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Abstract: Bio-based composite films have been widely studied as potential substitutes for conven-
tional plastics in food packaging. The aim of this study was to develop multifunctional composite
films by introducing cellulose nanofibers (CNF) and lignin into starch-based films. Instead of costly
and complicated chemical modification or covalent coupling, this study optimized the performance
of the composite films by simply tuning the formulation. We found that starch films were mechan-
ically reinforced by CNF, with lignin dispersing as nanoparticles embedded in the matrix. The
newly built-up hydrogen bonding between these three components improves the integration of the
films, while the introduction of CNF and lignin improved the thermal stability of the starch-based
films. Lignin, as a functional additive, improved hydrophobicity and blocked UV transmission. The
inherent barrier property of CNF and the dense starch matrix provided the composite films with
good gas barrier properties. The prepared flexible films were optically transparent, and exhibited
UV blocking ability, good oxygen-barrier properties, high hydrophobicity, appreciable mechanical
strength and good thermal stability. These characteristics indicate potential utilization as a green
alternative to synthetic plastics especially for food packaging applications.

Keywords: cellulose nanofibers; starch; lignin; composite film; high performance

1. Introduction

Synthetic polymers, especially petroleum-based plastics as food packaging materials,
play critical roles in our daily life and the development of society. However, due to inherent
non-degradability in nature, plastics cause serious land and marine pollution, threatening
the health of humans and other animals [1]. Nevertheless, finding suitable replacements
for synthetic plastics is still a challenge [2]. Recently, many bio-based materials have been
chosen as potential candidates to replace synthetic plastics due to their abundance, low
cost, renewability and biodegradability [3]. Starch, cellulose and lignin are three such
biopolymers that are currently under intensive investigation.

Starch is composed of glucose units with α-1,4 linkages. It is a low cost material
and abundantly available in large quantities from several renewable plant sources [4].
Starch often appears in a mixture of two glucosidic macromolecules with a difference
in structure and properties: largely linear amylose of molecular weight between 1000
and 1,000,000, consisting of α-(1,4)-linked D-glucose, and amylopectin, having the same
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backbone as amylose but with a myriad of α-(1,6)-linked branch points [5]. Due to its
excellent solubility and film-forming ability, starch is a promising material for production
of biodegradable plastics with high potential in food and non-food applications and
drug delivery [6,7]. However, pure starch lacks strength, water resistance, processability
and thermal stability. To overcome some of these drawbacks, starch is often blended
with other polymers. Since the 1970s, starch has been incorporated into polyethylene in
order to increase biodegradability [8]. Also, blends of starch with poly (vinyl alcohol) [9],
polyethylene [10], polylactic acid [11], polycaprolactone [12] and gelatin [13] have been
utilized to form biofilms with improved gas barrier and mechanical properties.

Cellulose, composed of β-1,4-D-glucopyroanose units linearly arranged in elementary
fibrils is the most abundant biopolymer in nature. The most common source of cellulose
is plants, but among animals, tunicates are the only group able to produce cellulose [14].
This has arisen from lateral gene transfer of a prokaryotic cellulose synthase gene at the
base of the tunicate lineage. Recently, some tunicate species, such as Ciona intestinalis,
have been successfully farmed along the Norwegian western coast with high production
capability, indicating the practical utilization of tunicate cellulose at industrial scales
(www.oceantunicell.com) [15]. Compared to woody cellulose, tunicate cellulose has a
high degree of polymerization (up to 4200), high purity (99%), high crystallinity index
(89%), high thermal stability (degradation onset temperature of 207–269 ◦C), large specific
surface area (133 m2/g), large aspect ratio (diameter of 10–20 nm and length of several
micrometers) and strong mechanical properties (elastic modulus of ~150 GPa) [14]. In
addition, further processing of tunicate cellulose to cellulose nanofibers (CNF) through
mechanical, enzymatic or chemical approaches not only improves its processability but
also renders many specific profiles, such as large aspect ratio, high crystallinity index and
high specific surface area [16]. Tunicate CNF as a reinforcing phase has been developed
to prepare high-performance composites by blending with either natural or synthetic
polymers, such as konja glucomannan [16], silk fibroin [17], polypyrrole [18] and epoxy
resin [19].

