on the AML cells (Figure 3).

3.6. An Antiproliferative Effect of Chloroquine Is Detected for Most Patients and Even for Patients
Insensitive to Cytarabine

We performed an unsupervised hierarchical cluster analysis where we compared the
AML cell proliferation (i.e., normalized to the median cpm value for each group) after
cells had been cultured in medium alone, in the presence of chloroquine or after combined
treatment with chloroquine and cytarabine for 7 days. In this analysis, we only included
the 69 patients demonstrating detectable proliferation (>1000 cpm) in untreated control
cultures. We could then detect three patient subsets: a small subset with generally low
proliferation in untreated cultures as well as in drug-treated cultures (upper subcluster,
indicated by the light gray column in Figure 4A), a larger subset with generally strong
proliferation in both treated and untreated cultures (bottom green subcluster, shown as a
dark gray column in Figure 4A), and an intermediate subset with diverse proliferation in
both untreated and drug-treated cultures (middle subcluster, indicated as a gray column in
Figure 4A).
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Figure 3. The effect of chloroquine (CQ) on the proliferation of primary AML cells and normal MSCs 
grown in coculture. The two cell populations were separated by a semipermeable membrane. Co-
cultures of AML cells (14 patients tested) and normal MSCs derived from a healthy donor were 
treated with 5 µM chloroquine for three days. Proliferation was measured using the 3H-thymidine 
incorporation assay for both AML cells and MSCs in cocultures, with and without chloroquine-
treatment. Each dot indicates the cell proliferation of AML or MSCs after coculture, where results 
are shown as percent proliferation of chloroquine-treated cocultures compared to untreated cocul-
tures, with the median level. Chloroquine inhibited the proliferation of both AML cells and MSCs 
in cocultures. 

Next, we performed an unsupervised hierarchical clustering analysis based on the 
relative proliferation of the drug-treated cell cultures, i.e., the proliferation in drug-treated 
cultures (chloroquine or cytarabine) relative to the proliferation in the control cultures 
prepared in medium alone after seven days of culture (Figure 4B). Patients showed a var-
ied response to drug treatment. Effects on cell proliferation after treatment with either 
chloroquine 5 µM or cytarabine (0.0125 µM) alone ranged from 0–99% reduced prolifera-
tion, with a median reduction of 83% and 58% compared to control cultures, respectively. 
Sixty-two of the 69 patients treated with chloroquine 5 µM, and 58 of the 69 patients 
treated with chloroquine 2.5 µM demonstrated an antiproliferative effect (>20% reduction 
of proliferation compared to untreated controls), whereas the last nine patients had no or 
minor effects of both drugs (Figure 4B, lower patient sub-cluster). However, we also iden-
tified a subset of patients that were sensitive towards chloroquine (strong antiproliferative 
effect), although no or low inhibitory effects on cell proliferation were seen after treatment 
with cytarabine alone (Figure 4B, the upper 16 patients). 

The antiproliferative profile of chloroquine (i.e., the classification into three clusters 
in Figure 4B) showed no significant associations with age, cause of AML (de novo versus 
secondary), morphological signs of differentiation (FAB classification), expression of the 
stem cell marker CD34, karyotype, or FLT3-ITD or NPM1 mutations (data not shown). 

Figure 3. The effect of chloroquine (CQ) on the proliferation of primary AML cells and normal
MSCs grown in coculture. The two cell populations were separated by a semipermeable membrane.
Cocultures of AML cells (14 patients tested) and normal MSCs derived from a healthy donor were
treated with 5 µM chloroquine for three days. Proliferation was measured using the 3H-thymidine
incorporation assay for both AML cells and MSCs in cocultures, with and without chloroquine-
treatment. Each dot indicates the cell proliferation of AML or MSCs after coculture, where results are
shown as percent proliferation of chloroquine-treated cocultures compared to untreated cocultures,
with the median level. Chloroquine inhibited the proliferation of both AML cells and MSCs in
cocultures.

