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f IFREMER, Unité écologie et modèles pour l’halieutique Ifremer, EMH, F-29280, Plouzané, France   
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A B S T R A C T   

The incorporation of trace elements into the calcified structures of fish can vary seasonally. Interpretation of 
these seasonal signals can provide information about fish age. This approach offers great promise for objectively 
estimating age and corroborating other methods of age estimation for fish stock assessment. This study inves
tigated seasonal variation in trace element composition of otoliths and illicia from white anglerfish (Lophius 
piscatorius L.), a species that is very difficult to age using visual interpretation of growth bands in their calcified 
structures. A suite of trace elements (Na, Mg, Zn, Sr, Ba in illicia and Na, Mg, K, Sr, Ba in otoliths) was measured 
with LA-ICPMS using discrete ablations and continuous line scans. A method is presented to obtain reliable 
measurements of microchemical composition from illicia. Variation in elemental concentrations at the edge of 
the illicium was primarily related to fish length and no differences were detected between fish collected at 
different times of the year. In otoliths, Sr concentrations at the edge (0–100 μm) were highest in anglerfish 
collected during wintertime (quarter 1). Seasonal differences in Sr were statistically significant but small; a larger 
proportion of the explained variance was attributed to length and individual variability. Nonetheless, the sea
sonal pattern was consistently detected across all size classes, indicating that the analysis of cycles in otolith Sr 
could potentially provide a tool to support age estimation in white anglerfish.   

1. Introduction 

A robust understanding of life history strategies and growth dy
namics supports the effective management of fishes in marine, coastal 
and freshwater systems worldwide. Calcified structures such as otoliths, 
bones and scales, register the individual history of each fish, with the 
daily and seasonal growth patterns recorded in the structure of the 
organic and inorganic matrix as visual growth marks. Moreover, the 
chemical composition of calcified structures record environmental var
iations and physiological responses that may allow the identification of 
origin, tracking of migrations, reconstruction of environmental history, 
measurement of age and assessment of diet (Gillanders, 2005; Hüssy 
et al., 2020; Walther, 2019). For instance, seasonal changes in temper
ature and physiology can produce periodic patterns in the chemical 

composition of otoliths (Seyama et al., 1991). Across several species, 
clearly defined minima and maxima in the concentrations of some ele
ments and isotopes have been shown to correspond to age (Heimbrand 
et al., 2020; Hüssy et al., 2015; Kastelle et al., 2017; Siskey et al., 2016). 
These patterns provide a tool to validate the periodicity of growth marks 
in calcified structures. The approach is particularly useful for stocks 
without clearly defined, annually recurring growth marks in their 
calcified structures, an issue that can hamper age estimation and 
age-based assessment and challenge the implementation of Maximum 
Sustainable Yield (MSY)-based management, as is required under the 
common fisheries policy (CFP) (Maunder and Piner, 2014). 

The white anglerfish (Lophius piscatorius Linnaeus, 1758) provides an 
interesting case study for developing microchemistry-based approaches 
to age validation. White anglerfish is a bottom-living species that occurs 
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from shallow, inshore waters to deeper than 1000 m (Quéro and Vayne, 
2005; Whitehead et al., 1986). In Europe, the species has high com
mercial value and is caught together with black anglerfish (Lophius 
budegassa) by trawl and gillnetting fleets (Fariña et al., 2004); in recent 
years catches of the two species have exceeded 60,000 t yr− 1 (FAO, 
2019). Available age-estimation methods for white anglerfish have low 
reliability. The occurrence of secondary structures makes age estimation 
using otoliths difficult (Crozier, 1989; Woodroffe et al., 2003). As a 
consequence, the illicium (the modified first spine of the dorsal fin, 
which acts as a lure) is the preferred structure for routine age estimation 
in most European countries (ICES, 2011; Landa et al., 2008). The peri
odicity of growth marks in illicia has been indirectly validated using 
length cohort analysis. However, uncertainties remain regarding inter
pretation of growth marks in both ageing structures (Velasco et al., 
2008; Wright et al., 2002). There are large inconsistencies between age 
estimates obtained from otoliths and illicia and considerable disagree
ment between readers interpreting the same structures (ICES, 2011; 
Woodroffe et al., 2003). Moreover, white anglerfish tagging studies 
show that counting of visual bands on illicia leads to over-estimation of 
age, largely due to misinterpretation of the first winter ring (Landa et al., 
2008). Direct estimates of age are therefore considered unreliable and 
are not used in stock assessment for any of the anglerfish stocks in the 
Northeast Atlantic. Assessments are instead based on survey indices or 
length-based methods (ICES, 2018). A reliable method of age determi
nation would help to validate the growth models used in the assessments 
and could improve the estimation of MSY reference points. 

For species that are difficult to age from visual examination of their 
growth structures, methods based on microchemistry of their calcified 
structures offer great promise for objectively estimating age and 
corroborating other methods of age estimation. The primary objectives 
of this study were to analyse microchemistry patterns in anglerfish 
otoliths and illicia, to establish if elements show seasonal variation, and 
to evaluate the potential use of seasonal patterns in composition for 
validating or verifiying age estimates. While numerous studies deal with 

age-related trends in otoliths (Heimbrand et al., 2020; Hüssy et al., 
2015; Kalish, 1991; Morales-Nin et al., 2014; Tomas et al., 2006; Tzeng 
et al., 1999), only a few have examined these patterns in fin spines such 
as illicia or dorsal spines. Differences in microchemistry between opaque 
and translucent bands have been detected in bluefin tuna (Luque et al., 
2017); albacore tuna (Davies et al., 2011) and sturgeon (Jaric et al., 
2011). A secondary objective of this study was therefore to establish a 
protocol for the reliable detection of seasonal trends in illicia sections. In 
order for chemical constituents of otoliths or illicia to provide a reliable 
indicator of age, their deposition must follow a regular seasonal cycle 
that is reasonably consistent across age groups, sexes and geographic 
areas. Here, the seasonality of microchemistry patterns was tested by 
comparing the composition at the edge of each structure between fish 
collected at different times of year. 

