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ABSTRACT
The effect of an implicit medium on dispersive interactions of particle pairs is discussed, and simple expressions for the correction relative to
vacuum are derived. We show that a single point Gauss quadrature leads to the intuitive result that the vacuum van der Waals C6-coefficient
is screened by the permittivity squared of the environment evaluated near to the resonance frequencies of the interacting particles. This
approximation should be particularly relevant if the medium is transparent at these frequencies. In this manuscript, we provide simple models
and sets of parameters for commonly used solvents, atoms, and small molecules.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0037629., s

I. INTRODUCTION

Van der Waals forces are the fundamental interactions between
two neutral and polarizable particles.1–3 These forces prevail in hold-
ing together many materials and play an important role in liv-
ing organisms, such as geckos walking on smooth surfaces.4 They
have also found increasing importance in technological applications
such as microelectromechanical and nanoelectromechanical com-
ponents.5 During recent years, these forces have been well-studied
in several experiments6–9 and in theory.10–13

Despite their Coulombic origin, dispersive forces are among
the weakest forces in nature. Time-dependent perturbation theory
suggests their interpretation as being caused by ground-state fluc-
tuations of the electromagnetic fields. This view has been taken
in Casimir theory10 dealing with two dielectric plates in vac-
uum as well as in colloidal systems,14 namely, the stabilization of
hydrophobic suspensions of particles in dilute electrolytes.15 Alter-
native approaches derive dispersion forces from position-dependent

ground-state energies of the coupled field–matter system.1,10,16

These descriptions are restricted to partners interacting in vacuum.
Natural systems such as colloids or proteins are often embedded in
environments such as a solvent or a matrix.

The impact of an effective medium on dispersive interactions of
two particles A and B is illustrated in Fig. 1. We adopt the simplifica-
tion of considering point particles characterized by their frequency-
dependent polarizabilities αA,B(ω) embedded in an effective medium
characterized by its frequency-dependent permittivity ε(ω). In this
picture, the van der Waals potential may be expressed as13

U(rA, rB) = −
h̵μ2

0

2π

∞

∫
0

dξ ξ4 Tr[αA(iξ) ⋅G(rA, rB, iξ)

⋅αB(iξ) ⋅G(rB, rA, iξ)], (1)

where the Green’s functions G represent the properties of the field
including the medium. One may picturize G as describing the inter-
action between both particles via the exchange of virtual photons.
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FIG. 1. Illustration of two particles with polarizabilities αA,B(ω) located at positions
rA,B. The particles are embedded in a medium with permittivity ε(ω) (gray area)
where a medium excluded area surrounding each particle is formed. Interactions
described by the Green’s functions G are indicated. See the text for details.

Equation (1) has to be read from right to left: a virtual photon
iξ is created at position rA and propagates to particle B, which is
expressed by the Green’s function G(rB, rA, iξ). At this point, it inter-
acts with the polarizability of particle B, αB(iξ), and is backscattered
to particle A, again expressed by the Green’s function G(rA, rB, iξ),
where it interacts with particle A. The sum (integral) over all possible
virtual photons yields the total van der Waals interaction.

The presence of a medium as the environment has two distinct
effects influencing dispersive interactions between A and B.

(I) Deformation of the particle’s electron density: Caused by the
short distances between the considered particles and the
environmental particles, its wave function is modified com-
pared to the one of the free particle.17 This phenomenon is
depicted for particle A in Fig. 1 by the blue (probability of
presence) for the free particle and the semitransparent blue
area for the confined particle. This deforming effect affects
the polarizabilities of both particles αA,B(iξ) in the van der
Waals interaction (1).

(II) Screening of the virtual photon’s propagation: In Fig. 1, it can
be observed that the virtual photon has to pass the medium.
This can be approximated18 to lead to damping by 1/ε(iξ) for
each propagation direction. This process leads to the excess
polarizability models.18,19

Applying the above to Eq. (1) for a bulk material, the medium-
assisted van der Waals interaction between two particles A and B
embedded in a medium with permittivity ε(ω) separated by the
distance d in the nonretarded limit reads13,14,18

UvdW(d) = −
C6

d6 , C6 =
3h̵

16π3ε2
0

∞

∫
0

α⋆A(iξ)α⋆B(iξ)
ε2(iξ) dξ, (2)

with the reduced Planck constant h̵ and the vacuum permittivity ε0.
The α⋆A,B(iξ) are understood to be modified by the presence of the
medium.

The procedure to estimate medium-assisted dispersion interac-
tions by the integral (2) is challenging in practical calculations as the
polarizabilities as well as the permittivity have to be known over the
full frequency range. Furthermore, this integral can get very com-
plex depending on the environmental medium. For instance, the
most-commonly applied medium is water, whose currently most
exact model consists of 19 damped oscillators, 7 for the infrared

and 12 for the ultraviolet regime, and 2 Debye terms are involved
in order to match the experimental data in the low-frequency
regime.20

Practical electronic structure calculations in the spirit of the
model presented in Fig. 1 describe the environment by a polariz-
able continuum model (PCM)21,22 based on the static permittivity
sufficient for ground-state calculations. The workhorse of electronic
structure theory is density functional theory (DFT). The most com-
mon functional approximations within DFT are known to severely
lack the description of dispersion interactions. This can be corrected
by modifying the functional23 or by adding a dispersive correction to
the energy. The latter is in the spirit of our considerations applied by
several approaches such as the semi-empirical Grimme24,25 or the
Tkatchenko–Scheffler26,27 models. Such models are directly appli-
cable to describe the presence of an explicit environment where
all solvent molecules are resolved. Newer developments even take
many body interactions into account25,27 and should therefore be
capable of including nontrivial environmental screening effects at
least partly.28 An explicit description of the environment is com-
putationally very demanding and requires averaging over many
different configurations of the environment, e.g., by explicit time
propagation.29

From the viewpoint of an implicit approach such as the PCM,
these corrections are based on free-particle interactions disregard-
ing the presence of the environment. While appropriate in case that
both interacting particles are within the same cavity,30 this approach
disregards screening by an implicit environment. It was therefore
suggested to scale the van der Waals contributions by ε−2(ω) with ω
in an optical range.31

