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1 Introduction

One of the primary reasons for colliding heavy ions with ultra-relativistic energies is to
probe QCD matter in an extremely hot and dense phase, called the quark-gluon plasma
(QGP). There are multiple ways to probe and learn about the properties of QGP, utilizing
the properties of bulk particle production and rare probes. In one example of the latter
category, the heavy-ion collision involves a hard partonic sub-collision that produces hard
partons that propagate through the medium and escape to the detectors as jets. The study
of how the properties of these jets change as they go through the medium, colloquially
referred to as “jet quenching,” is a versatile tool to study hot QCD matter [1–3].

Experiments at RHIC [4, 5] and the LHC [6–10] colliders have found strong suppression
of high-pT particles in heavy-ion collisions compared to proton-proton collisions, which is
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interpreted as a clear sign of the energy loss of jets that suffer final-state interactions with
the surrounding QGP. On the theoretical side, this is interpreted in terms of radiative
energy loss, where particles in the jet lose energy through medium-induced emission of
gluons that end up outside of the reconstructed jet cone, and elastic drag. For large media,
as typically encountered in central to semi-central lead-lead collisions, it is the former
process that dominates the total lost energy.

The energy loss process for single partons is well understood since many years, see,
e.g., [11–17]. However, a jet is a more complicated composite object consisting of several
hard partons. A hard parton propagating through the medium will typically undergo
several splittings, resulting in a multi-parton state that will interact differently with the
medium compared to how the individual partons would. Such splittings can occur as long
as the scale of the splittings, for instance the generated relative transverse momentum
in the splitting, is bigger than what the medium can supply through multiple scattering.
In particular, the modifications of effects of color coherence play an important role in
determining which emissions will be resolved by the medium and contribute toward the
total energy loss [18–21]. Instead of focusing on single partons, we will study a hard parton
splitting into two, and their subsequent propagation through the medium. This is certainly
a better approximation of a real jet than a single parton, and has the additional advantage
that one can build up jets from several partons by consecutive 1→ 2 splittings.

Previous studies of such processes focused mostly on a hard photon splitting into a
quark-antiquark pair [18, 22] and invoked the large-Nc approximation to obtain analytical
formulas. In this work, we consider three generic QCD splitting processes that involve up
to eight correlated Wilson lines in the fundamental representation, in the case of gluon
splitting into two daughter gluons. Our specific improvement concerns a more precise way
to calculate correlators of Wilson lines that often appear in these calculations, and it can, in
principle, be extended for an arbitrary number of propagating particles through the medium.

To give a general flavor of how our procedure works, recall that a matrix element
generally involves several propagators that resum multiple scattering through Wilson lines
V , which extend along the trajectories in the medium. Ignoring some factors irrelevant for
the present discussion, the matrix element squared will take the following simplified form〈

|M|2
〉
∼ 〈tr[V †V . . . V †V ] . . . tr[V †V . . . V †V ]〉 , (1.1)

where the angular brackets denote an average over medium configurations. For a generic
1 → 2 process, the amplitude squared can be reduced to a product of two-, three- and
four-point correlators [23, 24]. To calculate these processes it is imperative to know the form
of the Wilson line correlator appearing on the right hand side of (1.1), which we will denote
by the letter CK for correlator, where the superscript K refers to the number of traces.
If you assume that the number of colors Nc is large the calculation of these correlators
usually simplifies sufficiently to be possible to calculate. Namely, the leading Nc scaling
emerges from simplifying the medium averages to 〈tr[V †V . . . V †V ]〉 . . . 〈tr[V †V . . . V †V ]〉,
which scales like NK

c . However, since Nc = 3 is not a very large number it is sensible to ask
whether this approximation is sound or not. As we will see, the terms that are discarded by
performing the large-Nc approximation will be smaller than the other terms by a factor
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∼ 1/N2
c ' 10% for typical situations. However, evaluating the correlators at large times,

could lead to big discrepancies between the finite and large-Nc calculations.
In this paper we will develop a method for calculating correlators of an arbitrary number

of Wilson lines at finite Nc, which casts their evolution and mixing in terms of a coupled
evolution equation in time (referring to their trajectories through the medium). This reduces
the complexity of the formulation compared to previous calculations of multi-Wilson line
correlators, see [25, 26] for a technique based on diagonalization of the evolution matrix
and [24, 27] for an iterative procedure. The derivation of the evolution matrix culminates
in eq. (4.26). This allows us to evaluate these correlators at an arbitrary time, and can be
addressed using numerical techniques. We also consider in detail the large-Nc approximation,
which leads to a striking simplification of the dynamics since all higher-order correlators can
be calculated using two-point correlators (dipoles) and their convolutions. Furthermore, we
have computed the sub-leading correction in color. Considering again the generic correlator
CK from eq. (1.1) above, the generic expansion in Nc takes the following form,

CK = NK
c Ĉ

K
leading Nc +NK−2

c ĈKsub-leading Nc +O(NK−4
c ) , (1.2)

where the two first terms can be found analytically (the hat over the correlators imply that
we have explicitly extracted their leading Nc behavior). It turns out that, in many cases,
CKsub-leading Nc is essential to recover the correct long-time behavior of the correlators.

We will explore how big the error is by comparing the exact results to the large-Nc

approximation in realistic settings in high-energy jet splittings. We mainly consider hard
emissions early in the medium, i.e. at scales much larger than those provided by the medium,
and therefore we neglect any broadening of the particles. The daughters are traversing the
medium at a fixed angle, or “tilt”, given by the kinematics of the hard splitting (we fix our
coordinate system so that the parent particle has zero angle). For splittings where at least
one of the daughters becomes very soft or is being emitted at a large angle, one should also
allow for additional transverse momentum broadening, as done in [23, 24], albeit only in
the large-Nc approximation. We have left this additional complication for future work.

Our calculation is also very pertinent for improving our understanding of color dynamics
in the medium, for instance in the context of multi-gluon emissions with overlapping
formation times [28] and to understand hadronization after exiting the QGP [29]. In the
process of evaluation of the multi-Wilson line correlators, the only assumption made is the
exact form of the medium average, see eq. (2.5), which is also employed in other contexts
than for a thermal medium, see, e.g., [30] for calculating such correlators on the lattice.
Therefore, although we have derived our method of calculating Wilson line correlators in
the context of jet quenching, it is a general result that can be applied in more branches of
QCD. One concrete example refer to initial state physics, where multi-particle production
is considered an important channel to verify saturation effects in the nuclei [25, 31, 32].
Furthermore, sub-leading corrections in color have also been considered in the context of
high-energy QCD evolution at next-to-leading order [33]. Finally, the generic color structure
of high-energy QCD events is actively studied [27, 34]. It is also interesting to note that
sub-leading color corrections have been considered in the context of improving parton
showers in the vacuum, see, e.g., [35, 36].
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Let us briefly outline the structure of the paper. Section 2 introduces the notation and
formalism we will make use of throughout the paper. In section 3 we will consider three
examples of splitting processes that lead to Wilson line correlators: a photon producing
a quark-antiquark pair, a quark emitting a gluon and a gluon splitting into two gluons.
Those processes will provide the motivation for the rest of the calculation in the paper.
In section 4.1, we will go into detail about calculating the simplest of the Wilson lines
structures from section 3, which is a trace of four lines. Here, we also develop a method
to compute the color sub-leading corrections, corresponding to the second term on the
right hand side in eq. (1.2). Thereafter, in section 4 we will generalize the method used in
section 4.1 to correlators of an arbitrary number of Wilson lines, and show how one can
always make a system of differential equations to describe these structures. This section
contains the main theoretical results of the paper. The formulas developed in section 4 are
used to calculate the more complicated Wilson line structures appearing in section 3. We
will show how the calculations simplify in the large-Nc approximation, and use numerical
evaluation to compare the approximate results to the exact ones.

2 Basic elements and notation

We will assume that the partons propagating through the medium are highly energetic and
travelling on the light-cone almost strictly in the positive z direction. In light-cone (LC)
coordinates it will have momentum (p+, p−,p), where p+ = (p0 + p3)/2 is identified with
the LC energy E ≡ p+, p− = p0 − p3 is negligible and p is the transverse momentum. The
parton interacts with the medium, which is modelled by a classical background gauge field
Aµ,a(t, r). The interaction of the parton with the classical field leads to transverse momentum
broadening and energy loss. The interactions can be resummed using a framework developed
by Baier-Dokshitzer-Mueller-Peigné-Schiff [11–14] and Zakharov [15, 16], and is known as
the BDMPS-Z formalism. For small media, where interactions are rare, this is equivalent
with considering only one interaction, known as the Gyulassy-Levai-Vitev (GLV) [37]
approximation.

It is possible to construct Feynman rules from the BDMPS-Z approach, with special
in-medium propagators and vertices [18]. In this formulation a highly energetic parton
travelling through the medium can be described by the propagator

(x|GR(t, t0)|x0) = Θ(t− t0)
∫ x

x0
Dr exp

[
i
E

2

∫ t

t0
ds ṙ2(s)

]
VR(t, t0; r(t)) . (2.1)

In this expression VR is a Wilson line in the representation R, which is given by

VR (t, t0; r(t)) = P exp
[
ig

∫ t

t0
dsAa(s, r(s))T aR

]
, (2.2)

where the symbol P enforces path ordering. A quark transforms in the fundamental
representation, so the group generator is T aF ≡ taij . Similarly, a gluon transforms in the
adjoint representation, and its group generator is T aA ≡ (T a)bc = −ifabc. The final results
in this paper will mainly concern fundamental lines, which we will denote by V ≡ VF .
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Similarly, we will write the adjoint lines as U ≡ VA. Focusing on fundamental lines is
sufficient, since one can always transform adjoint Wilson lines to fundamental ones through
the identity

Uab = 2 tr
[
taV tbV †

]
= U †ba . (2.3)

In the absence of interactions, i.e. when the Wilson line is evaluated at g = 0, we simply get

(x|G0(t, t0)|x0) ≡ G0(x− x0, t− t0) = Θ(t− t0) E

2πi(t− t0)ei
E
2

(x−x0)2
(t−t0) , (2.4)

which is a representation of the retarded part of the Feynman propagator (E > 0).
As mentioned in the introduction, the matrix element describing final-state interactions

in the QGP will involve one or more propagators of the form in eq. (2.1). Hence, on the
level of the matrix element squared, we have to compute correlators of such lines averaged
over all possible medium configurations. The medium average is indicated by 〈. . . 〉, and we
assume that the correlator of the medium fields takes the form

〈Aa(t, r)Ab(t′, r′)〉 = δabn(t)δ(t− t′)γ
(
r − r′

)
, (2.5)

which corresponds to the Gaussian noise approximation. Here, n(t) is the (time-dependent)
density of scattering centers in the medium and

γ(r) =
∫ d2q

(2π)2 eiq·r d2σel
d2q

∼ g2
∫ d2q

(2π)2
eiq·r
q4 , (2.6)

is the Fourier transform of the in-medium elastic scattering potential, where the infrared
behavior of the potential is regulated by an in-medium screening mass. The delta function
in time indicates that we have assumed the medium interactions to be instantaneous. In
many cases it will be convenient to define

σ(r) = g2[γ(0)− γ(r)
]
. (2.7)

The form of the function σ depends on how the medium is modelled. The two main ways of
calculating this is through the Gyulassy-Wang model [38] or through Hard Thermal Loop
theory [39]. These models differ mainly in how infrared screening is implemented when
q⊥ → 0. In this paper, we will however work in the harmonic oscillator approximation,
which accounts for multiple soft interactions. In this case, the potential σ(r) can be cast as

CRnσ(r) ' 1
4r

2q̂R(t) , (2.8)

where
q̂R = CRng

2
∫ qmax
⊥ d2q

(2π)2 q
2 d2σel

d2q
, (2.9)

is the jet quenching coefficient where R denotes the color representation of the Wilson
lines. For the fundamental and adjoint representations we have CF = N2

c−1
2Nc and CA = Nc,

respectively. In this paper we will use q̂ = q̂F unless otherwise stated. In eq. (2.9) we
have explicitly introduced a UV cut-off to regularize the integral. A more systematic
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approach to the regularization of the integral, and the extension beyond the soft scattering
approximation, has been pursued in refs. [19, 40, 41].