2. Material and methods 

2.1. Sample collection 

Samples of anglerfish were collected in 2017 and 2018 from ICES 
area 7 during scientific surveys on board RV Celtic Explorer and from 
port samples taken by the Marine Institute and Ifremer (Fig. 1). From the 
available material, samples were selected to represent the four quarters 
of the year (Q1 = January–March, Q2 = April–June, Q3 = July–Sep
tember, Q4 = October–December) and from four size categories: < 31 
cm total length (TL), 31–41 cm TL, 42–52 cm TL, > 52 cm TL. The first 
three size categories were chosen to represent the main length cohorts in 
the stock as indicated by the length cohort analysis of Batts et al. (2019). 
The larger fish were included even though they are less abundant, 
because age estimates are particularly difficult for individuals in this size 
class (Hans Gerritsen pers. obs.). One sagittal otolith and the illicium 
were removed from each individual and stored separately in plastic 
tubes. 

Fig. 1. Sampling locations of anglerfish selected for analysis of otolith and illicia elemental concentrations. Symbols represent the method of collection (circles =
commercial fishery, triangles = scientific survey). Colours indicate the season of collection (orange = Q1, green = Q2, blue = Q3, purple = Q4). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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2.2. Study design 

The microchemistry analysis was conducted in two phases. In the 
pilot phase, 20 otoliths and 20 illicia (10 fish collected in quarter 3, 2017 
and 10 from quarter 1, 2018) were analysed for a range of trace elements 
to determine which showed the most variation between fish collected in 
different seasons. In the main phase, the otoliths from 127 anglerfish 
collected in quarter 4 in 2017 and in quarters 1, 2 and 3 in 2018 were 
analysed for the trace elements that showed the strongest seasonal sig
nals in the pilot phase (Table 1). 

2.3. Calcified tissues preparation 

Sagittal otoliths and illicia were soaked in deionised water for 5–10 
min to remove any biological tissue. Otoliths were mounted in epoxy 
resin (Buehler EpoThin2), and ground on the sagittal plane (sulcus side) 
with P320 and P1500 to P4000 grit silicon carbide paper to expose the 
otolith surface and to produce a flat sagittal section. Final polishing was 
conducted using diamond suspensions (9 μm, 3 μm and 1 μm) and sec
tions were glued using a thermolabile resin (Crystalbond) in randomised 
positions onto petrographic glass slides. 

Illicia were mounted in polyester resin (Crystic R115PAV01) and 
sectioned transversally according to the protocol described by Duarte 
et al. (2002). Three sections of between 0.3 and 0.5 mm thickness were 
taken from the base of each illicium. Sections were ground with P2500 
to P4000 sanding papers, polished using diamond suspensions (3 μm and 
1 μm) and then glued using Crystalbond to petrographic glass slides in 
randomised positions. 

Prior to analysis, all the preparations were decontaminated by son
ication in MilliQ water for 1 min, followed by soaking in 5% HNO3 
Suprapur for 15 s, triple rinsing in MilliQ water, and final sonication in a 
MilliQ bath for 1 min. They were then allowed to dry for 24 h in a 
laminar flow hood and stored in double zip plastic bags. 

2.4. Preliminary assessment of the composition of the illicium 

Unlike otoliths, which are predominately composed of calcium car
bonate crystallized as aragonite, teleost fin rays and spines are composed 
of dermal bone, consisting primarily of calcium phosphate in the form of 
hydroxyapatite (Ca10(PO4)6(OH)2) (Ugarte et al., 2011). Differences in 
structure and composition between illicia and otoliths will affect how 
elements and isotopes are incorporated and have consequences for the 
analytical protocols used to analyse illicia (e.g. choice of method and 
standards, limits of detection, range of elements/isotopes analysed). 
Therefore, preliminary analyses were conducted to develop the optimal 
protocol for the illicia analysis, whereas otolith methodologies were 
based on previous protocols (Catalán et al., 2018; Morales-Nin et al., 
2014). 

Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA- 
ICPMS) was the surface-based analytical technique selected to quantify 
the chemical composition of both otoliths and illicia. A review of the 
literature using Web of Science was conducted to collate information 
pertaining to the analysis of illicia using LA-ICPMS (Table 1, Supple
mentary Material, references cited therin: Allen et al., 2009; Arai et al., 

2002; Clarke et al., 2007; Davies et al., 2011; Feldlite et al., 2008; Gil
landers, 2001; Kennedy et al., 2000; Köck et al., 1996; Luque et al., 
2017; Phelps et al., 2012; Pollard et al., 1999; Rude et al., 2014; Scharer 
et al., 2012; Smith and Whitledge, 2010, 2011; Tillett et al., 2011; 
Ugarte et al., 2012; Vas, 1991; Veinott et al., 1999; Wolff et al., 2013. 
Elements that tend to display potentially age-related trends in fin spines 
and vertebrae were identified: Sr, Zn, Ba, Mn and Cu. This list is similar 
to the suite of elements that have proved useful for age validation using 
otolith microchemistry (Heimbrand et al., 2020; Hüssy et al., 2015; 
Siskey et al., 2016). 