We rationalize this conjecture by presenting an algebraic
approximation for the medium-assisted C6-coefficient in the fol-
lowing. It is based on a one-point Gauss quadrature rule leading
to

Capp
6 = CAB

6

ε2(iω) = (
3ε(iω)

1 + 2ε(iω))
4 Cvac

6

ε2(iω) , (3)

with an averaged main-frequency ω to be determined in what fol-
lows. We also show that ε−2(iω) might be replaced by ε−2(ω) in
the absence of resonances of the environment at the frequency ω.
The prefactor on the right-hand side of Eq. (3) denotes the tran-
sition through the interface between the vacuum bubble and the
environmental medium according to the Onsager model,32 which is
the most-simplest and commonly used excess polarizability model,18

α⋆(iξ) = ( 3ε(iξ)
1 + 2ε(iξ))

2

α(iξ). (4)

Due to the resulting linearity between the free-space and the approx-
imated van der Waals coefficient, the impact of excess polarizabil-
ities can be easily included by means of Eq. (3) and will not be
considered explicitly in the following.

In this manuscript, we adapt the mesoscopic model to the
microscopic models applied, for instance, in DFT simulations. The
envisioned medium-assisted situation is depicted in Fig. 2. Two
particle ensembles A and B are embedded within a medium with
permittivity ε(ω) screening the interaction. In models based on elec-
tronic structure theory, this interaction is written in the generalized
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FIG. 2. Schematic illustration of the microscopic picture: two ensembles of atoms
A and B are embedded in a dielectric medium with permittivity ε(ω). The dispersion
interaction between the ensembles via the two alternative descriptions as compact
objects (mesoscopic picture, see Fig. 1) or via the pairwise interaction as depicted
here Eij is screened by the solvent medium.

Casimir–Polder form,28

EAB = −
h̵

32π3ε2
0

∞

∫
0

dξ∫ d3rAd3r′Ad3rBd3r′B
e2

ε(iξ)∣rA − rB∣

× e2

ε(iξ)∣r′A − r′B∣
χA(rA, r′A, iξ)χB(rB, r′B, iξ), (5)

which describes the total dispersion energy between systems A
and B, expressed by the electronic density–density responses χi for
i = A, B. In the presence of a separating medium, these are coupled
via the screened Coulomb interaction e2/(4πε0ε∣rA − rB∣). Apply-
ing the dipole approximation to (5), the generalized Casimir–Polder
energy gets equivalent to the mesoscopic model obtained via macro-
scopic quantum electrodynamics [Eq. (2)],

EAB = −
CAB

6

R6 , (6)

CAB
6 =

3h̵
16π3ε2

0

∞

∫
0

dξ
αA(iξ)αB(iξ)

ε2(iξ) , (7)

αi(iξ) = ∫ d3rd3r′ rr′χi(r, r′, iξ), (8)

where αi(iξ) denotes the screened polarizability caused by the defor-
mation of the particle’s electron density χi due to the presence of
the environment, which does not include the effect described by the
excess polarizabilities.

Typically, this interaction is separated into the pairwise interac-
tion of the constituents (the atoms) of systems A and B, as depicted
in Fig. 2,

EAB =∑
i,j
Ei,j = −∑

i,j
fij(Rij)

Cij
6

R6
ij

, (9)

with Rij denoting the distance between atom i of cloud A and atom
j of cloud B and a correction function f ij(Rij) taking short-range
phenomena into account. This pairwise separation of the dispersion
energy corresponds to the Hamaker approach33 (or first-order Born
series expansion34) in macroscopic quantum electrodynamics. Such
models are commonly used in modern van der Waals density func-
tional theory simulations with tabled vacuum C6-coefficients for the
different interacting constituents.

Interestingly, within this approach, the deformation of the par-
ticle’s electron density (I) is expressed via a reduction of the particle’s
volume, which, due to the transitivity of the polarizability (8), can
directly be expressed by a Cdef

6 -coefficient for the deformed electron
density,26

Cdef
6 = (

Vdef

V free )
2

Cfree
6 , (10)

with the reduced particle volume Vdef and the particle volume and
C6-coefficient of the free particle, V free and Cfree

6 , respectively. This
assumption is questionable from the macroscopic point of view, as,
for instance, the mixing of particle states near interfaces35 cannot
be expressed in such a simple way. Further developments25,27 take
into account similar problems due to non-additivities of the van der
Waals interaction.28

It can be observed that the C6-coefficient (7) depends on
dispersion of the implicit environmental medium via an integra-
tion along the imaginary frequency axis. This fact motivated us
to develop a simple model that takes into account the screen-
ing of the van der Waals interaction with a similar numerical
effort as ordinary DFT simulations in vacuum would require. As
the deformation of the particle’s electron density is commonly
considered in the form of Eq. (10), the local-field corrections as
expressed via excess polarizability models18 in the form of Eq. (3),
we neglect the explicit consideration of these effects within this
manuscript.

II. APPROXIMATION OF MEDIUM-ASSISTED
C6-COEFFICIENTS BY GAUSSIAN QUADRATURE

The integral over the imaginary frequency axis for the C6-
coefficient (2) can be carried out by using a single point Gauss
quadrature rule.33,36 This method approximates the integral I by

I =
∞

∫
0

f (x)g(x)dx ≈ f (x0)m0. (11)

The values of x0 and m0 are selected such that the integrals

Ii =
∞

∫
0

xig(x)dx (12)

are exact for i = 0, 1, which guarantees that Eq. (11) is exact for con-
stant or linear functions f (x). This gives m0 = I0 and x0 = I1/I0 in
agreement with Ref. 36.