Next, we performed an unsupervised hierarchical clustering analysis based on the
relative proliferation of the drug-treated cell cultures, i.e., the proliferation in drug-treated
cultures (chloroquine or cytarabine) relative to the proliferation in the control cultures
prepared in medium alone after seven days of culture (Figure 4B). Patients showed a varied
response to drug treatment. Effects on cell proliferation after treatment with either chloro-
quine 5 µM or cytarabine (0.0125 µM) alone ranged from 0–99% reduced proliferation, with
a median reduction of 83% and 58% compared to control cultures, respectively. Sixty-two
of the 69 patients treated with chloroquine 5 µM, and 58 of the 69 patients treated with
chloroquine 2.5 µM demonstrated an antiproliferative effect (>20% reduction of prolifer-
ation compared to untreated controls), whereas the last nine patients had no or minor
effects of both drugs (Figure 4B, lower patient sub-cluster). However, we also identified a
subset of patients that were sensitive towards chloroquine (strong antiproliferative effect),
although no or low inhibitory effects on cell proliferation were seen after treatment with
cytarabine alone (Figure 4B, the upper 16 patients).

The antiproliferative profile of chloroquine (i.e., the classification into three clusters
in Figure 4B) showed no significant associations with age, cause of AML (de novo versus
secondary), morphological signs of differentiation (FAB classification), expression of the
stem cell marker CD34, karyotype, or FLT3-ITD or NPM1 mutations (data not shown).
Finally, the relative effect of chloroquine/cytarabine also showed no association with the
capacity of cytokine-dependent proliferation (Figure 4A).
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Figure 4. An unsupervised hierarchical cluster analysis based on the effect of chloroquine and cytarabine/AraC on AML
cell proliferation. AML cells from 81 consecutive patients were cultured for seven days with chloroquine (CQ 2.5 and 5 µM),
AraC (0.0125 µM), chloroquine in combination with AraC or medium alone (control). Proliferation was measured using a
3H-thymidine incorporation assay. Detectable proliferation was defined as >1000 cpm, and results are presented for the
69 patients with detectable proliferation in untreated cultures. (A) The figure illustrates the cytokine-dependent AML cell
proliferation for the untreated controls and drug-treated cultures (chloroquine or a combination of drugs) after results were
normalized to the corresponding median for each group. The cluster could be divided into three main subsets based on
the degree of proliferation as illustrated in the first column to the right: (i) low proliferation (upper cluster, light gray),
(ii) intermediate proliferation (middle, gray), and (iii) high proliferation (lower cluster, dark gray). The figure also shows the
distribution of biological and clinical characteristics for each individual patient (columns on the right part of the figure).
(B) The figure shows the relative AML cell proliferation (i.e., percent proliferation compared to untreated controls) for the
69 AML patients after treatment with chloroquine and AraC. As shown, the majority of patients had a strong inhibitory
effect of chloroquine, AraC or both drugs (two top subclusters, shown as blue and dark blue in the column to the right).
A small subcluster of nine patients (bottom subcluster, shown as light blue in the column to the right) had mainly little or no
effect of these treatments at the tested concentrations. Shown in different columns to the right of the figure are different
patient subsets based on clustering of cytokine-dependent proliferation (patient classification as indicated in Figure 4A),
proapoptotic effects (classified based on Figure 5, see Section 3.8), chloroquine-mediated cytokine release (based on Figure 6,
see Section 3.9), and survival after completed intensive treatment. Survival is presented only for patients who completed
the planned intensive and consolidation treatment, and all patients classified as survivors were observed for at least three
years after treatment.
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3.7. The Antiproliferative Effect of Chloroquine on AML Cells Is Associated with a Distinct Gene
Expression Profile

Based on the antiproliferative effects of chloroquine 2.5 µM we created a heat map,
which sorted the patients according to the antiproliferative effects on AML cell proliferation
compared to control cultures (Figure S2, upper part). The heat map indicates a strong
antiproliferative effect to the left (high sensitivity to chloroquine) and patients with the
lowest antiproliferative effect of chloroquine to the right (low sensitivity to chloroquine).
Based on this sorting we divided the patient cohort into four quartiles, and compared
gene expression profiling (GEP) data for randomly selected patients from the lowest and
highest quartiles; i.e., patients with strong antiproliferative effects and patients with low
or no antiproliferative effects of chloroquine. GEP data was available for six patients
with high sensitivity to chloroquine, and 11 patients with low sensitivity to chloroquine
treatment (marked in boxes). Based on ANOVA (F-score > 1.0 and FC value > 1.0), we
identified 99 genes upregulated among patients with high sensitivity (Table S5). Among
the 99 identified genes, 22 have previously been linked to AML leukemogenesis, and the
full list with references to AML involvement is presented in Table S5. Furthermore, we did
an unsupervised hierarchical cluster analysis based on these 99 genes, but this analysis
could not be used to separate patients with high and low sensitivity to chloroquine. Finally,
we used the PANTHER system to further classify the upregulated genes, and we then
selected the category Molecular Function which included Catalytic activity and Binding
as the largest subterms within this category (Figure S2, lower part). We further identified
single genes belonging to these subterms (Figure S2 lower part, see also Table S5).

