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Innate lymphoid cells (ILCs) are mostly tissue resident lymphocytes that are preferentially
enriched in barrier tissues such as the skin. Although they lack the expression of
somatically rearranged antigen receptors present on T and B cells, ILCs partake in
multiple immune pathways by regulating tissue inflammation and potentiating adaptive
immunity. Emerging evidence indicates that ILCs play a critical role in the control of
melanoma, a type of skin malignancy thought to trigger immunity mediated mainly by
adaptive immune responses. Here, we compile our current understanding of ILCs with
regard to their role as the first line of defence against melanoma development and
progression. We also discuss areas that merit further investigation. We envisage that the
possibility to harness therapeutic potential of ILCs might benefit patients suffering from
skin malignancies such as melanoma.
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INTRODUCTION

The family of innate lymphoid cells (ILCs) comprises a heterogeneous population of immune cells
harboring pleiotropic functions. Based on the expression of signature cytokines and an assembly of
transcription factors, they have been divided into five subsets, namely natural killer (NK) cells,
group 1 ILCs (ILC1s), ILC2s, ILC3s and lymphoid tissue inducer (LTi) cells (1). Accordingly, ILC1s
secrete type 1 cytokines such as IFN-g and TNF-a. They require the expression of T-bet, a T-box
transcription factor, for development and function, but unlike NK cells are not cytotoxic and can
develop in the absence of eomesodermin (Eomes), another T-box transcription factor that is
homologous to T-bet and essential for NK cell differentiation (1). ILC2s secrete type 2 cytokines,
including IL-4, IL-5 and IL-13 and depend on the expression of GATA3 and RORa (2, 3). Not least
of all, ILC3s and LTi cells produce IL-22 and/or IL-17 and require RORgt. LTi cells, however, also
produce lymphotoxin (LT), a member of the TNF family of cytokines and arise from a different
developmental pathway than ILC3s (1). It should be noted, however, that in the human peripheral
blood ILC3s are immature and rather represented by a population of ILC progenitors (ILCPs) (4).

The heterogeneity and diversity of ILCs might further increase owing to their plastic potential
(4–6). For example, the combination of IL-1b and IL-12 has been found to induce the
transdifferentiation of human ILC2s into IFN-g-producing cells resembling ILC1s (7). It has also
been demonstrated that IL-4 can reverse that phenotype converting cells reminiscent of human
ILC1s back to ILC2s (8). Recent study has also reported the transdifferentiation of human cutaneous
ILC2s into IL-17-producing cells resembling ILC3 (9). The plastic potential of ILCs might therefore
serve as an important feature of their ability to adapt rapidly to the fluctuating levels of
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environmental stimuli. A growing body of evidence indicates
that environmental stimuli ingrain the phenotype of ILCs and
thus their function (10, 11). With that in mind, ILCs have been
equipped with receptors to sample the environment and react
against threats to tissue integrity through the production of
cytokines and chemokines. They are promptly activated by
stress signals and various epithelial- and myeloid cell-derived
cytokines, rather than by antigens as T and B cells (12, 13).

Similarly to NK cells, ILC1s require IL-15 for their
development. Additionally, they are both activated by IL-12,
IL-18 and IL-15 (14, 15). Whereas IL-12 and IL-18 are secreted
by monocytes and activated DCs, IL-15 is produced by activated
monocytes and macrophages as well as a variety of non-
hematopoietic cells, including but not limited to epithelial and
fibroblast cell lines (15). ILC2s, on the other hand, respond
primarily to IL-33, IL-25 and thymic stromal lymphopoietin
(TSLP, combined with IL-33), which are produced by numerous
cell types (2, 3, 15, 16). For example, expression of IL-33 can be
found in epithelial and endothelial cells, smooth muscle cells,
fibroblasts, macrophages and activated DCs (15). Expression of
TSLP, however, typifies epithelial cells in the barrier tissues such
as the skin, whereas activated Th2 cells together with
macrophages, mast cells, eosinophils, basophils and fibroblasts
as well as skin epithelial cells, tuft cells, and endothelial cells
produce IL-25 (15). Last in order, ILC3s and LTi cells are
activated by IL-1b and IL-23 produced by activated DCs and
macrophages (17, 18).

