
FISH PARASITOLOGY - ORIGINAL PAPER
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to the principal Atlantic salmon host when infested with freshwater
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Abstract
The freshwater pearl mussel (Margaritifera margaritifera) is a highly host-specific parasite, with an obligate parasitic stage on
salmonid fish. Atlantic salmon (Salmo salar) and brown trout (Salmo trutta f. trutta and Salmo trutta f. fario) are the only hosts in
their European distribution. Some M. margaritifera populations exclusively infest either Atlantic salmon or brown trout, while
others infest both hosts with one salmonid species typically being the principal host and the other a less suitable host. Glochidial
abundance, prevalence and growth are often used as parameters to measure host suitability, with the most suitable host species
displaying the highest parameters. However, it is not known if the degree of host specialisation will negatively influence host
fitness (virulence) among different host species. In this study we examined the hypothesis that glochidial infestation would result
in differential virulence in two salmonid host species and that lower virulence would be observed on the most suitable host.
Atlantic salmon and brown trout were infested with glochidia from twoM. margaritifera populations that use Atlantic salmon as
their principal host, and the difference in host mortality among infested and control (sham infested) fish was examined. Higher
mortality was observed in infested brown trout (the less suitable host) groups, compared to the other test groups. Genetic
assignment was used to identify offspring from individual mother mussels. We found that glochidia from individual mothers
can infest both the salmonid hosts; however, some mothers displayed a bias towards either salmon or trout. We believe that the
differences in host-dependent virulence and the host bias displayed by individual mothers were a result of genotype × genotype
interactions between the glochidia and their hosts, indicating that there is an underlying genetic component for this parasite-host
interaction.
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Introduction

Parasites are typically classified as either being host specialists
or host generalists depending on their host range; i.e. the for-
mer attain high fitness on very few host species compared to
the latter, which attain it on many (Veiga et al. 1998; Poulin
2007; Leggett et al. 2013; Lievens et al. 2018). Host

specificity is both a reflection of the individual biological
properties of the parasite and the host, as well as a result of
the specific interaction between the two (Dick and Patterson
2007). Moreover, the degree of host specificity displayed by a
parasite is believed to be a result of the historical associations
between the parasite and its hosts and present ecological
events (Dick and Patterson 2007; Poulin 2007). It is an impor-
tant attribute of a parasite because it has an influence on its
ecology and future evolution; for example, the ability of the
parasite to adapt to new hosts (Poulin and Mouillot 2003;
Salvaudon et al. 2007; Lievens et al. 2018). In order to under-
stand how the degree of host specificity will influence para-
sitic fitness, and their survival in a changing environment, it is
important to measure their fitness across different host species
(Lievens et al. 2018).

Most studies on host-parasite relationships involve short-
lived parasites. Host-parasite interactions involving a long-
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lived parasite, and the effect of these interactions on parasite
fitness, are not well understood. Parasites are usually regarded
as having a greater evolutionary potential and adaptive plas-
ticity, resulting from them having larger population sizes,
higher mutation rates and shorter generation times compared
to their hosts (Ebert 1994; Kaltz and Shykoff 1998; Gandon
and Michalakis 2002; Dybdahl and Storfer 2003). The fresh-
water pearl mussel (FPM), Margaritifera margaritifera, is an
example of a long-lived specialist parasite with a reproductive
lifespan that is 30 times longer than its host (Geist and Kuehn
2008), and it is a good model to examine the influence of high
host specificity on parasite fitness, in particular virulence and
infectivity (host bias).

M. margaritifera is a freshwater bivalve which belongs to
the order Unionida, and like all unionid mussel species, it has
a complex life cycle. The FPM life cycle includes an obligate
parasitic stage on a suitable salmonid host (Smith 1976;
Meyers and Milleman 1977; Young and Williams 1984a).
Parasitic glochidia (60–80 μm) released by gravid mothers
reach a fish host passively by drifting with the water current
and are encysted by gill epithelial cells of a suitable host
(Young andWilliams 1984a; Bauer 1987). Infective glochidia
are not selective during attachment and are able to attach to all
objects (e.g. wood, plastic or paper) (Kat 1984; Dodd et al.
2005), but in order to be encysted by gill epithelial cells of the
host, they must induce an immune response (Nezlin et al.
1994; Jansen et al. 2001). Glochidia that are unable to induce
an immune response are shed off (Nezlin et al. 1994). Host-
parasite compatibility is believed to be an underlying factor
that influences successful glochidial encystment on suitable
hosts, duration of the parasitic phase and post-parasitic perfor-
mance of juvenile mussels (Haag 2012; Marwaha et al. 2017;
Taeubert and Geist 2017). After a parasitic period lasting be-
tween 9 and 11 months, free-living juvenile mussels excyst
and spend the next 5 years buried in the river substratum
(Smith 1976; Bauer 1987).