Another bio-based polymer, lignin, is a complex group of phenolic polymers, available
in large quantities as a byproduct of the pulp and paper industry. Recently, research interest
in lignin has arisen due to increased focus on biorefineries [20]. The amphilic profile of
lignin makes it particularly suitable for biomaterials applications. Lignin is compatible
with both organic and inorganic polymers, such as PEO and PET [21], polypropylene [22],
polyethylene [22], polyurethane [23], chitin [24] and gelatin [25]. The incorporation of lignin
often enhances the mechanical, thermal, and gas barrier properties of polymeric matrices.

Cellulose has been used to reinforce starch-based composites due to its high crys-
tallinity and high aspect ratio, with the starch cementing the cellulose network as a plasti-
cizer [5,26–30]. Furthermore, water vapor barrier properties [30] and thermal stabilities [5]
also increase due to the increased crystallinity of the starch-based films. Lignin has been
blended with starch to prepare compatible composites with lignin acting either as a filler or
as an extender of the starch matrix [31]. This compatibility is favored by relative humidity
of media, high amylopectin/amylose ratios and by the presence of the low molecular
weight lignin components. For lignosulfonate, the presence of polar sulfonic groups is
likely to form hydrogen bonds with amylose and amylopectin hydroxyls, which allows
lignosulfonates to form an intimate blend with starch. For non-sulfonated kraft lignin, it
leads to composite materials filled with high molecular weight lignin particles and plasti-
cized by the low molecular weight phenolic fraction. The hydrophobic character of kraft
lignin imparts improved water resistance of starch films that is more pronounced in the
case of cast films [31]. Additionally, mechanical and thermal properties of the biofilms have
been reported to be enhanced by lignin addition due to the plasticizing effect of the low
molecular weight lignin [32,33].

Since either cellulose or lignin can improve the performance of starch films, a cellulose-
lignin-starch multifunctional composite could yield improved properties. On the one
hand, cellulose could provide good reinforcement, gas barrier properties and thermal
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stability to starch films. On the other hand, lignin can improve the hydrophobicity and
UV blocking ability of starch films. However, none of them could melt, meaning that they
are not able to be processed like thermoplastic polymers, making the process different
from those using synthetic polymers. In order to overcome this drawback, a pioneering
work by Wu et al. (2009) [34], dissolved cellulose, starch and lignin in an ionic liquid,
1-allyl-3-methylimidaxolium chloride (AmimCl), followed by coagulation with water to
form composite films. It has been found that cellulose and lignin can improve the me-
chanical properties of films significantly, while the starch will contribute to the flexibility.
The composite films are amorphous with good transparency and gas barrier properties.
However, the ionic liquid as well as its recycling procedure are relatively expensive, lim-
iting the large-scale production of such films. In addition, after dissolution, the crystal
structure of the cellulose was compromised and the mechanical properties therefore signifi-
cantly deteriorated.

In this study, we prepared CNF–starch–lignin composite films by a simple blending-
casting-evaporation method in an aqueous system, in which the mechanical reinforcement
of CNFs was preserved. By simply tuning the formulation, the composite films have
acceptable transparency, improved hydrophobicity, strong mechanical strength, good
thermal stability and are barriers to UV light and oxygen permeability. They are renewable,
biodegradable, edible, and can be used as an alternative to plastic materials in food
packaging applications. Moreover, no chemical reaction was involved in the preparation,
which makes the process green, simple, cost efficient and scalable.

2. Materials and Methods
2.1. Materials

Tunicate cellulose was prepared from Ciona intestinalis and characterized in our lab-
oratory (Ocean TuniCell AS, Bergen, Norway) [14]. Commercial starch (water soluble,
80% amylopectin and 20% amylose, Sigma S-9765) with a molecular weight of 342.30
was used directly without any further chemical treatment. Softwood kraft lignin was
produced at Innventia AB from industrial black liquor following the LignoBoost® process.
All reagents were of analytical grade, and they were obtained from VWR International AB,
Stockholm, Sweden.