In contrast to NK cells, which circulate in the body and are
particularly detected in the peripheral blood, the remaining
ILC subsets are mostly tissue resident and preferentially
enriched in barrier tissues such as the skin. The involvement
of NK cells in antitumor immunity is unquestionable (19–22).
Their abundance in the circulation correlates with decreased
metastatic potential in numerous human cancers (23, 24).
However, our understanding of the role and function of the
remaining ILC subsets in skin malignancies is still in its infancy.
The most aggressive form of skin cancer, melanoma, originates
in melanocytes, which are found in the skin, eyes and hair.
Although less common than squamous and basal cell carcinoma,
melanoma, if left untreated at an early stage, is far more perilous
because of its ability to spread more rapidly to distant organs.
Melanoma has been thought to trigger immunity mediated
mainly by adaptive immune responses. To what extent innate
immunity, and in particular, innate lymphoid cells impact
melanoma is not well understood. Here, we summarize recent
insights into the unique features and functions of ILCs pertaining
to their role in the protection from melanoma development and
progression. We also discuss areas that require further
investigation and highlight discoveries, which could have
implications for the development of new therapeutic strategies.
ILCs IN THE SKIN

The skin is the largest organ of the body (25). It provides thermal
insulation and physical protection from injury and infection.
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It also stores water, stacks the majority of the body fat and
produces vitamin D. The skin is composed of three anatomically
distinct layers: epidermis, dermis, and subcutis. The outermost
layer of the skin, epidermis, is composed of squamous and basal
cell keratinocytes, melanocytes as well as Merkel’s cells, which
serve as mechanoreceptors. Keratinocytes, which are the most
abundant cells within the epidermis, produce the key structural
material, keratin, as well as lipids responsible for the formation of
the epidermal water barrier. They are also responsible for
converting 7-dehydrocholesterol to vitamin D with the
assistance of ultraviolet B (UVB) light from the sun. UVB light
also stimulates melanocytes to secrete melanin, which is
responsible for the pigment of the skin (26). The middle and
by far the thickest layer of the skin, dermis (together with
epidermis called cutis), is primarily composed of fibroblasts but
also contains blood and lymphatic vessels, nerves as well as
epidermally derived appendages including hair follicles,
sudoriferous (or sweat) glands and sebaceous glands, which are
deeply integrated into the fabric of connective tissue. Connected
to epidermis and probably the most understudied is the deepest
layer of the skin, subcutis (sometimes referred to as hypodermis),
made of fat and connective tissue, which also contains extensive
vasculature. However, it should be noted that mouse and human
skin are quite distinct in terms of structure (27). Whereas, mouse
epidermis is usually composed of only 3 cell layers (< 25mm in
thickness), human epidermis is often formed of 6–10 cell layers
(> 50 mm in thickness) (27). Similarly, human dermis is much
thicker than mouse dermis. On the other hand, although thinner,
mouse skin has more densely distributed hair follicles and
contains a cutaneous muscle layer called, panniculus
carnosus (27).