3.8. Treatment with Chloroquine Significantly Decreased Primary AML Cell Viability and
Increased Apoptosis and Necrosis

Primary cells derived from 78 of the 81 consecutive AML patients were cultured with
or without chloroquine 5 µM for 48 h before the percentages of viable, early apoptotic,
and late apoptotic/necrotic cells were determined by flow cytometry. Six patients showed
less than 5% viable cells in untreated controls and were excluded from the statistical
analyses. There was a wide variation between patients with regard to the percentage of
viable (AnnexinV−PI−) cells in drug-free control cultures, with only a slight decrease in
overall viability after chloroquine treatment (median 52.0%, range 4.8–88.9%) compared
with the medium controls (median 55.7%, range 5.9–89.1%) (Figure 5A). The percentage
of early apoptotic cells (AnnexinV+PI−) was generally low for both treated and untreated
cultures, with a slight increase in apoptosis after chloroquine treatment (Figure 5A). When
comparing samples pairwise, there was a small but statistically significant decrease in the
percentage of viable cells after chloroquine treatment (p-value < 0.0001, Wilcoxon signed
rank test) and an increase in the percentage of early apoptotic cells (p-value = 0.0008,
Wilcoxon signed rank test). The effect of 5 µm chloroquine on AML cell viability was
relatively weak, certain exceptional patients showed a small increase in the percentage of
viable AML cells, and patients with a high viability in untreated control cultures generally
showed the highest viability also in the presence of the drug (Figure 5B, p-value = 0.0001,
Wilcoxon signed rank test). Thus, chloroquine has a weak but statistically significant effect
on AML cell viability, and this reduction seems to be caused by induction of apoptosis.

Neither the AML cell viability in control cultures nor the effect of chloroquine on
AML cell viability showed significant associations with age, cause of AML (de novo versus
secondary), morphological signs of differentiation (FAB classification), expression of CD34,
karyotype, FLT3-ITD, or NPM1 mutations (data not shown). This is similar to the results
when investigating the effect of chloroquine and the antiproliferative profiles (Figure 4)
described previously.



J. Pers. Med. 2021, 11, 779 14 of 23
J. Pers. Med. 2021, 11, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 5. Effect of chloroquine (CQ) 5 µM on primary AML cell viability, apoptosis, and necrosis 
after 48 h of culture. Primary cells from 78 consecutive AML patients were cultured with or without 
5 µM CQ for 48 h before viability, early apoptosis, and late apoptosis/necrosis were determined by 
flow cytometry using the AnnexinV/Propidium iodide (PI) assay. (A) The figure shows the overall 
results for the 72 patients with more than 5% viable cells in drug-free controls. The percentage of 
viable (AnnexinV− PI−), early apoptotic (AnnexinV+ PI-) and end stage apoptotic and necrotic cells 
(AnnexinV+ PI+) were determined in patient samples after treatment with 5 µM CQ (white boxes) 
and after culture in medium alone (gray boxes) for 48 h. Data are presented as median levels, 25/75 
percentiles, and 5/95 percentile whiskers, • = outliers. The overall effect when analyzing samples 
pairwise was examined; and treatment with 5 µM CQ significantly decreased viability (p-value < 
0.0001) and increased apoptosis and late apoptosis/necrosis (p-values = 0.0008 and <0.0001, respec-
tively; Wilcoxon signed rank test). (B) The percentage of viable primary AML cells cultured in me-
dium alone compared to treatment with 5 µM CQ for 48 h. This figure presents the viability results 
for each individual patient. A wide range of cell viability is seen among patients, with a significant 
decrease in viability after treatment with 5 µM CQ (p-value = 0.0001). 

3.9. Chloroquine Alters the Constitutive AML Cell Release of Only a Few Soluble Mediators by 
Primary Human AML Cells  

The effect of chloroquine on the constitutive soluble mediator release by primary 
AML cells after 48 h of culture was investigated for the same 72 patients tested in the 
viability assay. No significant changes were found between mediator levels when com-
paring overall results, but when comparing pairwise samples (untreated versus chloro-
quine-treated), a significant effect of chloroquine on the release of mediators was observed 
for four mediators, MMP9, MMP2, cystatin-C, and CCL2 (Figure S3; p-value < 0.05, Wil-
coxon signed rank test). 