A preliminary microchemical analysis was performed in four ang
lerfish illicia using a Hitachi S3400N SEM with a Bruker ACS XFlash 
4010 detector at Universitat de les Illes Balears. The purpose of the 
analysis by energy dispersive X-ray spectroscopy (EDS) was to qualita
tively characterise the chemical composition of the illicia and the resin 
used for embedding the structure and to identify potential contamina
tion issues due to sample preparation. SEM was used in backscattered 
mode on 150 × 100 μm surface samplings in both illicia and surrounding 
resin. Spectra for C, O, F, Na, Mg, P, Ca, Cl, S and K were qualitatively 
obtained. The results showed that the composition of the resin was very 
different from that of the illicia and the two materials are easily 
distinguished (Fig. 1, Supplementary Material). Resin did not penetrate 
the illicium. 

Due to the small size of illicia (mean diameter 0.85 mm) and the need 
for a good signal for LA-ICPMS analysis, three laser beam diameters (10 
μm, 25 μm, 40 μm) were tested to obtain the optimal balance between 
response analysis and spatial resolution. The comparison of the different 
spot sizes showed unreliable signals for spot sizes of 10 μm. Isotope 
profiles for spots of 25 μm and 40 μm size were both stable and properly 
quantified, with scans of 40 μm providing the higher signal intensities 
but lower spatial resolution. The results showed that the spot size of 25 
μm was optimal in terms of accuracy and spatial resolution (Fig. 2, 
Supplementary Material). In the subsequent analysis, data were 
collected from illicia using both 25 μm diameter spot analyses and 
continuous line scans of 25 μm wide. 

2.5. Laser-ablation ICPMS analysis 

The LA-ICPMS analysis of anglerfish otoliths and illicia was carried 
out at the Universidade de A Coruña using a CETAC Laser Ablation 
System LSX-213 G2+ coupled to a Thermo-Finnigan ICPMS Element XR. 
During the pilot phase, a series of spot ablations of 40 μm diameter, with 
70 μm spacing (otoliths) and 25 μm diameter with 40 μm spacing (illicia) 
were made on each section. Complete core to edge transects were ana
lysed on the illicia, while on each otolith, a section at the edge corre
sponding to recent growth (at least 280 μm long) was analysed. 
Additionally, continuous line scans were made on the illicia sections 
from the core outward to the edge (25 μm width); on the otoliths the line 
scans were taken from the edge towards the core for a distance of at least 
1250 μm (40 μm width). In the main phase, continuous line scans (40 μm 
width) were taken from the core to the edge of each otolith section 
(Fig. 2). The scan speed of all continuous line scans was 10 μm s− 1. 

The reference standards used in the analysis of both otoliths and 
illicia were the glass standards: NIST612, NIST614 and NIST616. 

Table 1 
Number of anglerfish samples from each size category and quarter that were included in the pilot phase and main phase of the analysis.  

Quarter Year Size category (cm) 

<31 31–41 42–52 >52 

pilot main pilot main pilot main pilot main 

1 2018  10 2 10 2 9 6 6 
2 2018  9  9  9  4 
3 2017   1  4  5  
3 2018  3  11  10  7 
4 2017  9  9  8  4  
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Additionally, due to the different composition of bone and otoliths, a 
specific bone meal standard (NIST1486) pressed as a pellet was used in 
the analysis of the illicia; whereas FEBS-1 (Sturgeon et al., 2005) and 
NIES-22 (Yoshinaga et al., 2000) pressed as pellets were used for the 
otoliths. All reference materials were ablated following the bracketing 
procedure, being measured at the beginning and end of each working 
session and every five scans on the calcified structures. In the pilot 
phase, a suite of elements was initially quantified: 7Li, 23Na, 24Mg, 26Mg, 
27Al, 31P, 39K, 43Ca, 44Ca, 55Mn, 56Fe, 66Zn, 88Sr, 137Ba, 138Ba, 206Pb, 
207Pb and 208Pb. Elements with low accuracy (<90% or >110%) or poor 
recovery (relative standard deviation > 10%) were rejected from sub
sequent analysis. For the illicia line scan and spot analyses, 23Na, 66Zn, 
88Sr and 138Ba were retained; for the illicia spots 24Mg was also included. 
For the the otoliths, 23Na, 24Mg, 26Mg,39K, 88Sr and 138Ba could be 
reliably measured in spots and line scans and data for these elements 
were retained for analysis. 

In LA-ICPMS analysis, variability in the elemental signals can arise 
due to elemental fractionation, matrix effects and variation in ablation 
yield (Günther et al., 1999). To correct for this, an element that is pre
sent at a known concentration within the sample can be used as an in
ternal standard. Calcium is present in both otoliths and illicia at a 
reasonably consistent concentration, thus a value of 38.8 wt% (Yoshi
naga et al., 2000) of 43Ca in otoliths and 26.0 wt% (Veinott and Evans, 
1999) of 43Ca in illicia was used as internal standard. The raw data were 
processed using software Iolite (Melbourne University, Melbourne), a 
semiautomatic program for LA-ICPMS data reduction and calculation of 
isotope concentrations. 

2.6. Statistical analysis 

To test for seasonality of otolith microchemistry patterns, concen
trations of elements and isotopes at the edge of the otoliths and illicia 
were compared between samples collected at different time points 
within an annual cycle (pilot phase: quarter 3, 2017-quarter 1, 2018; 
main phase: quarter 4, 2017, quarters 1, 2 and 3, 2018). 

Elemental concentrations from the continuous line scans were 
expressed as 10 point moving averages. To control for innate variability 
in elemental concentrations between individuals, prior to analysis each 
data point on a given spot transect or line scan was divided by the mean 
elemental concentration on that transect to produce a mean stand
ardised elemental concentration. 

