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Dynamics in the rate of compositional change (rate-of-change; RoC), preserved in paleoecological sequences, are
thought to reflect changes due to exogenous (climate and human forcing) or endogenous (local dynamics and
biotic interactions) drivers. However, changes in sedimentation rates and sampling strategies can result in an un-
even distribution of time intervals and are known to affect RoC estimates. Furthermore, there has been relatively
little exploration of the implications of these challenges in quantifying RoC in paleoecology.
Here, we introduce R-Ratepol – an easy-to-use R package – that provides a robust numerical technique for detect-
ing and summarizing RoC patterns in complex multivariate time-ordered stratigraphical sequences. First, we
compare the performance of common methods of estimating RoC and detecting periods of high RoC (peak-
point) using simulated pollen-stratigraphical data with known patterns of compositional change and temporal
resolution. In addition, we propose a new method of binning with a moving window, which shows a more
than 5-fold increase in the correct detection of peak-points compared to the more traditional way of using indi-
vidual levels.
Next, we apply our new methodology to four representative European pollen sequences and show that our ap-
proach also performs well in detecting periods of significant compositional change during known onsets of
human activity, early land-use transformation, and changes in fire frequency.
Expanding the approach using R-Ratepol to open-access paleoecological datasets in global databases, such as
Neotoma, will allow future paleoecological andmacroecological studies to quantify major changes in biotic com-
position or in sets of abiotic variables across broad spatiotemporal scales.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Quantifying spatiotemporal changes in biological composition or di-
versity is essential for monitoring the current biodiversity crisis and for
disentangling underlying drivers such as climate, land-use change, pol-
lution, or introduction of invasive species, aswell as intrinsic population
dynamics driven by biotic interactions (e.g. Dodd et al., 1994; Dornelas
et al., 2014, 2013; Gotelli et al., 2010; Magurran et al., 2010; Monchamp
et al., 2018; Morecroft et al., 2009; Richardson et al., 2006; Silvertown
et al., 2006; Steinbauer et al., 2018; Wolfe et al., 1987). Therefore, the
importance of such ecological long-term observational studies
(50–100 years) is increasingly recognized (Dornelas et al., 2014, 2013;
Hillebrand et al., 2018; Magurran et al., 2019). Substantial composi-
tional change has been observed during recent decades (e.g. Feeley
et al., 2020; Steinbauer et al., 2018), the last few centuries (“The Great
. This is an open access article under
Acceleration”; Steffen et al., 2015), and during the Holocene as a result
of human impact or in response to regional climate change (Mottl
et al., 2021; Seddon et al., 2015; Shuman et al., 2005; Stephens et al.,
2019). However, similar rates of substantial change in composition
have also been detected on longer (102 to >107 years) geological time
scales (Kemp et al., 2015). To understand the impacts of humans, for in-
stance, on ecosystems it is essential to compare temporal changes in
species composition and diversity through human history and to inves-
tigate whether such changes are unique to the epoch of human impact
or whether they precede human-dominated systems (Birks, 1997; Birks
et al., 2016; Mottl et al., 2021; Nogué et al., 2021).

Assemblage data of paleoecological sequences of terrestrial and ma-
rine proxies (e.g. pollen, diatoms, chironomids, cladocerans, molluscs,
sediment chemical variables, etc.) are an exceptional resource for quan-
tifying spatiotemporal changes in biotic or abiotic composition and di-
versity beyond the time period of human observations. Rate-of-
change (RoC) analysis was introduced into paleoecology by Jacobson
and Grimm (1986) to quantify the rate and the magnitude of
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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compositional change within a Holocene pollen sequence. It was ex-
tended by Jacobson et al. (1987) to quantify and compare rates of
change within and between sequences (see also Grimm and Jacobson,
1992) in an attempt to identify regional-scale and local-scale patterns
in rates of change. RoC analysis estimates compositional change or tem-
poral beta-diversity between adjacent stratigraphical levels and hence
between times. Unlike other estimates of beta-diversity, RoC analysis
specifically estimates the magnitude of compositional change per unit
time. Therefore, an essential requirement in RoC analysis is a robust
age-depth model for the stratigraphical sequence of interest to obtain
the best available estimate of the age of levels within the sequence.

Despite the wide use of RoC analysis in paleoecology (e.g. Birks and
Ammann, 2000; Birks, 1997; Birks and Birks, 2008; Correa-Metrio et al.,
2012; Grindean et al., 2019; Laird et al., 1998; Solovieva et al., 2008;
Urrego et al., 2009), there has been relatively little exploration of theun-
derlying methodology of RoC analysis and how the various methodolo-
gies and sequence properties influence RoC estimates (but see Bennett
and Humphry, 1995; Birks, 2012; Lotter et al., 1992). Different ap-
proaches to estimate RoC (Bennett andHumphry, 1995; Birks, 2012) in-
volve choices in terms of approach and technique, such as transforming
the stratigraphical levels and associated assemblage data (using binning
or interpolation to constant time intervals), smoothing the data, and the
metric used to estimate the amount of compositional dissimilarity be-
tween adjacent levels (Birks, 2012).

The variety of approaches available to RoC analysis can, however,
create problems. First, Anderson et al. (2020) stress the sensitivity of
RoC to temporal sampling variationwithin and between records, conse-
quently hampering conclusive comparisons. Second, there has been a
lack of standardization between studies (i.e. incorporating different dis-
similarity metrics and temporal procedures) which means RoC out-
comes cannot be directly compared between sequences or studies
(Birks, 2012). Third, intrinsic properties of an individual sequence,
such as its taxonomic richness and the density and distribution of levels
within the sequence, can influence the estimated RoC. The end result is
that, since the expected patterns of RoC in a sequence are unknown, the
most appropriate choices ormethods to undertake RoC analysis are also
unknown (Bennett and Humphry, 1995; Birks, 2012).