2.2. Preparation of Cellulose Nanofibers (CNF)

Never-dried tunicate cellulose was firstly subjected to disintegration (Frank-PTI
GmbH, Germany) for 10 min (30,000 revolutions). Then the pretreated cellulose was
mechanically disintegrated through high pressure homogenization by using a Microflu-
idizer (M-110EH, Microfluidics Corp., Westwood, MA, USA) at 10 g/L using two large
chambers in series (400 and 200 µm, respectively) at 925 bar for the first pass and smaller
chambers (200 and 100 µm, respectively) at 1600 bar for five passes. The obtained CNF
dispersed in water were diluted to 0.5% in weight for further use.

2.3. Fabrication of Neat Films and Composite Films

A blending-casting-evaporation method was applied to prepare the biocomposites.
Briefly, the 0.5% CNF suspension prepared above, starch dissolved in water (0.5%) or lignin
dissolved in acetone/water (4:1, v/v) with a concentration of 0.5% were directly cast in
Petri dishes and dried at 50 ◦C overnight to make neat films. The composite films were
prepared by mixing the designated amount of CNF, starch or lignin as shown in Table 1.
After sonication for 5 min, the mixed suspension was cast in Petri dishes to obtain films.
The films were then dried at 50 ◦C overnight. Different film compositions were labelled by
abbreviations as shown in Table 1. In Table 1, C, S and L stood for CNF, starch and lignin
respectively, and the number after L indicated the lignin percentage. For example, SCL25
composite film had 25% lignin.
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Table 1. Formulation and characterization of neat and composite films made of starch, CNF and lignin.

Formulation Mechanical Properties Hydrophobicity Optical Properties

Starch (%) CNF (%) Lignin (%) Tensile
Stress (MPa)

Young’s
Modulus (GPa)

Tensile
Strain (%)

Contact Angle
(◦) Transmittance (%)

CNF 0 100 0 121.80 6.35 6.62 24.20 3.66
Starch 100 0 0 32.95 1.96 8.72 18.78 80.20

SC 50 50 0 140.23 4.90 6.83 57.20 11.21
SL20 80 0 20 No film formed.
SL30 70 0 30 No film formed.
SL40 60 0 40 Starch aggregation. No film formed.

SCL25 42 33 25 68.26 5.82 2.12 107.50 19.62
SCL31 34.5 34.5 31 58.39 4.87 1.75 81.83 20.29
SCL34 33 33 34 22.71 4.74 0.46 56.16 17.08

2.4. Characterization Methods
2.4.1. Morphological Analysis

Before scanning electron microscopy (SEM) analysis, all samples were coated with
gold using a Cressington 208HR high-resolution sputter coater. A Cressington thickness
monitor control thickness to 3–5 nm. Sample morphology was then analysed using a
Hitachi S-4800 Field Emission Scanning Electron Microscope.

2.4.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

Fourier transform infrared spectra were obtained using a Perkin-Elmer Spectrum 2000
FTIR spectrometer (Waltham, MA, USA) equipped with an ATR system, Spectac MKII
Golden Gate (Creecstone Ridge, GA, USA). Samples were analysed at wavelengths ranging
from 600–4000 cm−1. All spectra were obtained from dry samples subjected to 16 scans at a
resolution of 4 cm−1 and an interval of 1 cm−1 at room temperature. Before data collection,
background scanning was performed for background correction.

2.4.3. X-ray Diffraction (XRD) Analysis

A PANalytical X’Pert PRO Materials Research Diffractometer equipped with an
X’Celerator detector was used to determine the crystallinity index (CI) of the samples.
The analysis was performed using monochromatic CuKα radiation at 30 mA and 40 kV.
CI, defined to evaluate the crystallinity of the different samples, was calculated using the
following equation:

CI (%) =
I200 − Iam

I200
× 100

where I200 is the intensity of the 200 lattice plane at 2θ = 22.8◦, and Iam is the intensity from
the amorphous phase at approximately 2θ = 18◦ [35].

2.4.4. Contact Angle Determination

The contact angle (CA) was determined by the pendant drop method with a water
drop and an optical contact angle meter SL 100B from Solon Information Technology Co.,
Ltd. (Shanghai, China) at relative humidity (RH) of 50% and 23 ◦C. To compare different
samples, each contact angle was taken at 45 s, and the average value of at least three
measurements was used.