For the illicia spot transects, mean standardised elemental concen
trations (E) at the spot closet to the edge of the structure were analysed 
using general linear models (GLMs) with quarter (Q) and length cate
gory (LC) included as factors in the analysis (equation 1). For the otolith 
spot transects, data were available at a finer temporal scale due to the 
larger size of the otoliths compared to the illicia. Therefore, the 3 spots 
closest to the edge were used to represent the season of capture. 
Elemental concentrations were analysed using general linear mixed 

models (GLMMs), with quarter and length category included as fixed 
effects and fish ID (ID) included as a random effect to account for the 
non-independence of multiple measurements from the same individual 
(equation 2). For the continuous line scans, elemental concentrations 
close to the edge (50 μm from edge for illicia, 100 μm for otoliths) were 
also analysed using GLMMs, as above (equation 2). In each case the full 
models were compared to a series of less complex models and to the null 
model (equation 3 for GLMs and eqation 4 for GLMMs) using Akaike 
information criterion (AIC) and log likelihood tests. 

E=Q*LC + ε (1)  

E=Q * LC+ 1| ID + ε (2)  

E= 1 + ε (3)  

E= 1| ID + ε (4) 

Where patterns indicating that model residuals were not normally 
distributed were detected, the response variable was transformed using 
Box-Cox transformation. 

In addition to size-related trends, otolith elemental concentrations 
may vary geographically. The sampling area was divided into three 
broad geographic regions: the northwest of the study area (ICES areas 
7b-c), the south east of the study area (ICES areas 7e-f), and the centre of 
the study area (ICES areas 7g, j & k). When seasonal variation in 
elemental composition at the edge of the calcified structures was 
observed, potential confounding effects of spatial variability were 
investigated by examining seasonal differences in edge chemistry within 
regions using box plots and GLMs. Seasonal variation in standardized 
elemental concentrations along transects within each individual was 
also investigated. First, the portion of each otolith transect corre
sponding to the three months (0.25 year) prior to capture was extracted 
for each individual. To accomplish this, otolith growth rate was calcu
lated from the total otolith radius based on the otolith size-fish size 
relationship (Fig. 3., Supplementary Material) and the body propor
tional back-calculation approach (Francis, 1990). Distances along the 
otolith radius were fitted to an estimated anglerfish von Bertlanffy 
growth model (Batts et al., 2019). Seasonal variation in body and otolith 
growth rate was accounted for using the approach of Somers (1988) to 
incorporate a sinusoidal function into the von Bertlanffy growth model; 
growth was assumed to reduce by 30% during winter, with the reduction 
starting in October. The transect length representing the final three 
months (0.25 year) of otolith growth was calculated, expressed as a 
proportion of the total radius, and the elemental concentrations were 
extracted for this portion of the line scan (Fig. 3). While this approach 
did not account for individual variability in the length-age relationship, 
it did correct for the substantial size-related variability in the length of 
the recent growth transect, for which estimates ranged from 64 μm for a 
104 cm fish to 495 μm for an 8 cm fish. 

Fig. 2. Anglerfish otolith (a) and illicium (b) thin sections showing core-to-edge spot transects (closed head arrow) and continuous laser ablation-lines (open head 
arrow). Scan width sizes are 40 μm for otoliths and 25 μm for illicia. 
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It was predicted that if the concentration of an element in the otolith 
varied seasonally this would be reflected in the slope of the relationship 
between elemental concentration and proportional distance along the 
recent (~3 month) growth transect in samples from each quarter. A 
series of GLMMs was used to test this; mean standardised elemental 
concentrations were modelled as a function of proportional distance 
along the recent growth transect (D), with quarter included as a fixed 
effect, total fish length (L) as a covariate and fish ID (ID) as a random 
effect (equation 5). 

E =D * Q + L+ + 1| ID + ε (5) 

For the GLMM’s, the marginal R squared value provided a measure of 
the variance explained by the fixed effects while the conditional R 
squared value provided a measure of the total variance explained by the 
fixed and random effects combined (Morrongiello and Thresher, 2014; 
Nakagawa and Schielzeth, 2013). 

All analyses were conducted in the R programming environment 
using R version 4.0.2 (R Core Team, 2020). GLMM models were run 
using the lme4 package (Bates et al., 2015) and the lmtest package 
(Zeileis and Hothorn, 2002) was used for likelihood ratio testing. Sig
nificance testing was conducted using the Lmertest (Kuznetsova et al., 
2017) and emmeans (Lenth, 2020) packages. Plots were created using 
ggplot2 (Wickham, 2016). 

3. Results 

The results from the GLM and GLMM analyses of elemental con
centrations in otoliths and illicia from the pilot and main phase of the 
investigation are summarised in Table 2. 

3.1. Pilot phase analysis 

3.1.1. Illicia 
GLM analysis of the spot data from 20 illicia showed that mean 

standardised concentrations of Zn and Sr at the illicium edge varied 
significantly between fish of different size (Table 2, models 3 and 4; 
likelihood ratio test: p = 0.02 and p = 0.03 respectively), with no evi
dence of seasonal variation. For Ba, the best fitting model contained the 
quarter * length category interaction (Table 2, model 5; likelihood ratio 
test; p = 0.003) showing that seasonal variation was not consistent be
tween length categories. Ba concentrations at the illicium edge were 
significantly higher in Q1 compared to Q3 for fish in the 31–41 cm 
length category (p = 0.01), but not for fish in the 42–52 cm or >52 cm 
length category (p = 0.14 and p = 0.05 respectively). For Na the model 
with the lowest AIC value included length category as a fixed effect, 
however, the likelihood ratio test found that this model did not provide a 
significantly better fit to the data compared to the null model, indicating 
that the length effect was not significant (Table 2, model 1; likelihood 
ratio test; p = 0.07). In the case of Mg, there was no evidence of variation 
between length categories or seasons (Table 2, model 2; likelihood ratio 
tests; p > 0.05). 