Here, we present and evaluate the performance of R-Ratepol, a newR
package (R Core Team, 2018), for RoC analysis introducing a standard-
ized and robust method, which incorporates age uncertainties from
age-depth modelling as well as standardization of variable richness,
and hence current best practice, for estimating and comparing RoC esti-
mates within and between stratigraphical sequences. First, we present
the R-Ratepol and its capacities for data commonly used in paleoecolog-
ical studies. Second,we compare the performance of variousmethods of
estimating RoC using simulated pollen-stratigraphical data (Blaauw
et al., 2010) with known patterns of compositional change and resolu-
tion. In addition, we introduce a method for detecting ‘peak-points’, de-
fined as a rapid change in composition or relative abundances of
variables within the sequence, which provides an intuitive, much-
neededmeans to directly compare RoC between sequences and thus fa-
cilitates the interpretation of potential drivers of assemblage change on
a regional scale. We compare the effectiveness of our new method for
the successful detection of peak-points with commonly usedmethodol-
ogies which are also provided in R-Ratepol. Finally, we illustrate our
findings by estimating RoC values for four pollen palynological se-
quenceswith different densities of stratigraphical levels and pollen rich-
ness and link the observed patterns to known anthropogenic activities.
Our approach can provide important information for future paleoeco-
logical andmacroecological studies attempting to quantify, and then at-
tribute, major changes in biotic or abiotic composition across broad
spatial areas, and to compare the observed changes in recent decades
with changes that occurred within the Holocene or beyond (e.g.
Gibson-Reinemer et al., 2015; Mottl et al., 2021).

The term ‘assemblage’ is used through the text to refer tomultivariate
sets of biotic (pollen, macrofossils, etc.) or abiotic (sediment chemistry,
2

isotope ratios, etc.) variables studied in levels within a stratigraphical
sediment sequence.

2. Materials and methods

2.1. R-Ratepol

R-Ratepol (version 0.6.0) is written as an R package and includes a
range of possible settings including a novel method to evaluate RoC in
a single stratigraphical sequence using assemblage data and age un-
certainties for each level. There are multiple built-in dissimilarity coef-
ficients (DC) for different types of assemblage data, and various levels
of data smoothing that can be applied depending on the type and var-
iance of the data. In addition, R-Ratepol can use randomization, accom-
panied by use of age uncertainties of each level and taxon
standardization to detect RoC patterns in datasets with high data
noise or variability (i.e. numerous rapid changes in composition or
sedimentation rates).

The computation of RoC in R-Ratepol is performed using the follow-
ing steps (Fig. 1). Detailed descriptions of the underlying methods and
relevant formulae are given in the Supplementary Material:

1. Assemblage and age-model data are extracted from the original
source and should be compiled together, i.e. depth, age, variable
(taxon) 1, variable (taxon) 2, etc.

2. (optional) Smoothing of assemblage data: Each variable within the
assemblage data is smoothed using one of five in-built smoothing
methods: none, Shepard's 5-term filter (Davis, 1986; Wilkinson,
2005), moving average, age-weighted average, Grimm's smoothing
(Grimm and Jacobson, 1992).

3. Creation of time bins: A template for all time bins in all window
movements is created.

4. A single run (an individual loop) is computed:
a. (optional) Selection of one time series from age uncertainties

(see Section 2.1.1.2 on randomization)
b. Subsetting levels in each bin: Here the working units are de-

fined (WUs; see Section 2.1.1.1.)
c. (optional) Standardization of assemblage data in eachWU(see

Section 2.1.1.2 on randomization)
d. Calculation of RoC between WUs: RoC is calculated as the

dissimilarity coefficient (DC) standardized by age differences
between WUs. Five in-built dissimilarity coefficients are
available: Euclidean distance, standardized Euclidean distance,
Chord distance, Chi-squared coefficient (Prentice, 1980),
Gower's distance (Gower, 1971). The choice of DC depends
on the type of assemblage data (see Supplementary Mate-
rial). In addition, RoC between WUs can be calculated using
every consecutive WU, or alternatively, calculation of RoC
can be restricted to only directly adjacent WUs. Using the
former increases the number of samples for which RoC can
be calculated within a sequence, which varies in terms of
sample resolution, but may still introduce biases related to
the RoC estimation as a result of the varying inter-sample
distances.

e. The summary of a single run is produced based on all moving
windows.

5. Step 4 is repeated multiple times (e.g. 10,000 times).
6. Validation and summary of results from all runs of RoC calculation

are produced.
7. (Optional) Data beyond a certain age can be excluded (e.g. 8000 cal

yr BP for the pollen sequences in this study).
8. Detection and validation of significant peak-points. There are five

in-built methods to detect significant peak-points: Threshold, Linear
trend, Non-linear trend, first derivative of a generalized additive
model (f-deriv GAM; Simpson, 2018), and Signal-to-Noise Index
(SNI; Kelly et al., 2011).
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Fig. 1. Schematic visualization of RoC calculation in R-Ratepol using binning with a moving window approach. Methodological retails are provided in Section 2.1 and the Supplementary
Material.
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2.1.1. Specific methodological considerations