2.4.5. Ultraviolet–Visible (UV–Vis) Transmittance Determination

The percent light transmission (T%) of the films was monitored using a Shimadzu
UV-240 (Japan) at 750 nm. Film specimens were cut into rectangles and placed in a spec-
trophotometer test cell directly, and air was used as the reference. Transmittance (T% = I/I0,
where I and I0 were the intensities of emergent and incident radiation, respectively) was
used to define the transparency of a film.



Polymers 2021, 13, 4346 5 of 14

2.4.6. Mechanical Strength Measurement

The tensile strength and Young’s modulus of the films were determined using an
Instron 4411 mechanical property tester with a 500-N load cell (Instron Ltd., Norwood, MA,
USA). The initial grip distance was 25 mm, and the rate of grip separation was 5 mm/min.
Two films of each type and three specimens from each film were tested. The specimens
were 5 mm wide and approximately 60 mm long. The thickness of the specimens was
measured at three points using a micrometer (NSK, Japan).

2.4.7. Oxygen Permeability

Oxygen permeability was measured on a Mocon OXTRAN 2/20 instrument from
Modern Controls Inc., USA, equipped with a coulometric sensor, according to ASTM
standard D-3985-05. Samples were sealed between aluminium foil with an open area of
5 cm2 and then stored in a conditioning room for 1 week (23 ◦C and 50% RH) prior to
analysis. Each sample thickness was determined using a Mitutoyo digital micrometer by
taking the average of 5 discontinuous spots. Permeability measurements were carried out
twice for each film at 23 ◦C and 50% RH at atmospheric pressure, and the mean data were
reported in cm3·µm/m2·day·kPa.

2.4.8. Thermo Gravimetric Analysis (TGA)

Thermo gravimetrical analysis was collected using a Mettler Toledo TGA/SDTA 851e
equipped with STARe software for data analysis. The samples were subjected to a heating
scan between 30 and 800 ◦C, with a rate of 10 ◦C/min under an inert atmosphere of nitrogen
at a gas flow of 50 mL/min.

3. Results and Discussion
3.1. CNF Preparation and Characterization

In nature, tunicate cellulose is originally present in the tunic as a composite with
protein, lipids and other non-cellulose polysaccharides. After a unique acid hydrolysis-
kraft cooking-bleaching procedure, tunicate cellulose in pulp form could be obtained from
tunics with a high glucose content (>99%). After enzymatic treatment, the tunicate cellulose
was subjected to high pressure homogenization and was disintegrated into elementary
fibrils or microfibrillar aggregates, termed tunicate cellulose nanofibers (CNF).

SEM images of CNF (Figure 1) demonstrated the successful disintegration of tunicate
cellulose by homogenization as indicated by elementary fibrils and a few microfibrillar
aggregates. The CNF was rod-like in appearance with a width of 9.40 ± 1.54 nm and a
length of 1.53 ± 0.41 to several µm, thus an aspect ratio greater than 163, consistent with
previous studies [36]. Woody cellulose is the most common raw material to produce CNF.
By using a similar technique, woody CNF was reported to possess an aspect ratio of ∼100
with dimensions of 2–60 nm in diameter and a few micrometers in length depending on
the processing and pretreatment methods [37]. Due to its high aspect ratio, tunicate CNF
is expected to be superior to woody CNF in terms of reinforcing effect [38]. The excellent
reinforcing effect of tunicate CNF in composites has been demonstrated by adding tunicate
CNF to epoxy resin-based composites, in which the addition of 16% tunicate CNF increased
Young’s modulus from 1.6 GPa for the neat polymer film to 4.9 GPa for epoxy resin-tunicate
CNF composite film [19].

CNF was very pure as indicated by its FTIR spectrum (Figure 2a). The peaks at 3334
and 2900 cm−1 were attributed to –OH stretching and C–H symmetrical stretching, respec-
tively. The peaks at 1161 cm−1 and 1110 cm−1 originated from C–O anti-symmetric bridge
stretching and C–OH skeletal vibration, respectively. The peaks at 1054 and 1031 cm−1

arose from the C–O–C pyranose ring skeletal vibration and the peak at 900 cm−1 gen-
erated from the glycosidic –CH deformation with a ring vibration and –OH bending in
β-glycosidic linkages between glucoses [39]. These peaks are characteristic of pure cellu-
lose [14,40]. The X-ray diffraction (XRD) patterns of CNF confirmed its cellulose I structure
as indicated by characteristic peaks at 2θ 14.7◦, 2θ 16.8◦ and 2θ 22.8◦ generating from plane
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(1ı̄0), plane (110) and plane (200), respectively (Figure 2b) [41]. CNF had a crystallinity
index (CI) of 91.29%, agreeing well with the reported CI of 82–91% for tunicate CNF in
literature [16].
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Figure 1. Scanning electron microscope (SEM) images of cellulose nanofibers (CNF) at different magnifications. (a) 11 k
magnification, (b) 30 k magnification and (c) 70 k magnification of CNF.