The skin also represents a highly specialized immunological
niche with immune cells closely interacting with non-
hematopoietic parenchymal cells to ensure the maintenance of
the barrier function (25). For example, in an event of an insult,
non-hematopoietic parenchymal cells regulate recruitment,
activation and tissue residency of immune cells, whereas immune
cells secrete cytokines as well as growth factors necessary for the
prevention of infection and tissue reconstruction. Traversed by
blood and lymphatic vasculature, dermis contains most of
the immune cells in the skin, including several subsets of
dermal DCs, CD4+ and CD8+ T cells, gdT cells, B cells,
macrophages, basophils, eosinophils, mast cells and NK cells
(25). Accumulated evidence has demonstrated that ILCs,
which are preferentially enriched in the skin, play an important
role in barrier tissue immunity (28). Beside NK cells, ILC2s
were the first ILCs to be discovered in the skin, both in
mice and humans (29). Although ILCs can be detected in
epidermis and dermis, the majority were identified in the
deeper layer of the skin with ILC2s comprising 5-10% of all
CD45+ cells in mice (30). Recently, transcriptome analysis of bulk
and single-cell RNA-sequencing data demonstrated enrichment
of ILCs expressing genes associated with ILC2s (e.g. Gata3 and
Il5) in subcutis, whereas ILCs in epidermis were found to
predominantly express genes associated with ILC3s/LTi cells
(e.g. Rorc and Lta) but also ILC2s (e.g. Il13 and Il2). On the
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other hand, ILCs in dermis shared resemblance with ILCs from
epidermis and subcutis (31).

Tissue residency of ILCs in the skin might be governed by the
tissue-derived cytokines. For example, Il7-/- mice have been
found devoid of ILC2s in subcutis, whereas the number of
ILCs in epidermis and dermis was moderately reduced when
compared with wild-type mice. However, complete loss of ILCs
has been observed in the skin of Il7-/-Tslp-/- mice indicating
collaborative regulation of skin residency by IL-7 and TSLP (31).
The pattern of chemokine receptors expressed by ILCs might
also be involved in the regulation of tissue residency. For
example, ILCs that reside in the mouse epidermis express
CCR6, which serves as a receptor for CCL20 that is highly
expressed in the upper portion of the hair follicles (32). Hair
follicles have therefore been portrayed as epicenters that recruit
and position ILCs in the skin. It has also been demonstrated that
hair follicles provide cytokines such as IL-7 and TSLP, which
ILCs depend on for maintenance (33). Furthermore, ILCs
present in the skin-draining lymph nodes that express CCR10
have been found to migrate to the skin in a CCR10-dependent
manner (34).

From another angle, using mice expressing eGFP under the
control of the locus of CXCR6, an analysis of the potential
immunosurveillance activity in the skin revealed that ILC2s
patrol their environment with an average speed similar to that
of dermal DCs (i.e. 5 mm/min) (30). An analysis of the
interactions with other cell types demonstrated that ILC2s
strongly interact with mast cells and suppress IgE-dependent
cytokine production by mast cells through the release of IL-13
(30). However, human ILC2s have also been found to induce
strong proinflammatory responses following stimulation with
prostaglandin D2 (PGD2) produced by mast cells. Indeed,
activation of human ILC2s by PGD2 has increased their
migration and upregulated the expression of IL-33 and IL-25
receptor subunits (ST2 and 17A, respectively) as well as
induced production of type 2 and other cytokines such as
IL-3, IL-8, IL-9, IL-21, GM-CSF and CSF-1 (18). Of note, mast
cells are likely not the only source of PGD2. Although studied
not specifically in the skin, ILC2s and epithelial cells have also
been found to produce PGD2 (35–37).

The involvement of ILC1s and ILC3s in skin homeostasis
requires further investigation. It should be noted, however,
that ILC3s might play a critical role in the maintenance of
tolerance towards skin microbiota (38). Nevertheless, they
have also been associated with the development of psoriasis,
an immune-mediated chronic disorder of the skin (39–41).
ILCs AND SKIN WOUND HEALING

The skin has evolved precise and orderly mechanisms to close
breaches to its integrity in a process known as the wound healing
response. Human ILC2s isolated from the skin have been typified
by an increased gene expression of amphiregulin when compared
with those purified from blood. Since amphiregulin aids tissue
repair, it has been suggested that ILC2s in the skin are involved in
Frontiers in Immunology | www.frontiersin.org 3
wound healing response (42). This notion has recently been
supported by a study, which found that ILC2s are important in
the reepithelialization of cutaneous wounds. Indeed, elevated
numbers of ILC2s have been found at the site of injury five days
after wound induction. Importantly, impaired reepithelialization
accompanied by diminished numbers of activated ILC2s has
been observed in IL-33-deficient mice at the site of injury when
compared with wild-type mice. However, treatment with
recombinant IL-33 has significantly increased reepithelialization
five days after wound induction (43).