Choosing the weight g(ξ) = αA(iξ)αB(iξ) leads to the relevant
mean frequency in Eq. (3),

ω = ∫
∞

0 ξαA(iξ)αB(iξ)dξ
∫ ∞0 αA(iξ)αB(iξ)dξ

, (13)

and Eq. (3) directly. This equation, therefore, is exact for the ε−2

constant or linear in iξ. We restrict ourselves to the consideration
of non-retarded interactions with respect to the application of the
model in density functional theory simulations. A generalization of
the model to include retardation effects is possible and reported in
Ref. 36.
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III. COMPARISON BETWEEN EXACT
AND APPROXIMATED C 6-COEFFICIENTS FOR SINGLE
OSCILLATOR MODELS

The simplest model for the polarizabilities αA,B is that of a single
oscillator

αA,B(iξ) =
AA,B

1 + (ξ/ωA,B)2 , (14)

with the static value AA,B and the resonance frequency ωA,B. Insert-
ing Eq. (14) into Eq. (13) yields the average main frequency

ω = 2
π

ωAωB

ωA − ωB
ln(ωA

ωB
), (15)

giving ω = 2ωA/π for ωA = ωB.
To illustrate the accuracy of the model assumption (3), we cal-

culated the averaged main frequency (15) for different sets of reso-
nance frequencies h̵ωA,B ∈ [0, 10] eV for particles dissolved in one
of the most-complex media water.20 We use the parameterization of
ε(iξ) for water from Ref. 20 to define the “exact” values of the integral

Cexact
6 = 3h̵AAAB

16π3ε2
0

∞

∫
0

dξ
[1 + (ξ/ωA)2][1 + (ξ/ωB)2]ε2(iξ) . (16)

The comparison between the vacuum and exact van der Waals coef-
ficients according to Eq. (3) allows us to determine the correspond-
ing “exact” averaged main-frequency ωexact,

ε(iωexact) =
¿
ÁÁÀ Cvac

6

Cexact
6

. (17)

Using these values, we can determine the relative deviations of the
approximated values according to Eqs. (3) and (15) as

ω − ωexact

ωexact
,

Capp
6 − Cexact

6

Cexact
6

. (18)

FIG. 3. Relative deviations in percent between the approximated averaged fre-
quency ω and the exact main-frequency according to Eq. (3) (top left triangle)
and between the approximated and exact van der Waals coefficients (bottom right
triangle).

These deviations are generally rather small as depicted in Fig. 3.
It can be observed that for materials with a dominant resonance in
the microwave, optical, ultraviolet, or with higher energies, the rela-
tive error due to main-frequency approximation is negligible. Only
for materials with a dominant resonance in the radio regime and
below are not well approximated, which are not very common or
realistic materials.

IV. PROPERTIES OF THE FREQUENCY DEPENDENT
PERMITTIVITY

In order to discuss the general properties of the square of the
inverse permittivity, we consider its frequency dependence in terms
of common approximations. The permittivity may be described in a
generalized Debye form,

εDebye(ω) = 1 +∑
D

εD
1 − iωτD

, (19)

or similarly in a generalized Drude form,

εDrude(ω) = 1 +∑
D

εDω2
D

ω2
D − ω2 − iωγD

, (20)

where the two approximations get very similar if we identify
τD = 3/ωD and γD = 3ωD (see the supplementary material). The
sums in Eqs. (19) and (20) contain a chosen number of resonators.
Generally, the resonator weights εD tend to decrease with increasing
resonance frequency ωD.

Figure 4 shows ε−2(iξ) in the two approximations for the model
case of two resonators only. The ε−2(iξ) is peaked around resonance
frequencies but is rather flat in other regions, where it takes the form
of a step-like function. In case that ω does not coincide with a res-
onance of the environment, ε−2(iξ) can therefore be approximated
by a linear function for the main part of the integral (2). The Gaus-
sian quadrature is exact in this case. Figure 4 also shows that ε−2(iξ)
might also be replaced by 1/(Re[ε(ω)])2, which is well measured and
tabulated for many solvents and other environments.37 Thus, the

FIG. 4. Drude and Debye models with two oscillators with ̵hωD = {10−5, 1} eV
and weights εD = {2, 1}, respectively.
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medium-assisted van der Waals interaction can effectively be treated
via a screening due to an environmental medium,

UvdW(d) = −
Cvac

6

d6
1

(Re[ε(ω)])2 , (21)

with an averaged main-frequency ω [Eqs. (15) and (31)]. In gen-
eral, the screening coefficient can be evaluated from the dielectric
function ε(ω) by using the Kramers–Kronig relation,13,38,39

ε(iω) = 1 +
2
π

∞

∫
0

ω Im ε(ω)
ω2 + ω2 dω. (22)

V. IMPACT OF THE MODEL ON REAL MOLECULES
In the following, we apply the model developed to more real-

istic scenarios and analyze the deviations between the approxi-
mation and the exact solutions for the medium-assisted van der
Waals interactions. In principle, realistic materials are described via
multi-oscillator models, which we can distinguish into two classes
according to the resonance frequencies: resonances in the ultravi-
olet regime, which are caused by electronic transitions, and reso-
nances in the infrared regime that are caused by vibrational and
rotational modes of the system. To this end, we first consider a
two-oscillator model with one oscillator within each of these spec-
tral ranges and analyze the model predictions due the ratio between
the corresponding oscillator strengths. Afterward, we consider the
interaction between real molecules whose polarizabilities consist of
several oscillator models. Finally, we analyze the interaction between
atomic compounds in terms of a Hamaker summation according to
the common treatment of van der Waals dispersion forces in density
functional theory simulations.

A. Two-oscillator models
In Sec. V B and also in Fig. 6, we observe that the resonances of

the dielectric response function are dominant in two different spec-
tral ranges—in the infrared and in the ultraviolet range. Hence, we
analyze the impact of differently weighted oscillator strengths in our
model. We consider a two-oscillator model for the polarizability,

α(iξ) = CIR

1 + (ξ/ωIR)2 +
CUV

1 + (ξ/ωUV)2

= CIR[
1

1 + (ξ/ωIR)2 +
λ

1 + (ξ/ωUV)2 ], (23)

with the ratio between the oscillator strengths

λ = CUV

CIR
(24)

being small (λ≪ 1) for infrared-dominant species and large (λ≫ 1)
for ultraviolet-dominant species. By inserting Eq. (23) into Eq. (13),
this leads to an averaged main-frequency

ω = 2
π[(ωIR + λωUV)2 + ωIRωUV(λ + 1)2]

× [ 4λωIRωUV

ωIR − ωUV
ln( ωIR

ωUV
) + (ωIR + ωUV)(λ2ω2

UV + ω2
IR)], (25)

satisfying the single oscillator limits (15). The results for two par-
ticles of some species with the parameters h̵ωIR = 0.1 eV and
h̵ωUV = 10 eV embedded in water are depicted in Fig. 5. It can
be observed that the limits of the different dominant regimes are
reproduced,

ω = 2
π
{ωUV , for λ≫ λcrit.
ωIR , for λ≪ λcrit.