We stress that the approximation in (2.8) is not necessary in order to solve numerically
the system of equations for arbitrary n-point correlators, but it is very useful to employ to
compare these exact results to analytical calculations of the leading and sub-leading color
correlators.

In the current work, we will focus on hard 1 → 2 splitting processes in the medium,
where the initial particle has energy E and the two splitting products carry, respectively,
ω1 = (1− z)E and ω2 = zE. This is formally equivalent to setting the energy of the mother
particle, E →∞, and considering a finite momentum sharing fraction 0� z � 1. These
conditions enforce that both the mother and daughter particles travel on classical paths.
Concretely, the trajectory of a particle in the medium between time t0 and t, given by
the propagator (x|G(t, t0)|x0), in configuration space, for E � (t − t0)−1 gets strongly
constrained to the classical path connecting the initial and final transverse positions, see
eq. (2.1), and leads to

(x|GR(t, t0)|x0) ' G0(x− x0, t− t0)VR(t, t0; [xcl(s)]) , (2.10)

where the classical trajectory is given by xcl(s) = x0 + s−t0
t−t0 (x−x0). This corresponds to the

product of a Wilson line, trailing the direction of the particle, times a vacuum propagator,
see eq. (2.4). Corrections to this limit can also be systematically be calculated [42]. In the
mixed representation, this leads to,

(p|GR(t, t0)|p0) ' (2π)2δ(p− p0)VR (t, t0; [xcl(s) = ns]) e−i
p2
2E (t−t0) , (2.11)

where n = p/E, see [18, 22]. The last term in this product is simply the Fourier transform
of the vacuum propagator.

In detail, the 1→ 2 partonic processes we consider are: 1) γ → q + q̄, 2) q → q + g,
3) g → g + g. These will, at most, involve correlators of 4, 6 and 8 Wilson lines (in the
fundamental representation). We also write out the relevant correlators for g → q + q̄, but
we do not explicitly evaluate the spectrum in this case. All three processes consist of one
(off-shell) particle1 traversing the medium splitting into two particles. While we derive
formulas for a generic medium profile, our numerical calculations apply to a medium with
constant density (aka the “brick”), where the splitting can occur either inside the medium
or outside.

As mentioned above, the first particle, with LC energy E, is produced at initial time
t0 = 0 and is propagating along the light-cone in the positive z direction. It splits at times t1
in the amplitude and t2 in the complex conjugate amplitude, see figure 1. The two daughter
particles, which now carry LC energies (1 − z)E and zE, respectively, then propagate
on the classical paths r1(t) (r1̄(t)) and r2(t) (r2̄(t)) in the amplitude (complex conjugate
amplitude) to the end of the medium at L. In the high-energy, eikonal approximation these

1We will however only consider physical polarizations/spin states for the initial particle, since other
contributions do not propagate.
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paths are classical and are given by

r1(t) = n1(t− t1) ,
r2(t) = n2(t− t1) ,
r1̄(t) = n1(t− t2) ,
r2̄(t) = n2(t− t2) ,

(2.12)

where n1 ≡ p1
(1−z)E and n2 ≡ p2

zE are the transverse velocity vectors. To slightly compress
the notation we will usually refer to the coordinates as numbers, meaning that we will write
V (r1) ≡ V1 and γ(r1 − r2̄) ≡ γ12̄, etc.

Finally, in the harmonic approximation, we need the square of the differences of the
transverse coordinates. Using the eikonal approximation this is

(r1 − r2)2 = (t− t1)2θ2 ,

(r1̄ − r2̄)2 = (t− t2)2θ2 ,

(r1 − r1̄)2 = z2(t2 − t1)2θ2 ,

(r2 − r2̄)2 = (1− z)2(t2 − t1)2θ2 ,

(r1 − r2̄)2 = (t− zt1 − (1− z)t2)2θ2 ,

(r1̄ − r2)2 = (t− (1− z)t1 − zt2)2θ2 ,

(2.13)

where we have assumed that the angle θ is small.

3 Emission spectra

In this section we will present the results for the in-medium emission spectra dI
dzdθ for the

in-medium splitting processes. We refer to appendix A for the details of the calculations.
All of the Wilson line correlators in this section were calculated using the methods developed
in section 4. For more details about the calculation of correlators of six and eight Wilson
lines we refer to appendix B.

One can define the vacuum spectrum as

dIvac

dz dθ = α

π

P (z)
θ

, (3.1)

where α can be αem or αs depending on the process, and P (z) is the relevant Altarelli-Parisi
splitting function. Then one can write the full spectrum on the form [22]

dI full

dz dθ = dIvac

dz dθ + dImed

dz dθ
= dIvac

dz dθ (1 + Fmed(z, θ)) . (3.2)

The term Fmed(z, θ) contains the medium modification to the processes. For a generic
medium profile the medium radiation reads

dImed

dz dθ = dIvac

dz dθ 2Re
∫ L

0

dt1
tf

∫ L

t1

dt2
tf

e−i
t2−t1
tf C(4)(L, t2)C(3)(t2, t1) , (3.3)
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1

2

2̄

1̄

t1 t2

(p0, E, λ)

(p1, (1− z)E, s1)

(p2, zE, s2)

i

j
j̄

ī
t0

Figure 1. The process of a photon splitting to a quark-antiquark pair. The amplitude is on the
top and the complex conjugate amplitude on the bottom. The splitting happens at time t1 in the
amplitude and at a later time t2 in the complex conjugate amplitude.

where, in the high-energy limit employed in this paper, the medium-induced spectrum
is proportional to the vacuum spectrum. This proportionality does not a priori hold
in all the phase space, in particular whenever the transverse momentum in the splitting
k⊥ = z(1− z)Eθ is comparable to the transverse momentum accumulated in the medium
Qs ∼ q̂L [23]. Finally, the factors C(n)(tb, ta) appearing in (3.3) are n-particle correlators
that have support during time ta < t < tb, and tf = 2

z(1−z)Eθ2 is the formation time of the
process. The splitting process is illustrated in figure 1.

For a medium with fixed density and extension L, we have q̂(t) = q̂Θ(L− t). In this
case, the integrals over the emission times t1 and t2 in (3.3) can be split, so that

dI in−in

dz dθ = dIvac

dz dθ 2Re
∫ L

0

dt1
tf

∫ L

t1

dt2
tf

e−i
t2−t1
tf C(4)(L, t2)C(3)(t2, t1) , (3.4)

dI in−out

dz dθ = dIvac

dz dθ 2Im
∫ L

0

dt1
tf

e−i
L−t1
tf C(3)(L, t1) , (3.5)

where dNmed/(dzdθ) = dN in−in/(dzdθ) + dN in−out/(dzdθ). Taking into account that the
Wilson line correlators are real the medium modification term can be written [22]

Fmed = 2
∫ L

0

dt1
tf

[∫ L

t1

dt2
tf

cos
(
t2 − t1
tf

)
C(4)(L, t2)C(3)(t2, t1)− sin

(
L− t1
tf

)
C(3)(L, t1)

]
.

(3.6)
We now will discuss three concrete cases that are relevant for jet quenching phenomenology.
We will compute the double-differential spectrum for a wide range of LC energy sharing
fraction z and angles θ to map the regions where medium-induced corrections appear, as
quantified by the factor Fmed(z, θ). Our focus here is to provide a test bed for evaluating
precisely the multi-Wilson line correlators appearing in (3.6), and we will therefore not worry
about the validity of the eikonal approximation (2.10) of the splitting products. Including
non-eikonal corrections on the particle trajectories will be postponed to future work.

– 8 –



J
H
E
P
1
1
(
2
0
2
1
)
1
2
5

3.1 Derivation of the splitting functions

Photon splitting. We will start with the case of a photon splitting into a quark-antiquark
pair, i.e. γ → q + q̄. Due to the least number of fundamental Wilson lines, this is the
simplest process to analyze. We will therefore treat it in more detail, taking the advantage
to discuss the relevant medium and jet scales appearing in the calculation.

In this case, the vacuum emission spectrum is given by (3.1) with the QED coupling
constant αem and the Altarelli-Parisi splitting function being Pqγ(z) = nfNc[z2 + (1− z)2],
where nf is the number of active flavors. Furthermore, the correlator C(3) reduces to an
effective two-point function because the photon does not carry color charge. We have

C(4)
qγ (L, t2) = 1

Nc
〈tr[V1V

†
2 V2̄V

†
1̄ ]〉 , (3.7)

C(3)
qγ (t2, t1) = 1

Nc
tr〈V1V

†
2 〉 , (3.8)

where the time extension of each of the medium-averaged color correlators on the right
hand side is implied by the time argument on left hand side of the equation.

The correlator of two Wilson lines, which in this case corresponds to C(3)
qγ (t, t1) =

S12(t, t1), is generally referred to as a dipole correlator, and is known to be

S12(t, t1) ≡ 1
Nc
〈tr[V1V

†
2 ]〉 = e−CF

∫ t
t1

ds n(s)σ(r)
, (3.9)

where r = r1 − r2 is the difference of transverse positions of the two Wilson lines. For a
fixed separation, i.e. r = const., in the HO approximation and in a medium with constant
density, it simply reads S12(t, t1) = e− 1

4 q̂(t−t1) r2 , where, as a reminder, we have denoted
q̂ ≡ q̂F . However, for the kinematics we consider, see eq. (2.13), this becomes

S12(t, t1) = e−
1
12 q̂(t−t1)3θ2

. (3.10)

Then, assuming that t = t2 and t2 − t1 ∼ tf , we find

S12 ≈ e−
2
3

q̂

ω3θ4 , (3.11)

with ω = z(1− z)E. This implies that medium modifications appear, in this term, whenever
ω3θ4 . q̂.

The correlator of four Wilson lines C(4)(t, t2), referred to as the quadrupole (in the
fundamental representation), can only be calculated numerically at finite-Nc. We will later
show how this can be achieved through the differential equation eq. (4.10). In the large-Nc

limit, however, it can be calculated analytically through the simplified differential equation
eq. (4.12). There are only two ways of connecting the Wilson lines at the final time (their
connection at initial time is given by the vacuum splitting process). We can therefore
define C12̄(t, t2) ≡ 〈tr[V1V

†
2 ] tr[V2̄V

†
1̄ ]〉 and C2̄1(t, t2) ≡ 〈tr[V1V

†
2 V2̄V

†
1̄ ]〉, note the absence of

explicit normalization factors at this stage. In the large-Nc approximation, the first of these
correlators reads simply,

1
N2
c

C12̄(t, t2) ' e−
1
12 q̂θ

2[(t−t2)3+(t−t1)3−τ3] , (3.12)

– 9 –
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where τ ≡ t2−t1, and the dependence on t1 appears as a consequence of the fixed trajectories.
Here we have used the eikonal (2.12) and harmonic oscillator approximations (2.8). Similarly,
at large-Nc, the second correlator is

1
Nc
C2̄1(t, t2) ' e−

1
4 q̂θ

2ξ(t−t2)τ2

− 1
2 q̂θ

2z(1− z)τ2
∫ t

t2
ds e−

1
4 q̂θ

2ξ(t−s)τ2
e−

1
12 q̂θ

2[(s−t2)3+(s−t1)3−τ3] , (3.13)

where we defined ξ ≡ z2 + (1 − z)2. Only the latter of these correlators appears in the
spectrum, cf. eq. (3.7), but we include both for completeness.2 Assuming the dominance of
the first term in (3.13), setting t = L and assuming that L� tf , we find that

1
Nc
C2̄1 ≈ e−

1
6

q̂L

(ωθ)2 , (3.14)

where we put ξ ≈ 2/3. The factor in the exponential becomes large whenever ωθ <
√
q̂L.

This factor is related to momentum broadening of the quark and anti-quark after they have
been produced.