Additionally, presence of IL-17A, which is produced among
others by ILC3s, has also been found in human wounds.
Interestingly, delayed wound closure has been observed in
Il17a-/- mice (44). Although dendritic epidermal T cells
(DETC) have been portrayed as an important source of IL-17A
in the study, it is possible that ILC3s might also be engaged in the
wound healing response, since impeded wound closure has been
more pronounced in Il17a-/- mice when compared with Tcrd-/-

mice, which lack DETC (44). Indeed, it has recently been
revealed that damage to the skin activates Notch signaling,
which in turn, induces recruitment of RORg+ ILC3s through
the production of TNF-a. Additionally, RORg+ ILC3s have been
found to produce IL-17F and CCL3 (also known as MIP1a)
involved in the healing response through the regulation of
epidermal proliferation and macrophage recruitment into
dermis (45).

More than three decades ago, Dvorak suggested that
cellular and biochemical processes associated with wound
healing, although lost at the level of regulation, are
reminiscent of the tumor stroma development. He thus
coined the phrase that tumors are “wounds that do not heal”
(46). Although ILCs seem to play an active role in wound
healing, the nature of their responses in tumors has only
recently begun to be unveiled.
ILCs IN MELANOMA

NK Cells and ILC1s
Among all ILCs, NK cells are certainly the most extensively
studied mediators of immune responses against cancer (23, 47).
Responses against melanoma in particular have also been
detailed [Tarazona et al. for comprehensive review (19)].
Briefly, numerous studies have demonstrated that NK cells are
able to distinguish and destroy melanoma cells in vitro (19, 48).
The tumor suppressive role of NK cells has also been
demonstrated using variety of in vivo mouse models (19). Last
but not least, evaluation of NK cell alterations in melanoma
patients such as down-regulation of activating receptors and
exhaustion of NK cells has indicated establishment of escape
mechanisms by melanoma cells to evade NK cell-mediated
recognition and destruction (19, 20). Interestingly, the
abundance of CD56bright NK cells in the peripheral blood
obtained from late stage (III/IV) melanoma patients has
recently been found to negatively correlate with overall patient
survival (49).
October 2021 | Volume 12 | Article 758522
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The studies of NK cells have generally stressed their cytotoxic
role mediated by the release of cytotoxic granules containing
perforin (PFN) and granzyme B (GrB) or by the engagement
with death receptors that initiate caspase cascade. Portrayed as
the first line of defence, NK cells have been viewed as innate
immune cells that operate at an earlier stage than T and B cells.
However, involvement of NK cells in T cell-mediated immunity
has also been demonstrated (50, 51). Recently, NK cells have
been found to attract XCR1+ DCs that are critical for T cell–
mediated immunity to melanoma tumors through the secretion
of XCL1, XCL2 and CCL5 (51). NK cell frequency has also been
found to correlate with cross-presenting DCs in melanoma
tumors as well as with responsiveness to anti-PD-1
immunotherapy in patients and their increased overall survival
(50). A broader role for NK cells, beyond their direct cytotoxic
function, has therefore been proposed.