2.1.1.1. Selection of working units (WU; step 3). RoC is calculated between
consecutive Working Units (WU). Traditionally, these WUs represent
individual stratigraphical levels. However, changes in sedimentation
rates and sampling strategies can result in an uneven temporal
3

distribution of levels within a time sequence, which in turn makes the
comparison of RoC between sequences problematic. There are various
methods that attempt to minimize such problems. The first is interpola-
tion of levels to evenly spaced time intervals, and the use of the interpo-
lated data as WUs. This can lead to a loss of information when the
density of levels is high. Second is binning of levels: assemblage data
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are pooled into age brackets of various size (i.e. time bins) and these
serve asWUs. Here, the issue is a lower resolution ofWUs and their un-
even size in terms of total assemblage count (binswithmore levels have
higher assemblage counts). Third is selective binning: like classical bin-
ning, bins of selected size are created, but instead of pooling assemblage
data together, only one level per time bin is selected as representative of
each bin. This results in an even number of WUs in bins with a similar
count size in the assemblage. However, the issue of low resolution
remains.

Therefore, we propose a new method of binning with a moving win-
dow, which is a compromise between using individual levels and selec-
tive binning. This method follows a simple sequence: time bins are
created, levels are selected as in selective binning, and RoC between
bins is calculated. However, the brackets of the time bin (window) are
then moved forward by a selected amount of time (Z), levels are se-
lected again (subset into bins), and RoC calculated for the new set
of WUs. This is repeated X times (where X is the bin size divided
by Z) while retaining all the results.

R-Ratepol currently provides several options for selecting WU,
namely as individual levels, selective binning of levels, and our new
method of binning with a moving window.

2.1.1.2. Randomizations. Due to the inherent statistical errors in uncer-
tainties in the age estimates from age-depth and the assemblage
datasets (e.g. pollen counts in each level; Birks and Gordon, 1985),
R-Ratepol can be run several times and the results summarized (Steps
5–6). Therefore, two optional settings are available by using age uncer-
tainties and assemblage data standardization.

2.1.1.3. Age uncertainties (Step 4a). For each run, a single age sequence
from the age uncertainties is randomly selected. The calculation be-
tween two consecutive WUs (i.e. one working-unit combination) re-
sults in a RoC score and a time position (which is calculated as the
mean age position of the twoWUs). However, due to random sampling
of the age sequence, each WU combination will result in multiple RoC
values. The final RoC value for a single WU combination is calculated
as the median of the scores from all randomizations. In addition, the
95th quantile from all randomizations is calculated as an error estimate.

2.1.1.4. Data standardization (Step 4b). Variables (taxa) in the assem-
blage dataset can be standardized to a certain count (e.g. number of pol-
len grains in each WU) by rarefaction. Random sampling without
replacement is used to draw a selected number of individuals from
each WU (e.g. 150 pollen grains).

2.1.2. Detection of peak-points in RoC sequence (step 8)
A rapid change in composition or relative abundances of variables

within the sequence can provide a means of comparing RoC between
sequences and interpreting the potential drivers of assemblage change.
To detect such significant peak-points of RoC scores in each sequence,
each point is tested to see if it represents a significant increase in RoC
values. There are various ways to detect peak-points in a time series
and R-Ratepol is able to detect peak-points using five methods:

1) Threshold: Each point in the RoC sequence is compared to a median
of all RoC scores from the whole sequence (i.e. threshold value). The
ROC value for a point is considered significant if the 95th quantile of
the RoC scores from all calculations is higher than the threshold value.

2) Linear trend: A linear model is fitted between the RoC values and
their ages. Differences between themodel and each point are calcu-
lated (residuals). The standard deviation (SD) is calculated from all
the residuals. A peak is considered significant if it is 1.5 SD higher
than the model (this value can be selected by the user).

3) Non-linear trend: A conservative generalized additive model
(GAM) is fitted through the RoC scores and their ages (GAM =
RoC~s(age, k = 3) using the mgcv package (Wood, 2011).
4

The distance between each point and the fitted value is calculated
(residuals). The standard deviation (SD) is calculated from all the
residuals. A peak is considered significant if it is 1.5 SD higher
than the model (this value can be selected by the user).

4) F-deriv GAM: A smooth GAMmodel is fitted to the RoC scores and
their ages (GAM= RoC~s(age). The first derivative as well as con-
tinuous confidence intervals are calculated from the model using
the gratia package (Simpson, 2019). A peak is considered signifi-
cant if the confidence intervals of the first derivative differ from 0
(for more information see Simpson, 2018).

5) Signal-to-noise (SNI) method: We adapted SNI from Kelly et al.
(2011), which was developed to detect changes in charcoal strati-
graphical records. SNI is calculated for the whole RoC sequence
and a peak-point is considered significant if it has an SNI value
higher than 3.

2.2. Testing the successful detection of peak-points using simulated data

In order to compare the performance of various methods of estimat-
ing RoC, we used simulated pollen-stratigraphical data (Blaauw et al.,
2010) with known patterns of compositional change and temporal res-
olution to test the success of peak-point detection in the expected time
period of compositional change. In addition, we used a generalized lin-
ear mixed modelling approach to evaluate the effects of the different
R-Ratepol parameters. Finally, we performed a series of sensitivity
tests comparing the binning with the moving window approach to
other methods and to test the robustness of the RoC estimation.