Let us compare the two conditions when exponential suppression arise either in the
dipole S12(t2, t1) or quadrupole C2̄1(L, t2). For a fixed energy ω, the two conditions are
equal at the critical angle

θc ∼
(
q̂L3

)−1/2
. (3.15)

Let us also define the characteristic energies ωd = (q̂/θ4)1/3 and ωbroad =
√
q̂L/θ. At

large angles θ > θc, the condition from the dipole starts affecting soft gluon emissions, i.e.
ωd < ωbroad. This reflects the length-dependence color coherence. On the one hand, the
dipole, which has support only during the formation time tf . L, needs a large angle to
resolve the two particles within that time scale. On the other hand, the quadrupole, which
extends up to L, will ultimately resolve even narrower configurations.

We also plot the dependence on the latest time of both C(3)
qγ (t, t1) and C(4)

qγ (t, t2) in
figure 2a, keeping t1 = 0.3 fm fixed, in the case of the dipole, and both t2 = 1 fm and
t1 = 0.3 fm fixed, in the case of the quadrupole. The other parameters are chosen as
q̂ = 1.5GeV2/fm, θ = 0.5 and z = 0.5. We notice the fast decay of the dipole, that goes like
∼ e−t3 according to (3.10), compared to the exponential decay of the quadrupole, i.e. ∼ e−t,
at large times. Finally, we notice that the large-Nc approximation to the full quadrupole,
given in eq. (3.13), is very good up very late times.

Quark-gluon splitting. Next we consider the slightly more complicated problem of a
quark-gluon splitting. This was also outlined in [22], but not calculated explicitly. For
this process, the vacuum emission spectrum is given by (3.1), with the QCD coupling
constant αs and the Altarelli-Parisi splitting function Pgq(z) = CF

1+(1−z)2

z . The four- and

2In [22] C2̄1 is also calculated in the large-Nc limit. In their eq. (29) they get the same as (3.13), except
they lack the factor of 1/2 in front of the second term.
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three-point functions read

C(4)
gq (L, t2) = 1

N2
c − 1

〈
tr[V †1̄ V1V

†
2 V2̄] tr[V †2̄ V2]− 1

Nc
tr[V †1̄ V1]

〉
, (3.16)

C(3)
gq (t2, t1) = 1

N2
c − 1

〈
tr[V †2 V1] tr[V †0 V2]− 1

Nc
tr[V †0 V1]

〉
. (3.17)

The emission spectrum is composed of correlators of two, four and six Wilson lines. The
three-point function can be solved exactly, see (B.7), resulting in

C(3)
gq (t2, t1) = e−

1
2

∫ t2
t1

ds n(s)[Nc(σ02+σ12)− 1
Nc
σ01]

= e
− 1

12 q̂(t2−t1)3θ2
(

1+z2+ 2z
N2
c−1

)
. (3.18)

This expression is very similar to the dipole term in eq. (3.10) and the same scale analysis
applies.

The four-point correlator involving six and two Wilson lines can only be calculated
numerically at finite Nc. In the large-Nc limit, the former can be calculated analytically,
and reads

1
N2
c

〈tr[V1V
†

2 V2̄V
†

1̄ ] tr[V2V
†

2̄ ]〉 ' e−
1
4 q̂θ

2(t−t2)(t2−t1)2(1−2z+3z2)

×
(

1− 1
2 q̂θ

2z(1− z)(t2 − t1)2
∫ t

t2
ds e−

1
12 q̂θ

2[(s−t2)2(2s−3t1+t2)+6z(1−z)(s−t2)(t2−t1)2]
)
.

(3.19)
Once again, the first term in the correlator above has a form very similar to the four-point
function relevant for photon splitting, see eq. (3.13).

Gluon-gluon splitting. The last process of interest is the case of a gluon splitting into
two other gluons. This process was discussed quite extensively in [23]. For this process, the
vacuum emission spectrum is given by (3.1) with the QCD coupling constant αs and the
Altarelli-Parisi splitting function Pgg(z) = 2Nc

[
z(1− z) + 1−z

z + z
1−z

]
. In this case the 4-

and 3-point functions read

C(4)
gg (L, t2) = 1

Nc(N2
c − 1)

〈
tr[V1V

†
1̄ ] tr[V2V

†
2̄ V1̄V

†
1 ] tr[V2̄V

†
2 ]− tr[V1V

†
1̄ V2V

†
2̄ V1̄V

†
1 V2̄V

†
2 ]
〉
,

(3.20)

C(3)
gg (t2, t1) = 1

Nc(N2
c − 1)

〈
tr[V1V

†
2 ] tr[V0V

†
1 ] tr[V2V

†
0 ]− tr[V1V

†
2 V0V

†
1 V2V

†
0 ]
〉
. (3.21)

When cast as correlators of Wilson lines in the fundamental representation, the C(4)
gg involves

8-point correlators, which is the largest number we will calculate in detail.
The 3-point function can be solved exactly, either by the differential equation (4.26) or

by writing it in terms of adjoint Wilson lines (A.17). In the end, the result reads

C(3)
gg (t2, t1) = e−

Nc
2

∫ t2
t1

dt n(t)[σ01+σ02+σ12]

= e−
1
12 q̂(t2−t1)3θ2 Nc

CF
(1−z+z2)

. (3.22)

Note the similarity to the previous results, see eqs. (3.10) and (3.18).
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The 4-point function consists of two different correlators of eight Wilson lines. They can
be calculated through the differential equation in eq. (4.26). Interestingly, the four-point
function C(4)

gg involves a eight-point correlator, see the second term in (3.20), which cannot be
reduced further in the large-Nc approximation. This can nevertheless still be exactly solved
in the large-Nc approximation, which we present in the figures below, but the expression is
too long to extract any meaningful approximation. Anticipating the numerical results, we
can mention that it is for this correlator that the large-Nc approximation gives the biggest
deviations with respect to the exact result.

Gluon-quark splitting. We now consider a gluon that splits into a quark-antiquark pair.
The Altarelli-Parisi splitting function is Pqg(z) = nfTR[z2 +(1−z)2] and the correlators read

C(4)
qg (L, t2) = 1

Nc

〈
tr[V1V

†
2 V2̄V

†
1̄ ]− 1

Nc
tr[V1V

†
1̄ ] tr[V2̄V

†
2 ]
〉
, (3.23)

C(3)
qg (t2, t1) = 1

N2
c − 1

〈
tr[V1V

†
0 ] tr[V0V

†
2 ]− 1

Nc
tr[V1V

†
2 ]
〉
. (3.24)

Since these expressions involve only quadrupoles and dipoles, that were previously encoun-
tered and analyzed in detail above, we will not present further results for this splitting
process.

3.2 Numerical results

Here we present the numerical calculations of the results from the previous section. We
focus first on the details of the three- and four-point functions for each of the three splitting
processes, and proceed with calculating the double-differential spectrum in the momentum
sharing fraction z and angle θ.

In figure 2, we show how C(3)
ij (t, t1), with blue, solid curves, and C(4)

ij (t, t2), with orange,
solid curves, for the three processes evolve with time. For the four-point functions, we
also plot the large-Nc approximation with orange, dashed curves. We fix both t1 = 0.3 fm
and t2 = 1 fm and plot for the latest time t = L. For the other parameters we choose
q̂ = 1.5GeV2/fm, θ = 0.5 and z = 0.5.

While this approximation turns out to work extremely well for the photon splitting, see
figure 2a, we note that it has a more limited range of applicability for both the quark-gluon,
see figure 2b, and gluon-gluon, see figure 2c, splitting processes, respectively. In all of the
cases the exact value is slightly higher than the approximate one. As we derived analytically,
the C(3)

ij terms all decay as ∼ e−q̂(t−t1)3τ2θ2f(z), where f(z) is a process dependent regular
function. The C(4)

ij terms are more complicated, especially at early times where all terms
contribute, but at late times the dominant contribution comes from ∼ e−q̂(t−t2)θ2 .

The ratio of double-differential in-medium to vacuum spectrum reveals the medium
modification factor Fmed(z, θ) = dImed/(dzdθ)

/
dIvac/(dzdθ). We plot this factor, calculated

at finite Nc, for the three processes in figure 3. These results have been obtained for the
medium parameters q̂ = 1.5GeV2/fm and L = 2 fm and an energy of the initial particle,
before splitting, of E = 100GeV.
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(a) Photon splitting. (b) Quark-gluon splitting.

(c) Gluon-gluon splitting.

Figure 2. The time evolution of C(3)(L, t1) and C(4)(L, t2) for the three processes. For C(4)(L, t2)
both the exact and large-Nc versions are plotted.

As one can see from figure 3, the medium modification factor Fmed(z, θ) has roughly the
same characteristic shape for all three processes. The medium modifications appear at large
angles θ > θc, in between the characteristic lines ω3θ3 < q̂ and ω2θ2 < q̂L which we have
identified for the three- and four-point functions in section 3.1. This corresponds to formation
times smaller than the medium length, tf < L. In fact, we can recast these conditions in
terms of the formation time of the process, namely tf < td and tf < tbroad, where

td ∼
( 1
q̂θ2

)1/3
, and tbroad ∼

( 1
q̂θ2L

)1/2
. (3.25)

The modifications appear for the range of formation times tbroad < tf < td and θ > θc [22].
There also seems to be a trend that both the magnitude and the region of the modifications
grow with the number of Wilson lines. This can be traced back to the finite terms, f(z), in the
exponents that modify the scaling behavior. Naively, we would expect the relevant jet quench-
ing parameter to be roughly a factor Nc/CF ≈ 2 larger for gluon splitting than for the photon.

Our main focus in this work is to highlight the differences between the finite-Nc results
versus their large-Nc approximated counterparts. To illustrate this we have plotted the ratio
of the exact and large-Nc medium modification factors, i.e. Fmed(z, θ)|large−Nc/Fmed(z, θ)
in figure 4. The difference between the exact and approximate result is small in the whole
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(a) Photon splitting. (b) Quark-gluon splitting.

(c) Gluon-gluon splitting.

Figure 3. The medium modification factor Fmed(z, θ) for three splitting processes as a function of
θ and z with L = 2 fm and E = 100GeV at finite Nc.

phase space in the photon splitting case, where there is a correlator of four Wilson lines.
However, in the cases of quark-gluon and especially gluon-gluon splitting, which contain
correlators of six and eight Wilson lines, the error can be relatively big, maximally of the
order of 16% in case of the latter process. This is the reflection of the behavior observed
previously in figure 2. From these calculations it seems like the more complicated color
structure, the bigger the error is by using the large-Nc approximation. Once again, the error
becomes most sizable at relatively large in-medium formation times, i.e. tf ∼ tbroad and
tf ∼ td, but at the same time tf < L. This is most clearly seen in the gluon-gluon splitting,
cf. figure 4c. Finally, we note that the finite-Nc corrections come as a modulation along
the previously established scaling lines which hints that such corrections could perhaps be
absorbed into an effective jet quenching parameter.

To summarize, we have calculated the double-differential spectrum dI
dzdθ for three

different splitting processes, and shown that the resulting expressions factorize into three-
and four-point functions that contain medium-averaged products of 2, 4, 6 and 8 fundamental
Wilson lines. In the coming section 4 we will detail how these are calculated. Strikingly,
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(a) Photon splitting. (b) Quark-gluon splitting.

(c) Gluon-gluon splitting.

Figure 4. The ratio Fmed(z, θ)|large−Nc
/Fmed(z, θ) for three splitting processes as a function of θ

and z with L = 2 fm and E = 100GeV.

the three- and four-point functions all take a very similar scaling form as was derived
analytically exactly, for the former, and in the large-Nc approximation, for the latter. This
corresponds to the identification of two characteristic time-scales in the medium, related to
broadening along the length of the medium, tbroad, and decoherence during the formation
of the splitting, td. These were identified first in [22] for the photon splitting process, and
we have here extended their validity to all other splitting QCD processes. Finally, we have
seen that finite-Nc corrections play an increasingly important role the bigger the total color
charge involved in the splitting process.