Unionid mussel species display varying degrees of host
specificity. This can range from host generalists, such as
Anodonta species that metamorphose on several host species,
to highly host-specific ones, such as those of the family
Margaritiferidae that can develop only on a few closely related
host species (Bauer 2001; St rayer e t a l . 2004) .
M. margaritifera displays a high degree of specialisation,
and Atlantic salmon (Salmo salar) and brown trout (Salmo
trutta f. fario and Salmo trutta f. trutta) are their only hosts
in their European distribution (Young and Williams 1984b).
Some FPM populations can exclusively infest either Atlantic
salmon (‘salmon-mussels’) or brown trout (‘trout-mussels’)
even when both host species are present (Larsen et al. 2000;
Hastie and Young 2001; Karlsson et al. 2014; Österling and
Wengström 2015; Salonen et al. 2017; Wacker et al. 2019);
whereas others infest both salmonid host species but with
varying degrees of suitability (Taeubert et al. 2010; Salonen

et al. 2017; Taeubert and Geist 2017; Clements et al. 2018).
Highly host-specific FPM populations have been observed in
rivers in Ireland (Geist et al. 2018), Scotland (Hastie and
Young 2001), Sweden (Österling and Wengström 2015) and
Norway (Larsen et al. 2012; Karlsson et al. 2014; Wacker
et al. 2019). High host specificity has also been observed in
artificial infestation experiments, in which salmon- or trout-
mussels, exposed to both salmonid host species in the same
infestation tank, only infested the principal salmonid host
(Larsen et al. 2012; Österling and Wengström 2015; Wacker
et al. 2019). In FPM populations that infest both salmonid
hosts (i.e. a principal and a less suitable host), it is not clear
if glochidia from specific families exclusively infest either
brown trout or Atlantic salmon or if offspring from the same
family can infest both the salmonid hosts. Host suitability
studies, which determine the salmonid species requirements
of a particular FPM population, provide the essential informa-
tion required for conservation efforts such as artificial breed-
ing programmes and re-stocking of suitable hosts in FPM
rivers (Salonen et al. 2017; Taeubert and Geist 2017;
Clements et al. 2018).

Glochidia take 9–11 months to metamorphose, and
glochidial survival depends on host survival for this entire
duration. In the FPM host-parasite relationship, the parasite
is expected to experience a stronger selection pressure on
compatible host genotypes because its survival depends on
host compatibility (Douda et al. 2017). In comparison, the
hosts are expected to experience a weaker selection for resis-
tance to glochidia (Douda et al. 2017). This is because the
parasite is distributed across a smaller area of the host’s total
distribution range, and it infests only the freshwater (young)
stage of the host (Douda et al. 2017). However, glochidial
infestation has a negative effect on the host and causes an
increase in blood haematocrit values, spleen enlargement, re-
spiratory stress and impaired swimming (Taeubert and Geist
2013; Horký et al. 2014; Thomas et al. 2014; Douda et al.
2017; Filipsson et al. 2017; Marwaha et al. 2019). Typically,
low to moderate glochidial infestation has no significant det-
rimental effect on hosts, while high glochidial loads can lead
to host mortality (Treasurer et al. 2006; Taeubert and Geist
2013). However, previous studies have shown that glochidial
densities which were within the recommended range on a host
fish (5–100 per gram fish) (Taeubert and Geist 2013) resulted
in respiratory stress (Thomas et al. 2014; Marwaha et al.
2019). Thus, the resulting cost of infestation to the host sug-
gests that pearl mussel glochidia are indeed a selective force,
and this can result in potential mussel-salmonid host coevolu-
tion (Douda et al., 2017; Chowdhury et al. 2019).

Virulence is defined as the reduction in host fitness
(mortality) as a result of parasitic infestation (Bull 1994;
Read 1994; Dybdahl and Storfer 2003; Lambrechts et al.
2006; Bieger and Ebert 2009). Parasitic virulence is not a trait
of the parasite alone but is believed to be a result of either a
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parasite’s adaptive strategy, host response to parasite infesta-
tion, or a complex interaction between these two (Ewald 1983;
Mackinnon et al. 2002, Day and Burns 2003; Perlman and
Jaenike 2003). Some studies have shown that a parasite can
cause differential virulence or mortality among closely related
host species (Thomas et al. 1995; Hurst and Bartholomew
2012; Lievens et al. 2018). Lievens et al. (2018) observed
differential virulence of a microsporidian parasite
(Anostracospora rigaudi) among two species of brine shrimp
(Artemia parthenogenetica and Artemia franciscana). This
was dependent on the degree of compatibility between the
parasite and the host. Differences in host species (and strain)
susceptibility to different FPM populations are well docu-
mented. To the best of our knowledge, host species–
dependent differences in glochidial virulence (mortality) in
FPM have not been examined.