In contrast to NK cells, little is known about the role of ILC1s
in melanoma. Recently, enrichment of ILC1s, although with
impaired IFN-g production capabilities, has been observed in
both peripheral blood and tumor cell-infiltrated lymph nodes
from melanoma patients (52). Interestingly, IFN-g signaling in
cancer and immune cells has been found to oppose each other, in
order to develop a regulatory relationship that restrains both
innate and adaptive immune responses. Inhibition of tumor
IFN-g signaling has been found to decrease IFN-stimulated
genes (ISGs) in cancer cells and increase ISGs in immune cells
by enhancing IFN-g production by exhausted T cells. In tumors
with neoantigens or MHC-I loss, including melanoma,
exhausted T cells utilize IFN-g to stimulate maturation of
innate immune cells, more specifically, a population of
PD1+TRAIL+ ILC1s (53). The possibility to inhibit tumor
IFN-g signaling and, at the same time, disable an inhibitory
circuit impacting PD1 and TRAIL has been suggested to promote
innate immune killing.

ILC2s
Although the number of studies focusing on the role of ILC2s in
tumor immunity has increased, many aspects related to the
mechanisms behind their antitumor function still remain to
be clarified.

ILC2s have been associated with the induction of apoptosis
mediated through CXCR2 signaling in melanoma tumors
engineered to express IL-33 (54). Furthermore, ILC2s are
known to produce IL-5, which is essential for the expansion of
eosinophils, since its localized production stimulates tissue
eosinophilia (20, 55). In mice, ILC2s have been found to
maintain sufficient numbers of eosinophils in the lungs
through the production of IL-5 in response to melanoma
invasion. Additionally, genetic blockade or antibody-mediated
neutralization of IL-5 has been shown to impair eosinophil
recruitment into the lungs leading to an increased metastatic
dissemination of melanoma cells (56). Recently, ILC2-derived
granulocyte macrophage-colony stimulating factor (GM-CSF)
has been shown to contribute to the recruitment and activation
of eosinophils into melanoma tumors (57). Since ILC2s have
been found to express PD-1, the combination of anti-PD-1
blocking antibodies together with IL-33 improved anti-tumor
Frontiers in Immunology | www.frontiersin.org 4
responses through the expansion of tumor-infiltrating ILC2s
accompanied by eosinophils. Importantly, deletion of NK cells,
ILC1 and/or ILC3s had no impact on either tumor growth or
survival of the mice, suggesting that ILC2s play the key role in
restricting the development of melanoma tumors (57).

The exact role of eosinophils in melanoma remains to be
determined, however, increased tumor growth and metastatic
potential have been demonstrated following an antibody-
mediated depletion of eosinophils in IL-33-treated mice
bearing melanoma tumors (58). The cytotoxic activity of
eosinophils has been attributed to the secretory granules made
of major basic protein 1 (MBP-1) and MBP-2, eosinophil
cationic protein, eosin-derived neurotoxin, and eosinophil
peroxidase (55). Indeed, MBP+ eosinophils have been found to
clear metastatic melanoma cells in the mouse lungs, whereas the
lysates of MBP+ eosinophils have turned out cytotoxic in vitro
when co-cultured with cancer cells (59). Importantly, we have
observed a significant correlation between an overall survival and
the expression of IL-33 as well as an eosinophil marker SIGLEC8
in patients suffering from melanoma. It should be noted,
however, that the expression of IL-33 and SIGLEC8 has been
found to demonstrate different survival prognosis in diverse
types of cancer, with better survival outcomes in melanoma
patients but not in those with pancreatic adenocarcinoma and
lung squamous cell carcinoma (60). Increased median overall
survival has also been shown in patients with metastatic
melanoma presenting a high number of eosinophils in the
circulation during immune checkpoint blockade therapy (ICB).
Therefore, eosinophilia has been suggested to serve as a potential
prognostic marker for melanoma patients during ICB (61, 62).

A growing body of evidence indicates that immune cells can
also be influenced by the metabolism of cancer cells, and the
cellular and molecular mechanisms are only now becoming
determined (20). We have also found that the production of
lactic acid by melanoma cells greatly impairs eosinophil-
mediated antitumor response regulated by ILC2s. B16F10
melanoma tumors with diminished lactic acid production have
been found greatly growth delayed and highly infiltrated by
ILC2s accompanied by eosinophils following treatment with
IL-33. We have therefore identified lactic acid production by
melanoma cells as a plausible escape mechanism to evade
destruction mediated by ILC2s (60).