4 Calculating Wilson line correlators

In this section we will present our method for calculating Wilson line correlators. As an
illustration we will first show how it is done in the simple case of four Wilson lines in the
fundamental representation. Thereafter this process will be generalized to an arbitrary
number of Wilson lines.
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4.1 Four Wilson lines

The simplest Wilson line correlator comes from the pair production process (3.7), where
there is a trace of four Wilson lines 〈tr[V1V

†
2 V2̄V

†
1̄ ]〉. In this section, we will show how to

derive a system of differential equations to calculate this. Let the Wilson lines have support
from t0 to some arbitrary time t+ ε. Then, following [25], we expand them between t and
t+ ε to get

V (t+ε, t0;r) =V (t+ε, t;r)V (t, t0;r)

=
(

1+ig
∫ t+ε

t
dsAa(s,r)ta− g

2

2!

∫ t+ε

t
ds
∫ t+ε

t
ds′Aa(s,r)Ab(s′,r′)tatb+O(ε2)

)
×V (t, t0;r), (4.1)

where we have kept some of the color indices implicit. All four Wilson lines are expanded in
this manner. We end up with having to take the medium average of the integrals over two
medium fields, traced over the relevant color indices, which is dealt in the following way∫ t+ε

t
ds
∫ t+ε

t
ds′

〈
Aa(s, r)Ab(s′, r′)[tatb]ij

〉
=
∫ t+ε

t
ds n(s)γ(r − r′)taiktakj

' εCFn(t)γ(r − r′)δij , (4.2)

where in the first step we applied the medium average (2.5). Then, keeping terms up to the
first order of ε this becomes

〈tr[V1V
†

2 V2̄V
†

1̄ ]〉(t+ε) =
(
1 + εg2n(t)CF [γ11̄ + γ22̄ − 2γ0]

)
〈tr[V1V

†
2 V2̄V

†
1̄ ]〉(t)

− εg2n(t)[γ12̄ − γ12 − γ1̄2̄ + γ21̄]〈tr[taV1V
†

2 t
aV2̄V

†
1̄ ]〉(t) . (4.3)

Using the Fierz identity
taijt

a
kl = 1

2

(
δilδjk −

1
Nc
δijδkl

)
, (4.4)

this results in the differential equation

d
dt〈tr[V1V

†
2 V2̄V

†
1̄ ]〉(t) = lim

ε→0

〈tr[V1V
†

2 V2̄V
†

1̄ ]〉(t+ε)−〈tr[V1V
†

2 V2̄V
†

1̄ ]〉(t)
ε

= g2n(t)
[
CF (γ11̄+γ22̄−2γ0)+ 1

2Nc
(γ12̄−γ12−γ1̄2̄+γ21̄)

]
〈tr[V1V

†
2 V2̄V

†
1̄ ]〉(t)

− 1
2g

2n(t)(γ12̄−γ12−γ1̄2̄+γ21̄)〈tr[V1V
†

2 ] tr[V2̄V
†

1̄ ]〉(t) . (4.5)

It is evident that the original term mixes with another four-point correlator, given in the
term on the last line. To understand this, let us look closer at the term 〈tr[V1V

†
2 V2̄V

†
1̄ ]〉.

Since the process is happening in the medium the quarks and antiquarks can at any time
exchange gluons, so their color is continuously rotating. In the case of four Wilson lines
there are two possible ways of connecting the color at time t to ensure color conservation,
namely as shown in figure 5. The second way is exactly the term 〈tr[V1V

†
2 ] tr[V2̄V

†
1̄ ]〉 that

appeared in equation (4.5). The inclusion of this term in the differential equation (4.5) just
represents the possibility for color rotation to happen at each time.
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1

2

2̄

1̄

1

2

2̄

1̄

Figure 5. The two possible ways of color connecting the four Wilson lines. On the left is
C2̄1 ≡ 〈tr[V1V

†
2 V2̄V

†
1̄ ]〉, while on the right is C12̄ ≡ 〈tr[V1V

†
2 ] tr[V2̄V

†
1̄ ]〉, both going from times t2 to

an arbitrary time t. The grey lines at the beginning and end indicate the colour connections.

To continue one can find a complementary differential equation for 〈tr[V1V
†

2 ] tr[V2̄V
†

1̄ ]〉
and see if we can find a solution for the set. Going through the same procedure as above gives

d
dt〈tr[V1V

†
2 ] tr[V2̄V

†
1̄ ]〉(t)

= g2n(t)
[
CF (γ12 + γ1̄2̄ − 2γ0) + 1

2Nc
(γ12̄ − γ11̄ − γ22̄ + γ1̄2)

]
〈tr[V1V

†
2 ] tr[V2̄V

†
1̄ ]〉(t)

− 1
2g

2n(t)(γ12̄ − γ11̄ − γ22̄ + γ1̄2)〈tr[V1V
†

2 V2̄V
†

1̄ ]〉(t) . (4.6)

We now have a set of two coupled differential equations. To save space the following notation
will be used C12̄(t) ≡ 〈tr[V1V

†
2 ] tr[V2̄V

†
1̄ ]〉(t) and C2̄1(t) ≡ 〈tr[V1V

†
2 V2̄V

†
1̄ ]〉(t). This notation

warrants some more explanation. Both of these expressions are composed of the two pairs of
Wilson lines, namely V1V

†
2 and V2̄V

†
1̄ . The only difference is how to connect them. The two

subscripts in the C’s tell which Wilson line comes immediately after the two pairs. So C2̄1
means that V1V

†
2 is connected to V2̄ and V2̄V

†
1̄ connects to V1. The result is 〈tr[V1V

†
2 V2̄V

†
1̄ ]〉.

This notation might seem overly complicated, but it will prove to be useful when considering
more than four Wilson lines.

The two differential equations (4.5) and (4.6) can be gathered into the following system,

d
dt

[
C12̄(t)
C2̄1(t)

]
= −n(t)

2 M

[
C12̄(t)
C2̄1(t)

]
, (4.7)

where the evolution matrix takes the following form,

M =
[
2CF (σ12 + σ2̄ 1̄) + 1

Nc
Σ1 −Σ1

−Σ2 2CF (σ11̄ + σ2̄2) + 1
Nc

Σ2

]
. (4.8)

Here we have used eq. (2.7) to define σ12 = σ(r1 − r2), and introduced

Σ1 ≡ σ12̄ + σ21̄ − σ11̄ − σ22̄

Σ2 ≡ σ12̄ + σ1̄2 − σ12 − σ1̄2̄ . (4.9)
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To proceed, we employ the harmonic approximation (2.8). For the eikonal, straight-line
trajectories, given in eqs. (2.12), the evolution matrix becomes

− n(t)
2 M = − q̂θ2

4CF

[
CF [(t− t1)2 + (t− t2)2]− 1

Nc
(t− t1)(t− t2) −(t− t1)(t− t2)

z(1− z)τ2 CF τ
2ξ − 1

Nc
z(1− z)τ2

]
,

(4.10)
where we have defined τ ≡ t2− t1, ξ = z2 + (1−z)2 and assumed that the angle between the
two particles θ is small. Unfortunately, since the matrix elements depend on time in our setup,
we can only solve this system of differential equations exactly by using numerical methods.

The authors of [22] calculated the four-point function 〈tr[V1V
†

2 V2̄V
†

1̄ ]〉 in the large-Nc

limit, which is interesting to compare with our results. This example is illustrative of the
general structure of the hierarchy between the different correlators, and we will therefore
go through it in detail. To take the large-Nc limit you start the system of differential
equations (4.7) and count the powers of Nc in each term in the evolution matrix and the
vector of correlators, taking into account that C12̄ ∼ N2

c and C2̄1 ∼ N1
c . In this limit we

also have CF ∼ Nc/2. The terms on the right-hand side of (4.7) then have the following
powers of Nc,[
O(N0

c ) +O(N−2
c ) O(N−1

c )
O(N−1

c ) O(N0
c ) +O(N−2

c )

] [
O(N2

c )
O(N1

c )

]
large−Nc−−−−−−→

[
O(N0

c ) 0
O(N−1

c ) O(N0
c )

] [
O(N2

c )
O(N1

c )

]
.

(4.11)

The large-Nc approximation amounts to dropping all the terms in the matrix that are not
scaling with the same power of Nc as the original vector, given by the second term in (4.11).
We see that the next-to-leading power of Nc turns out to be a factor N−2

c smaller compared
to the leading terms. This scaling has also been corroborated generally for n-line correlators
in section 4.2.

Hence, employing the large-Nc approximation leads to the simplified system of equations

d
dt

[
C12̄(t)
C2̄1(t)

]
' − q̂θ

2

4Nc

[
Nc[(t− t1)2 + (t− t2)2] 0

2z(1− z)τ2 Ncτ
2ξ

] [
C12̄(t)
C2̄1(t)

]
. (4.12)

Now it is evident that the differential equation for C12̄ is separable and can be solved easily,
which means that C2̄1 also can be solved. This leads to the equations (3.12) and (3.13). The
physical picture of this differential equation is quite transparent. The correlator of the two
particles (described by two lines in the amplitude and two lines in the complex conjugate
amplitude) can be in either of the states shown in figure 5, and there is a possibility of
exchanging a gluon and transferring from one state to the other. This is encoded in the
off-diagonal terms in the matrix (4.8), and is associated with a factor of ∼ σ, which scales
as N−1

c . Say you start in the state C12̄ shown on the right in figure 5, scaling as N2
c . If you

exchange a gluon you pick up a factor N−1
c from the σ, and go to the state C2̄1, which is

a single trace correlator that scales as N1
c , so in total this transition is associated with a

factor N0
c . This is a factor N−2

c smaller compared to the starting point so it can safely be
dropped in the large-Nc limit. However, starting with C2̄1 and going to C12̄ you go from
a state that scales as N1

c to one scaling as N2
c , but you lose a power of Nc from the σ, so
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Figure 6. The exact and large-Nc version of C12̄(t) = 〈tr[V1V
†
2 ] tr[V2̄V

†
1̄ ]〉 (blue, solid and blue,

dashed lines, respectively) and C2̄1(t) = 〈tr[V1V
†
2 V2̄V

†
1̄ ]〉 (orange, solid and orange, dashed lines,

respectively). We also plot only the leading, diagonal term of the large-Nc approximation of C2̄1
(orange, dotted line) which exhibits the correct large-time asymptotic behavior.

in this case the end result has the same Nc scaling as the starting point. Hence, in the
large-Nc limit you can drop the upper right term in the matrix, but must keep the lower
left one, see section 4.2 for a general argument for n-point correlators.

The solutions to (4.10) and (4.12) were plotted in figure 6 (solid and dashed lines,
respectively). For this particular case, the agreement between the large-Nc approximation
and the exact, finite-Nc result is strikingly good for the C2̄1 correlator. At late times, we
observe an exponential suppression, ∝ e−t, with a slope that is in good agreement with
the first term of eq. (3.13). At early times, there is an interplay between C2̄1 and C12̄ that
leads to a more rapid decrease initially. This is however well captured by the large-Nc

approximation, given by both terms in eq. (3.13).
The C12̄ correlator is described well within the large-Nc approximation at early times.

However, at late times it exhibits a long tail that is not captured within this approximation.
This can be remedied by including sub-leading corrections in color.

Sub-leading corrections in color can be incorporated to improve on the sometimes crude
large-Nc calculation above. To do this write the full correlators as the sum of their large-Nc

versions calculated through (4.12) and some smaller correction term,

C = C(0) +C(1) , (4.13)

where C =
(
C12̄, C2̄1

)ᵀ is a vector of the correlators in question, so that C(1) is a factor
O(N−2

c ) smaller than C(0). We can also write the matrix M in a form that isolates the
large-Nc terms from the finite-Nc corrections, i.e.