The purpose of this study was to investigate if there was a
difference in mortality between brown trout and Atlantic
salmon that have been infested with salmon-mussel glochidia.
We hypothesised that glochidial virulence, measured as host
mortality, would be higher on the less suitable brown trout
host. We also examined variation in the infestation success
of offspring from individual mother mussels on the two sal-
monid hosts. We hypothesised that individual FPM mothers
can infest both host species, but with varying degrees of suc-
cess. In order to test our hypotheses, we used glochidia from
two FPM populations that have been observed to use Atlantic
salmon as the principal host, to infest both Atlantic salmon
and brown trout (Johnsen et al. 2008; Eilertsen et al. 2018).
We used hatchery-reared (naïve) fish of the same age in our
experiment. This might be expected to limit the possible ef-
fects from local genetic adaptation in the host. However, we
cannot completely discount the possibility that the fish used
were more adapted to either salmon- or trout-mussels. We
recorded host species–dependent mortality during the parasit-
ic phase of the glochidia.We also recorded the total number of
juveniles that excysted from Atlantic salmon and brown trout.
Using parentage analysis, we examined whether individual
mothers infested both hosts and whether infestation was bi-
ased towards one or the other host species.

Materials and methods

Host infestation experiments were performed at the FPM rear-
ing station at Austevoll, Norway. Lake Kvernavatnet provides
the water supply for the rearing station, and the water
has a pH of 6.6 and alkalinity of 0.108 mmol/l, and the
concentrations of aluminium, iron, calcium, magnesium
and nitrate were as follows: Al 180 μg/l, Fe 200 μg/l,
Ca 4.2 mg/l, Mg 1.8 mg/l, Na 12 mg/l and Nitrate-N
0.15 mg/l. All incoming water was UV-treated and fil-
tered through a 30-μm mesh before use.

Glochidial collection

Adult mussels were collected from the rivers Slørdalselva (n =
52; Orkland municipality, Trøndelag county) and Loneelva (n
= 40, Osterøy municipality, Vestland county) in August 2015
and April 2014, respectively. Fertilisation of Slørdalselva
FPM took place in the wild, whereas those from Loneelva
were fertilised at the FPM rearing station. Both these FPM
populations use Atlantic salmon as the principal host
(Johnsen et al. 2008). The mussels were transferred to the
FPM rearing station and placed in artificial rivers with flowing
water. They were fed regularly with a diet containing
Shellfish® 1800 (Reed Mariculture Inc., Campbell, CA,
USA) and Nanno 3600 (Reed Mariculture Inc.). Gravid mus-
sels started spatting in September 2015 at a mean water tem-
perature of 15.7 °C. Glochidial strings were collected from
spatting individuals and checked for maturation and viability
(≥90%), using methods described by Watters and O’Dee
(1999), before we used them to infest the host fish.

Fish infestation

Naïve hatchery-reared 0+ Atlantic salmon (Bjoreio, Vestland
county, standard length 10.3 ± 7.1 cm) and brown trout
(Botsvann, Agder county, standard length 11.3 ± 4.8 cm) from
the Statkraft facility in Eidfjord municipality were transferred
to the FPM rearing station in July 2015. The fish were kept in
aerated tanks and fed until satiated. Before infesting the hosts
with glochidia, 200 Atlantic salmon and 200 brown trout each,
were transferred into three 4000 l (height, length, width = 1m
× 2m × 2m) tanks: one as a control group and the other two as
the infestation groups for the two FPM populations (Fig. 1).
Infestation of the fish took place in September 2015. In order
to infest the fish, we lowered the water levels in the tank and
exposed the fish to glochidia (500 glochidia/l) for a period of
40 min with aeration (Taeubert et al. 2010). For the control
groups, sham infestations were performed by exposing them
to the same infestation conditions as the test groups, but with-
out the presence of glochidia. All the groups (tests and con-
trol) were maintained under equal temperature and food con-
ditions for the duration of the encystment period.

Post infestation, the fish were monitored daily, for number
of mortalities, until the 18th of May 2016. Infestation status
(presence/absence of glochidia) was recorded for a subsample
of the fish that died (35–48% per host species and FPM pop-
ulation). The infestation status of the dead fish was examined
by opening the gill flap and looking for the presence/absence
of glochidia on all four gill arches. In addition, the gills were
also examined under a dissecting microscope to confirm the
infestation status. On the 18th of May 2016, the infestation
status of all surviving fish exposed to Loneelva glochidia and
of a random subsample of the fish exposed to Slørdalselva
glochidia (44% of surviving trout and 87% of surviving
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salmon) was examined. Infestation status of the live fish, i.e.
the presence/absence of glochidia, was checked only on the
first two gill arches. Fish were first sedated with AQUI-S
(2.5mg/l for 15 min), and then the gill flap was gently lifted
to check for the presence/absence of glochidia. This was done
visually, because it is easy to see encysted glochidia 9 months
post infestation.