GLMM analysis of the continuous line scan data from the 20 illicia 
showed that variability in mean standardised Zn, Sr and Ba was best 
explained by length category (Table 2, models 7, 8 and 9; likelihood 
ratio test: p = 0.01, p = 0.02 and p = 0.01 respectively), with no evi
dence of seasonal variability (likelihood ratio tests: p > 0.05). For Na, 
the model with the lowest AIC value included quarter as a fixed effect, 
however, this model did not provide a significantly better fit to the data 
compared to the null model, indicating that the variation between 
quarters was not significant (Table 2, model 6; likelihood ratio test: p =
0.06). Due to the lack of consistent seasonal differences in elemental 
concentrations, the analysis of illicia was not included in the main 
phase. 

3.1.2. Otoliths 
GLMM analysis of the spot data from 20 otoliths showed that vari

ability in mean standardised 24Mg and K was best explained by length 
category, with no evidence of seasonal variability (Table 2, models 11 
and 13; likelihood ratio test; p = 0.003 and p = 0.03 respectively). For 
26Mg, the model with the lowest AIC value also included length cate
gory, but the fit was not significantly better than the null model (Table 2, 
model 12; likelihood ratio test: p = 0.11). For Na and Ba the best fitting 
model contained the quarter * length category interaction showing that 
seasonal variation was not consistent between length categories 
(Table 2, models 10 and 15; likelihood ratio test; p = 0.008 and p = 0.04 
respectively). Na concentrations at the otolith edge were significantly 
higher in Q1 compared to Q3 for fish in the >52 cm length category (p =

Fig. 3. Illustration of the procedure for extracting the portion of the transect 
corresponding to the previous three months of growth. Example is from an 
individual collected in quarter 2. The plots show the relationships between 
mean standardised Sr concentration (calculated by dividing each Sr measure
ment by the mean of all the Sr measurements from that transect) and (a) dis
tance from the otolith edge; (b) estimated back-calculated age at each point on 
the same transect using the Von Bertalanffy growth function (VBGF), based on 
the model of Batts et al. (2019) and (c) the proportional distance along the 
recent growth transect (time of capture = 0; ~3 months prior to capture = 1). 
The vertical line in (b) separates data from the most recent 3 months of growth 
(red points) from the rest of the transect (blue points) based on the 
back-calculated age estimates. Plot (c) shows only the data from the most recent 
~3 months of growth. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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0.004), but not for fish in the 31–41 cm or 42–52 cm length category (p 
= 0.40 and p = 0.27 respectively). In the case of Ba, concentrations at 
the otolith edge were significantly higher in Q1 compared to Q3 for fish 
in the 31–41 cm length category (p = 0.002), but not for fish in the 
42–52 cm or >52 cm length category (p = 0.59 and p = 0.77 respec
tively). Mean standardised Sr concentrations of otolith edge spots did 

not vary between quarters or length categories (Table 2, model 14; 
likelihood ratio tests: p > 0.05). However, GLMM analysis of the line 
scan data from the 20 otoliths revealed a significant seasonal effect 
(Table 2, model 20; likelihood ratio test: p = 0.01). The analysis of the 
otolith line scan data also indicated that Ba at the otolith edge varied 
between length categories but not quarters (Table 2, model 21; 

Table 2 
Model selection results for the GLM and GLMM analyses of elemental concentrations at the edges of otoliths and illicia. Statistically significant model fits, as 
determined by likelihood ratio tests (LR test) are highlighted in bold. For GLM models the variance explained by the model is expressed as the adjusted (Adj.) R2. For 
GLMMs the marginal (Marg.) R2 is the variance explained by the fixed effects while the conditional (Cond.) R2is the variance explained by the fixed and random effects 
combined.  

Dataset Element Model with lowest AIC value (model reference number in 
brackets) 

Null model 
comparison 

Adj. 
R2 

Marg. 
R2 

Cond. 
R2 

Δ AIC p (LR test) 

Illicia spot transects 
Pilot phase 

23Na ~ length category (1) 1.5 0.07 0.16   
24Mg ~1a (2) __ __ __   
66Zn ~length category (3) 3.5 0.02 0.24   
88Sr ~ length category (4) 2.8 0.03 0.21   
138Ba ~quarter*length (5) 8.3 0.003 0.47   

Illicia line scans 
Pilot phase 

23Na ~quarter+(1|fish.ID) (6) 1.5 0.06  0.12 0.71 
24Mg Insufficient data   
66Zn ~length category + (1|fish.ID) (7) 4.5 0.01  0.23 0.64 
88Sr ~ length category + (1|fish.ID) (8) 3.9 0.02  0.27 0.83 
138Ba ~ length category + (1|fish.ID) (9) 5.0 0.01  0.31 0.78 

Otolith spot transects 
Pilot phase 

23Na ~quarter*length category + (1|fish.ID) (10) 5.7 0.008  0.24 0.24 
24Mg ~length category + (1|fish.ID) (11) 7.5 0.003  0.17 0.17 
26Mg ~length category+(1|fish.ID) (12) 0.4 0.11  0.07 0.07 
39K ~length category + (1|fish.ID) (13) 3.1 0.03  0.13 0.19 
88Sr ~(1|fish.ID)a (14)      
138Ba quarter*length category + (1|fish.ID) (15) 1.5 0.04  0.19 0.28 