M = M(0) + Mcorr. , (4.14)
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where the first term strictly corresponds to the leading terms in the large-Nc limit. In our
example above, we find that

− n(t)
2 M(0) = − q̂θ

2

4

[
(t− t1)2 + (t− t2)2 0

2
Nc
z(1− z)τ2 τ2ξ

]
, (4.15)

while
− n(t)

2 Mcorr. ' q̂θ2

2N2
c

[
(t− t1)(t− t2) Nc(t− t1)(t− t2)
− 1
Nc
z(1− z)τ2 z(1− z)τ2

]
, (4.16)

where we expanded the correction matrix to find the leading terms in Nc. It can be
confirmed that the overall correction to both correlators is of the order N−2

c .
The correlators at leading color, i.e. C(0), are known. They solve the simplified set

of equations dC(0)(t)/dt = −n(t)
2 M(0)C(0)(t), and are given explicitly in (3.12) and (3.13).

This can now be used to calculate the color sub-leading contributions C(1). Simply plugging
this into the full differential equation (4.7) results in the following differential equation for
the first correction

d
dtC

(1)(t) '− n(t)
2 M(0)C(1)(t)− n(t)

2 McorrC(0)(t) , (4.17)

where we have neglected terms that are even more sub-leading, i.e. resulting from Mcorr.C(1).
This is an nonhomogeneous version of the large-Nc system of differential equations (4.12),
and can also be solved exactly. As an example the first correction to C1

12̄(t) is

C
(1)
12̄ (t) = q̂θ2

2N2
c

∫ t

t2
ds (s− t1)(s− t2)

[
C

(0)
12̄ (s) +NcC

(0)
2̄1 (s)

]
× e

q̂θ2
12 [(t−t1)3−(s−t1)3+(t−t2)3−(s−t2)3] . (4.18)

The first correction contains C(0)
2̄1 (t), given in (3.13) which as can be seen in figure 6 has a

linear tail at long times. One would therefore expect that this correction will rectify the
difference between the exact calculation and the large-Nc version of C12̄(t) at long times
which can be seen in the same plot. On figure 6, we have plotted this correction, and it is
indeed clear that it contains this linear tail. It is also worth noticing that the Nc-scaling
of the correction is C(1)

12̄ ∼ N
0
c , since there is an N−1

c in the pre-factor and C(0)
2̄1 ∼ N

1
c . As

expected the correction is lower by a factor N−2
c compared to the large-Nc result.

It is possible to calculate higher order corrections going as N−4
c , N−6

c etc. compared to
the large-Nc expression using the same technique recursively.

4.2 General method for Wilson line correlators

In section 3, we showed that doing similar calculations starting with a quark or a gluon
emitting a gluon leads to correlators of six and eight fundamental Wilson lines, respectively.
We will now generalize the procedure demonstrated in the preceding section and develop a
method of calculating correlators of an arbitrary number of fundamental Wilson lines. To
be more precise we get systems of differential equations like in (4.7), and will show how to
easily calculate all the matrix elements in the K!×K! matrices. The system can then be
solved numerically or, as we will see, analytically in the large-Nc limit.

– 20 –



J
H
E
P
1
1
(
2
0
2
1
)
1
2
5

The correlators of six and eight Wilson lines that appeared in section 3 are

• 〈tr[V †1̄ V1V
†

2 V2̄] tr[V †2̄ V2]〉,

• 〈tr[V1V
†

1̄ ] tr[V2V
†

2̄ V1̄V
†

1 ] tr[V2̄V
†

2 ]〉,

• and 〈tr[V1V
†

1̄ V2V
†

2̄ V1̄V
†

1 V2̄V
†

2 ]〉.

Note that one can divide the correlators of these Wilson lines into pairs on the form
[VnV †m̄]injm times some Kronecker deltas that connect the indices.

To start, consider the special case of calculating a correlator involving K pairs of a
Wilson line in the amplitude times the same Wilson line in the complex conjugate amplitude

〈[V1V
†

1̄ ]i1j1 [V2V
†

2̄ ]i2j2 . . . [VKV
†
K̄

]iKjK 〉 = 〈
K∏
n=1

[VnV †n̄ ]injn〉 . (4.19)

This is very useful to consider, even though none of the correlators mentioned above
are of this exact form. The reason is that in this form all of the formulas derived in
this section become much nicer. In addition, it is easy to generalize this to include all
cases simply by changing the labels of the Wilson lines in (4.19) to whatever is needed
in the specific problem at hand. For example, choosing K = 3 and changing labels
(1, 1̄, 2, 2̄, 3, 3̄) → (1, 2, 2̄, 1̄, 2, 2̄) gives the structure needed in (3.16), while K = 4 and
changing labels (1, 1̄, 2, 2̄, 3, 3̄, 4, 4̄)→ (1, 1̄, 2, 2̄, 1̄, 1, 2̄, 2) reproduces the correlators in (3.20).
So even though it seems we are calculating a special case, simply changing the labels in the
equations in this section leads to all possible cases.

To compress the notation a bit we will write the k’th instance of a Wilson line pair as

W k
ikjk
≡ [VkV †k̄ ]ikjk . (4.20)

It is possible to generalize the method of reaching a system of differential equations showed
in the previous section to an arbitrary number K pairs of Wilson lines. The steps are
outlined in appendix C. This procedure leads to the differential equation,

2Nc

g2
d
dt

〈
K∏
n=1

Wn
injn

〉

=n(t)

K−1∑
k=1

K∑
l>k

(γkl+γk̄l̄−γkl̄−γk̄l)−
K∑
k=1

γkk̄−K(N2
c −1)γ0

〈 K∏
n=1

Wn
injn

〉

+n(t)
K∑
k=1

γkk̄
〈

tr(W k)δikjk

 K∏
n 6=k

Wn
injn

〉
+n(t)

K−1∑
k=1

K∑
l>k

〈(
γkl̄δikjl [W

lW k]iljk+γk̄lδiljk [W kW l]ikjl−γklW k
iljk

W l
ikjl
−γk̄l̄W

k
ikjl

W l
iljk

)

×
K∏

n 6=k,n 6=l
Wn
injn

〉
. (4.21)
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One can see that the term on the first line has the same index structure as the original,
while the subsequent lines contain mixing terms. Notice that, in the mixing terms, only at
most two W ’s change place. The rest stay the same as before.

The above equation is a step in the right direction. It makes it possible to quite
easily project out all the different differential equations by contraction with the prod-
uct of K Kronecker deltas. For example starting with (4.21) and projecting out with
δj1i1δj2i2 . . . δjK iK turns it into a differential equation for d

dt〈tr[W 1] tr[W 2] . . . tr[WK ]〉, while
δj1i2δj2i3 . . . δjK i1 leads to d

dt〈tr[W 1W 2 . . .WK ]〉. We will denote these two possibilities by
C12...K ≡ 〈tr[W 1] tr[W 2] . . . tr[WK ]〉 and C23...K1 ≡ 〈tr[W 1W 2 . . .WK ]〉. The general ver-
sion of this is Cm1m2...mK , where m1m2 . . .mK is one of the K! permutations of the numbers
between 1 and K. The idea behind this notation is that W 1 is connected to Wm1 , W 2 is
connected to Wm2 etc.3

Although it is possible to use (4.21) to project out all the necessary differential equations,
there are actually K! such projections, which quickly becomes a huge number. It would be
much preferable to write this system in matrix form, like in eq. (4.7). Making use of the
notation we described above we want to write the system of differential equations for K
pairs of Wilson lines as

d
dtCm1m2...mK = −1

2n(t)
∑

p1p2...pK

Mp1p2...pK
m1m2...mKCp1p2...pK , (4.22)

where p1p2 . . . pK also is one of the K! permutations of 12 . . .K.
Starting from (4.21), one can deduce the general form of the matrix elements Mp1p2...pK

m1m2...mK .
For details on how this is done, we refer to appendix C. Fortunately, most of the matrix
elements are zero, and those that are not have quite simple expressions. The K! diagonal
entries are

Mm1m2...mK
m1m2...mK = Nc

K∑
k=1

σk̄mk + 1
Nc

K∑
k=1

K∑
l>k

(σkl + σk̄l̄ − σkl̄ − σk̄l)−
1
Nc

K∑
k=1

σkk̄︸ ︷︷ ︸
AK

(4.23)

Note here that only the first sum depends on the exact permutation we use. The two latter
sums are independent of this, and are common to all the diagonal terms, so we call it
AK . The only other non-zero matrix elements Mp1p2...pK

m1m2...mK are those where p1p2 . . . pK is
just m1m2 . . .mK , but with exactly two entries swapped places. If our original sequence
is m1m2 . . .mi . . .mj . . .mK , and its entries in positions i and j have changed places it
becomes m1m2 . . .mj . . .mi . . .mK . Then we get K!K(K−1)

2 entries of the form

M
m1m2...mj ...mi...mK
m1m2...mi...mj ...mK = σīmj + σmij̄ − σmimj − σīj̄ . (4.24)

Finally, we have
Mp1p2...pK
m1m2...mK = 0 , (4.25)

3One final example to clarify the notation can, for instance, be the correlator C213...K ≡ 〈tr[W 1W 2] tr[W 3]
. . . tr[WK ]〉.
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for p1p2 . . . pK being any other permutation of m1m2 . . .mK . This means that out of the
K!2 matrix elements, only 1

2K!(K2−K + 2) are non-zero. These are given by the relatively
simple formulas (4.23) and (4.24). Putting it all together this becomes

d
dtCm1m2...mi...mj ...mK =− 1

2n(t)
(
Nc

K∑
k=1

σk̄mk + 1
Nc
AK

)
Cm1m2...mi...mj ...mK

− 1
2n(t)

K−1∑
i=1

K∑
j>i

(σīmj + σmij̄ − σmimj − σīj̄)Cm1m2...mj ...mi...mK .

(4.26)

Of course, for all differential equations you need to specify some initial conditions. It
is clear from the definition of the Wilson line (2.2) that Vij(t0, t0) = δij . The trace of
this is trV (t0, t0)=Nc. This means that the initial condition of a Wilson line correlator
is Nc to the power of traces it contains. A few illustrative examples of this are C12...K =
〈tr[W 1] tr[W 2] . . . tr[WK ]〉 ∼ NK

c , C213...K = 〈tr[W 1W 2] tr[W 3] . . . tr[WK ]〉 ∼ NK−1
c and

C23...K1 = 〈tr[W 1W 2 . . .WK ]〉 ∼ N1
c .

The system of differential equations given by eq. (4.26) is to our knowledge not possible
to solve analytically in the case where σ is a function of time, so we have to turn to numerical
techniques. We have written a code to solve the differential equation numerically using the
SciPy library in Python. For the examples encountered in this paper, this is quite fast (in a
matter of seconds on a standard computer), even for a 24× 24 system. However, since the
size of the system goes as K!, we expect that it will become much slower as K increases. If
the elements σ are time-independent it should be possible to diagonalize the matrix and
find analytic solutions to the differential equation. However, since this is not the case in
the problems we consider it is not pursued here.

To better understand what this system of differential equations looks like, it is useful
to view it in matrix form. Generally, there will be several correlators that go as the same
power of Nc. It is useful to gather these in vectors CM , where the superscript M is meant
to indicate that this scales as NM

c . Then, eq. (4.26) can be represented as

d
dt



CK

CK−1

CK−2

...
C2

C1


∼


diag

(
Ncσ + 1

Nc
σ, . . . , Ncσ + 1

Nc
σ

)
+



0 σ 0 . . . . . . 0
σ 0 σ 0 . . . 0
0 σ 0 σ 0 0
...

...
...

...
...

...
0 . . . 0 σ 0 σ

0 . . . . . . 0 σ 0







CK

CK−1

CK−2

...
C2

C1


.

(4.27)
The first matrix contains the diagonal elements, written in detail in (4.23). The second
matrix represents the non-diagonal elements, and σ is a block containing non-zero elements,
which we get from eq. (4.24).