Additional studies are necessary to understand the mechanisms
involved in the shift of ILC2s from immunosurveillance to
immunosuppression associated with the promotion of tumor
growth and progression (20, 63).

ILC3s and LTi Cells
ILC3s have also been accredited a role in melanoma immuno
surveillance. For example, a treatment with cyclophosphamide
together with an antibody targeting a native melanoma
differentiation antigen, tyrosinase-related protein 1 (aTRP1),
has been found to inhibit the growth of B16F10 melanoma
tumors. It has also been demonstrated that the tumor-suppressing
activity of this combined therapy occurs independently of
adaptive immunity and NK cells, but is mediated via CD90
+NK1.1_ ILC3s associated with intratumoral macrophage
October 2021 | Volume 12 | Article 758522
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accumulation (64). Additionally, B16F10 melanomas engineered
to express IL-12 have been found to initiate local antitumor
immunity by stimulating NKp46+ ILC3s. Increased
accumulation of NKp46+ ILC3s has been associated with
enhanced infiltration of CD8+ and CD4+ T cells as well as NK
cells coupled with upregulation of adhesion molecules in the
vasculature of melanoma tumors. Although T cells have been
characterized as the dominant population of infiltrating
leukocytes, the growth of melanomas expressing IL-12 has
also been inhibited in Rag1-/- mice, which lack adaptive
immunity. Additionally, antibody-mediated depletion experiments
ruled out a strong contribution of NK cells in controlling the
growth (but not metastatic dissemination) of melanomas
expressing IL-12. It has therefore been suggested that NKp46+

ILC3s might play a significant antitumor role in the presence
of IL-12 (65).
Frontiers in Immunology | www.frontiersin.org 5
In another study, it has also been revealed that the tissue
microenvironment shapes the phenotype of ILC3s. Whereas
ILC3s isolated from the spleen have been able to suppress the
growth of B16F10 melanoma tumors expressing IL-12, intestinal
ILC3s have been found ineffective. Interestingly, transcriptome
analysis has revealed mutually exclusive gene expression
signatures between the splenic and intestinal ILC3s regarding
(but not limited to) leukocyte adhesion and activation. Increased
frequenciesof leukocyteshavebeenobserved inB16F10melanomas
engineered to express IL-12 and co-injected with splenic ILC3s
when comparedwith tumors co-injectedwith intestinal ILC3s (66).

The involvement of LTi cells in melanoma immuno
surveillance remains to be determined. However, it is tempting
to hypothesize that LTi cells might contribute to the formation
of tertiary lymphoid structures often observed in human
melanoma (67).
A

B

C

FIGURE 1 | ILCs in melanoma. (A) Schematic representation of cancer immunosurveillance by ILCs using mouse melanoma as a model. NK cells may induce
apoptosis in melanoma cells through the release of cytotoxic granules containing perforin and granzyme B as well as through the engagement of death receptor-
mediated pathways such as TRAIL and FasL. In addition, NK cells may recruit cDC1s to the tumor microenvironment by secreting XCL1/2 and CCL5 and may
support their survival and maturation. ILC1s may produce IFN-g, which exhibits direct antitumor activity or modulates activity of other immune cells. On the other
hand, ILC2s may attract and activate eosinophils through the production of IL-5 and GM-CSF. ILC2s may also induce tumor cell-specific apoptosis via the release of
CXCL1 and CXCL2. ILC3s may stimulate leukocyte recruitment to the tumor microenvironment through IFN-g-mediated upregulation of adhesion molecules ICAM
and VCAM. (B) Plastic potential of ILCs. Following stimulation with certain cytokines, growth factors or metabolites, ILCs exhibit potential for plasticity, although it
remains to be determined whether ILCs undergo such reversible transdifferentiation in melanoma. (C) Interactions with parenchymal cells as well as non-cytokine
factors in the skin. It remains to be deciphered whether ILCs interact with certain parenchymal cells as well as non-cytokine factors known to affect the function of
ILCs in other settings. FasL, Fas ligand; GrB, granzyme B; ICAM, intercellular adhesion molecule; Mf, macrophage; PFN, perforin; RA, retinoic acid; TRAIL,
TNF-related apoptosis-inducing ligand; VCAM, vascular cell adhesion molecule.
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CONCLUSION AND FUTURE PROSPECTS