Otolith line scans 
Pilot phase 

23Na ~(1|fish.ID)a (16) __ __  ___  
24Mg ~length category+(1|fish.ID) (17) 0.8 0.10  0.13 0.66 
26Mg ~length category+(1|fish.ID) (18) 1.8 0.06  0.18 0.71 
39K ~(1|fish.ID)a (19)      
88Sr ~quarter + (1|fish.ID) (20) 4.3 0.01  0.23 0.86 
138Ba ~length category + (1|fish.ID) (21) 4.9 0.01  0.29 0.83 

Otolith line scans main phase (edge) 88Sr ~quarter + length category + (1|fish.ID) (22) 35.4 <0.0001  0.28 0.93 
Otolith line scans main phase (recent growth 

transect) 

88Sr ~quarter*distance + length + (1|fish.ID) (23) 122.4 <0.0001  0.13 0.50 
~quarter*distance+(1|fish.ID) (24) 96.0 <0.0001  0.06 0.52  

a The null model. 

Fig. 4. Seasonal and size-dependent differences in mean standardised concentrations of Sr in the outermost area of otoliths (0–100 μm from the edge). Plots show the 
results of pilot phase analysis using LA-ICPMS continuous line scans, and compare fish in different length categories, sampled in different quarters. Mean standardised 
Sr concentrations were calculated by dividing each Sr measurement by the mean of all the Sr measurements from that transect. 
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likelihood ratio test: p = 0.01). AIC values indicated that models con
taining length category provided the best fit to the Mg data, however the 
fit was not significantly better than the null model (Table 2, models 17 
and 18; likelihood ratio test: p = 0.1 and p = 0.06 for 24Mg and 26Mg 
respectively). Mean standardised concentrations of K along otolith line 
scans did not vary between length categories or quarters (Table 2, model 
19, likelihood ratio tests: p > 0.05). 

Overall, the pilot phase analysis found that Sr from otolith line scans 
showed the strongest seasonal signals. The addition of the length cate
gory * quarter interaction did not improve the model fit, indicating that 
seasonal differences in Sr were largely consistent across length cate
gories. However, visual inspection of the data indicated that the 
magnitude of the difference decreased with fish size (Fig. 4). Mean 
standardised concentrations of Sr at the otolith edge were higher in 
samples collected in Q1 compared to Q3. The main phase analysis was 
therefore focussed on further analysis of seasonal variability in Sr at the 
otolith edge across Q1-Q4. 

3.2. Main phase analysis 

Mean standardised Sr concentrations measured along lines scans on 
127 otoliths were analysed using GLMMs. The best fitting model 
included quarter and length category, but not the interaction, (Table 2, 
model 22). Both quarter and length category were statistically signifi
cant (p = 0.006 and p < 0.0001 respectively). Sr concentrations at the 
otolith edge (0–100 μm) were highest in Q1 followed by Q4 and Q3. The 
lowest concentrations were observed in Q2 (Fig. 5). Tukey post-hoc tests 
confirmed that the difference between Q1 and Q2 was statistically sig
nificant (p = 0.005). None of the other pairwise comparisons were sig
nificant (p > 0.05, Table 3). 

Sr concentrations at the otolith edge (0–100 μm) increased with fish 
size (Fig. 5). Tukey post-hoc tests confirmed that fish in the smallest size 
class (<30 cm) had significantly lower Sr concentrations at the otolith 
edge compared to all other size classes (p < 0.01). Fish in the largest 
length category (>52 cm) had significantly higher Sr concentrations at 
the otolith edge compared to fish in the 31–41 cm length category (p =
0.02; Table 3). 

To investigate if the observed seasonal trends could be confounded 
by spatial variation in Sr concentrations across the sampling area, sea
sonal comparisons were plotted for three broad geographic regions 
(Fig. 6). These areas were: the northwest of the study area (ICES areas 
7b-c), the south east of the study area (ICES areas 7e-f), and the centre of 
the study area (ICES areas 7g, j & k). Two of the regions were sampled in 
Q2 (7e-f and 7g, j & k). In both of these regions, Sr concentrations at the 
otolith edge were lower in Q2 compared to samples collected at other 
times of year. The difference was statistically significant for samples 
from ICES area 7e-f (p = 0.00013), but not for samples from ICES areas 
7g, j & k (p = 0.26). In the analysis of the full dataset, including ICES 
area or region in the GLMM did not improve the model fit. 

Within individuals, mean standardised Sr concentrations varied as a 
function of proportional distance from the otolith edge towards the core 
along recent growth transects (the three-month period prior to capture). 
The best fitting model included the interaction between proportional 
distance and quarter, the fish total length and fish ID as a random effect 
(Table 2, model 23). This confirmed that the slope of the relationship 
between elemental concentration and proportional distance varied be
tween quarters (Fig. 7). Notably, the slope was positive in otoliths of 
anglerfish collected in Q2, indicating that mean standardised Sr con
centrations increased from the edge (material deposited in Q2) to the 
end of the recent growth transect (material deposited three months 
previously). This is consistent with the results of the cross-individual 
comparison of otolith edge data (Table 3) which showed that mean 
standardised Sr concentrations were lowest in Q2. The consistency in the 
results of the within-individual and cross-individual comparisons in
dicates that the observed differences in Sr concentrations between 
anglerfish collected in different quarters are real seasonal effects, and 

not limited to a restricted portion of the geographical area sampled. 
Although significant (p < 0.0001), the seasonal trend indicated by 

the quarter * distance interaction was relatively minor, accounting for 
just 5.5% of the variation in Sr concentrations along recent growth 
transects (Table 2, model 24). A further 7.1% of the variance was 
explained by adding fish length (Table 2, model 23), while variation 
between individual fish (the (1|ID) random effect) accounted for the 
largest proportion of the variance (37.4%). 