(26)

It can be observed that λcrit is smaller than unity due to the weighted
integral (13). To understand this behavior quantitatively, we define
λcrit to be the ratio corresponding to the arithmetical averaged main-
frequency ω(λcrit) = (ωIR + ωUV)/π. This can be solved analytically
and results in

λcrit =
√ρ

(1 + ρ)(ρ − 1)2 {4ρ3/2 ln ρ + 2
√
ρ − 2ρ5/2

+[16ρ2 ln ρ(ρ ln ρ + 1 − ρ2) + (ρ − 1)2(1 + ρ)4]1/2}, (27)

with the ratio between the resonance frequencies ρ = ωIR/ωUV ≪ 1
being typically much smaller than 1. The resulting λcrit < 1 implies
that the averaged main-frequency is typically closer to the ultravio-
let resonance unless its resonance is much smaller than that of the
infrared resonance.

Figure 5 illustrates the relevant dependencies of the two-
oscillator model. In addition to the derived two-oscillator model
(25), we added a simple weighted averaged main-frequency model,

ω = 2
π
ωIR + λωUV

1 + λ
, (28)

FIG. 5. Comparison of the averaged main-frequency ω (top panel) obtained via
(25) (green lines), the exact result by solving Eq. (17) (red lines), the fitted to
a one-oscillator model (14) (blue lines), and an arithmetically averaged model
ω = 2/π(ωIR + λωUV)/(1 + λ) (orange lines) for a two-oscillator polarizabil-
ity (23) with the parameters ̵hωIR = 0.1 eV and ̵hωUV = 10 eV depending on the
ratio between the ultraviolet and infrared oscillator strengths λ. The asymptotes of
the single oscillator limits are the horizontal dashed lines. The critical ratio λcrit is
drawn by the gray vertical dashed line. The inset of the upper figure illustrates the
dependence of the critical ratio on the ratio between the resonance frequencies
ρ = ωIR/ωUV. The bottom figure illustrates the resulting normalized van der Waals
coefficients with an inset of corresponding relative errors according to Eq. (18),
where furthermore the relative error of the single oscillator treatment is depicted
via the magenta line.
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a fit of the two-oscillator model onto a single oscillator model, which
can be performed analytically by solving the corresponding least
squares equation and by splitting the van der Waals coefficient into
its three single oscillator contributions,

C6

3h̵C2
IR/(16π3ε2

0)
=
∞

∫
0

dξ

ε2(iξ)[1 + (ξ/ωIR)2]2

+ 2λ
∞

∫
0

dξ
ε2(iξ)[1 + (ξ/ωIR)2] ⋅ [1 + (ξ/ωUV)2]

+ λ2
∞

∫
0

dξ

ε2(iξ)[1 + (ξ/ωUV)2]2
. (29)

It can be observed that the model (25) agrees very well with the
exact averaged main-frequency. The corresponding asymptotes are
governed by the conditions (26) together with Eq. (27) for λcrit.
Remarkably, the alternative models (weighted average and fit-to-
single-oscillator model) strongly deviate from the predictions of the
averaged main-frequency but matches better the van der Waals coef-
ficients of infrared-dominant materials. For ultraviolet-dominant
responding species, the presented model predicts better the C6-
coefficients than the other models. The optimum over the whole
range is given by the treatment of each single oscillator (29).

B. Multi-oscillator models
The oscillator model (14) can easily be extended to several

oscillators,

αA,B(iξ) =∑
i

A(i)A,B

1 + (ξ/ω(i)A,B)
2 , (30)

leading to an averaged main-frequency

ω = 2
π

⎛
⎜⎜
⎝
∑
i,j
A(i)A A(j)B

[ω(i)A ω(j)B ]
2

[ω(i)A ]
2
− [ω(j)B ]

2 ln
⎛
⎝
ω(i)A

ω(j)B

⎞
⎠

⎞
⎟⎟
⎠

×
⎛
⎝∑i,j

A(i)A A(j)B ω(i)A ω(j)B

ω(i)A + ω(j)B

⎞
⎠

−1

. (31)

As a note of caution, we remark that, as evident from the discussion
in Sec. II, our method may lead to less accurate results for molecules
whose relevant transitions span several plateau regions of ε(iξ). In
this case, a separate treatment of each oscillator is recommended, as
shown in Sec. V A.

In Table I, averaged main-frequencies are given for differ-
ent pairs of small molecules. The corresponding polarizabilities are
taken from Refs. 18 and 40. It can be observed that the averaged
main-frequency is mainly located in the energy range between 10 eV
and 15 eV.

Due to this reduction of the relevant energy range, the dielec-
tric functions of the solvent can be approximated by a single UV
oscillator model,

εapp(iξ) =
εs − ε∞

1 + (ξ/ωUV)2 + ε∞, (32)

where εs is the low frequency permittivity and ε∞ is the permit-
tivity for large frequencies that may contain contributions of other
oscillators at higher frequencies. The dielectric functions of typical
solvents are illustrated in Fig. 6. The parameterization of the alco-
hols is taken from Ref. 41 and that of water from Ref. 20. These
models have been fitted to the reduced response model (32) whose
resulting parameters are given in Table II. This reduced model is
in good agreement with the original data, which can be observed in
the inset of Fig. 6. Equation (32) describes a Drude oscillator with-
out damping, which is sufficient for the description of dispersion
interactions.

The impact of the model (3) for a selection of interacting
particles is given in Table III. The complete list can be found in
the supplementary material. It can be seen that the model well-
approximates the van der Waals interactions between both particles
within a deviation of roughly 5%–10%. We can expect even better
agreement for molecules with dominant excitations in the optical
or low UV range as these frequencies are further apart from the
resonances of the solvent.

C. Combination model according to the summation
over pairwise atomic interactions

In common density functional theory simulations, the van
der Waals interaction between complex molecules is decomposed

TABLE I. Average main-frequenciesω (eV) for different molecule pairs. The corresponding parameters for the polarizabilities
are taken from Refs. 18 and 40.