2.2.1. Data simulation
We simulated pollen datasets following Blaauw et al. (2010) based

on generating pollen-assemblage data in response to known changes
in environmental conditions and compositional properties (Fig. S1).
We applied the following process of data generation: (i) the density of
levels from a European pollen sequence, Glendalough (Sequence A),
was used as a template for the number of levels and the corresponding
ages for each level; (ii) Pollen datawere created as abundance datawith
a total of 300 pollen grains in each level; (iii)We then adjusted the total
values of each simulated taxon so that the pollen assemblage resembled
a log-scale rank distribution; (iv) We added jitter (random noise) to
each of the pollen taxa (function jitter, factor = 1.5). All changes were
made in order to make the simulated data more similar to data from a
real-life study.

Two additional settings were altered during the simulation of the
datasets: (i) richness – low richness (LR) datasets contain 5 pollen
taxa, high richness (HR) datasets contain 50 pollen taxa; and (ii) position
of change in external environmental properties – late (L) has a sudden
increase of environmental properties at 2000 calibrated years before
present (1950 CE: cal yr BP) and a decrease at 3000 cal yr BP, early
(E) has a sudden increase at 5500 and a decrease at 6500 cal yr BP
(Fig. S1). This results in two abrupt changes in pollen composition in
each dataset. Note that the different timings of the change in environ-
mental properties (hereafter called ‘focal period’) were selected to illus-
trate the effects of level density (datasets with the early change have a
low density of levels within the focal period and datasets with a late
change have a high density). The combination of these two settings re-
sults in four types of simulated datasets: low richness – late change (LR-
L), low richness – early change (LR-E), high richness – late change (HR-L),
and high richness – early change (HR-E).

2.2.2. Using the simulated datasets to test analytical performance of RoC
methods with different settings

To investigate the differences between the various settings in RoC
methods, we simulated 100 datasets for each dataset type (LR-L, LR-E,
HR-L, HR-E; see previous section), and compared the success rate of de-
tecting peak-points in the expected time period for all combinations of
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(i) WU selection, (ii) smoothing method, (iii) dissimilarity coefficient,
and (iii) peak-point detection.

We tested three types of WU selection (individual stratigraphical
levels, selective binning, and binning with a moving window; RoC esti-
mation was restricted to only directly adjacentWUs in all calculations),
five types of smoothingmethods (none, Shepard's 5-term filter, moving
average, age-weighted average, Grimm's smoothing), two types of dis-
similarity coefficients appropriate for closed compositional data
(Chord distance, Chi-squared coefficient), and five types of peak-point
detection (Threshold, Linear trend, Non-linear trend, f-deriv GAM,
SNI). Of these, all the methods are well established, with the exception
of i) binning with a moving window, ii) threshold, iii) linear trend, and
iv) non-linear trend, which are new methods developed here. In addi-
tion, we did not include Euclidean and standardized Euclidean dissimi-
larity coefficients in the calculation, as they are not appropriate for
percentage pollen data (Prentice, 1980).

For each simulated dataset, we calculated RoC using combinations of
all WU selections, data smoothing, dissimilarity coefficient, and peak-
point detection method (150 different settings in total). R-Ratepol has
been set up with standardization of pollen assemblage data to 150 pol-
len grains in each WU and 100 randomizations per calculation. The
number of randomizations is not higher due to high computational de-
mands (60,000 RoC calculations, each with 100 randomizations). Ran-
domizations are in place only for taxon standardization as no age
uncertainties have been used in this example. We then extracted
(i) the number of WUs where R-Ratepol detected a significant peak-
point during the focal period (± 500 yr), and (ii) the number of levels
where R-Ratepol detected a peak-point during a time of no expected
change (‘false positives’). We transformed these numbers of peak-
points into ratios of points detected to total points in the area (inside
or outside focal period; see Figs. S2 and S3 for examples of differences
in successful peak-point detection between different WU selection
method and peak-point detection methods).

2.2.2.1. Statistical tests to evaluate RoC options. First, we tested if the var-
ious WU selection methods affect the successful detection of peak-
points within the focal period. We pooled all RoC calculations from all
dataset types and created generalized linear mixed models using the
Template Model Builder (Brooks et al., 2017) glmmTMBsuccess−method

with the ratio of WU marked as peak-points to all WUs in the focal pe-
riod (Rsuccess−method) as the dependent variable with a beta error distri-
bution. Independent variables were: WU (3 level factor), peak-point
detection method (5 level factor), dataset type (4 level factor), and all
their interactions. Individual dataset ID and RoC setting (factor combin-
ing smoothing method and DC; 10 levels) were selected as the random
factors. We then used the dredge function from the MuMIn package
(Barton, 2020) to fitmodelswith all possible combinations of predictors
(with a constraint that dataset type must be present), and ordered the
models by parsimony (assessed by the Akaike information criterion;
AICC). We only selected the best model if ΔAICC (i.e. delta in the
MuMIn package) is <2. In the case where multiple models had similar
parsimony, we selected the best model using the compare_performance
function from the performance package (Ludecke et al., 2020). We then
used the emmens package (Russell, 2020) to obtain estimated marginal
means and the 95th quantile of the independent variables from the final
model. Similarly, we built glmmTMBFalsePositive−method using the ratio of
WUs marked as peak-points to all WUs outside the focal period
(RFalsePositives−method).

Next, for a more detailed exploration of different settings in
R-Ratepol, we divided the data to only include the best performing
WU selection and peak-point detection combination (i.e. binning with
a moving window and non-linear trend peak-point detection, see Re-
sults) and created glmmTMBsuccess−detail and glmmTMBFalsePositive−detail

with Rsuccess−detail and RFalsePositives−detail as the dependent variables, re-
spectively. Both models were fitted with a beta error distribution and
the independent variables are data-smoothing type (5 level factor),
5

dissimilarity coefficient (2 level factor), position of environmental
change (i.e. density of levels; 2 level factor), richness of dataset
(2 level factor), and all their interactions. Individual dataset ID
was selected as a random factor. As before, the dredge and
compare_performance functions were used to select the best model
and reduce unnecessary predictors.