Figure 2. Fourier transform infrared (FTIR) (a) and X-ray diffraction (XRD) (b) spectra of starch, CNF,
lignin and composite films.

3.2. Neat Film and Composite Film Preparation

Since starch, CNF and lignin could not be melted, the common methods used for
thermoplastic polymers, such as extrusion or injection molding were not feasible for
composite film preparation. Although Wu et al. (2009) [34] achieved films by dissolving
cellulose, starch and lignin in ionic liquid, the costly solvent and complicated recycling
procedure for ionic liquids will likely prohibit wide applications and implementation at
commercial scale. In addition, the complete destruction of cellulose crystalline structure
by dissolution resulted in deterioration of film performance, especially the mechanical
and thermal properties. In this study, in order to avoid these negative effects, a low-
cost and easily performed blending–casting–evaporation method was applied. When the
solution/suspension was cast in petri dishes, and dried at 50 ◦C overnight flat films were
formed by solvent evaporation.

Before casting, suspensions/solutions were prepared. Starch was dissolved in hot
water and stirred overnight to generate a homogenous solution (0.5%). Acetone/water (4:1)
was utilized to dissolve lignin at a designated concentration of 0.5%. Indeed, many other
solvent systems had been recently used in lignin dissolution, such as harsh alkaline or
acidic conditions and/or organic solvents [42–44]. However, these solvents were far from
favorable and generally not considered environmentally friendly. Although ionic liquid
was considered to be acceptable as a solvent for lignin, the major obstacle for its practical
application is the high cost [42]. The acetone/water system has low environmental impact
and high cost-efficiency, and it was also miscible with the water which is the solvent utilized
to disperse or dissolve CNF and starch. Therefore, it was chosen as the best solvent for
lignin in this work. By varying the ratios of starch, CNF and lignin (Table 1), a series of neat
and composite films were prepared by using an identical blending-casting-evaporation
procedure (Figure 3).
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the flexibility and foldability of the SCL25 composite film.

Lignin is considered as a rigid and brittle polymer with poor film-forming ability [45].
Therefore, when only lignin solutions were cast on the petri dishes, no film was obtained
after solvent evaporation (data not shown). It has also been found that no film was formed
if starch and lignin were blended, irrespective of mixing ratio, as indicated by cracks in
the cast films (Figure 3d), due to the inherent brittleness and rigidity of lignin. Starch–
lignin composites have been prepared either by casting or thermal molding [31], but
noticeably different solvents were used for lignin, such as dimethyl sulfoxide and alkaline
aqueous medium for water-soluble lignin and alkali lignin, respectively, rather than the
acetone/water used in this study. However, when CNF was further introduced to the starch–
lignin mixture, composite films were successfully prepared (Figure 3a). It is hypothesized
that CNF maintains the integration of the films due to its similar hydrophilicity to starch
and the natural fibrillar structure with high aspect ratio.

3.3. Neat Film and Composite Film Characterization

Neat starch films had a smooth surface (Figure 4) and were transparent (Figure 3c)
with high transmittance of 80.20% at 750 nm (Figure 5). In general, starch films had poor
mechanical properties as indicated by low tensile stress (32.95 MPa) and Young’s modulus
(1.96 GPa) (Table 1). Due to the inherent hydrophilic characteristic of starch, the neat starch
films showed a low contact angle of 18.78◦. In contrast to starch films, neat CNF films
were opaque with a lower transmittance of 3.66% (Figure 5). Generally, the formation of
neat CNF films was considered as a self-assembly process, in which CNF fibrils randomly
arranged to form mesh-like structures during drying. The thick and long fibrillar structure
of CNF was preserved after film formation, resulting in numerous porous structures at
the nanometer scale existing among the randomly packed CNF fibrils (Figure 4). CNF
fibrils were flexible and had non-uniform distributions resulting in film surfaces that were
uneven (Figure 4). Due to an extremely high Young’s modulus of 145–150 GPa for tunicate
single cellulose fibrils [46] and the high aspect ratio of 163 for CNF in this study, neat CNF
films showed good mechanical properties, as indicated by a tensile stress of 121.80 MPa, a
Young’s modulus of 6.35 GPa and a tensile strain of 6.62% (Table 1). Similar to starch films,
CNF films were also hydrophilic with a low contact angle of 24.20◦.
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Figure 5. Transmittances of neat and composite films.