CH4 NO2 CO2 CO N2O O3 O2 N2 H2S NO

CH4 11.4 12.6 12.6 12.2 12.3 12.7 13.2 12.8 10.3 12.8
NO2 12.6 14.2 14.3 13.7 13.9 14.4 15.0 14.4 11.3 14.5
CO2 12.6 14.3 14.3 13.7 14.0 14.4 15.0 14.4 11.4 14.5
CO 12.2 13.7 13.7 13.1 13.4 13.8 14.4 13.8 11.0 13.9
N2O 12.3 13.9 13.9 13.4 13.6 14.0 14.7 14.0 11.1 14.1
O3 12.7 14.4 14.4 13.8 14.0 14.5 15.2 14.4 11.4 14.6
O2 13.2 15.0 15.0 14.4 14.7 15.2 15.9 15.1 11.9 15.2
N2 12.8 14.4 14.4 13.8 14.0 14.5 15.1 14.4 11.5 14.6
H2S 10.3 11.3 11.4 11.0 11.1 11.4 11.9 11.5 9.3 11.5
NO 12.8 14.5 14.5 13.9 14.1 14.6 15.2 14.6 11.5 14.7
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FIG. 6. Dielectric function of water and some common solvent alcohols (ethanol,
methanol, butanol, and propanol) on the imaginary axis. The crosses in the inset
illustrate the approximated dielectric functions due to Eq. (32) with the parameters
in Table II.

via the Hamaker approach (pairwise summation) over the atomic
constituents of each molecule,26

CAB
6 = ∑

a∈A
∑
b∈B

Cab
6 , (33)

where A and B denote the set of atoms of molecules A and B,
respectively, with an effective van der Waals interaction between
atoms a and b expressed by Cab

6 . Figure 2 illustrates this decompo-
sition. The effective van der Waals interaction between each pair is
treated analogously to the screening of the electronic density (10) to
be linear in the free-space van der Waals coefficient,

Cab
6 ∝ Cfree,ab

6 . (34)

TABLE II. Parameters for some solvents according to the reduced single oscillator
model (32).

Solvent ε∞ εs ωUV

Water 1.193 1.766 10.73
Ethanol 1.141 1.853 12.29
Methanol 1.098 1.766 12.46
Butanol 1.154 1.954 11.47
Propanol 1.144 1.921 11.52
Cyclopentane 1.092 1.938 11.65
Cyclohexane 1.096 1.991 11.68
Benzene 1.169 2.199 10.07
Fluorobenzene 1.145 2.088 10.31
Chlorobenzene 1.157 2.264 10.38
Bromobenzene 1.173 2.371 10.33
Pentane 1.080 1.808 13.16
Heptane 1.086 1.857 13.07
Glycerol 1.152 2.152 12.10
Tetrachloromethane 1.103 2.076 12.13

This ansatz allows us to apply the effective screening to the atomic
decomposition of the molecules. Commonly, atomic dynamic polar-
izabilities are treated by a single Lorentz oscillator with an oscillator
strength and a resonant frequency (14) that are given by the static
polarizability αA(0) and the van der Waals coefficient for the equal
particle pairwise interaction in vacuum,

CAA
6 = 3h̵

16π3ε2
0

∞

∫
0

dξ
⎡⎢⎢⎢⎢⎣

αA(0)
1 + (ξ/ωA

0 )
2

⎤⎥⎥⎥⎥⎦

2

= 3h̵α2
A(0)ωA

0

64π2ε2
0

. (35)

Thus, the resonance frequency is given by

ωA
0 =

64π2ε2
0C

AA
6

3h̵α2
A(0)

. (36)

By inserting this (36) into Eq. (15), one finds the averaged main-
frequency,

ω = 128πε2
0

3h̵
CAA

6 CBB
6

CAA
6 α2

B(0) − CBB
6 α2

A(0)
ln(C

AA
6 α2

B(0)
CBB

6 α2
A(0)

), (37)

which simplifies to

ω = 128πε2
0C

AA
6

3h̵α2
A(0)

(38)

for two particles of the same species. Table IV illustrates the aver-
aged main-frequency for different atomic combinations involved
in organic particles: carbon, hydrogen, oxygen, nitrogen, sulfur,
fluorine, chlorine, bromine, and iodine. The parameters for the
polarizabilities are taken from Ref. 42. It can be seen that the result-
ing parameters are again in the ultraviolet range between 7.25 eV
and 15 eV. Thus, the dielectric functions for the different sol-
vents provided in Table II can be used to determine the screening
factors.

The application of this atomic model has to be taken with a
grain of salt because polarizabilities are typically non-additive with
respect to the constituents of the considered particle.28 There are
several effects that are not covered by Eq. (33). One of these effects
is the rescaling of the free-space van der Waals coefficient due to
the particle’s volume (10). Several investigations, in theory35,43,44

and experiment,45,46 have shown that the largest effect of a surface
(respectively, a cavity) results in a spectral shift of the particle’s res-
onance Δω. Such an effect can, for instance, be included within this
model by applying a Taylor series expansion to Eq. (15) leading to a
shift of the averaged main-frequency,

Δω = 2
π
[ω

2
AΔωB − ω2

BΔωA

(ωA − ωB)2 ln(ωA

ωB
) +

ωBΔωA − ωrmAΔωB

ωA − ωB

+
ω2

A − ω2
B − 2ωAωB ln(ωA/ωB)
(ωA − ωB)3 ΔωAΔωB], (39)

which has to be considered for the evaluation of the screening
factor ε−2(iω + iΔω). Another effect this model can be adapted
to is the many-particle interaction behind the pairwise assump-
tion, e.g., the three-body interaction (the Axilrod–Teller potential),
which describes the interaction between three polarizable particles.
Its strength is given by47,48
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TABLE III. Comparison of different molecule combinations (molecules A and B) with the vacuum van der Waals coefficient Cvac
6 (1079Jm6

), the corresponding averaged main-
frequency ω (eV), the exact and approximated (32) dielectric functions evaluated at the averaged main-frequency, the approximated van der Waals coefficient according to
Eq. (3) Capp

6 (1079Jm6
), the exact van der Waals coefficient according to Eq. (2) Cexact

6 (1079Jm6
), and the relative deviation of the approximated and exact C6-coefficients.