2.2.3. Sensitivity analyses
We conducted a series of analyses to comparemethods ofWU selec-

tion (individual stratigraphical levels, selective binning, and binning
with a moving window) and to test the robustness of results using sce-
narios of: (i) changing size of time bin, (ii) various level resolutions, (iii)
hiatus between levels, and (iv) missing levels from the top of the se-
quence. For this purpose, we used a European pollen sequence,
Glendalough (Sequence A, see Section 2.3), with its assemblage data
smoothed using age-weighted average, because it represents a se-
quence with one of the main challenges represented in RoC estimation,
i.e. varying sample resolution across the record. First, to the test of vary-
ing bin sizes (i), we used binningwith amovingwindow and estimated
RoC using time bin sizes ranging from 100 to 3000 yr. Second, to test the
effect of levels resolution on our RoC estimation (ii), we created a series
of datasetswith varying level resolution, starting from the full dataset to
a dataset with an inter-level distance of at least 500 yr. We then esti-
mated RoC for each of those datasets using three methods of WU selec-
tion (individual stratigraphical levels, selective binning, and binning
with amovingwindow). Since the length of the time bin has to be larger
than the inter-sample distance to estimate RoC, we selected a time bin
of 1000 yr. Third, for the test of the effect of a hiatus in the levels (iii),
we created a series of datasets and manually implemented hiatuses of
various length starting from full dataset to hiatus of 2000 yr. All hiatuses
began at 3000 cal yr BP. The size of the time bin was selected at 500 yr.
Finally, for the test of missing levels from the top of the sequences (iv),
we followed similar methodology as in (iii) but levels were removed
starting from the top of the sequence. All RoC scores are expressed as
dissimilarity per 500 yr. The option to only calculate RoC between
non-adjacent units was turned off for these sensitivity analyses. Note
that repeating these sensitivity tests with this option turned on gave
overall similar results.
2.3. Examples of rate-of-change results using empirical palynological data

After assessing the differences between the individual settings of
R-Ratepol based on the results from the simulated datasets, we exam-
ined the RoC estimates for real palynological data representing different
pollen richness and composition, and different density of levels.We ob-
tained the pollen data from the Neotoma database (Williams et al.,
2018) using the Neotoma R package (Goring et al., 2015). We chose
four European sequences (A–D; Fig. 2).

In each sequence, taxa were harmonized to the taxonomically
highest pollenmorphotype (Level =MHVar2) using the pollen harmo-
nization table in Giesecke et al. (2019). To develop age-depth models,
we used the pre-selected radiometric control points provided in
Giesecke et al. (2013) and calibrated the radiocarbon dates using the
IntCal13 Northern Hemisphere calibration curve (Reimer et al., 2013).
For each sequence, we constructed an age-depth model using the
Bchron R package (Haslett and Parnell, 2008) to generate 1000 possible
age estimates for all sample levels at the sampling resolution of the orig-
inal pollen sequences. We used these 1000 draws to build posterior es-
timates of age uncertainty. We calculated the median-age estimate for
each sample level to obtain the default age used in subsequent analyses.

In each sequence, we excluded all levels that contained less than 150
pollen counts of terrestrial taxa, and all levels beyond a 3000-year ex-
trapolation of the oldest chronological control point. In addition, we ex-
cluded all levels with an age older than 8500 cal yr BP to ensure a focus
on the period with detectable human impact.
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Sequence A is from Glendalough, Ireland (53°00′10.0”N 6°22′
09.0”W; Neotoma dataset id = 17,334; Haslett et al., 2006). It has a
very uneven distribution of levels (N = 102) with the highest density
around 2000 cal yr BP (Fig. 2A). The sequence contains 80 pollen taxa
with abundant Corylus, Quercus, Alnus, Betula, and Poaceae. Cyperaceae,
Poaceae, and Ericales all increase in the last 1000 cal yr BP, preceded by a
period with high values of Quercus, Betula, and Alnus until ~5000 cal yr
BP. Before 5000 cal yr BP the sequence has large variations in Pinus, an
increase of Alnus, and a large decrease in Corylus. Sequence B is from
DallicanWater, Scotland (60°23′14.5”N 1°05′47.3”W; Neotoma dataset
id = 4012; Bennett et al., 1992). It has a relatively even distribution of
levels (N=63; Fig. 2B) and contains 50 pollen taxawith Ericales, Betula,
and Poaceae being themost abundant. The pollen record shows sudden
increases of Ericales after 4000 cal yr BP. Sequence C is from
Steerenmoos, Germany (47°48′20.0”N 8°12′01.6″E; Neotoma dataset
id = 40,951; Rösch, 2000). It is an example of a very detailed sequence,
but with an uneven distribution of levels (N = 273; Fig. 2C). The se-
quence contains 103 pollen taxa with Abies, Fagus, Corylus, Betula, and
Quercus being the most abundant. As with Sequence A, the pollen stra-
tigraphy can be separated into three major parts: (i) a recent period
until 1000 cal yr BP typified by high values of Pinus; (ii) 2000–6000
cal yr BP characterized by Abies and Fagus; and (iii) 6000 cal yr BP to
the base with abundant Betula, Corylus, and Quercus. Sequence D is
from Alanen Laanijärvi, a boreal-forest lake in Swedish Lapland
(67°58’N 20°29’W; Neotoma dataset id = 45,314; Heinrichs et al.,
2005). It is an example of a sequence with 54 levels across the time of
interest, containing 44 pollen taxa with a high abundance of Pinus and
Betula throughout the whole sequence (Fig. 2D).