Since CNF showed good tensile strength, it was expected that the addition of CNF into
starch films could improve their mechanical performance. However, both starch and CNF
are hydrophilic, which is not favorable for packaging applications. In order to overcome
this drawback, another hydrophobic bio-polymer, lignin, was introduced to the starch–CNF
films. To test this concept, a series of starch–CNF–lignin composite films with different
formulations were prepared (Table 1). As expected, the addition of CNF improved the
mechanical properties of the films. When starch and CNF were mixed 1:1, the obtained SC
films had significantly improved mechanical properties compared with starch neat films:
tensile stress of 140.23 MPa and Young’s modulus of 6.83 GPa, which were even superior to
pure CNF films. This improvement could be due to the newly built-up hydrogen bonding
between starch and CNF. On the other hand, CNF addition impaired the transmittance of
starch films (11.21%) and the starch–CNF films remained hydrophilic with a contact angle
of 57.20◦.

In order to improve the hydrophobicity of the composite, lignin ranging from 25% to
34% was introduced into the starch–CNF films. SCL25 films were brownish because of the
presence of lignin (Figure 3a). SEM images confirmed that numerous lignin nanoparticles
with the diameter of 50–250 nm were formed in the composite films (Figure 4). The
formation of lignin nanoparticles probably results from the immiscibility of hydrophilic
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starch–CNF and hydrophobic lignin. Although lignin could be dissolved in acetone/water,
when it was mixed with CNF in water, the ratio between acetone and water changed and
was no longer suitable for lignin dissolution. This caused the lignin to aggregate in small
droplets to form many nanoparticles after drying. Similar lignin nanoparticle formation
was observed when lignin was incorporated into starch-based films [31]. By comparing the
SEM images of SCL25, SCL31 and SCL34 in Figure 4, it was found that the size and density
of lignin nanoparticle increased with increasing lignin percentage. Other than the lignin
nanoparticles, the CNF’s fibrillar structure could still be clearly seen.

The introduction of lignin into starch–CNF films was detected in FTIR spectra of the
composite films (Figure 2a). Lignin showed many characteristic peaks including 1596 cm−1

arising from C=C stretching of aromatic ring, 1426 cm−1, 1452 cm−1 and 1512 cm−1 from
aromatic ring vibration, 1264 cm−1 originating from aromatic ring breathing of the G unit
and 1126 cm−1 resulting from the aromatic in-plane bending in the S unit [47]. When
increasing lignin percentage from 25% to 34%, the densities of these characteristic peaks
increased as well, confirming incorporation of lignin into these composite films. The
interactions between these three components in the composite films were investigated by
XRD and FTIR. In contrast to the crystalline structure of the CNF, starch was amorphous
and no diffraction peak was observed in its XRD diffraction pattern (Figure 2b). A very
broad peak around 22.5◦ was noted for lignin, indicating the semi-crystalline nature of
lignin [48]. Although all the composite films showed similar diffraction patterns to the CNF,
the addition of starch and lignin generated right-shifts of some characteristic peaks for
CNF (Figure 2b), indicating the hydrogen bonds newly built up between these components.
In addition, adding both starch and lignin lowered the densities of these peaks, which
might arise from the shadowing effect of amorphous starch and semi-crystalline lignin.