Mol. A Medium Mol. B Cvac
6 ω ε(iω) εapp(iω) Capp

6 Cexact
6 Rel. Dev.

CH4 Water CH4 116.68 11.35 1.47 1.46 54.48 51.90 4.99%
CO2 Water N2O 174.42 13.92 1.40 1.41 88.16 81.69 7.91%
NO Water H2S 117.12 11.53 1.46 1.46 55.02 52.01 5.80%
CH4 Ethanol CH4 116.68 11.35 1.53 1.53 50.16 48.76 2.87%
O2 Methanol H2S 109.06 11.92 1.45 1.45 52.12 49.35 5.61%
N2 Butanol H2S 120.86 11.52 1.55 1.55 50.15 48.08 4.32%
O2 Propanol CH4 81.51 13.24 1.48 1.48 37.28 34.74 7.32%

TABLE IV. The averaged main-frequency for atomic constituents of organic particles.

h̵ω (eV) C H O N S F Cl Br I

C 7.47 7.44 9.51 8.70 7.76 10.45 8.50 8.34 7.37
H 7.44 7.41 9.47 8.66 7.73 10.40 8.46 8.31 7.34
O 9.51 9.47 12.36 11.21 9.90 13.69 10.93 10.72 9.36
N 8.70 8.66 11.21 10.21 9.05 12.38 9.96 9.77 8.57
S 7.76 7.73 9.90 9.05 8.06 10.89 8.83 8.67 7.64
F 10.45 10.40 13.69 12.38 10.89 15.23 12.06 11.82 10.28
Cl 8.50 8.46 10.93 9.96 8.83 12.06 9.71 9.53 8.37
Br 8.34 8.31 10.72 9.77 8.67 11.82 9.53 9.35 8.22
I 7.37 7.34 9.36 8.57 7.64 10.28 8.37 8.22 7.26

C9 ∝
∞

∫
0

αA(iξ)αB(iξ)αC(iξ)
εn(iξ) , (40)

where n denotes the number of interactions crossing the interme-
diate medium, e.g., if all three particles belong to three different
molecules, then n = 3, whereas if all constituents belongs to the same
molecule, then n = 0. In analogy to Eq. (13), an averaged main-
frequency can be derived, which reads for three single oscillator
models,

ω = 2
π

ωAωBωC

ωA + ωB + ωC

1
(ωB − ωC)(ωA − ωC)(ω)A − ωB)

× [ω2
A ln(ωB

ωC
) + ω2

B ln(ωC

ωA
) + ω2

C ln(ωA

ωC
)]. (41)

Beyond this extension, the model can be adapted to the consid-
eration of higher-order multipoles, e.g., the non-retarded dipole–
quadrupole interaction,49

U(r) = −C8

r8 , (42)

with

C8 =
90h̵c

160π3ε2
0

∞

∫
0

dξα(iξ)β(iξ), (43)

with the scalar dipole and quadrupole polarizabilities, α(iξ) and
β(iξ), respectively. By, for instance, assuming single Lorentz oscil-
lator models (14) to model each response function, the resulting
screening effect can be effectively be treated in analogy to Eqs. (15)
and (3).

Beyond these extensions, there are some limitations that the
model cannot cover: (i) the intermediate regime, where retardation
effects start to play a role are not adaptable because the potential
does not factorize into a part depending on the polarizabilities
and another part only depending on the dielectric function of the
medium;50 and (ii) in situations, where the interacting atomic sys-
tems A and B are so close together that the electronic densities start
to overlap and a molecule is formed, the derived model fails due to
the coupling dipole–electric field interaction Hamiltonian applied in
the whole theory.

VI. CONCLUSION
We have shown that the medium-assisted van der Waals inter-

action can effectively be treated as a screening due to an envi-
ronmental medium. The single point Gauss quadrature suggests
the screening to be the inverse of ε(iω)2 with an averaged main-
frequency ω that depends on the resonances of the interacting
molecules. The approximation should be particularly accurate if
these resonances are far from the resonances of the medium. Then,
ε(iω)−2 might even be replaced by the permittivity evaluated at real
frequencies ε(ω)−2. Application of the approximation proposed for
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small molecules with resonances near to these of the solvents reveal
still an accuracy of 90%–95%.

As embedded molecules in solvents often show their dominat-
ing resonances in the optical region, screening of van der Waals
interactions by the solvent is greatly suppressed as compared to elec-
trostatic Coulomb interactions. In the extreme but important case
of water, the latter are screened by the factor 1/7822 due to its large
static polarizability. The permittivity in the optical region is much
lower,31 leading to a screening of the van der Waals interaction by
≈0.5 compared to the vacuum case.

Nevertheless, the simple form of our result is useful for adjust-
ing van der Waals corrections of molecules within implicit sol-
vents.31 Furthermore, the screening might also affect molecular
dynamics calculations in an aqueous environment such as the
important problem of protein folding51 or may resolve some of
the discrepancies between simulated and experimental dielectric
constants.52 The solvents’ permittivity in the optical range is
caused by resonances of the solvents’ electronic system. As classical
force fields do not include electrons, the corresponding screening
term is missing and, therefore, also the screening described here.
Modification of the bare Coulomb interaction by the relative per-
mittivity has been shown to improve the description of ion–ion
interactions considerably.53

SUPPLEMENTARY MATERIAL

See the supplementary material for complete Table III.

ACKNOWLEDGMENTS
We gratefully acknowledge support from the German Research

Council [Grant Nos. BU 1803/6-1 (S.Y.B. and J.F.), BU 1803/3-1
(S.Y.B.), and WA 1687/10-1 (M.W.)].

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.

REFERENCES
1F. London, “The general theory of molecular forces,” Trans. Faraday Soc. 33, 8b
(1937).
2J. D. van der Waals, “Over de Continuiteit van den Gas- en Vloeistoftoestand
(on the continuity of the gas and liquid state),” Ph.D. thesis, University of Leiden,
1873.
3F. London, “Zur Theorie und Systematik der Molekularkräfte,” Z. Phys. 63, 245–
279 (1930).
4K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny,
R. Fearing, and R. J. Full, “Adhesive force of a single gecko foot-hair,” Nature 405,
681–685 (2000).
5F. W. DelRio, M. P. de Boer, J. A. Knapp, E. David Reedy, P. J. Clews, and
M. L. Dunn, “The role of van der Waals forces in adhesion of micromachined
surfaces,” Nat. Mater. 4, 629–634 (2005).
6R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Köhler,
“Determination of atom-surface van der Waals potentials from transmission-
grating diffraction intensities,” Phys. Rev. Lett. 83, 1755–1758 (1999).
7M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger,
“Wave-particle duality of C60 molecules,” Nature 401, 680–682 (1999).

