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A MIXED APPROACH TO THE POISSON PROBLEM
WITH LINE SOURCES\ast 

INGEBORG G. GJERDE\dagger , KUNDAN KUMAR\dagger , AND JAN M. NORDBOTTEN\dagger 

Abstract. In this work we consider the dual-mixed variational formulation of the Poisson
equation with a line source. The analysis and approximation of this problem is nonstandard, as the
line source causes the solutions to be singular. We start by showing that this problem admits a
solution in appropriately weighted Sobolev spaces. Next, we show that given some assumptions on
the problem parameters, the solution admits a splitting into higher- and lower-regularity terms. The
lower-regularity terms are here explicitly known and capture the solution singularities. The higher-
regularity terms, meanwhile, are defined as the solution of an associated mixed Poisson equation.
With the solution splitting in hand, we then define a singularity removal--based mixed finite element
method in which only the higher-regularity terms are approximated numerically. This method yields
a significant improvement in the convergence rate when compared to approximating the full solution.
In particular, we show that the singularity removal--based method yields optimal convergence rates
for lowest-order Raviart--Thomas and discontinuous Lagrange elements.
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1. Introduction. Let \Omega \subset \BbbR 3 be a bounded 3D domain with smooth boundary
\partial \Omega . Let \Lambda be a differentiable manifold with topological dimension 1. We denote the
reference domain of \Lambda as S = (0, L) \subset \BbbR 1. Furthermore, we denote the mapping \Xi :
S \rightarrow \Omega as \bfitlambda . Thus, \Lambda can be represented by the parametrization \bfitlambda = [\xi (s), \tau (s), \zeta (s)]
so that \Lambda = \{ \bfitlambda (s) : 0 < s < L\} \subset \Omega . For simplicity, we assume \| \bfitlambda \prime (s)\| = 1 so that
the arc-length and coordinate s coincide. We consider in this work the mixed Poisson
problem with a line source on \Lambda : Find u and q solving

q+ \kappa \nabla u = 0 in \Omega ,(1.1a)

\nabla \cdot q = f \delta \Lambda in \Omega ,(1.1b)

u = u0 on \partial \Omega ,(1.1c)

where f \in C2(\=\Omega ) denotes the line source intensity, \kappa \in L\infty (\Omega ) a symmetric matrix
with uniformly bounded eigenvalues, u0 \in C2(\=\Omega ) the boundary data, and \delta \Lambda a Dirac
line source concentrated on \Lambda . We note that by the superposition principle, (1.1a)--
(1.1c) could be extended so that \Lambda could be a collection of 1D curves \Lambda i; this would
allow for, e.g., branching geometries.

Let further \Omega R denote a tubular neighborhood around \Lambda with a given radius R,

\Omega R = \{ x \in \Omega : r(x) < R\} ,(1.2)

Here, r = dist(x,\Lambda ) denotes the distance from a point x \in \Omega to the closest point on
\Lambda , as illustrated in Figure 1.1. We assume \Lambda is such that for R small enough, each
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Fig. 1.1. A 3D domain \Omega \subset \BbbR 3 with an embedded line \Lambda , with r(x) = dist(x,\Lambda ) denoting the
distance of a point in \Omega to the line.

x \in \Omega R has a unique closest point in \Lambda . The line source \delta \Lambda is then taken as the limit
of a sequence of nascent Dirac functions of unit measure per arc length,

\delta \Lambda = lim
\epsilon \rightarrow 0

\delta \epsilon \Lambda , \delta \epsilon \Lambda (x) =

\Biggl\{ 
1

\pi \epsilon 2 for x \in \Omega \epsilon ,

0 otherwise,
(1.3)

where the limit is in the sense of distributions.
Models of the type (1.1a)--(1.1c) arise in a variety of applications. In geophysics,

line sources have been used to model 1D steel components in concrete structures [38]
and the interference of metallic pipelines and bore casings in electromagnetic modeling
of reservoirs [48]. In the context of geothermal energy, line sources have been used
to model the heat exchange between a well and the surrounding soil [3]. In reservoir
engineering, coupled 1D-3D flow models (where (1.1a)--(1.1c) is coupled to a 1D flow
equation on \Lambda ) are used to model the flow between a well and a reservoir [13, 49, 1].
The same model has also been considered in the context of biological systems, where
it has been used to model water flow through a root system [25, 27], blood and oxygen
transport through the vascularized tissue of the brain [44, 22, 47, 18, 37], the efficiency
of cancer treatment by hyperthermia [41], and the efficiency of drug delivery through
microcirculation [12, 43].