We calculated RoC scores for the four selected European sequences
(A–D) using all threemethods ofWU selectionwith age-weighted aver-
age smoothing and Chi-squared coefficient as the dissimilarity coeffi-
cient. A non-linear trend peak-point detection was used in each
6

sequence, the number of randomizations was set to 1000, and the size
of time binwas selected as 500 yr (see Fig. S4 for an example of changes
of RoC valueswith the size of time bin). RoC estimationwas restricted to
only directly adjacent WUs in all calculations.

In addition, to provide examples of the differences between different
settings of R-Ratepol, we explored data from sequence A using binning
with the moving window method of WU selection and calculated RoC
scores for all combinations of five smoothing methods and two dissim-
ilarity coefficients (Chi-squared, Chord distance).

3. Results

3.1. Comparison of success rates in peak-point detection for simulated
datasets

Successful detection of peak-points (Rsuccess−method) and the number
of incorrectly (false positives) detected peak-points (RFalsePositives
−method) are both significantly affected byWU selection and themethod
of peak-point detection (Fig. 3; see Table S1 and Table S2 for the AICC of
all models). For detecting peak-points successfully within the focal pe-
riod, our approach of binningwith amovingwindow results in an over-
all better performance in successful peak-point detection than theuse of
individual levels or binning (effect of successful detection increases by
more than 5-fold and 3-fold, respectively; Fig. 3A). Simulations show
that the non-linear trend method performs best in detecting peak-
points within the focal period (16% higher than the second-best, the
linear trend method; Fig. 3B), and detects a similar amount of false
positives compared to the other peak-point detection methods (with
the exception of the first derivative of a GAM (GAM first deriv), which
detects 76% more false positives).

While using only the binning with the moving-window approach
and the non-linear trend method for peak-point detection, the
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successful detection of peak-points (Rsuccess−detail) and the number of
false positives (RFalsePositives−detail) are both influenced by the density of
levels, type of dissimilarity coefficient, and data-smoothing type
(Fig. 4; see Tables S3, S4, S5, and S6 for the best selected models).
Using Chi-squared coefficient as the dissimilarity measure results in a
similar number of correctly detected peak-points as Chord distance
does on average (Fig. 4; Fig. S5A). The level of smoothing has, on aver-
age, a similar effect on the successful detection of peak-points
(Fig. S5B). However, due to the interaction between smoothing and
the position of environmental change, data smoothed using an age-
weighted average andGrimm's smoothingwere themost successful ap-
proaches (Fig. 4). The number of false positives is similar among the
smooth methods. The datasets with an assemblage change which oc-
curred during a time period characterized by a high density of levels
(i.e. late environmental change) show, on average, a 24% lower success
of peak-point detection and a 100-fold higher false positive detection
than datasetswith a change at the time of a lowdensity of levels (i.e. en-
vironmental change early in the sequence; Fig. S4C). Richness of pollen
does not show a significant effect on the detection of peak-points (note
that assemblage data standardization was used for all computations).

3.2. Examples of rate-of-change results using real palynological data

The selection of WUs affects not only the overall shape of the RoC
curve in all sequences but also the timing of the period of significant in-
crease in RoC (Fig. 2). Binningwith amovingwindowdetects significant
periods of increased RoC scores at sequence A (Glendalough) for
5300–4600 cal yr BP; sequence B (Dallican Water) for 1500–1400,
3600–3500, and 6600–6400 cal yr BP; sequence C (Steerenmoos) for
6500–6100 cal yr BP; and sequence D (Alanen Laanijärvi) for 550,
4100, and 5300–5000 cal yr BP (Fig. 2). The binning method shows rel-
atively similar patterns and position of peak-points (except for
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sequence D). Using individual levels asWUs (Fig. 2. ‘RoC-levels’) results
in very different positions of peak-points, a different scale of RoC values,
and a different shape of the RoC curve with wide error intervals.

3.3. Sensitivity tests

3.3.1. Effects of time-bin size (Fig. S4)
Changing the time-bin size overall affects the RoC score, with an in-

creasing mean RoC with decreasing size of time bins. In general, except
for the extremes (bin size of 2000 years), the same overall features of
the pollen-assemblage changes are expressed by the different bin
sizes, although the overall RoC patterns shift through time as the
mean-age for the first sample increases with increasing bin size. At
the smallest bin size (100 years), the changes in the top of the record
are amplified. Note that applying the same sensitivity test to an RoC es-
timation, where non-adjacent WU were used to estimate RoC also re-
veals a trend in the overall RoC magnitude. Nevertheless, the overall
patterns in RoC using this option are similar, especially when rescaled
to the same unit mean and variance. Overall, these results indicate the
importance of using the same binning size for all sequences when com-
paring RoCs between multiple sequences.