4.3 Wilson line correlators in the large-Nc limit

The system of differential equations (4.26) can in general only be solved numerically at
finite Nc. However, in the large-Nc limit, the system simplifies in a way that makes it
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possible to solve it exactly. This can be seen from the matrix representation in eq. (4.27).
Since σ ∼ N−1

c , the diagonal matrix elements go as ∼ N0
c +N−2

c , while the non-diagonal
ones go as ∼ N−1

c . Multiplying in the vector on the end and representing every term by its
Nc scaling this becomes

d
dt



CK

CK−1

CK−2

...
C2

C1


∼



(N0
c +N−2

c )CK
(N0

c +N−2
c )CK−1

(N0
c +N−2

c )CK−2

...
(N0

c +N−2
c )C2

(N0
c +N−2

c )C1


+



N−1
c CK−1

N−1
c (CK +CK−2)

N−1
c (CK−1 +CK−3)

...
N−1
c (C3 +C1)
N−1
c C2


. (4.28)

Taking the large-Nc limit is equivalent to keeping only the leading order of Nc in each row,
and dropping terms going as N−2

c compared to the leading term. Translating this back to
the form in eq. (4.27), this becomes

d
dt



CK

CK−1

CK−2

...
C2

C1


∼


diag (Ncσ, . . . , Ncσ) +



0 0 0 . . . . . . 0
σ 0 0 0 . . . 0
0 σ 0 0 0 0
...

...
...

...
...

...
0 . . . 0 σ 0 0
0 . . . . . . 0 σ 0







CK

CK−1

CK−2

...
C2

C1


. (4.29)

Hence, in the large-Nc limit, all of the terms above the diagonal go to zero, and the system
simplifies drastically. To get some more intuition into why this is true physically it is
useful to imagine being in some color configuration that scales as ∼ NM

c . At any point it
is possible to exchange one gluon, after which the possible resulting color configurations
of the system will change its Nc power by exactly one, and go as ∼ NM+1

c or ∼ NM−1
c .

The gluon exchange comes with a factor σ ∼ N−1
c , so in total the overall Nc power of

going to these systems are NM
c and NM−2

c . In the large-Nc approximation the latter
possibility is discarded, which is equivalent to dropping all the terms above the diagonal in
the matrix (4.29).

It is clear from this discussion that the system of differential equations (4.26) simplifies,
in the large-Nc limit, to

d
dtC

M
m1m2...mi...mj ...mK '−

1
2n(t)Nc

K∑
k=1

σk̄mkC
M
m1m2...mi...mj ...mK

− 1
2n(t)

K−1∑
i=1

K∑
j>i

(σīmj + σmij̄ − σmimj − σīj̄)C
M+1
m1m2...mj ...mi...mK .

(4.30)

Here we have included superscripts to show the Nc-scaling. In the second line, we have
indicated that only the correlators scaling as NM+1

c should be included in the sum. This
means that in the large-Nc limit the correlators withM traces only depend on the correlators
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with M + 1 traces. Similarly, the correlators with M + 1 traces depend on the correlators
with M + 2 traces and so on. This continues all the way up to the correlators with K − 1
traces, which depend on the correlators with K traces. Using (4.30) the differential equation
for the correlator scaling as NK

c is

d
dtC12...K ' −

1
2n(t)Nc

K∑
k=1

σk̄kC12...K . (4.31)

Since this is exactly solvable,

C12...K(t) = NK
c e−

1
2Nc

∫ t
t2

ds n(s)
∑K

k=1 σk̄k(s)
, (4.32)

this provides a “bootstrap” for the whole system of equations. The above argument shows
that in principle all the correlators can be solved exactly in the large-Nc limit.

As a side note, we can also understand the large-Nc approximation as a simplification
of the operation of performing medium averages on multiple traced correlators. Given that
a dipole in the large-Nc is given by

S11̄(t, t2) ≡ 1
Nc
〈tr[V1V

†
1̄ ]〉 = e−

1
2Nc

∫ t
t2

ds n(s)σ11̄ , (4.33)

the answer for C1...K(t) is just given by the product of K dipoles, i.e. C1...K 'NK
c S11̄ . . .SKK̄ .

On the level of the full correlator, this corresponds to the simplification

〈tr[W 1] tr[W 2] . . . tr[WK ]〉 ≈ 〈tr[W 1]〉〈tr[W 2]〉 . . . 〈tr[WK ]〉 . (4.34)

This argument can also be extended to any of the other correlators discussed above, e.g.
〈tr[W 1] tr[W 2 . . .WK ]〉 ≈ 〈tr[W 1]〉〈tr[W 2 . . .WK ]〉.

The simplified differential equation, eq. (4.30), can also be solved directly to get the
recursive formula

CMm1m2...mi...mj ...mK =NM
c e−

1
2Nc

∫ t
t2

dsn(s)
∑K

k=1σk̄mk

− 1
2

∫ t

t2
dsn(s)

K−1∑
i=1

K∑
j>i

(
(σīmj+σmij̄−σmimj−σīj̄)C

M+1
m1m2...mj ...mi...mK

)
×e−

1
2Nc

∫ t
s

ds′n(s′)
∑K

k=1σk̄mk . (4.35)

This can also be written in terms of dipoles, namely

CMm1m2...mi...mj ...mK = NM
c

K∏
k=1
Smkk̄(t, t2)

− 1
2

∫ t

t2
ds n(s)

K−1∑
i=1

K∑
j>i

(
(σīmj + σmij̄ − σmimj − σīj̄)C

M+1
m1m2...mj ...mi...mK

) K∏
k=1
Smkk̄(t, s) .

(4.36)

From this equation it is clear that all of the Wilson line correlators can be written in
terms of dipoles in the large-Nc limit. That is because eq. (4.36) is a recursive relation
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(“bootstrap”) that stops when you reach the term with K traces, which is given in terms of
dipoles in (4.34). Since the only Wilson line structure that appears in both (4.34) and (4.36)
is dipoles, it means all the correlator can be written in terms of dipoles. In ref. [34] it was
pointed out that all higher-order correlators can be reduced to dipoles and quadrupoles at
large-Nc. This is true, but it is interesting to note that eq. (4.36) with K = 2 shows that
quadrupoles also can be written in terms of dipoles, albeit in a convoluted form. The result
in this section directly confirms the results of [34], but goes one step further and shows that
really only dipoles are needed at large-Nc.

We could, in principle, also devise a scheme to compute sub-leading color corrections,
that scale like N−2

c relative to the leading terms, following the steps in eqs. (4.13) and (4.14),
and below. We have nevertheless not pursued this program further in this work.

5 Conclusion and outlook

In this paper we have developed a general method for calculating correlators involving an
arbitrary number of Wilson lines in the fundamental representation. This culminated in the
system of differential equations in eq. (4.26). This system can be solved numerically. We
showed that in the large-Nc limit the resulting simplified system of differential equations,
eq. (4.30), can be solved exactly. We also provided a general way to compute color sub-
leading corrections, suppressed by N−2

c relative to the leading terms. This was done in
detail for the four-point correlator, in eqs. (4.13) and (4.14), but can easily be extended
to any higher-order correlator. All the results can then be written in terms of dipoles and
their convolutions.

This technique was applied on three different cases of 1→ 2 parton splittings in the
medium, which were shown to involve correlators containing up to eight (fundamental)
Wilson lines. We used our method to calculate these both at finite and large Nc. Comparisons
of the results are shown in figure 4. From these plots it is clear that in this exact case the
large-Nc approximations works quite well for small θ, but the differences become bigger as θ
grows. In certain areas of the phase space the error in using the large-Nc limit might be as
high as 16%. This is expected given that the corrections we find generically scale as N−2

c .
Since our method deals with a generic set of correlated Wilson lines, representing

particles moving on eikonal trajectories through a background field, it could easily be
extended to many other physical situations. For future work it would be interesting to
apply our results in initial state physics, where similar correlators of Wilson lines also
appear, and for soft contributions to event or jet observables in electron-positron or proton-
proton collisions. Finally, we plan on extending the formulation to account for non-eikonal
corrections to the particle trajectories.
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A Calculation of spectrums

Here we will show the calculations leading up to the for the emission spectra dI
dzdθ . The

Feynman rules from [18] have been used to calculate the matrix elements.

A.1 Pair production

We start with the process of a photon producing a quark-antiquark pair. This process has
been calculated in [22] but we will restate some of the results. The amplitude is

Mij
s1,s2 =

∫
p0,p′1,p

′
2

∫ L

t0
dt1 (2π)2δ(p0 − p′1 − p′2)

[
(p1|GF (L, t1)|p′1)(p′2|ḠF (L, t1)|p2)

]ij
×Aλ,s1,s2(p′2 − zp0, z) 1

2E e−i
p2
0

2E (t1−t0)M0λ(p0) , (A.1)

where the photon-quark vertex is given by

Aλ,s1,s2(q, z) = 2ie√
z(1− z)

δ−s2s1(zδλs1 − (1− z)δλs2)q · ελ . (A.2)

The initial hard process is represented by the amplitude M0. After using the eikonal
approximation (2.11) this becomes (up to some phase that cancels when we take the square)

Mij
s1,s2 = 1

2E

∫ L

t0
dt1 ei

1
2z(1−z)E ((1−z)p2−zp1)2t1

[
V1(L, t1)V †2 (t1, L)

]ij
×Aλ,s1,s2((1− z)p2 − zp1, z)M0λ(p1 + p2) . (A.3)

We have used the more compact notation to write VF (r1) ≡ V1, VF (r2) ≡ V2. The goal is
to calculate

dI
dz dθ = z(1− z)E2θ

8π2

〈
|M|2

〉
〈|M0|2〉

. (A.4)

The Wilson lines can be split using V (L, t1) = V (L, t2)V (t2, t1). Then we only need to deal
with the two time intervals (L, t2) and (t2, t1). After squaring the amplitude, averaging
over initial polarization, summing the final spins, flavor and colors and taking the medium
average this becomes (3.3) with (3.7) and (3.8).

A.2 Quark-gluon splitting

The amplitude was calculated in [18] and is

Mai
λ,s =

∫
p0,p′0,k

′,p′

∫ L

t0
dt1 (2π)2δ(p′0 − k′ − p′)(k|GabA (L, t1)|k′)

×
[
(p|GF (L, t1)|p′)Abλ,s,s′(k′ − zp′0, z) 1

2E (p′0|GF (t1, t0)|p0)
]ij
Mj

0s′(p0) , (A.5)

where the quark-gluon vertex is

Aaijλ,s,s′(q, z) = −
2igtaij
z
√

1− z
δs′s [δλs + (1− z)δλ−s] q · ε∗λ . (A.6)
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Again this simplifies in the eikonal limit (2.11)

Mai
λ,s = 1

2E

∫ L

t0
dt1 ei

1
2z(1−z)E ((1−z)k−zp)2t1Uab2 (L, t1)[V1(L, t1)Abλ,s,s′V0(t1, t0)]ijMj

0s′(k+p) .
(A.7)

We have denoted the adjoint Wilson line as VA(r2) ≡ U2. Squaring the amplitude, sum-
ming/averaging over spins and colors and taking the medium average gives

dI
dz dθ = αs

π

Pgq(z)
θ

2
N2
c − 12 Re

∫ L

t0

dt1
tf

∫ L

t1

dt2
tf

e−i
t2−t1
tf

× 〈
[
U †(t2, L)U(L, t1)

]b̄b
tr
[
V †0 (0, t2)tb̄V †1̄ (t2, L)V1(L, t1)tbV0(t1, 0)

]
〉 , (A.8)

where the relevant Altarelli-Parisi splitting function is

Pgq(z) = CF
1 + (1− z)2

z
. (A.9)

To continue we transform the adjoint Wilson lines into fundamental ones using the iden-
tity (2.3). The resulting expression will contain many group generators ta, and can be
simplified by using the Fierz identity (4.4). Finally, completely in the fundamental repre-
sentation the Wilson line structure becomes〈[

U †(t2, L)U(L, t1)
]b̄b

tr
[
V †0 (0, t2)tb̄V †1̄ (t2, L)V1(L, t1)tbV0(t1, 0)

]〉
= 1

2
〈 (

[V †2 V2̄V
†

1̄ V1]kj [V †2̄ V2]il −
1
Nc

[V †1̄ V1]ijδkl
)

(L,t2)

×
(

[V1V
†

2 ]jk[V2V
†

0 ]li −
1
Nc

[V1V
†

0 ]jiδlk
)

(t2,t1)

〉
. (A.10)

Conservation of color then makes it possible to connect i, l and j, k so when we include the
proper normalization factor the whole expression turns into (3.3) with (3.16) and (3.17).