Lignin addition significantly reduced the mechanical strength of the films, as indicated
by decreased tensile stress and Young’s modulus (Table 1). One contribution could be the
incompatibility between the highly hydrophilic CNF and the hydrophobic lignin fraction,
which generated some phase separation as indicated by lignin nanoparticle formation and
lower mechanical strength. The hydrophobicity of the films was improved as indicated by
the increased contact angle from 57◦ for SC films up to 107.50◦ for SCL25 composite films
(Figure 6b) due to the presence of hydrophobic lignin nanoparticles. However, lignin is
not the only factor determining the contact angle, since increasing lignin from 25% to 34%
decreased the contact angle. As shown in the SEM evaluation of SCL34, abundant lignin
nanoparticles made the film more porous, and this increased porosity facilitated water
penetration, resulting in lower contact angles.

Figure 6. Mechanical properties (a) of different types of composite films and contact angles of SCL25 (b).

In UV regions (200–400 nm), starch only partially absorbed UV light and CNF did
not completely block all UV light (Figure 5). However, the addition of lignin, irrespective
of the amounts added, conferred essentially complete UV-blocking properties, with UV
transmittance at nearly zero. This is due to the unique structure of lignin, derived from
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the polymerization of monolignols. In this process, electronic conjugation of the vinyl
group para to the phenolic –OH is lost, generating UV chromophores at the coupling sites
resulting in absorption in the UV range [49].

Based on the results presented above, the specific structures of the biocomposites could
be illustrated as shown in Figure 7. In the composite films, the newly introduced hydrogen
bonding between CNF and starch reinforced the structure, and lignin nanoparticles were
entrapped in the network and gave the biocomposites good hydrophobicity. Due to the
incorporation of lignin nanoparticles, the SCL films showed inferior mechanical properties
to both neat CNF and SC films, although they were still significantly improved compared
to neat starch films (Table 1). In addition, the tensile stress and the Young’s modulus of
some composite films prepared in this study (SCL25 and SCL31), were comparable to or
even higher than those of common plastics used for food packaging as shown in Figure 6a,
supporting their acceptable mechanical properties for potential packaging applications.
In addition, the composite films (e.g., SCL25), had very good flexibility and foldability
(Figure 3e–h), which is also important in packaging applications.

Figure 7. Schematic illustration of bonding mechanism of CNF, starch, and lignin in the biocomposites.

3.4. Barrier and Thermal Properties of Composite Films

As found by O2 permeability tests, SCL25 films had oxygen permeability of
61.17 cm3·µm/m2·day·atm. Materials has previously been characterized as “high oxygen
barrier” if its oxygen permeability is less than 75 cm3·µm/m2·day·atm at 25 ◦C and 50% of
relative humidity [50]. Therefore, based on this definition, the SCL25 composite films is
classified as a high oxygen barrier material. The high crystallinity of CNF (91%) could be
one factor hindering the transport of oxygen through the material [51]. In addition, CNF
fibrils will form organized structures and stack together closely due to hydrogen bonding.
The addition of starch and lignin in this organized mesh structure may therefore yield
low porosity which will resist passage of oxygen molecules. The low oxygen permeability
of SCL25 suggests that it may be ideally suited for food packaging since this value is
competitive with synthetic polymers such as PVC, which is one of the best barriers but
contains chlorine atoms posing toxin risks at end-of-life incineration disposal [51].

Thermal stability and decomposition of neat films and composite films were deter-
mined using TGA in a nitrogen environment. TGA indicates weight loss and the first
derivative (1st DTG) indicates the corresponding rate of weight loss (Figure 8). Both onset
degradation temperature (To) and peak degradation temperature (Tp) can be presented as
a measure of thermal decomposition and can be used as a means to compare the thermal
stability characteristics of composite films. CNF films were the most thermally stable as
indicated by the highest To and Tp values of 328.49 ◦C and 354.04 ◦C, respectively (Table 2).
This was due to its highly crystalline structures. Starch films were more thermally stable
than lignin, with To (292.66 ◦C) significantly higher than that for lignin (184.52 ◦C). How-
ever, lignin had a very high Tp of 377.05 ◦C, even greater than that for CNF (354.04 ◦C).
Chemically, lignin is to a large extent composed of aromatic rings with various forms of
branching. The complexity of chemical bonds in this structure leads to a wide range of
degradation temperatures from 100 to 800 ◦C as indicated by its TGA curve [52]. Our TGA
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results for lignin were in agreement with these previous observations. After TGA measure-
ment, 60% of lignin samples still remained un-volatized at 800 ◦C due to the formation
of highly condensed aromatic structures which formed a char [53]. The SCL25 composite
film showed a To of 294.77 ◦C. In contrast to the single degradation peaks observed for
CNF, starch and lignin, the TGA curve of SCL25 was characterized by two degradation
peaks (Figure 8b), Tp1 at 326 ◦C and Tp2 at 355 ◦C, which were close to the Tp of 305.77 ◦C
and 354.04 for starch and CNF, respectively. Therefore, we propose that these two peaks
were closely related to the degradation of starch and CNF components in the composite
films. Compared to neat starch films, the thermal stability of the SCL25 composite film was
improved as indicated by similar To and higher Tp.