Furthermore, we performed a hierarchical cluster analysis that identified a subset of 
18 patients where chloroquine generally increased the levels of various soluble mediators, 
whereas chloroquine had divergent effects for the other patients with unaltered or de-
creased levels after chloroquine treatment for most mediators and patients (Figure 6). The 
three main subsets identified in the cluster analysis showed no significant differences with 
regard to age, cause of AML (de novo versus secondary), morphological signs of differen-
tiation (FAB classification), expression of the CD34 stem cell marker, karyotype, FLT3-
ITD, or NPM1 mutations (data not shown). However, we identified a patient cluster in-
cluding 18 patients that showed a very high release of mediators, and this subset included 
a significantly higher fraction of patients showing a strong antiproliferative effect after 
treatment with both chloroquine 2.5 µM and cytarabine (i.e., 15 out of the 18 patients being 

Figure 5. Effect of chloroquine (CQ) 5 µM on primary AML cell viability, apoptosis, and necrosis
after 48 h of culture. Primary cells from 78 consecutive AML patients were cultured with or without
5 µM CQ for 48 h before viability, early apoptosis, and late apoptosis/necrosis were determined by
flow cytometry using the AnnexinV/Propidium iodide (PI) assay. (A) The figure shows the overall
results for the 72 patients with more than 5% viable cells in drug-free controls. The percentage of
viable (AnnexinV− PI−), early apoptotic (AnnexinV+ PI−) and end stage apoptotic and necrotic
cells (AnnexinV+ PI+) were determined in patient samples after treatment with 5 µM CQ (white
boxes) and after culture in medium alone (gray boxes) for 48 h. Data are presented as median levels,
25/75 percentiles, and 5/95 percentile whiskers, • = outliers. The overall effect when analyzing
samples pairwise was examined; and treatment with 5 µM CQ significantly decreased viability
(p-value < 0.0001) and increased apoptosis and late apoptosis/necrosis (p-values = 0.0008 and <0.0001,
respectively; Wilcoxon signed rank test). (B) The percentage of viable primary AML cells cultured
in medium alone compared to treatment with 5 µM CQ for 48 h. This figure presents the viability
results for each individual patient. A wide range of cell viability is seen among patients, with a
significant decrease in viability after treatment with 5 µM CQ (p-value = 0.0001).

3.9. Chloroquine Alters the Constitutive AML Cell Release of Only a Few Soluble Mediators by
Primary Human AML Cells

The effect of chloroquine on the constitutive soluble mediator release by primary AML
cells after 48 h of culture was investigated for the same 72 patients tested in the viability
assay. No significant changes were found between mediator levels when comparing
overall results, but when comparing pairwise samples (untreated versus chloroquine-
treated), a significant effect of chloroquine on the release of mediators was observed for
four mediators, MMP9, MMP2, cystatin-C, and CCL2 (Figure S3; p-value < 0.05, Wilcoxon
signed rank test).

Furthermore, we performed a hierarchical cluster analysis that identified a subset
of 18 patients where chloroquine generally increased the levels of various soluble media-
tors, whereas chloroquine had divergent effects for the other patients with unaltered or
decreased levels after chloroquine treatment for most mediators and patients (Figure 6).
The three main subsets identified in the cluster analysis showed no significant differences
with regard to age, cause of AML (de novo versus secondary), morphological signs of
differentiation (FAB classification), expression of the CD34 stem cell marker, karyotype,
FLT3-ITD, or NPM1 mutations (data not shown). However, we identified a patient cluster
including 18 patients that showed a very high release of mediators, and this subset included
a significantly higher fraction of patients showing a strong antiproliferative effect after
treatment with both chloroquine 2.5 µM and cytarabine (i.e., 15 out of the 18 patients
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being susceptible to both drugs, see Figure 4B) compared with the other patients (25 out of
48 patients showing dual effects, Fisher’s exact test, p = 0.0252).
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patient subsets: (i) a subset with increased release of soluble mediators after treatment with chloroquine (upper subset,
shown as dark green in first column to the right), (ii) one intermediate subset, with divergent release of soluble mediators
(middle subset, shown as turquoise in column to the right), and (iii) a subset of patients with decreased release of soluble
mediators after treatment with chloroquine (light turquoise). There is one outlier at the bottom of the cluster with a very
high release of all soluble mediators after treatment with chloroquine (marked in dark green). The columns to the far right
indicating proliferative responses and chloroquine effects are based on Figure 4.