A.3 Gluon-gluon splitting

The calculation of the emission spectrum for gluon-gluon splittings was done in [23]. For
completeness we will also include the main results here. The matrix element of the process is

Ma1a2
λ1,λ2

=
∫
k0,k′0,k

′
1,k
′
2

∫ L

t0
dt1 (2π)2δ(k′0−k′1−k′2)

×(k1|Ga1b1
A (L,t1)|k′1)(k2|Ga2b2

A (L,t1)|k′2)Ab0b1b2λ0,λ1,λ2
(k′2−zk′0,z) 1

2E (k′0|Gb0cA (t1, t0)|k0)

×Mc
0λ0(k0) , (A.11)

where the gluon-gluon vertex is

Ab0b1b2λ0,λ1,λ2
(q, z) = −2ig(T b0)b1b2

[1
z

(q · ε∗λ2)δλ0λ1 + 1
1− z (q · ε∗λ1)δλ0λ2 − (q · ελ0)δλ1λ2

]
.

(A.12)
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In the eikonal approximation (2.11) the amplitude is

Ma1a2
λ1,λ2

= 1
2E

∫ L

t0
dt1 ei

1
2z(1−z)E ((1−z)k2−zk1)2t1Ua1b1

1 (L, t1)Ua2b2
2 (L, t1)Ab0b1b2λ0,λ1,λ2

U b0c0 (t1, t0)

×Mc
0s′(k1 + k2) . (A.13)

After taking the square of the amplitude, summing/averaging over spins and colors and
taking the medium average this becomes

dI
dzdθ = αs

π

Pgg(z)
θ

2
Nc(N2

c −1)2Re
∫ L

t0

dt1
tf

∫ L

t1

dt2
tf

e−i
t2−t1
tf

×f b0b1b2f b̄0b̄1b̄2〈
[
Ua1d1

1 Ua2d2
2 U †b̄1a1

1̄ U †b̄2a2
2̄

]
(L,t2)

[
Ud1b1

1 Ud2b2
2 U †b0b̄00

]
(t2,t1)

〉 , (A.14)

where the relevant Altarelli-Parisi splitting function is

Pgg(z) = Nc

[
z(1− z) + 1− z

z
+ z

1− z

]
. (A.15)

Conservation of color lets us decouple the Wilson lines in the two time intervals (L, t2) and
(t2, t1)

f b0b1b2Ud1b1
1 Ud2b2

2 U †b0b̄00 = 1
Nc(N2

c − 1)f
d1d2b̄0fd

′
1d
′
2b̄
′
0f b0b1b2U

d′1b1
1 U

d′2b2
2 U

†b0b̄′0
0 . (A.16)

The part in the time interval (t2, t1) can be calculated explicitly because of its simple color
structure

1
Nc(N2

c − 1)f
d′1d
′
2b̄
′
0f b0b1b2U

d′1b1
1 U

d′2b2
2 U

†b0b̄′0
0 = e−

Nc
2

∫ t2
t1

dt n(t)[σ01+σ02+σ12]
. (A.17)

What remains are the Wilson lines in time interval (L, t2)

fd1d2b̄0f b̄0b̄1b̄2〈
[
Ua1d1

1 Ua2d2
2 U †b̄1a1

1̄ U †b̄2a2
2̄

]
〉(L,t2) . (A.18)

However, these are not that easy to calculate. The procedure for calculating Wilson line
products detailed in section 4 only involve fundamental Wilson lines, so (2.3) is used to
turn all the adjoint Wilson lines into fundamental ones. Then one can use the definition
of the structure constants [ta, tb] = ifabctc and the identity (4.4) to get rid of all the group
generators. This was done in [23], and we quote the result

fd1d2b̄0f b̄0b̄1b̄2〈
[
Ua1d1

1 Ua2d2
2 U †b̄1a1

1̄ U †b̄2a2
2̄

]
〉(L,t2)

= 1
2〈tr[V1V

†
1̄ ] tr[V2V

†
2̄ V1̄V

†
1 ] tr[V2̄V

†
2 ]− tr[V1V

†
1̄ V2V

†
2̄ V1̄V

†
1 V2̄V

†
2 ] + h.c.〉(L,t2)

= 〈tr[V1V
†

1̄ ] tr[V2V
†

2̄ V1̄V
†

1 ] tr[V2̄V
†

2 ]− tr[V1V
†

1̄ V2V
†

2̄ V1̄V
†

1 V2̄V
†

2 ]〉(L,t2) . (A.19)

The last step is true because the medium averaged products of Wilson lines are real. This
means that in the gluon-gluon case we end up with medium averaged products of up to
eight Wilson lines. Putting it all together we get the formula (3.3) with (3.20) and (3.21).
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B Six and eight Wilson lines

B.1 Six lines

In section 4 we developed the tools to calculate the correlators of six and eight Wilson lines,
which appeared in (3.16) and (3.20). To start we will look at the case of six lines, which
follows from (4.26) with K = 3. The relevant expression is d

dt〈[V1V
†

1̄ ]i1j1 [V2V
†

2̄ ]i2j2 [V3V
†

3̄ ]i3j3〉.
If this is contracted with δj1i2δj2i1δj3i3 it becomes

δj1i2δj2i1δj3i3
d
dt
〈
[V1V

†
1̄ ]i1j1 [V2V

†
2̄ ]i2j2 [V3V

†
3̄ ]i3j3

〉
=
〈

tr[V1V
†

1̄ V2V
†

2̄ ] tr[V3V
†

3̄ ]
〉
, (B.1)

which is the structure encountered in (3.16). To get exactly the same as in that equation
we need only change the labels (1, 1̄, 2, 2̄, 3, 3̄) → (1, 2, 2̄, 1̄, 2, 2̄), which also simplifies the
system somewhat. The six different projections are gathered into a vector

Cᵀ =
(
C12̄2, C2̄12, C22̄1, C122̄, C212̄, C2̄21

)
=
(
〈tr[V1V

†
2 ] tr[V2̄V

†
1̄ ] tr[V2V

†
2̄ ]〉, 〈tr[V1V

†
2 V2̄V

†
1̄ ] tr[V2V

†
2̄ ]〉, 〈tr[V1V

†
2̄ ] tr[V2̄V

†
1̄ ]〉,

〈tr[V1V
†

2 ] tr[V †1̄ V2]〉, 〈tr[V1V
†

1̄ ]〉, 〈tr[V1V
†

2 V2̄V
†

1̄ V2V
†

2̄ ]〉
)
. (B.2)

We can write the system of differential equations as
d
dtC = −1

2n(t)MC . (B.3)

One can get the elements of the 6 × 6 matrix M from (4.23) and (4.24). The 6 diagonal
entries are simply

Mm1m2m3
m1m2m3 = Nc(σ2m1 + σ1̄m2 + σ2̄m3)− 1

Nc
σ11̄ , (B.4)

where (m1,m2,m3) now is some permutation of (1, 2̄, 2). Thee non-zero non-diagonal entries
are given by

Mm2m1m3
m1m2m3 = σ2m2 + σ1̄m1 − σm2m1 − σ21̄

Mm3m2m1
m1m2m3 = σ2m3 + σ2̄m1 − σm3m1 − σ22̄

Mm1m3m2
m1m2m3 = σ1̄m3 + σ2̄m2 − σm3m2 − σ1̄2̄ . (B.5)

This leads to six differential equations which can be solved numerically for the six functions
in C. Interestingly this 6× 6 system is reducible into two 3× 3 systems. The first of these
systems leads to three differential equations that actually can be solved exactly:

d
dt〈tr[V1V

†
1̄ ]〉 =− CFn(t)σ11̄〈tr[V1V

†
1̄ ]〉

d
dt〈tr[V1V

†
2̄ ] tr[V2̄V

†
1̄ ]〉 =− 1

2n(t)[Nc(σ1̄2̄ + σ12̄)− 1
Nc
σ11̄]〈tr[V1V

†
2̄ ] tr[V2̄V

†
1̄ ]〉

− 1
2n(t)(σ11̄ − σ12̄ − σ1̄2̄)〈tr[V1V

†
1̄ ]〉

d
dt〈tr[V1V

†
2 ] tr[V2V

†
1̄ ]〉 =− 1

2n(t)[Nc(σ1̄2 + σ12)− 1
Nc
σ11̄]〈tr[V1V

†
2 ] tr[V2V

†
1̄ ]〉

− 1
2n(t)(σ11̄ − σ12 − σ1̄2)〈tr[V1V

†
1̄ ]〉 (B.6)
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This is a nice consistency check, as taking the system for four Wilson lines (4.7) and letting
2 → 2̄ reproduces the first and second of these equations. Similarly, (4.7) with 2̄ → 2
reproduces the first and third. Solving the first two gives

〈tr[V1V
†

1̄ ]〉=Nc e−CF
∫ t
t2

dsn(s)σ11̄(s)

〈tr[V1V
†

2̄ ] tr[V2̄V
†

1̄ ]〉= (N2
c −1)e−

1
2

∫ t
t2

dsn(s)(Nc(σ1̄2̄+σ12̄)− 1
Nc
σ11̄)+e−CF

∫ t
t2

dsn(s)σ11̄(s)
. (B.7)

One can easily get 〈tr[V1V
†

2 ] tr[V2V
†

1̄ ]〉 from the second of these equations by changing 2̄→ 2.
The first equation in (B.7) is a well known result, so it is nice that we reproduce that.

However, this is nothing new, merely a check that the system of six Wilson lines is
consistent with the previous calculations. The remaining 3×3 system contains the correlator
we actually want to solve, but is also a more complicated nonhomogeneous system. It is
useful to define two vectors with the 3 unknown and 3 known functions

Cᵀ
1 =

(
〈tr[V1V

†
2 ] tr[V2̄V

†
1̄ ] tr[V2V

†
2̄ ]〉, 〈tr[V1V

†
2 V2̄V

†
1̄ ] tr[V2V

†
2̄ ]〉, 〈tr[V1V

†
2 V2̄V

†
1̄ V2V

†
2̄ ]〉
)

Cᵀ
2 =

(
〈tr[V1V

†
2̄ ] tr[V2̄V

†
1̄ ]〉, 〈tr[V1V

†
2 ] tr[V †1̄ V2]〉, 〈tr[V1V

†
1̄ ]〉
)
. (B.8)

Then we can write the remaining system of differential equations as
d
dtC1 = −1

2n(t) (M1C1 + M2C2) . (B.9)

The 3× 3 matrices M1 and M2 are subsets of the 6× 6 matrix M and have the form

M1 =

Nc(σ12 + σ1̄2̄ + σ22̄)− 1
Nc
σ11̄ σ11̄ + σ22̄ − σ12̄ − σ1̄2 0

σ12 + σ1̄2̄ − σ12̄ − σ1̄2 2(CFσ11̄ +Ncσ22̄) σ12̄ + σ1̄2 − σ12 − σ1̄2̄
0 σ11̄ + σ22̄ − σ12 − σ1̄2̄ Nc(σ22̄ + σ12̄ + σ1̄2)− 1

Nc
σ11̄

 .
(B.10)

M2 =

σ12̄ − σ12 − σ22̄ σ1̄2 − σ22̄ − σ1̄2̄ 0
0 0 −2σ22̄

σ1̄2̄ − σ22̄ − σ1̄2 σ12 − σ12̄ − σ22̄ 0

 . (B.11)

This can be solved numerically for the three functions in C1, and the result can be seen in
figure 7.