The involvement of NK cells in antitumor immunity is
unquestionable, however, the role and function of other members
of the family of ILCs have only recently gained attention. Given the
preferential enrichment of ILCs in the skin, a deeper understanding
of their contribution to the development and progression of skin
malignancies is required. Indeed, a growing body of evidence
indicates that ILCs play a critical role in the control of melanoma
(Figure 1), a type of skin malignancy thought to trigger immunity
mediated mainly by adaptive immune responses. However, the
extent towhich ILCs are engaged in antitumor immunity in general
remains vague, as they have been separately associated with both
tumor-suppressing and tumor-promoting activities depending on
the context of tumor specificity (5, 20).

In order to improve our understanding of ILCs with regard to
their role in skin malignancies, it seems imperative to determine
how ILCs regulate healthy skin homeostasis. An increasing
degree of heterogeneity among ILCs also necessitates their
separate assessment in epidermis, dermis and subcutis.
Furthermore, studying the mechanisms by which ILCs
communicate with other non-hematopoietic parenchymal cells
such as keratinocytes, fibroblasts and adipocytes might help to
better understand the extent of their involvement in the
homeostatic and pathological states (Figure 1) (68–70).
Recently, it has been revealed that melanoma can arise from
melanocyte stem cells found in hair follicles apart from
melanocytes found in the bottom layer of epidermis (71).
Further investigation should focus on the involvement of ILCs
in the early stages of melanoma development. The same holds
true for their role and function in the primary site (i.e. skin) as
opposed to when confronted by metastases in another tissues.

Studying signals responsible for activation and inhibition of
ILCs during malignant development and progression might help
to preselect therapeutic targets. Currently, it is unknown how
many non-cytokine factors, including nutrients, short-chain
fatty acids and neuropeptides, which affect ILC function in
other settings, shape ILC responses in melanoma (Figure 1).
Three-dimensional (3D) spheroid-based in vitro models might
prove useful during analysis of interactions between ILCs and
malignant cells, since culture in 3D has been suggested to affect
the expression of molecules involved in melanoma recognition
Frontiers in Immunology | www.frontiersin.org 6
(72–74). Not less important is further investigation of
contribution of ILCs to other types of skin cancer, including
squamous and basal cell carcinoma, since most of the studies
(if not all) have utilized an injectable melanoma model. The
methods established so far to identify and characterize ILCs in
steady-state (e.g. single cell RNA-sequencing) might pave the
way to properly dissect their relevance in cancer. Sophisticated
imaging techniques might also allow us to better describe the
spatial location of ILCs in the primary and metastatic tumor
tissue. The role of specific subsets could be assessed using
genetically engineered mice specifically lacking one or the
other subset of ILCs. To this end, however, there is a need for
identification of unique and highly specific markers. Further
compounding the issue is the plastic potential of ILCs, which also
merits investigation (Figure 1) (5, 6).

Following clarification of the role of ILCs in the skin cancer,
translation of the results from mouse models to humans is
necessary to fully elucidate the role of ILCs in disease
pathogenesis as well as develop potential therapeutic strategies.
It remains to be seen whether we can exploit ILCs to maximize its
anticancer potential in the clinic.
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