3.10. High Chloroquine-Mediated Soluble Mediator Release Shows a Gene Expression Profile
Associated with Genes Involved in Metabolic Processes

Gene expression profiling (GEP) data was available for a total of 33 patients that
were examined for their release of soluble mediators after chloroquine treatment. Nine
of these 33 patients belonged to the previously identified group of patients with high
chloroquine-mediated mediator release, while the remaining 24 belonged to the group of
patients with intermediate or low cytokine release (see Figure 6). Using ANOVA (F-score
> 1.0 and FC value > 1.0) we identified 74 genes upregulated among patients with high
chloroquine-mediated mediator release (Table S6).

We investigated if these 74 identified genes were able to separate the two patient
groups by performing a hierarchical cluster analysis. Only two of the nine patients with
high chloroquine-mediated mediator release clustered outside the identified main sub-
cluster including most patients with high chloroquine-induced mediator release (p-value
= 0.001, Fisher´s exact test) (Figure S4). Among the 74 genes that were upregulated for
patients with high chloroquine-mediated release of various mediators were several genes
encoding proteins involved in AML pathogenesis. All genes are presented in Table S6.
To investigate a broader biological context of the upregulated genes, we used the PAN-
THER classification system to further classify these genes. The four most frequent subterms
were Metabolic process, Cellular process, Localization, and Response to stimulus when
using the main category Biological process. We further identified single genes belonging
to these subterms, which included genes known to be involved in AML leukemogenesis,
noteworthy, SNX2, FLT3, PFKP, and CCL23 (Figure S4, Table S6).

4. Discussion

The long-term AML-free survival is only 45–50% even for patients who receive the
most intensive antileukemic treatment [4]. Thus, there is a need for new therapeutic
strategies to increase the efficiency of conventional intensive treatment and to prolong
survival for elderly/unfit patients receiving AML-stabilizing treatment. Inhibition of
autophagy, e.g., by chloroquine or chloroquine analogs, is regarded as a possible approach
for treatment of cancer, including AML [21,22,24,41,42], but our present results suggest
that the susceptibility to chloroquine varies between patients.

Chloroquine inhibits lysosomal acidification and thereby arrests the last step of au-
tophagy i.e., fusion of autophagosomes with lysosomes [21,42], but it may also have
additional effects including (i) increased lysosomal permeability with intracellular release
of proteolytic enzymes [24], (ii) inhibition of cellular drug-extrusion, certain lysosomal
enzymes and intracellular signaling, and (iii) intercalation into DNA [43–46]. Thus, anti-
cancer effects of chloroquine can be mediated by various mechanisms, including inhibition
of autophagy, but at least in our present study, we did not find any evidence for altered
levels of proteins belonging to the autophagy-associated ULK1, PI3K, Atg9, and Atg12
complexes.

Previous AML studies have mainly investigated effects of chloroquine in cell
lines [13,47–49], and then, many of chloroquine’s antileukemic effects depend on inhi-
bition of autophagy, e.g., inhibition of dasatinib-induced differentiation [47], apoptosis
induction in cytarabine-sensitive and resistant cell lines [48], caspase-dependent apoptosis
in erythroleukemia with downregulation of c-Myc, upregulation of proapoptotic gene
expression and modulation of the cellular miR profile in favor of apoptosis [49]. Fur-
thermore, chloroquine-induced inhibition of autophagy enhances the antileukemic effects
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of cytarabine [20,50] and mTORC1/mTORC2 inhibitors [25]. Additionally, autophagy-
independent antileukemic effects of chloroquine in AML possibly include (i) modulation
of exocytosis [13], (ii) induction of hypoxia-inducible factor 1α [51], (iii) modulation of
cellular iron metabolism [52,53] and (iv) unwinding of the DNA double helix [54]. How-
ever, although the effects are complex and differ between various cell types, these previous
studies together with our present results show the importance of autophagy inhibition by
chloroquine. Our present study is the first to show susceptibility to chloroquine for a large
group of unselected AML patients. We describe an antiproliferative effect of chloroquine;
this effect was dose-dependent and when testing relatively low concentrations it varied
between patients. However, an antiproliferative effect was also detected for all four UCB
donors and for MSCs; and such effects on normal stem cells may be involved in the devel-
opment of hematological toxicity that has been reported in exceptional patients, including
leukopenia and agranulocytosis [55].