Since the live fish were checked very briefly for the pres-
ence of glochidia, it is likely that low levels of glochidial
infestations were recorded as no infestation observed.
Therefore, all fish exposed to glochidia were used to collect
juvenile mussels. On 25 May 2016, fish exposed to glochidia
were sorted and then transferred to separate juvenile mussel
collecting chambers (90 l), i.e. one for trout and one for salm-
on. Fish were maintained in these tanks until the end of the
excystment period, following the methodology originally de-
scribed by Hruska (1999). Of the surviving fish, 76 out of 153
Atlantic salmon, and all the surviving (n = 100) brown trout
exposed to glochidia from Slørdalselva were transferred into
the mussel collecting chambers. The 200-μm collection
sieves, under the collecting chambers, were inspected daily
for the presence of excysted juvenile mussels, and mussels
that excysted were collected and counted in order to get the
total number of juvenile mussels that excysted from the salm-
on and trout harvesting chambers.

In order to calculate the infestation success of individual
mothers on the two salmonid host species, we used fish
infested with mussels from Slørdalselva. Juvenile mussels that
excysted from Atlantic salmon and brown trout (n = 100 per
host species) were collected in June and September 2016 for
genetic analysis. Individual mussels were put into an

Eppendorf tube containing 95% ethanol. Visceral swabs were
taken for DNA collection from adult brood-mussels (parents)
and stored in lysis buffer for later genetic analyses as ex-
plained by Karlsson et al. (2013).

Genetic analysis

Genetic analysis was done at the Norwegian Institute for
Nature Research (NINA). DNA was extracted from the whole
animal for juveniles and from cotton swabs for adults using
DNeasy tissue kits (Qiagen). Mussels were genotyped at 15
microsatellite loci: MarMa3050, MarMa3621, MarMa4277,
MarMa4322, MarMa2671, MarMa4143 and MarMa5280
(Geist et al. 2003) and Mm2201, Mm2230, Mm2235,
Mm2240, Mm2207, Mm2210 and Mm2233, Mm2236
(Garlie 2010). PCR was carried out in two multiplexes
(Karlsson et al. 2016). The following PCR protocol was used:
2-μl DNA, 4-μl Qiagen Multiplex Mastermix, 0.8-μl
Primermix and 1.6-μl RNase-free water (Karlsson et al.
2016). The PCR was run on a Quattro Cycler (VWR) in the
following conditions: denaturation for 15 min at 95 °C,
followed by 30 cycles of 57 °C for 90 s and 72 °C for 60 s,
and a final step of 60 °C for 30 min (Karlsson et al. 2016). For
each multiplex, PCR products were visualised separately on
anABI 3130xl DNA analyser (Applied Biosystems) and sized
using GENEMAPPER ver. 3.7 (Applied Biosystems).

Assignment of offspring to mothers

Offspring were assigned to mothers using the likelihood-
based approach in CERVUS 3.0 (Kalinowski et al. 2007).

Fig. 1 Schematic overview of the
methods used in this experiment
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Adults were collected from the river after fertilisation had
taken place. The collected adults were therefore known to
include all mothers, while only an unknown fraction of fathers
was collected. We first assigned parentage for offspring for
which both the mother and the father had been sampled, using
a parent pair analysis with unknown sex.We then performed a
maternity analysis with complete sampling of maternal geno-
types to assign the remaining offspring to mothers. All parent-
age analysis in CERVUSwas performed with a mistyping rate
of 0.01 and a critical Delta value for parentage assignment set
for a confidence level of 95%. The sex of adults was inferred
from assigned parentage. Adults that were assigned parentage
in maternity analysis only, or in both maternity and parental
pair analyses, were classified as females. Adults that were
assigned parentage in parental pair analysis only were classi-
fied as males. Details of parentage analysis are presented in
Wacker et al. (2018).

Statistical analysis

We used the statistical package R, version 3.4.3 (R Core
Team, 2017), for all statistical analysis. We used Fisher’s ex-
act test to examine the probability of observing higher mortal-
ity in the exposed salmon and trout groups, when compared
with control salmon and trout groups, respectively. This was
performed separately for both Slørdalselva and Loneelva. We
used a chi-square test to examine the null hypothesis that
individual mothers infest both the host species with equal
probability.

Results

Host mortality

Brown trout exposed to glochidia, from both the FPM popu-
lations, displayed a higher mortality compared to Atlantic
salmon as well as control fish (Table 1). In Slørdalselva, the
odds of an Atlantic salmon exposed to glochidia dying was
2.61 times that of a salmon in the control group (Fisher’s test:
p-value = < 0.001, odds ratio = 2.61; Fig. 2). However, the
odds of a brown trout exposed to glochidia dying was 10.69
times that of a trout dying in the control group (Fisher’s test: p-

value < 0.001, odds ratio = 10.69; Fig. 2). In addition, the odds
of a trout dying as a result of exposure to glochidia was 3.25
times that of a salmon dying when exposed to them (Fisher’s
test: p-value < 0.001, odds ratio = 3.25). For Loneelva, we did
not find any difference in the mortality of salmon exposed to
glochidia and the control group (Fisher’s test: p-value =
0.6095, odds ratio = 0.7922, Fig. 2). However, the odds of a
trout exposed to glochidia dying was 8.41 times that of a trout
dying in the control group (Fisher’s test: p-value < 0.001, odds
ratio = 8.41, Fig. 2). Similar to the previous result, the odds of
a trout dying when exposed to glochidia was 8.41 times that of
a salmon dying when exposed to them (Fisher’s test: p-value =
< 0.001, odds ratio = 8.41).