In many of these applications, the flow equation (1.1a)--(1.1c) will be coupled to
a transport equation (describing, for example, heat flow or the concentration of some
chemical). For this reason, we consider herein the mixed variational formulation of
(1.1a)--(1.1b). On discretization, this will yield a mixed finite element method, which
is known to provide good approximations of the velocity field. In particular, it provides
locally conservative approximations.

As we will see, the analysis and approximation of (1.1a)--(1.1b) is nonstandard,
as the line source \delta \Lambda induces the solution to be singular. To be more precise, one has
that \delta \Lambda induces a logarithmic-type singularity in u and a r - 1-type singularity in q.
Consequently, one has q�\in (L2(\Omega ))3. The analysis of (1.1a)--(1.1b) therefore requires
nonstandard Sobolev spaces. From a numerical perspective, the singular nature of u
and q makes them challenging to approximate.

In this work, we (1) prove the existence of a solution to (1.1a)--(1.1b) and (2)
construct an efficient numerical method with which to approximate it. The existence
of a solution is proved using a suitably weighted Sobolev space, similar to the ones
used in [5, 11]. With these spaces, the proof follows by the generalized Lax--Milgram
theorem together with a limit argument. As we will see, the analysis raises questions
regarding the approximation properties of q. For this reason, we extend our work from
[21] to show that with some assumptions on the problem parameters, the solution
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admits a splitting of the type

u = us + ur, q = qs + qr,(1.4)

where us and qs denote explicitly known terms capturing the solution singularities and
ur and qr denote higher-regularity remainder terms. The remainder terms are defined
as the solution of an associated mixed Poisson equation. With the splitting in hand,
we then formulate a solution strategy in which only ur and qr are approximated
using a mixed finite element method. In contrast to the development in [21], this
has the advantage of providing a locally mass conservative approximation. The full
solution pair (u,q) can then be reconstructed using (1.4). We will refer to this as the
singularity removal--based mixed finite element method.

1.1. Relevant literature and our contribution. Several authors have con-
tributed to the analysis of the Poisson equation with a line source. Of special relevance
to our work, we mention the work of D'Angelo and Quarteroni in [16], where they
proved the existence of a solution to the primal (nonmixed) variational formulation
of (1.1a)--(1.1c). The proof relied on weighted Sobolev spaces similar to those known
from the study of corner-point problems [6]. In [15], D'Angelo went on to study the
finite element approximation of the problem. There, he found that the approxima-
tion converges suboptimally in the L2-norm and fails to converge in the H1-norm.
Convergence can be improved by weighing the error norm, and optimal convergence
rates can be retrieved by grading the mesh, i.e., by performing a particular refinement
around the singularity. A similar result is known for the point source problem in 2D
[17, 4]. In the context of applications, however, \Lambda may be a graph with nontrivial
geometry and a large number of edges. The data set used in [23, Figure 4], as one
example, consists of \sim 3000 line segments representing the arterial and venous systems
of the brain. For such data sets, it would be infeasible to construct suitably graded
meshes. In this case, h-adaptivity could be used instead [2, 14]. This approach is
similarly known to restore optimal convergence rates for singular functions but may
be computationally expensive.

In the coupled 1D-3D flow model, the singular behavior of the solution makes it
challenging to resolve the coupling condition for the flow equations on \Omega and \Lambda . K\"oppl
et al. in [31] proved that the convergence issues induced by the line source are local to
\Lambda , meaning that it only impacts the approximation quality close to \Lambda . For the coupled
1D-3D flow model, this means that the numerical approximation will suffer pollution
until the mesh size h is smaller than R (R being the original radius of, e.g., a blood
vessel or well). We show in [20] that for uniform meshes, the finite element approxi-
mation of the coupled 1D-3D flow therefore requires a very fine mesh to converge.

Several strategies have been proposed in order to deal with the computational
complexity this introduces. We refer the reader to the work of Kuchta et al. in [34]
and B{\ae}rland, Kuchta, and Mardal in [7] for suitable preconditioners for the coupled
1D-3D problem. Holter, Kuchta, and Mardal in [24] then applied this preconditioner
to simulate flow through the microcirculature found in a mouse brain. Koch et al. in
[28] introduced a smoothing kernel to distribute the line source over a 3D subdomain.
An alternative coupling scheme was introduced by K\"oppl et al. in [30, 32], where the
source term was taken to live on the boundary of the inclusions. This idea was further
developed in [13, 36]. The result is a 1D-(2D)-3D method where the dimensional gap
has been reduced to 1, thus improving the approximation properties of the solution.
However, this approach requires the 2D mesh for the boundary of the inclusions to
be resolved in the 3D mesh for \Omega ; thus, one still requires h \sim R.
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In [21], we consider a singularity removal--based method for the primal formulation
of the Poisson problem with line sources. This method was found to enjoy improved
approximation properties; in particular, it yields optimal convergence rates for lowest-
order elements and removes the pollution around the line source. The singularity
removal--based approach is extended in [20] to the coupled 1D-3D flow model; here,
it was found to restore convergence for uniform meshes even when R \ll h.