We used drug concentrations corresponding to the levels reached in vivo during long-
term chloroquine treatment (plasma levels 2.5–12.5 µM) [56,57]. In addition, we tested
higher concentrations that are closer to what is seen during treatment of malaria (25–440 µM
over three days) [58]. The cytarabine levels tested in our study correspond to serum
concentrations reached during low-dose subcutaneous cytarabine therapy [59] and are
thus also within clinically relevant concentrations [60].

We included only patients with relatively high levels of circulating AML cells, and
therefore enriched leukemia cell populations could be prepared by standardized density
gradient separation alone [61,62], thereby reducing the risk of separation-induced cellular
alterations [63]. For this reason, our observations should be interpreted with caution as
they may be representative only for patients with relatively high peripheral blood blast
counts, though our results are probably representative for bone marrow AML cells, as
blood and marrow AML cells do not differ with regard to autophagy [23].

Our proliferation assay was based on [3H]-thymidine incorporation from day six to
seven of in vitro culture, i.e., the incorporation reflects characteristics of the minor cell
subset that is able to survive and proliferate after seven days of culture [35]. Our results
showed that chloroquine had a significant and dose-dependent effect on AML cell prolifer-
ation for the large majority of patients, though the inhibitory effect varied between patients
and was even absent for a small minority. Furthermore, chloroquine showed an additional
antiproliferative effect in the presence of cytarabine, and this effect was seen even for
cytarabine-resistant cells. These last observations are consistent with previous reports de-
scribing that AML cells utilize autophagy to counteract chemotherapeutic-induced stress,
and blocking autophagy can then enhance sensitivity to cytotoxic drugs [19]. However, the
antiproliferative and proapoptotic effects of chloroquine showed no significant correlation,
suggesting that they are independent pharmacological effects. Finally, previous studies
have demonstrated that biological characteristics of the total AML cell populations can
reflect the relapse risk [64–71], i.e., the chemosensitivity of the leukemic stem cells (LSCs)
responsible for relapse [64], and our present results may thus be representative also for
LSCs, though further studies are needed to investigate specific effects on LSCs.

Basal levels of autophagy vary among AML cell lines and there is also a variation
between patients; a higher autophagic flux was described for AML patients with complex
karyotype whereas no differences were detected in AML with recurrent genetic abnormali-
ties with prognostic value [23]. We also did not find any associations between the effects of
chloroquine and established prognostic parameters. Previous studies have shown that the
prognostic impact of a biomarker can depend on the clinical/biological context [72], and
this may explain the lack of associations between sensitivity to chloroquine and established
prognostic biomarkers in AML. Thus, the use of chloroquine in AML therapy possibly
needs to be individualized based on the identification of new and validated biomarkers
that can identify potential responders to this specific treatment. Our present proteomic
studies suggest that selected proteins expressed by enriched AML cells may be useful
as potential biomarkers for susceptibility to chloroquine, and flow cytometric protein
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expression analysis of the AML cell population would then be a methodological approach
that is suitable for routine practice.

Bafilomycin 1A is a V-ATPase inhibitor that blocks the fusion between autophago-
somes and lysosomes [73,74]; chloroquine and bafilomycin 1A thus have common cellular
pharmacological effects despite having distinct molecular mechanisms. There was a signifi-
cant association between the antiproliferative effects of chloroquine and bafilomycin; an
observation suggesting that their common pharmacological effect on lysosomes/autophagy
is important for their antiproliferative activity in primary AML cells.

Analysis of the overall results showed that chloroquine decreased the constitutive
extracellular release of MMP-2, MMP-9, and cystatin-C whereas CCL2 levels increased.
Previous studies have also demonstrated that chloroquine affects the matrix metallopro-
teinase network [75] and can induce chemokine expression through NFκB activation [76].
However, the chloroquine effect on constitutive mediator release differed between indi-
vidual patients. First, a general increase in soluble mediator release was observed for a
subset of patients, whereas the other patients showed unaltered or decreased levels for
most mediators. Second, we examined the global gene expression profiles for 33 patients;
nine of which showed a generally higher mediator release after chloroquine exposure, and
these patients showed leukemic cell upregulation of several genes (SNX2, FLT3, PFKP, and
CCL23) involved in AML leukemogenesis (Figure S4). Third, a wide variation between
patients in their constitutive release profiles was maintained even after exposure to chloro-
quine (Figure S3). Thus, chloroquine can alter communication between AML cells and
neighboring AML-supporting non-leukemic cells and thereby have indirect effects on the
stromal cells in addition to its direct effects [17,77].