8T. Juffmann, A. Milic, M. Müllneritsch, P. Asenbaum, A. Tsukernik,
J. Tüxen, M. Mayor, O. Cheshnovsky, and M. Arndt, “Real-time single-
molecule imaging of quantum interference,” Nat. Nanotechnol. 7, 297–300
(2012).
9C. Brand, J. Fiedler, T. Juffmann, M. Sclafani, C. Knobloch, S. Scheel, Y. Lilach,
O. Cheshnovsky, and M. Arndt, “A Green’s function approach to modeling molec-
ular diffraction in the limit of ultra-thin gratings,” Ann. Phys. 527, 580–591
(2015).
10H. B. G. Casimir and D. Polder, “The influence of retardation on the London-
van der Waals forces,” Phys. Rev. 73, 360–372 (1948).
11I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, “General theory of van
der Waals’ forces,” Sov. Phys. Usp. 4, 153 (1961).
12S. Scheel and S. Buhmann, “Macroscopic quantum electrodynamics—Concepts
and applications,” Acta Phys. Slovaca 58, 675 (2008).
13S. Y. Buhmann, Dispersion Forces I: Macroscopic Quantum Electrodynamics
and Ground-State Casimir, Casimir–Polder and van der Waals forces (Springer,
Heidelberg, 2012).
14A. D. McLachlan, “Retarded dispersion forces between molecules,” Proc. R. Soc.
London, Ser. A 271, 387–401 (1963).
15P. W. Milonni, “Chapter 7—Casimir and van der Waals forces: Prelude,” in The
Quantum Vacuum, edited by P. W. Milonni (Academic Press, San Diego, 1994),
pp. 217–252.
16H. B. G. Casimir, “On the attraction between two perfectly conducting plates,”
Proc. K. Ned. Akad. Wet. 51, 793 (1948).
17K. D. Sen, “Shell-confined hydrogen atom,” J. Chem. Phys. 122, 194324
(2005).
18J. Fiedler, P. Thiyam, A. Kurumbail, F. A. Burger, M. Walter, C. Persson,
I. Brevik, D. F. Parsons, M. Boström, and S. Y. Buhmann, “Effective polarizability
models,” J. Phys. Chem. A 121, 9742–9751 (2017).
19A. Sambale, S. Y. Buhmann, D.-G. Welsch, and M.-S. Tomaš, “Local-field cor-
rection to one- and two-atom van der Waals interactions,” Phys. Rev. A 75, 042109
(2007).
20J. Fiedler, M. Boström, C. Persson, I. Brevik, R. Corkery, S. Y. Buhmann, and
D. F. Parsons, “Full-spectrum high-resolution modeling of the dielectric function
of water,” J. Phys. Chem. B 124, 3103–3113 (2020).
21J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum
solvation models,” Chem. Rev. 105, 2999–3094 (2005).
22A. Held and M. Walter, “Simplified continuum solvent model with a smooth
cavity based on volumetric data,” J. Chem. Phys. 141, 174108 (2014).
23K. Berland, V. R. Cooper, K. Lee, E. Schröder, T. Thonhauser, P. Hyldgaard, and
B. I. Lundqvist, “van der Waals forces in density functional theory: A review of the
vdW-DF method,” Rep. Prog. Phys. 78, 066501 (2015).
24S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate
ab initio parametrization of density functional dispersion correction (DFT-D) for
the 94 elements H-Pu,” J. Chem. Phys. 132, 154104 (2010).
25E. Caldeweyher, C. Bannwarth, and S. Grimme, “Extension of the D3 dispersion
coefficient model,” J. Chem. Phys. 147, 034112 (2017).
26A. Tkatchenko and M. Scheffler, “Accurate molecular van der Waals interac-
tions from ground-state electron density and free-atom reference data,” Phys. Rev.
Lett. 102, 073005 (2009).
27A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, “Accurate and efficient
method for many-body van der Waals interactions,” Phys. Rev. Lett. 108, 236402
(2012).
28J. F. Dobson, “Beyond pairwise additivity in London dispersion interactions,”
Int. J. Quantum Chem. 114, 1157–1161 (2014).
29P. Dopieralski, J. Ribas-Arino, P. Anjukandi, M. Krupicka, J. Kiss, and D. Marx,
“The Janus-faced role of external forces in mechanochemical disulfide bond
cleavage,” Nat. Chem. 5, 685–691 (2013).
30M. Takahashi, H. Matsui, Y. Ikemoto, M. Suzuki, and N. Morimoto, “Assess-
ment of the VDW interaction converting DMAPS from the thermal-motion form
to the hydrogen-bonded form,” Sci. Rep. 9, 13104 (2019).
31B. Hartl, S. Sharma, O. Brügner, S. F. L. Mertens, M. Walter, and G. Kahl,
“Reliable computational prediction of the supramolecular ordering of complex
molecules under electrochemical conditions,” J. Chem. Theory Comput. 16,
5227–5243 (2020).

J. Chem. Phys. 154, 104102 (2021); doi: 10.1063/5.0037629 154, 104102-9

© Author(s) 2021

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0037629
https://www.scitation.org/doi/suppl/10.1063/5.0037629
https://doi.org/10.1039/tf937330008b
https://doi.org/10.1007/bf01421741
https://doi.org/10.1038/35015073
https://doi.org/10.1038/nmat1431
https://doi.org/10.1103/physrevlett.83.1755
https://doi.org/10.1038/44348
https://doi.org/10.1038/nnano.2012.34
https://doi.org/10.1002/andp.201500214
https://doi.org/10.1103/physrev.73.360
https://doi.org/10.1070/pu1961v004n02abeh003330
https://doi.org/10.2478/v10155-010-0092-x
https://doi.org/10.1098/rspa.1963.0025
https://doi.org/10.1098/rspa.1963.0025
https://doi.org/10.1063/1.1901584
https://doi.org/10.1021/acs.jpca.7b10159
https://doi.org/10.1103/physreva.75.042109
https://doi.org/10.1021/acs.jpcb.0c00410
https://doi.org/10.1021/cr9904009
https://doi.org/10.1063/1.4900838
https://doi.org/10.1088/0034-4885/78/6/066501
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.4993215
https://doi.org/10.1103/physrevlett.102.073005
https://doi.org/10.1103/physrevlett.102.073005
https://doi.org/10.1103/physrevlett.108.236402
https://doi.org/10.1002/qua.24635
https://doi.org/10.1038/nchem.1676
https://doi.org/10.1038/s41598-019-49352-1
https://doi.org/10.1021/acs.jctc.9b01251