Fig. 5. Boxplots showing the variability in mean standardised concentrations of 
Sr in the otolith (0–100 μm from the edge) as detected in the main phase of the 
analysis using LA-ICPMS continuous line scans. Mean standardised Sr concen
trations were calculated by dividing each Sr measurement from a given transect 
by the mean of all the Sr measurements from that transect. 
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4. Discussion 

Trace element concentrations in calcified structures often vary across 
life history transects due to fluctuations in metabolism or environmental 
conditions (Kalish, 1991; Morales-Nin et al., 2012). Before these pat
terns can be used for age determination or to validate the use of visible 
growth patterns, it must first be established that they have a consistent 
seasonal basis (Vitale et al., 2019). This study investigated trace element 
concentrations at the edge of white anglerfish otoliths and illicia as an 
important first step in the development of microchemistry-based age 
determination methods for the species. 

The illicium is the structure that is most widely used to estimate age 
in white anglerfish, although due to ambiguity in the interpretation of 
growth bands these estimates are not used in stock assessment (ICES, 
2011; ICES, 2018; Landa et al., 2008). If clear seasonal patterns exist in 
the trace elemental composition of the illicia, these could be used to 
validate the annual nature of visual structures and to resolve discrep
ancies in their interpretation. Here, a protocol is presented for LA-ICPMS 
measurements from both discreet analysis spots and continuous line 
scan transects. Despite their small size and relatively porous structure, 
the illicium was not contaminated by resin impregnation during sample 

preparation. The results show that a range of trace elements can be 
reliably detected in illicia using LA-ICPMS. 

The trace elemental concentrations at the edge of the illicium varied 
between fish length categories, but there were no statistically significant 
differences detected between fish collected in Q1 compared to Q3. The 
failure to detect a consistent seasonal signal may reflect the small size of 
the structure and the difficulty of isolating the most recent growth 
period. A 25 μm size analysis spot represents between 0.5 and 8 months 
of growth while the 50 μm line scan transect could capture between 1 
and 15 months of growth. These estimates of spatial-temporal resolution 
depend on the age of the fish and are based on current growth models for 
white anglerfish (Batts et al., 2019; Landa et al., 2013) and the rela
tionship between fish length and illicia diameter (Fig. 3, Supplementary 
material). It is likely that in larger fish the “edge” incorporated growth 
from several seasons, thereby diluting any difference in edge chemistry 
between fish captured at different times of the year. While the contin
uous line scan method can provide higher spatial resolution than 
discrete spot analyses in LA-ICPMS (Sanborn and Telmer, 2003), a 
higher spatial-temporal resolution could potentially be achieved using 
other approaches. For example, micro-PIXE and scanning X-ray fluo
rescence microscopy can be used to produce high resolution 2D 

Table 3 
Pairwise comparisons of mean standardised Sr concentrations between quarters and length categories from the GLMM: Sr ~ quarter + length category+(1|fish.ID) and 
based on data from otolith line scans collected during the main phase.  

Factor Pairwise comparison estimate Standard error df t ratio p value 

Quarter Q1 vs Q2 0.18 0.05 133 3.43 0.005  
Q1 vs Q3 0.06 0.05 133 1.13 0.670  
Q1 vs Q4 0.05 0.05 133 0.98 0.764  
Q2 vs Q3 − 0.12 0.06 133 − 2.15 0.14  
Q2 vs Q4 − 0.13 0.05 133 − 2.35 0.091  
Q3 vs Q4 − 0.009 0.06 133 − 0.16 0.998 

Length category <30 vs > 52 − 0.3 0.06 133 − 5.73 <0.0001 
<30 vs 31-41 − 0.19 0.05 133 − 3.65 0.002 
<30 vs 42-52 − 0.28 0.05 133 − 5.06 <0.0001 
>52 vs 31-41 0.17 0.06 133 2.91 0.022 
>52 vs 42-52 0.08 0.06 133 1.40 0.500 
31-41 vs 42-52 − 0.08 0.05 133 − 1.71 0.323  

Fig. 6. Boxplots showing the variability in mean standardised concentrations of Sr in the otolith (0–100 μm from the edge) between quarters and areas, as detected in 
the main phase of the analysis using LA-ICPMS continuous line scans. See Fig. 1 for subarea location. Mean standardised Sr concentrations were calculated by 
dividing each Sr measurement from a given transect by the mean of all the Sr measurements from that transect. 
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elemental maps down to a resolution of 5 μm and 15 μm respectively 
(Limburg and Elfman, 2017), which could allow for the detection of 
seasonal changes in the microchemical composition of illicia. 

Analysis of the otoliths produced more promising results for identi
fying seasonal patterns in elemental concentration that could be applied 
to age estimation or validation. The strongest seasonal signal was 
detected in Sr measurements from the otolith line scans, which showed 
small but significant levels of variation in the material formed during 
recent otolith growth for individuals collected at different times of the 
year. Seasonal differences were overlaid on length-dependant variation 
in Sr. The relationship with length is not surprising; numerous studies 
report ontogenetic variation in otolith trace elements, including Sr 
(Macdonald et al., 2020; Morales-Nin et al., 2014; Sturrock et al., 2015). 
Crucially, in white anglerfish otoliths the seasonal pattern was consis
tently detected across all size classes. The results indicate that uptake of 
Sr into the otolith was highest during winter (Q1) and lowest during the 
spring and summer (Q3 in pilot phase, Q2 in main phase). There was 
some discrepancy between the pilot and main phase, which may be 
attributed to inter-annual variation in seasonal environmental patterns, 
geographic differences in seasonal microchemistry patterns or 
spatio-temporal variation in depth-occupancy behaviours (fish in deeper 
waters would not be exposed to the same temperature fluctuations). 
Nonetheless, the results indicate that Sr deposition in white anglerfish 
otoliths varies seasonally across length groups and is highest in winter. 