3.3.2. Effects of changing the level resolution (Fig. 5)
Changing the effect of level resolution has the largest effect on RoC

estimation if no binning procedure is applied. As sample resolution re-
duces, RoC scores estimated without any binning result in large differ-
ences in RoC estimations across the record. For example, the high RoC
scores between 2000 and 3000 yr cal BP (mainly the result of reduced
inter-levels temporal distance) are gradually reduced relative to other
periods in the record. In contrast, RoC estimates using binning with a
moving window and the binning approaches result in relatively stable
RoC curves irrespective of level resolution, although a number of



Fig. 4. Comparison of peak-point detection rates using binningwith amovingwindowandnon-linear peak detectionmethod. Smoothingmethods: None=datawithout smoothing, Shep
= Shepard's 5-term filter, M_avg = moving average, Age_w = age-weighted average, Grimm = Grimm's smoothing. Dissimilarity coefficients: Chord = Chord distance, Chisq = Chi-
squared coefficient. For a detailed explanation of the methods, see Supplementary Material.
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peak-points are detected in the top of the sequence in the moving-
window approach, whilst the peak-points are not detected at the top
of the sequence when the standard binning approach is used. Here the
patterns in RoC from the two binning approaches generally reflect the
8

overall patterns of assemblage change as observed in the sediment re-
cords (i.e. the expansion of Alnus and corresponding decrease in Pinus
pollen at 5000 years, and an increase in the relative abundances of
Poaceae, Cyperaceae, and Ericales in the last 1000 years).
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3.3.3. Effects of hiatuses (Figs. S6 and S7)
The effects of introducing a hiatus in levels at 2000 years has no ef-

fect on the RoC estimation for parts of the sequence, where hiatuses
are not present, for both the moving window and binning approaches.
Similarly, binning approaches reveal consistent results when dealing
with hiatuses found at the beginning of the sequence: For both moving
window and binning approaches, the RoC estimates are consistent irre-
spective to the number of levels removed from the beginning of the
sequence.

4. Discussion

Based on the results of our simulations, we have shown that the
choice of methods and parameters is critical in the analysis of rate-of-
change. Comparison of methods using simulated datasets shows that
selection of WUs, peak-point detection method, dissimilarity coeffi-
cient, smoothing of the data, and the density of the levels in the period
of environmental change significantly influence the detection of sudden
changes in pollen stratigraphical sequences. Our proposed method of
binning with a moving window in combination with a non-linear
trend peak-point detection method improves such detection of an in-
creasedRoC. Themethod showsmore than a 5-fold increase in the effect
of correct detection of peak-points compared to themore traditional ap-
proach of selection by individual levels. Peak-point detection using a
non-linear trend provides a reasonable compromise between statistical
error Type I (linear trend and threshold method) and Type II (SNI
method). In addition, binningwith amovingwindow can effectively de-
tect peak-points in a scenario with varying level resolutions (Fig. 5) and
produces stable results even when a level hiatus is present in the se-
quence (Figs. S6–S7).

There is little difference between using Chi-squared coefficient
or Chord's distance as the dissimilarity coefficient for pollen
9

compositional data, and we therefore recommend using both for pa-
leoecological data sequences that are expressed as percentages or pro-
portions and that contain many zero values. However, R-Ratepol is
created as modular tool and can be used for many different paleo-
proxies present in sedimentary sequences. Euclidean distance (see
Supplementary Material) is appropriate for absolute assemblage data
such as pollen concentrations or pollen accumulation rates (e.g.
Peglar, 1993; Peglar and Birks, 1993). Such data may require a log-
transformation prior to calculating the Euclidean distance between
levels or WUs. Standardized Euclidean distance (see Supplementary
Material) is appropriate when the variables in an assemblage are
expressed in different units, such as geochemical, isotope, and sedi-
ment variables (e.g. Bakke et al., 2009; Birks and Birks, 2006; Nesje
et al., 2014). Gower's (1971) distance is appropriate for assemblage
data consisting of different numerical types (continuous quantitative,
qualitive, binary) such as plant macrofossil data (e.g. Birks, 2014).
For more detailed information about the selection of different dissim-
ilarity coefficients in various multivariate data, see Prentice (1980)
and Legendre and Legendre (2012).

Recommendation of a specific smoothing technique of data is less
straightforward. Of course, there is a trade-off between the potential
loss of information by smoothing the data and the incorrect attribution
of noise (for example from sampling error) as signal. Our simulation ex-
periments show that while using only binning with a moving-window
approach and the non-linear trend method for peak-point detection,
data with age-weighted average and Grimm's smoothing perform the
best (Fig. 3). However, detailed exploration of the RoC pattern in a
real pollen sequence (sequence A; Fig. S8) shows that all smoothing
methods result in a similar RoC curve and position. Therefore, there is
a need for critical evaluation in future studies to assess the risks of
using data smoothing, depending on the density of levels and the re-
search questions of interest.