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

32L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58,
1486–1493 (1936).
33V. Parsegian, Van der Waals Forces (Cambridge University Press, Cambridge,
2006).
34S. Y. Buhmann, Dispersion Forces II: Many-Body Effects, Excite Atoms, Finite
Temperature and Quantum Friction (Springer, Heidelberg, 2012).
35S. Ribeiro, S. Yoshi Buhmann, T. Stielow, and S. Scheel, “Casimir-Polder inter-
action from exact diagonalization and surface-induced state mixing,” Europhys.
Lett. 110, 51003 (2015).
36L. G. MacDowell, “Surface van der Waals forces in a nutshell,” J. Chem. Phys.
150, 081101 (2019).
37Handbook of Physical Quantities, edited by I. S. Grigoriev and E. Z. Meilikhov
(CRC Press, New York, 1997).
38J. Israelachvili, Intermolecular and Surface Forces, Intermolecular and Surface
Forces (Elsevier Science, 2015).
39J. Jackson, Classical Electrodynamics (Wiley India Pvt. Limited, 2007).
40J. Fiedler, D. F. Parsons, F. A. Burger, P. Thiyam, M. Walter, I. Brevik,
C. Persson, S. Y. Buhmann, and M. Boström, “Impact of effective polarisability
models on the near-field interaction of dissolved greenhouse gases at ice and air
interfaces,” Phys. Chem. Chem. Phys. 21, 21296–21304 (2019).
41P. J. van Zwol and G. Palasantzas, “Repulsive Casimir forces between solid
materials with high-refractive-index intervening liquids,” Phys. Rev. A 81, 062502
(2010).
42X. Chu and A. Dalgarno, “Linear response time-dependent density functional
theory for van der Waals coefficients,” J. Chem. Phys. 121, 4083–4088 (2004).
43S. Das, J. Fiedler, O. Stauffert, M. Walter, S. Y. Buhmann, and
M. Presselt, “Macroscopic quantum electrodynamics and density functional the-
ory approaches to dispersion interactions between fullerenes,” Phys. Chem. Chem.
Phys. 22, 23295–23306 (2020).

44O. Stauffert, S. Izadnia, F. Stienkemeier, and M. Walter, “Optical signa-
tures of pentacene in soft rare-gas environments,” J. Chem. Phys. 150, 244703
(2019).
45F. Coppens, J. von Vangerow, A. Leal, M. Barranco, N. Halberstadt,
M. Mudrich, M. Pi, and F. Stienkemeier, “Fall-back time for photo-ionized
Cs atoms attached to superfluid 4He nanodroplets,” Eur. Phys. J. D 73, 94
(2019).
46N. V. Dozmorov, A. V. Baklanov, J. von Vangerow, F. Stienkemeier, J. A.
M. Fordyce, and M. Mudrich, “Quantum dynamics of Rb atoms desorbing off the
surface of He nanodroplets,” Phys. Rev. A 98, 043403 (2018).
47B. M. Axilrod and E. Teller, “Interaction of the van der Waals type between three
atoms,” J. Chem. Phys. 11, 299–300 (1943).
48F. A. Burger, J. Fiedler, and S. Y. Buhmann, “Zero-point electromagnetic stress
tensor for studying Casimir forces on colloidal particles in media,” Europhys. Lett.
121, 24004 (2018).
49A. Salam, “A general formula obtained from induced moments for the retarded
van der Waals dispersion energy shift between two molecules with arbitrary elec-
tric multipole polarizabilities: I. Ground state interactions,” J. Phys. B: At., Mol.
Opt. Phys. 39, S651–S661 (2006).
50J. Fiedler, K. Berland, F. Spallek, I. Brevik, C. Persson, S. Y. Buhmann, and
M. Boström, “Nontrivial retardation effects in dispersion forces: From anomalous
distance dependence to novel traps,” Phys. Rev. B 101, 235424 (2020).
51K. A. Dill and J. L. MacCallum, “The protein-folding problem, 50 years on,”
Science 338, 1042–1046 (2012).
52M. Jorge and L. Lue, “The dielectric constant: Reconciling simulation and
experiment,” J. Chem. Phys. 150, 084108 (2019).
53B. J. Kirby and P. Jungwirth, “Charge scaling manifesto: A way of reconciling
the inherently macroscopic and microscopic natures of molecular simulations,”
J. Phys. Chem. Lett. 10, 7531–7536 (2019).

J. Chem. Phys. 154, 104102 (2021); doi: 10.1063/5.0037629 154, 104102-10

© Author(s) 2021

https://scitation.org/journal/jcp
https://doi.org/10.1021/ja01299a050
https://doi.org/10.1209/0295-5075/110/51003
https://doi.org/10.1209/0295-5075/110/51003
https://doi.org/10.1063/1.5089019
https://doi.org/10.1039/c9cp03165k
https://doi.org/10.1103/physreva.81.062502
https://doi.org/10.1063/1.1779576
https://doi.org/10.1039/d0cp02863k
https://doi.org/10.1039/d0cp02863k
https://doi.org/10.1063/1.5097553
https://doi.org/10.1140/epjd/e2019-90692-0
https://doi.org/10.1103/physreva.98.043403
https://doi.org/10.1063/1.1723844
https://doi.org/10.1209/0295-5075/121/24004
https://doi.org/10.1088/0953-4075/39/15/s12
https://doi.org/10.1088/0953-4075/39/15/s12
https://doi.org/10.1103/physrevb.101.235424
https://doi.org/10.1126/science.1219021
https://doi.org/10.1063/1.5080927
https://doi.org/10.1021/acs.jpclett.9b02652