Seasonal variation in Sr could reflect intra-annual changes in 
ambient water chemistry, fish physiology, or a combination of both. 
Strontium substitutes for calcium in the aragonite matrix of the otolith 
(Doubleday et al., 2014) at a rate that is generally proportional to 
ambient concentrations (Bath et al., 2000; Elsdon and Gillanders, 2005; 
Kraus and Secor, 2004; Reis-Santos et al., 2013; Walther and Thorrold, 
2006) and varies with temperature (Bath et al., 2000; Elsdon and Gil
landers, 2002; Reis-Santos et al., 2013; Townsend et al., 1992). In
vestigations of temperature dependence give conflicting results, and it is 
suggested that temperature indirectly affects otolith Sr via its influence 
on physiological processes (e.g. growth and reproduction) that deter
mine blood plasma Sr levels (Sturrock et al., 2015). Several studies have 
shown that the rate of uptake of Sr into the otolith is relatively high 
during periods of slow growth (Miller and Hurst, 2020; Mugiya and 
Satoh, 1997; Sadovy and Severin, 1994; Sturrock et al., 2014; Walther 
et al., 2010). While in some species, otolith Sr maxima have been 

associated with maturation and reproduction (Clarke and Friedland, 
2004; Granzotto et al., 2003). It is unlikely that the seasonal differences 
observed in this study are linked to reproduction as the variation in 
otolith Sr was evident in the smallest size class (<31 cm) which included 
immature individuals. It is more probable that the observed increase in 
Sr during winter and the decrease during spring/summer reflect sea
sonal changes in temperature and the growth rate of white anglerfish. 

Within the study area, sea temperatures (0–110m) are relatively 
stable and low in Q1 and high in Q3, whereas temperatures increase 
during Q2 and decrease during Q4; in deeper waters (>110m) there is 
little seasonal fluctuation in temperature (Good et al., 2013), (Fig. 4, 
Supplementary Material). The white anglerfish is found from 50 to 1000 
m depth (Whitehead et al., 1986), occupying progressively deeper wa
ters with increasing size (Laurenson et al., 2005). In the Mediterranean, 
the highest probability of occurrence is between 200 m and 600 m depth 
(Barcala et al., 2019). Although it is a bottom dwelling species, occur
rence in near-surface waters has been reported (Hislop et al., 2000), and 
an individual carrying a data storage tag was observed to make vertical 
migrations between the bottom and the surface (Thangstad et al., 2006). 
It is suggested that anglerfish may rise upwards into the pelagic zone to 
use selective tidal stream transport during migrations (Laurenson et al., 
2005). Seasonal movements from inshore to offshore waters between 
November and April are also reported (Laurenson et al., 2005). Given 
their preference for deeper waters, anglerfish are generally not exposed 
to strong seasonal fluctuations in water temperatures. Intra-annual 
variation in temperature exposure and growth rates may be more 
strongly influenced by vertical and horizontal migrations, which can be 
extensive (Laurenson et al., 2005; Thangstad et al., 2006). Such varia
tion may contribute to the observed seasonal patterns in otolith Sr. 
Future studies that combine otolith microchemistry and data storage tag 
profiles could help to reveal the underlying mechanisms. 

The results confirm that seasonal variation in otolith Sr is detectable 
in white anglerfish across a wide geographic area and a range of length 
classes. With further development, microchemistry analysis could be 
used to support age determination and validation in white anglerfish, to 
corroborate interpretations of visual growth marks and to resolve dis
crepancies between estimates obtained from otoliths and illicia. Further 
work is needed to assess if the seasonal signal found in the otolith edge is 
present along the fish growth transect and to establish the extent to 
which microchemistry patterns correspond to visual growth marks. The 

Fig. 7. GLMM output showing how mean 
standardised Sr concentration in the otolith 
changes along the recent growth transect, 
from time of capture to ~3 months prior to 
capture. Plot headings indicate the season of 
capture (Q1 = quarter 1; Q2 = quarter2; Q3 
= quarter 3; Q4 = quarter 4). The X-axis 
represents the line scan transects, moving 
from the most recent otolith material at the 
otolith edge (axis value: 0) to material 
deposited ~3 months previously (axis value: 
1). Mean standardised Sr concentrations 
were calculated by dividing each Sr mea
surement from a given transect by the mean 
of all the Sr measurements from that 
transect.   
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isolation of the relatively weak seasonal signal from length-based and 
individual variability presents a significant challenge that could be 
addressed using time series analysis approaches (e.g., detrending to 
remove ontogenetic effects) and signal processing methods. Otolith 
chemistry-based approaches have long been promoted as a direct vali
dation method to support fish age determination and offer particular 
promise for difficult to age species (Heimbrand et al., 2020). These ap
proaches rely on the identification of cyclical variation in elemental 
concentrations (Hüssy et al., 2015; Siskey et al., 2016) and the analysis 
of seasonal differences, as reported here. Alongside a growing under
standing of the relationship between visible growth features and 
elemental composition (Granzotto et al., 2003; McFadden et al., 2016; 
Tomas et al., 2006; Tzeng et al., 1999), our results can help to advance 
the interpretation of visual growth marks and improve age estimation. 
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