Figure 8. Thermo gravimetric (TG) (a) and derivative thermo gravimetric (DTG) (b) curves of starch, CNF, lignin and
composite films.

Table 2. Thermal properties of neat films and composite films (◦C).

Neat Films To * Tp *

CNF 328.49 354.04
Starch 292.66 305.77
Lignin 184.52 377.05

Composite Films To Tp1 * Tp2 *

SCL25 294.77 326.00 355.50
* To, onset degradation temperature; Tp, peak degradation temperature; Tp1, first peak degradation temperature
and Tp2, second peak degradation temperature.

In summary, composite SCL25 films had a contact angle of 107.50◦, an optical transmit-
tance at 750 nm of 19.62%, UV blocking, a tensile stress of 68.26 MPa, a Young’s modulus of
5.82 GPa, an oxygen permeability of 61.17 cm3·µm/m2·day·atm and good thermal stability
as indicated by high onset degradation temperature of 294.77 ◦C. To the best of our knowl-
edge, only one publication has investigated the preparation of cellulose–starch–lignin
composite films, which were made by dissolving these three components in ionic liquid
followed by coagulation in water and drying [34]. In contrast to the lignin aggregation
phenomenon observed in this study, the composite films after regeneration displayed
uniformity from the interior to the surface, and no obvious phase separation could be
seen. The prepared composite films after coagulation had tensile stresses of 14.5–35.2 MPa,
significantly lower than 68.26 MPa for SCL25 in this study. During dissolution by ionic
liquid, the crystalline I structure of cellulose is converted to cellulose II and the crystallinity
index decreases, resulting in lower mechanical strength. Composite films prepared by
ionic liquid dissolution had Tp of 331–335 ◦C, higher than Tp1 of 312–320 ◦C for the com-
posite films prepared in this study. This is probably due to the presence of cellulose II in
the regenerated composite films, which was considered to be more thermally stable than
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cellulose I in the cast films obtained in this study. In addition, the oxygen permeability
of our composite films was lower than the ~130 cm3·µm/m2·day·atm observed in the
ionic liquid study, which might be due to the preserved crystalline structure and orga-
nized fiber of the CNF. It has been reported that crystalline cellulose could significantly
decrease the oxygen permeability of PLA-based films, because it had the ability to form
hydrogen bonds resulting in strong networking that made the composite films resistant to
molecular passage.

4. Conclusions

In this study, novel starch–CNF–lignin composite films were successfully prepared by
a facial blending–casting–evaporation method. The high performance of the composite
films was achieved by simply tuning the formulation of the three components without
any chemical modification or reaction. CNF and starch showed good miscibility, and
the lignin was distributed as nanoparticles on the surface or incorporated into the starch-
cemented structure. The hydrogen bonds newly built up among these three components
improved their integration in the composite films. CNF made a substantial contribution
to the mechanical strength of the starch-based film. The introduction of hydrophobic
lignin significantly improved the hydrophobicity of the composite films and provided
UV absorbance. The prepared films also showed improved thermal stability and oxygen
barrier properties due to the presence of highly crystalline CNF. With the optimal formula-
tion found in this study, CNF–starch–lignin composite films are flexible, showing many
desired properties including: transparency (optical transmittance at 750 nm of 19.62%),
hydrophobicity (contact angle of 107.50◦), complete UV-blocking, high mechanical strength
(tensile stress of 68.26 MPa and Young’s modulus of 5.82 GPa), gas barrier (oxygen perme-
ability of 61.17 cm3·µm/m2·day·atm) and thermal stability (onset degradation temperature
of 294.77 ◦C). These properties establish such films as potentially suitable, sustainable
alternatives to petroleum-based plastics in food packaging.
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