In our subsamples, a higher percentage of salmon were
infested with glochidia compared to trout. In Slørdalselva,
73% of the salmon and 54% of the brown trout were infested,
and in Loneelva 51% of the salmon and 32% of the trout were
infested (Fig. 3). In Slørdalselva, the odds of a salmon becom-
ing infested with glochidia, when exposed to them, was 2.23
times higher than a trout becoming infested (Fisher’s test: p-
value = 0.005, odds ratio = 2.23). In Loneelva, the odds of a
salmon becoming infested was 2.82 times that of a trout be-
coming infested (Fisher’s test: p-value = 0.0002, odds ratio =
2.82). In addition, when we examined only the infested fish in
all the groups, we observed that a higher percentage of
infested trout died compared to infested salmon. In
Slørdalselva, 12% of the infested salmon versus 82% of the
infested trout died. In Loneelva, 2% of the infested salmon
versus 65% of the infested trout died (Fig. 4). In Slørdalselva,
the odds of a trout dying as a result of glochidial infestation
was 32.41 times that of a salmon dying due to it (Fisher’s test:
p-value < 0.001, odds ratio = 32.41). In Loneelva, the odds of
a brown trout dying as a result of infestation was 83.54 times
that of a salmon dying as a result of it (Fisher’s test: p-value <
0.001, odds ratio = 83.54).

Host bias

The total number of juvenile Slørdalselva mussels collected
from the harvesting chamber after the experiment was 23,780
for mussels that had developed on 76 Atlantic salmon and
14,909 for mussels that had developed on 100 brown trout.
Consequently, the average number of juvenile mussels

Table 1 The total number of fish
exposed to glochidia, total dead
and total alive for the rivers
Slørdalselva and Loneelva

Number of fish Atlantic salmon Brown trout

Control Slørdalselva Loneelva Control Slørdalselva Loneelva

Total exposed 200 200 200 200 200 200

Total dead 21 47 17 17 100 88

Total alive 179 153 183 183 100 112
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harvested per surviving fish was about two times higher for
Atlantic salmon (313 juveniles/fish) compared to that of
brown trout (149 juveniles/fish). Our results showed that in-
dividual mussel mothers from Slørdalselva infested both
Atlantic salmon and brown trout. When 100 juvenile mussels
collected from Atlantic salmon and 100 juvenile mussels col-
lected from brown trout were assigned to individual mothers,
mothers differed in the proportion of glochidia that infested
Atlantic salmon and brown trout, respectively (χ2 = 40.141;
df = 14, p-value = 0.0002, Fig. 3). For the majority of indi-
vidual mothers, similar numbers of assigned offspring were
collected from Atlantic salmon and from brown trout, but for
some individuals, there was a strong bias (mothers A, M, N
and O in Fig. 5).

Discussion

The results of this study show that glochidial infestation re-
sulted in host species–dependent mortality, in agreement with
the hypothesis that virulence would be lower on the most
suitable host. Brown trout exposed to and infested with
glochidia displayed a significantly higher mortality
compared to Atlantic salmon exposed to glochidia and the
control groups. This was observed in both the FPM
populations. In line with observations by Johnsen et al.
(2008) and Eilertsen et al. (2018), Atlantic salmon was the
most suitable host for Slørdalselva and Loneelva, and we ob-
served that a higher proportion of salmon were infested com-
pared to that of trout in both these rivers. In addition,

Slørdalselva salmon also had the highest average number of
excysted juvenile mussels per surviving host fish. Mussels
primarily infested Atlantic salmon, but this bias varied

Fig. 2 Bar plot showing the difference in host mortality (% dead)
between the control Atlantic salmon and brown trout and those exposed
to glochidia from the rivers Slørdalselva and Loneelva

Fig. 3 Bar plot showing the percentage of infested fish in the subsamples
from Slørdalselva and Loneelva. In Slørdalselva, 73% of the salmon (109
out of 150 checked) and 54% of the brown trout (50 out of 92 checked)
were infested. In Loneelva, 51% of the salmon (98 out of 189 checked)
and 32% of the brown trout (48 out of 150 checked) were infested

Fig. 4 Bar plot of infested fish that died, shown as a percentage of the
total number of infested fish. In Slørdalselva, 12% of the infested salmon
(13 dead infested; 96 alive infested) and 82% of the infested trout (41
dead infested; 8 alive infested) died. In Loneelva, 2% of the infested
salmon (2 dead infested; 98 alive infested) and 65% of the infested
trout (31 dead infested; 48 alive infested) died
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between mothers, and some individual mothers infested
brown trout to a higher degree compared to Atlantic salmon.
Individual mussels may therefore produce offspring that can
utilise both brown trout and Atlantic salmon, and not exclu-
sively infest one or the other. This observation indicates that
there is a large evolutionary potential for a shift in principal
host where both hosts are being utilised to some extent.