B.1.1 Quark-gluon splitting in the large-Nc

As showed in section 4.3 all the functions in C can be solved exactly in the large-
Nc limit. The two terms with highest powers of Nc, 〈[tr[V1V

†
2 ] tr[V2̄V

†
1̄ ] tr[V2V

†
2̄ ]〉 and

〈tr[V1V
†

2 V2̄V
†

1̄ ] tr[V2V
†

2̄ ]〉 can be gotten directly from (4.31) and (4.36) respectively. Alter-
natively one can count the Nc powers in (B.7) and realize that M1 and M2 simplify to

M1 '

 Nc(σ12 + σ1̄2̄ + σ22̄) 0 0
σ12 + σ1̄2̄ − σ12̄ − σ1̄2 Nc(σ11̄ + 2σ22̄) 0

0 σ11̄ + σ22̄ − σ12 − σ1̄2̄ Nc(σ22̄ + σ12̄ + σ1̄2)

 . (B.12)

M2 '

 0 0 0
0 0 0

σ1̄2̄ − σ22̄ − σ1̄2 σ12 − σ12̄ − σ22̄ 0

 . (B.13)

The solutions to the simplified differential equation leads to (3.19).
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Figure 7. The exact and large-Nc solutions to the system of differential equations (B.9).

B.2 Eight Wilson lines

For more than six Wilson lines the matrix in (4.26) becomes so big that it is impractical to
analyze it by hand.

For eight lines it involves the 4! = 24 projections of 〈[V1V
†

1̄ ]i1j1 [V2V
†

2̄ ]i2j2 [V3V
†

3̄ ]i3j3
[V4V

†
4̄ ]i4j4〉, and the matrix M has 242 elements. The power of our result in section 4 is

here evident, as simply solving the differential equation (4.26) for K = 4 numerically
immediately gives the result for eight lines Wilson lines. To get the Wilson line correlators
we want from (3.20) the four last labels must be changed (3, 3̄, 4, 4̄) → (1̄, 1, 2̄, 2) so that
〈[V1V

†
1̄ ]i1j1 [V2V

†
2̄ ]i2j2 [V3V

†
3̄ ]i3j3 [V4V

†
4̄ ]i4j4〉 → 〈[V1V

†
1̄ ]i1j1 [V2V

†
2̄ ]i2j2 [V1̄V

†
1 ]i3j3 [V2̄V

†
2 ]i4j4〉. The

two relevant solutions are shown in figure 8.
One thing to notice in figure 8 is that for the case of eight Wilson lines correlators,

keeping only the first term in the large-Nc limit does not work well.

C Derivation of differential equation

In this appendix we will show in more detail how the differential equation (4.26) was derived.
We start with the derivation of (4.21). To illustrate we will first show the calculation

for K = 2, that is calculating 〈[V1V
†

1̄ ]i1j1 [V2V
†

2̄ ]i2j2〉. This generalizes rather easily to the
arbitrary K case (4.19). Expanding the first of these pairs like in (4.1) up to first order of ε
and defining A ≡ Aata it becomes

[V1V
†

1̄ ]i1j1(t+ε, t0) =
[
V1V

†
1̄ +ig

∫ t+ε

t
ds(A1(s)V1V

†
1̄ −V1V

†
1̄A1̄(s)) (C.1)

+ 1
2g

2
∫ t+ε

t
ds
∫ t+ε

t
ds′(2A1(s)V1V

†
1̄A1̄(s′)−A1(s)A1(s′)V1V

†
1̄ −V1V

†
1̄A1̄(s)A1̄(s′))

]
i1j1

.
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Figure 8. The exact and large-Nc version of C11̄22̄ = 〈tr[V1V
†
1̄ ] tr[V2V

†
2̄ V1̄V

†
1 ] tr[V2̄V

†
2 ]〉 and C21̄2̄2 =

〈tr[V1V
†
1̄ V2V

†
2̄ V1̄V

†
1 V2̄V

†
2 ]〉.

Here all the Wilson lines on the right hand side go from t0 to t. After taking the medium
average (2.5) and using the Fierz identity (4.4) the last term becomes

1
2g

2
∫ t+ε

t
ds
∫ t+ε

t
ds′〈[2A1(s)V1V

†
1̄A1̄(s′)−A1(s)A1(s′)V1V

†
1̄ − V1V

†
1̄A1̄(s)A1̄(s′)]i1j1〉

= 1
2g

2n(t)ε
[
γ11̄〈tr(V1V

†
1̄ )〉δi1j1 −

(
2CFγ0 + 1

Nc
γ11̄

)
〈V1V

†
1̄ 〉i1j1

]
. (C.2)

Now adding the second pair of Wilson lines and taking the medium average, while disre-
garding higher orders of ε, it takes the form

〈[V1V
†

1̄ ]i1j1 [V2V
†

2̄ ]i2j2〉(t+ ε, t0) = 〈[V1V
†

1̄ ]i1j1 [V2V
†

2̄ ]i2j2〉(t, t0) (C.3)

+ 1
2g

2ε n(t)
〈[
γ11̄ tr(V1V

†
1̄ )δi1j1 −

(
2CFγ0 + 1

Nc
γ11̄

)
[V1V

†
1̄ ]i1j1

]
[V2V

†
2̄ ]i2j2

+ [V1V
†

1̄ ]i1j1
[
γ22̄ tr(V2V

†
2̄ )δi2j2 −

(
2CFγ0 + 1

Nc
γ22̄

)
[V2V

†
2̄ ]i2j2

]〉
− g2

∫ t+ε

t
ds
∫ t+ε

t
ds′
〈 [
A1(s)V1V

†
1̄ − V1V

†
1̄A1̄(s)

]
i1j1

[
A2(s′)V2V

†
2̄ − V2V

†
2̄A2̄(s′)

]
i2j2

〉
.

The last term simplifies to

g2
∫ t+ε

t
ds
∫ t+ε

t
ds′
〈 [
A1(s)V1V

†
1̄ − V1V

†
1̄A1̄(s)

]
i1j1

[
A2(s′)V2V

†
2̄ − V2V

†
2̄A2̄(s′)

]
i2j2

〉
= 1

2g
2n(t)ε

〈
γ12[V1V

†
1̄ ]i2j1 [V2V

†
2̄ ]i1j2 + γ1̄2̄[V1V

†
1̄ ]i1j2 [V2V

†
2̄ ]i2j1

− γ12̄δi1j2 [V2V
†

2̄ V1V
†

1̄ ]i2j1 − γ1̄2δi2j1 [V1V
†

1̄ V2V
†

2̄ ]i1j2

+ 1
Nc

(γ12̄ + γ1̄2 − γ12 − γ1̄2̄)[V1V
†

1̄ ]i1j1 [V2V
†

2̄ ]i2j2
〉
. (C.4)
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Letting ε go to zero this turns into a differential equation

d
dt〈[V1V

†
1̄ ]i1j1 [V2V

†
2̄ ]i2j2〉

= 1
2g

2n(t)
〈 [ 1
Nc

(γ12 + γ1̄2̄ − γ12̄ − γ1̄2 − γ11̄ − γ22̄ − 2(N2
c − 1)γ0)

]
[V1V

†
1̄ ]i1j1 [V2V

†
2̄ ]i2j2

+ γ11̄ tr(V1V
†

1̄ )δi1j1 [V2V
†

2̄ ]i2j2 + γ22̄ tr(V2V
†

2̄ )[V1V
†

1̄ ]i1j1δi2j2
− γ12[V1V

†
1̄ ]i2j1 [V2V

†
2̄ ]i1j2 − γ1̄2̄[V1V

†
1̄ ]i1j2 [V2V

†
2̄ ]i2j1

+ γ12̄δi1j2 [V2V
†

2̄ V1V
†

1̄ ]i2j1 + γ1̄2δi2j1 [V1V
†

1̄ V2V
†

2̄ ]i1j2
〉
. (C.5)

Now we only have to project out the two possible ways to connect the Wilson lines.
Contracting with δj2i1δj1i2 and δj1i1δj2i2 gives d

dt〈tr[V1V
†

1̄ V2V
†

2̄ ]〉 and d
dt〈tr[V1V

†
1̄ ] tr[V2V

†
2̄ ]〉

respectively. In section 3 we wanted to calculate 〈tr[V1V
†

2 V2̄V
†

1̄ ]〉, which is similar to the
above, but not exactly the same. Fortunately, our choice of labels is just a convention, and
completely arbitrary. Simply making the three changes 1̄→ 2, 2→ 2̄ and 2̄→ 1̄ turns (C.5)
into the system of differential equations in (4.7). The difference in this approach compared
to what we did in section 4.1 is that (C.5) contains both of (4.5) and (4.6). This compact
form is highly convenient when considering more than four Wilson lines. Generalizing the
steps from equation (C.1) to (C.5) to an arbitrary number K pairs of Wilson lines produces
the differential equation (4.21).

The next step is to show how to get from eq. (4.21) to the matrix elements (4.23)
and (4.24). Any pair of Wilson lines has two free indices. Take for example the second
Wilson line pair in (4.21) which is W 2

i2j2 . Start by projecting out these two indices in all
the ways possible, and at the same time making as few assumptions as possible about the
rest of the Wilson lines. It turns out that projecting out with two Kronecker deltas gives all
the information we need. There are also only two possibilities that need to be considered:
either W 2 can connect to other Wilson lines, or it connects to itself and becomes a trace.
These two possibilities are given by projecting with δj1i2δj2i3 and δj1i3δj2i2 , respectively.
To use Wilson lines 1, 2 and 3 is arbitrary. These labels can be changed to anything else
without changing the result, so the calculation is completely general.

Using (4.21) and projecting out by the two deltas δj1i2δj2i3 gives a differential equation
for 〈[W 1W 2W 3]i1j3W 4

i4j4 . . .W
K
iKjK
〉.

d
dt〈[W

1W 2W 3]i1j3W 4
i4j4 . . .W

K
iKjK
〉

= −1
2g

2n(t)
(
Nc(σ1̄2 + σ2̄3) + 1

Nc
AK

)
〈[W 1W 2W 3]i1j3W 4

i4j4 . . .W
K
iKjK
〉

− 1
2g

2n(t)(σ1̄3 + σ22̄ − σ23 − σ1̄2̄)〈trW 2[W 1W 3]i1j3W 4
i4j4 . . .W

K
iKjK
〉

+ (. . . ) . (C.6)

The (. . . ) in the end are terms that are not completely determined by the projection that
was made.
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Next up is the case where we project out with δj1i3δj2i2 , making a differential equation
for 〈trW 2[W 1W 3]i1j3W 4

i4j4 . . .W
K
iKjK
〉.

d
dt〈trW

2[W 1W 3]i1j3W 4
i4j4 . . .W

K
iKjK
〉

= −1
2g

2n(t)
(
Nc(σ1̄3 + σ2̄2) + 1

Nc
AK

)
〈trW 2[W 1W 3]i1j3W 4

i4j4 . . .W
K
iKjK
〉

− 1
2g

2n(t)(σ2̄3 + σ21̄ − σ23 − σ1̄2̄)〈[W 1W 2W 3]i1j3W 4
i4j4 . . .W

K
iKjK
〉

+ (. . . ) . (C.7)

In the notation from section 4 these equations become

d
dtC23m3...mN = −1

2g
2n(t)

(
Nc(σ1̄2 + σ2̄3) + 1

Nc
AK

)
C23m3...mN

− 1
2g

2n(t)(σ1̄3 + σ22̄ − σ23 − σ1̄2̄)C32m3...mN

+ (. . . ) , (C.8)
d
dtC32m3...mN = −1

2g
2n(t)

(
Nc(σ1̄3 + σ2̄2) + 1

Nc
AK

)
C32m3...mN

− 1
2g

2n(t)(σ2̄3 + σ21̄ − σ23 − σ1̄2̄)C23m3...mN

+ (. . . ) . (C.9)

Both of these equations are consistent with the matrix elements (4.23) and (4.24). The
point is that when all the indices are projected out all the Wilson lines will connect in one
of these two ways. Either they will connect to other Wilson lines or they will only connect
to themselves. And since we have shown that in either way the resulting expression is
given by (4.23) and (4.24) it means that these two equations are correct for all the possible
combinations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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