O. Mottl, J.-A. Grytnes, A.W.R. Seddon et al. Review of Palaeobotany and Palynology 293 (2021) 104483
A multitude of appropriate data-smoothing approaches (Wilkinson,
2005), dissimilarity coefficients (e.g. Legendre and Legendre, 2012;
Prentice, 1980), techniques for creating WUs, and methods of peak-
point detection (e.g. Simpson, 2018) are potentially available. Of the
two selected dissimilarity methods and five smoothing algorithms, all
commonly used in paleoecology, our model results show that datasets
with a high density of levels tend to have a lower chance of successfully
detecting peak-points when using binning with a moving window and
the non-linear trend method for peak-point detection (Fig. S3C). How-
ever, this is probably caused by our method of success assessment. Bin-
ning with a moving window results in the correct detection of peak-
points in the expected period but there is also a high number of points
not identified as peak-points, due to the higher resolution of the curves
and themethod being able to detect the peak-point increasesmore pre-
cisely (Fig. S2). Therefore, we do not see this as a disadvantage of the
method. Traditional methods of using individual levels are more drasti-
cally affected by the sample density, as more levels in the sequence re-
sult in a higher chance of a very high RoC score only due to a higher level
density. This pattern can be observed in sequence A (Glendalough) and
C (Steerenmoos), where peak-points were detected in periods with an
increased density of levels. Anderson et al. (2020) reached similar con-
clusions (high density of levels is recommended to successfully detect-
ing RoC patterns) in a regional-scale synthesis of fossil pollen data from
California. Here these authors suggest maintaining a consistent tempo-
ral spacingwithin records, and the use of probabilistic models explicitly
incorporating age-model uncertainties to increase the precision of age
estimates of each level. We show that our method of binning with a
moving window (which does not require a consistent temporal spac-
ing) yields even better results than the traditional use of individual
levels or binning, and has an advantage here as age-model uncertainties
can be incorporated. A sensitivity analyses on sequence A (Fig. 5) con-
firms that the method of binning with a moving mowing is better at
dealing with an uneven level density, even with decreasing resolution.
This method is able to detect peak-points in sequences with a very
low level resolution and does not show false positives where there is a
very high level resolution (Fig. 5). Nevertheless, it remains important
to standardize the length of working units if working across multiple
cores (Fig. S4).

RoC analysis has several applications in paleoecological research. It is
a useful numerical tool to detect patterns in stratigraphical data that
cannot readily be seen by visual inspection (see Jacobson et al., 1987
for an example at Gould Pond, Maine). It is also useful to compare the
rates of change in different proxies (pollen, diatoms, chironomids,
etc.) studied in the same stratigraphical sequence (e.g. Birks and
Ammann, 2000; Szabó et al., 2020). Moreover, it is most useful when
RoC results are compared from several sequences (e.g. Grimm and
Jacobson, 1992; Jacobson et al., 1987; Mottl et al., 2021). Consistent pat-
terns in RoC peaks in several sequences may potentially indicate re-
sponses to exogenous drivers such as regional climate change,
pathogenic attacks, or widespread human activity (Mottl et al., 2021).
Ecologists are recognizing the importance of quantifying RoC of envi-
ronmental drivers such as temperature, toxins, and salinity on ecosys-
tems (Pinek et al., 2020) and are developing new and powerful
numerical tools for space–time analysis of community compositional
data over time intervals of decades (e.g. Legendre and Gauthier,
2014). RoC peaks unique to individual sequences may, in contrast, re-
flect local endogenous factors such as sediment reworking or natural
disturbance.

A connection between RoC and local factors can be seen in the se-
quences used in this study (Fig. 2). Sequence A (Glendalough) shows
significant peak-points at the time of the onset of human activity and
the expansion of grassland and heath (Haslett et al., 2006). Sequence
B (Dallican Water) has significant peak-points at times when major
changes in land-use occurred as the island was abandoned by humans
and then reinhabited 800 years later (Bennett et al., 1992). Sequence
C (Steerenmoos) has several significant peak-points at the time of the
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expansion of Abies pollen in the late Neolithic period and with frequent
fires (Rösch, 2000). Sequence D (Alanen Laanijärvi) has significant
peak-points in the very recent period, possibly associated with changes
in organic deposition, fertilization, and timber harvesting (Heinrichs
et al., 2005). Here we can assume that our approach of binning with a
moving window is closest to the expected pattern, further supported by
the relatively high, successful detection of peak-points in the simulated
datasets (Fig. 3, Fig. 5). In contrast, the traditional use of individual levels
fails to detect the periods of significant change, or falsely assigns peak-
points to other, non-relevant periods, or a combination of both (Fig. 2,
Fig. 5). Some of these errors occur, as expected, with a low density of
levels. These sequences and the RoC outcomes exemplify the usefulness
of quantifying rates of compositional change estimated through time.

In summary, we have developed a framework for the robust estima-
tion of rate-of-change in stratigraphical time-ordered sequences of ter-
restrial and marine paleoecological datasets. Our overall framework
consists of four major parts:

1. Establishing a robust age-depth model for the stratigraphical se-
quence of interest with age uncertainties for all individual levels.

2. Selecting consecutive working units prior to RoC estimation to
allow for uneven temporal distribution of the analyzed levelswithin
the sequence using selective binning with a moving window.

3. Estimating compositional dissimilarity between working units.
4. Detecting statistically significant peak-points in the RoC estimates

within the sequence.

Given the various choices of coefficients, methods, and evaluations
in RoC analysis, it is essential when presenting RoC results for strati-
graphical assemblage data to document what choices were made.
There are, aswe have shown,many decisions in RoC analysis. Publishing
plots of ‘Rate of Change’ with no explanation about what choices were
made in the RoC analysis should be strongly discouraged (cf. Abrook
et al., 2019).

Our RoC analysis approach as implemented in R-Ratepol is, we pro-
pose, a significant improvement over existing methods for RoC analysis
that do not incorporate methods to detect statistically significant peak-
points (Birks, 2012). In addition, R-Ratepol, used with an appropriate
dissimilarity coefficient, can be used to estimate RoC for various
types of proxies such as pollen, diatoms, chironomids, cladocerans,
molluscs, and sediment chemical variables, among others. Therefore,
R-Ratepol is, we believe, a powerful and much needed addition
to the toolkit of robust numerical techniques available to paleoecolo-
gists and paleolimnologists for detecting and summarizing patterns
in complex multivariate time-ordered stratigraphical sequences
(Birks, 2010, 1997).
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