The fitness of specialist parasites will often vary among
different hosts depending on their suitability, and this can
range from high fitness to zero fitness (Poulin 2007; Lefèvre
et al. 2008; Schmid-Hempel 2011; Lievens et al. 2018). This
has also been observed in several FPM studies, where
glochidial fitness (quantitatively measured as abundance,
prevalence and growth) was highest on the most suitable sal-
monid host species (Taeubert et al. 2010; Salonen et al. 2017;

Taeubert and Geist 2017; Clements et al. 2018).Moreover, the
results of this study have shown that glochidial virulence (host
mortality) also varied among the two salmonid host species
and was dependent on host suitability. However, the quanti-
tative and qualitative (juvenile growth, lipid reserves) traits for
measuring host suitability are not always correlated and can
v a r y s i g n i f i c a n t l y b e twe en ho s t s p e c i e s a nd
between individuals of a suitable species (Taeubert et al.
2010; Douda 2015). For example, Douda (2015) observed
that juveniles of Unio crassus and Anodonta anatina that de-
veloped on different host species, as well as individuals of a
host species, varied in their lipid reserves as well as their early
post-larval growth. In addition, they also observed that juve-
niles of A. anatina had the highest lipid levels on hosts with
the lowest transformation success. Host species and individual

Fig. 5 Bar plot showing distribution of number of offspring from individual mothers of FPM from the river Slørdalselva among 100 offspring that
developed on Atlantic salmon (black bars) and 100 offspring developed on brown trout (grey bars)
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hosts of a suitable species vary in terms of the conditions they
provide for the developing glochidia. The variation in
glochidial fitness is believed to be a result of host-parasite
compatibility (Haag 2012), which in turn can depend on fac-
tors such as the genetic composition of the host and parasite,
host factors (such as species, age, size, condition, infestation
history, immune response, presence of other parasites), para-
site factors (number of glochidia, virulence), environmental
conditions (such as temperature) or a combination of these
(Bauer and Vogel 1987; Combes 2000; Taeubert et al. 2010;
Taeubert 2014; Marwaha et al. 2019). Nevertheless, our re-
sults show that the significantly higher mortalities, observed in
the less suitable brown trout host compared to the principal
Atlantic salmon host, were clearly a result of higher glochidial
virulence on the less suitable host. These results are in line
with Lievens et al. (2018), who observed that the
microsporidian parasite A. rigaudi displayed higher virulence
on the less suitable host A. franciscana, whereas on the suit-
able host (A. parthenogenetica) the parasitic virulence was
moderate. They proposed that virulence could be related to
the parasite’s degree of specialisation.

Virulence is not an exclusive trait of the parasite, but it is
dependent on the parasite’s ability to inflict damage to the
host, as well as the host’s ability to defend itself against the
parasite (Schmid-Hempel 2011; Råberg and Stjernman 2012).
Parasitic virulence not only has a negative influence on host
fitness, but it can also result in low fitness of the parasite
(Rutrecht and Brown 2009; Lievens et al. 2018). In this study,
we saw that a higher glochidial virulence in the brown trout
hosts not only led to higher mortality of infested fish but also
resulted in glochidial mortality. Parasitic virulence can also be
a contributing factor that influences host species composition
in ecosystems, because differential virulence on hosts can re-
sult in parasite-mediated competition (Price et al. 1988; Schall
1992; Thomas et al. 1995; Lefèvre et al. 2008). The host
species whose fitness is most affected by parasitic virulence
is at a selective disadvantage compared to the less affected one
(Price et al. 1988; Schall 1992; Thomas et al. 1995; Lefèvre
et al. 2008). For example, Schall (1992) examined how the
presence of the malaria parasite (Plasmodium azurophilum)
affected the distribution of two highly competitive species of
Anolis lizard species (Anolis wattsi and Anolis gingivinus). He
observed that in the presence of P. azurophilum (which most
commonly infects A. gingivinus), A. wattsiwas present, and in
the absence of the parasite, only A. gingivinus was present.
This showed how parasite-mediated competition between spe-
cies influenced their distribution. The results of this study
suggest that salmon could possibly have a selective competi-
tive advantage over trout in areas with dense salmon-mussels,
due to the lower virulence and thus higher survival of salmon.