Chloroquine can have adverse effects on many cells and organs, including normal
hematopoietic cells [24]. Our present results show that chloroquine has antiproliferative
effects on both mononuclear UCBs and MSCs. Future clinical studies must address the
question of toxicity, especially hematological toxicity that often is dose-limiting in AML
therapy [1,3,4] and is particularly important for elderly patients with age-dependent
stem cell defects that become visible during stress, e.g., hematological regeneration after
cytotoxic anticancer treatment [78]. Possible strategies to increase anticancer efficacy
and/or decrease toxicity by chloroquine are the use of chloroquine analogs/hybrids or
nanoparticles for targeted delivery [79–81].

Several new therapeutic strategies targeting specific molecular mechanisms are emerg-
ing in AML, including kinase, IDH, and BCL2 inhibitors [1] together with inhibition of
autophagy. These approaches are also considered for combination therapy together with
intensive and potentially curative treatment, conventional disease-stabilizing therapy [1]
or new targeted therapies. Venetoclax combined with a demethylating agent or low-dose
cytarabine should probably be preferred for the treatment of AML in elderly and unfit
patients [82–89]. It will therefore be important to investigate both the efficacy and the
toxicity if chloroquine or other autophagy inhibitors are combined with venetoclax alone
or venetoclax plus a cytarabine/demethylating agent in future clinical studies.

Personalized or precision AML treatment is now regarded as a possible therapeutic
strategy in AML [90]. Our present study included a limited number of molecular genetic
markers. Future studies should try to clarify the possible role of autophagy inhibition
(e.g., chloroquine therapy) in future personalized AML therapy, i.e., whether inhibition
of autophagy is more effective for certain subsets of patients, and try to identify genetic
and/or proteomic biomarkers for susceptibility to autophagy inhibition.

5. Conclusions

Our study shows that direct antileukemic effects of chloroquine on AML cells were
observed for most patients, but only a subset of patients was highly sensitive to the drug
when tested at low concentrations. Furthermore, chloroquine seems to have additional
indirect effects on AML cells mediated by bone marrow stromal cells and also altered
the release of soluble mediators. Finally, there is a risk of direct toxicity of chloroquine
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against normal cells, including bone marrow toxicity. Our present results suggest that
chloroquine or chloroquine analogs should be further explored in AML, but future clinical
studies should focus on patient heterogeneity and identification of (protein) biomarkers
that are associated with chloroquine sensitivity. Personalized or precision therapy is now
considered in AML [90]. If chloroquine could be used in selected patients, as personalized
medicine, one would expect in vivo concentrations to have increased effectiveness with a
lower risk of severe dose-dependent toxicity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11080779/s1, Table S1. Clinical and biological characteristics of the AML patients included
in the present study. Table S2. Mutational analyses and the antiproliferative effects of chloroquine.
Table S3. A description of proteins with significantly different levels when comparing AML cells
showing strong and weak antiproliferative effects by chloroquine treatment. Table S4. A description
of proteins that show significantly different levels when comparing AML cells showing strong and
weak antiproliferative effects of chloroquine, a summary of the bioinformatical analyses. Table S5.
The complete list of 99 significantly increased genes (F-score > 1.0 and FC value > 1.0) for patient
samples with high sensitivity to chloroquine. Table S6. The complete list of 74 significantly increased
genes (F-score > 1.0 and FC value > 1.0) in patient samples with upregulated release of soluble
mediators after chloroquine treatment. Figure S1. The inhibitory effect of chloroquine (CQ) on
autophagy in AML cell lines. Figure S2. Profiling of gene expression data based on antiproliferative
effects of chloroquine on primary AML cells. Figure S3. Effect of chloroquine treatment on the
constitutive release of soluble mediators in AML cell cultures and in AML-MSC cocultures. Figure S4.
Gene expression profiles associated with levels of soluble mediators released by AML cells after
chloroquine treatment.
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