Generally in any host-parasite interaction, parasite traits
(infectivity and virulence) and host traits (susceptibility and
resistance) are governed by the interactions between the host

and parasite genotypes and the interaction between their ge-
notypes and the environment (Ewald 1983; Mackinnon et al.
2002; Day and Burns 2003; Perlman and Jaenike 2003;
Lambrechts et al. 2006; Salvaudon et al. 2007). When there
are no environmental influences, genotype × genotype inter-
actions between the host and the parasite influence the pheno-
type of the host-parasite interaction, and this can vary across
different host-parasite combinations; i.e. some parasitic geno-
types will result in higher virulence on some hosts, and some
host genotypes will be more susceptible to some parasitic
infections (Engel and Wächtler 1989; Peever et al. 2000;
Carius et al. 2001; Lambrechts et al. 2005; Salvaudon et al.
2005; Ebert 2008; Schmid-Hempel 2009; Taeubert et al.
2010; Schmid-Hempel 2011; Barribeau et al. 2014). Several
authors have observed that unionid mussel species differ in
their ability to infest different species/strains/populations of
their fish hosts, and this was dependent on the interaction
between a specific mussel population and the host fish spe-
cies/strain/population (Engel and Wächtler 1989; Eckert
2003; Rogers et al. 2001; Taeubert et al. 2010; Douda et al.
2014, 2017; Schneider et al. 2017). For example, Engel and
Wächtler (1989) examined the interaction between glochidia
of different subspecies/strains of Unio crassus and their host
fish Leuciscus leuciscus L. They observed that only the
glochidia of Unio crassus crassus forma maximus were able
to successfully metamorphose on this host, compared to
U. crassus crassuswhich did not develop. Similar results have
also been seen in other studies using M. margaritifera and
Salmo trutta L. strains (Taeubert et al. 2010); Unio crassus
and their hosts Phoxinus phoxinus, Cottus gobio (Schneider
et al. 2017) and Squalius cephalus (Douda et al. 2014);
Sinanodonta woodiana and hosts Rhodeus ocellatus (Douda
et al. 2017), Epioblasma florentina walkeri and Etheostoma
flabellare (Rogers et al. 2001); and Cyprogenia aberti and
hosts Percina phoxocephala, Percina caprodes and
Etheostoma radiosum (Eckert 2003). Some further examples
from other host-parasite interactions, also showing differences
in host and parasite traits, are Daphnia magna clones and
Pasteuria ramosa (Carius et al. 2001; Decaestecker et al.
2003; Little et al. 2006; Ebert 2008), Biomphalaria glabrata
and Schistosoma mansoni (Webster and Woolhouse 1998),
Bombus terrestris and Crithidia bombi (Imhoof and Schmid-
Hempel 1998), and Atlantic salmon with Caligus elongatus
(MacKinnon et al. 1995), Aeromonas salmonicida, Vibrio
salmonicida and Renibacterium salmoninarum (Fevolden
et al. 1993). The difference in glochidial virulence observed
in our study suggests a presence of host-parasite genotype ×
genotype interactions, and we believe that the aforementioned
studies support our proposal that host-parasite genotype–
specific interactions are an important underlying reason that
determines the degree of glochidial virulence on the different
salmonid hosts.
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Hosts are often infested with multiple parasitic genotypes
of the same species, and the interaction between coinfecting
parasitic genotypes also influences the degree of virulence
(Taylor et al. 2005; Lagrue et al. 2011; Bose and Schulte
2014; Råberg 2014). This is because a host is a limited re-
source, and the presence of two or more parasitic genotypes
could lead to competition for resources (Taylor et al. 2005;
Lagrue et al. 2011; Råberg 2014; Klemme and Karvonen,
2019). A higher virulence as a result of coinfecting parasitic
genotypes have been observed in several studies (Ebert and
Mangin 1997; Davies et al. 2002; Klemme and Karvonen,
2019. Thus, the interaction between the coinfecting parasitic
genotypes will govern the degree of the infectivity or viru-
lence and will vary for different genotype × genotype combi-
nations (Taylor et al. 2005; Lagrue et al. 2011; Bose and
Schulte, 2014; Råberg, 2014; Klemme and Karvonen 2019).
In our experiment, glochidia came from several mothers,
which in turn were fertilised by several fathers (Wacker
et al. 2018). It is therefore highly likely that both the
salmonid host species were infested with glochidia with
different genotypes, and this was an added factor to the
host-parasite interaction outcome. We believe that host-
parasite genotype–specific interactions are an important
underlying mechanism that determines the degree of
FPM glochidial virulence on the two different salmonid
hosts and partly explain host specificity.

Host immune strategy, such as resistance or tolerance to
parasitic infection, is another important factor that can influ-
ence the degree of parasitic virulence (Lambrechts et al. 2006;
Schmid-Hempel 2011; Hall and Ebert 2012). In host-parasite
studies, resistance is described as the ability to prevent or
reduce a given parasite, and tolerance is the ability to limit
the damage caused by a given parasite (Råberg et al. 2009;
Best et al. 2014; Jackson et al. 2014; Råberg 2014; Klemme
and Karvonen 2016; Kutzer and Armitage 2016; Adelman
and Hawley 2017). Several studies have shown that host im-
mune response to infection by the same parasite differs among
different host species (Fustish and Millemann 1978; Ellis and
Stapleton 1988; Thomas et al. 1995; Buchmann and Uldal
1997; Bailey et al. 2019). These differences have been ob-
served among various salmonid species with bacterial dis-
eases (Ellis and Stapleton 1988; Bailey et al. 2019; Saleh
et al. 2019) as well as with parasites (Johnson and Albright,
1992; Buchmann and Uldal 1997; Fast et al. 2006) including
M. margaritifera (Fustish and Millemann 1978). Fustish and
Millemann (1978) examined the immune response in Chinook
salmon and coho salmon to glochidial infestation. They ob-
served that the more resistant host (coho salmon) displayed
severe hyperplasia and sloughed off glochidia within 4.5 days.
In comparison, the more susceptible host (Chinook salmon)
only displayed slight gill hyperplasia. Severe gill hyperplasia
results in a decrease in respiratory gill surface area, leading to
impaired gas exchange for which salmonid host fish have no

adaptation (Taeubert and Geist 2013; Strzyzewska et al.
2016). Furthermore, the results from a previous experiment
(Marwaha et al. 2019) showed us that 0+ brown trout were
resistant to glochidial infestation, and the ‘resistant’ immune
response led to a lower Fulton’s condition factor. When a
resistant host mounts a strong immune response, this can re-
sult in the host’s own tissue being damaged or lower general
host fitness. Moreover, resistant hosts may pay an energetic
cost for being resistant. The higher virulence (mortality) we
observed on brown trout could be a result of the host being
resistant to glochidial infestation, as opposed to a higher de-
gree of tolerance observed in Atlantic salmonwhich displayed
a lower mortality. Typically high glochidial densities are as-
sociated with host mortalities (Treasurer et al. 2006; Taeubert
and Geist 2013). However, we did not record this data in our
experiment and are therefore unable to comment on the
glochidial density–related mortalities of host fish.

Host suitability studies have shown that FPM populations
display significant differences in host preference (Salonen et al.
2017; Taeubert and Geist 2017; Clements et al. 2018).
However, it has not been clear if glochidia from an individual
mother are able to successfully infest the different salmonid
host species. The results of this study clearly show that mixed
infestation on a population level is not explained by some
mothers solely infesting trout and others solely infesting salm-
on. In fact, individual mothers from an FPM population with
Atlantic salmon as the principal host were able to infest both the
salmonid host species, but not with an equal number of larvae.
In this study, we have only examined the effect of different
mothers and not that of different fathers. Therefore, our data
cannot exclude the possibility that offspring from individual
fathers or parent pairs may have only infested either trout or
salmon. FPMs are sperm casters, and female mussels obtain
sperm via their inhalant siphon. A single mother can be
fertilised by multiple males in a single breeding event (Young
and Williams 1984b; Wacker et al. 2018), and the mothers in
our study were also fertilised by several different males
(Wacker et al. 2018) which might explain the observed varia-
tion in host specificity among offspring from the same mother.

In accordance with the Red Queen hypothesis (Koskella
and Lively 2006; Rabajante et al. 2016; Anzia and
Rabajente 2018), the tested salmon-mussel populations were
best adapted to the most common host species in their habitat.
Salmon- and trout-mussel populations not only display ex-
treme host specificity and differences in genetic diversity but
also differ in their timing of glochidial release and growth
rates (Larsen 2002; Karlsson et al. 2014). It has been proposed
that salmon- and trout-mussel populations have evolved en-
tirely separately after the ice age, in concert with the respective
colonisation history of their preferred host (Machordom et al.
2003). An alternative view is that salmon- and trout-mussels
have a common colonisation history, with the observed dif-
ferentiation a result of local adaptation (Wacker et al. 2019).
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The results of this study show a clear difference in
host-dependent glochidial virulence, with higher virulence
in the less suitable host. We believe that this is the first
study to report species-dependent host mortality as a re-
sult of glochidial infestation. We propose that this was a
result of the interactions between host-parasite genotypes
and the host immune response. Our results indicate that
glochidial infestation could possibly result in parasite-
mediated competition, because salmon would clearly have
a fitness advantage (higher survival) over trout in areas of
dense salmon-mussel populations. This study further
showed that individual mothers infested both salmonid
host species. Further studies to examine if offspring from
individual fathers or parent pairs only infest either trout or
salmon would improve our understanding of host-parasite
compatibility. The FPM and their salmonid hosts provide
a good model to study co-evolutionary interactions in a
long-lived specialist parasite, which has a generation time
that is almost 30 years longer than its host (Geist and
Kuehn 2008). The results of this study highlight the im-
portance of choosing the most suitable host when devel-
oping strategies for conserving endangered FPM popula-
tions and their host fish in the wild, as well as in captive
breeding programmes. A further study that examines the
differences in glochidial genotypes that infest salmon and
trout, and their relation to virulence, would improve our
understanding of genotype × genotype interactions and
their influence on glochidial infectivity, virulence and
host fitness.
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