The works cited so far have all been on the primal variational formulation of
(1.1a)--(1.1c). Comparatively little work has been done that considers its mixed for-
mulation (as an exception, we note the work of Notaro et al. in [42] in providing a
mixed finite element discretization of the coupled 1D-3D flow model). A mathemat-
ical analysis of (1.1a)--(1.1c) is, however, to the best of our knowledge, still missing,
as is the construction of a suitable numerical method with which to approximate the
solution. The aim of this article is to fill this gap.

1.2. Overview of the paper. We start in section 2 by introducing the weighted
Sobolev spaces. With these in hand, we then prove in section 3 the existence of a
solution to the (dual-)mixed variational formulation of (1.1a)--(1.1c). The solution
is shown to exist in a nonstandard space with poor approximation properties. For
this reason, we proceed in section 4 to construct a solution splitting of the type (1.4),
where the solution is split into higher- and lower-regularity terms. In section 5, we give
the mixed finite element discretization of the problem. Here, we provide two different
methods: the standard mixed finite element method that approximates the full solu-
tion pair (u,q) and a singularity removal--based finite element method that approx-
imates only the higher-regularity remainder pair (ur,qr). In section 6.1, we provide
numerical evidence that the former method fails to converge in the standard L2-norm.
In section 6.1, we then show that the latter method, i.e., solving for the remainder
pair (ur,qr), yields optimal convergence rates for lowest-order elements. We conclude
by showing the results of applying the singularity removal--based mixed finite element
method on a nontrivial geometry taken from the vascular network of a rat tumor.

2. Function spaces and notation. The purpose of this section is to introduce
the weighted Sobolev spaces in which solutions to (1.1a)--(1.1c) belong. We start by
giving the definition of the standard Sobolev spaces. Let dx denote the standard
Lebesgue measure in \BbbR 3, \sigma the \sigma -algebra on \Omega , and (\Omega , \sigma ,dx) the usual Lebesgue
measure space. Letting L2(\Omega ) denote the space of square integrable functions on
(\Omega , \sigma ,dx), the Sobolev space Hm(\Omega ) can be defined as

Hm(\Omega ) = \{ u measurable : D\beta u \in L2(\Omega ) for all | \beta | \leq m\} ,

equipped with the inner product

(u, v)Hm(\Omega ) =
\sum 

| \beta | \leq m

(D\beta u,D\beta v),

where (\cdot , \cdot ) denotes the L2-inner product (u, v)\Omega =
\int 
\Omega 
uv dx, \beta is a multi-index, and

D\beta u denotes the corresponding distributional partial derivative of u. A subscript
Hm

0 (\Omega ) is used to denote the subspace of Hm(\Omega ) with zero trace on the boundary.
Next, let H(div; \Omega ) be given as

H(div; \Omega ) = \{ q \in (L2(\Omega ))3 : \nabla \cdot q \in L2(\Omega )\} ,

equipped with the inner product

(q,v)H(div;\Omega ) = (q,v) + (\nabla \cdot q,\nabla \cdot v).
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Let r(x) = dist(x,\Lambda ) denote the distance of a point x \in \Omega to \Lambda . Formally, the
function r(x) behaves as the r-component of a cylindrical coordinate system around
the center line \Lambda . As we will see in section 4, the line source \delta \Lambda introduces a r - 1-type
singularity in q. For this reason, q fails to belong to L2(\Omega ); consequently, it also fails
to belong to the standard H(div; \Omega ) space. As we will see, the solution q will instead
belong to a weighted H-div space. Let \alpha \in \BbbR , and take L2

\alpha (\Omega ) to denote the weighted
space

L2
\alpha (\Omega ) :=

\biggl\{ 
u measurable :

\int 
\Omega 

(r\alpha u)
2
dx < \infty 

\biggr\} 
.

This is a Hilbert space equipped with the inner product

(u, v)L2
\alpha (\Omega ) =

\int 
\Omega 

r2\alpha uv dx.

Formally, the value of \alpha controls how singular the function is allowed to be. Increasing
\alpha leads to an increase in the space L2

\alpha (\Omega ); i.e., letting \alpha 1 < \alpha 2, one has L2
\alpha 1
(\Omega ) \subset 

L2
\alpha 2
(\Omega ). Next, by an application of Cauchy--Schwarz, we obtain

| (u, v)| = | (r\alpha u, r - \alpha v)| \leq \| u\| L2
\alpha (\Omega )\| v\| L2

 - \alpha (\Omega ) \forall u \in L2
\alpha (\Omega ), v \in L2

 - \alpha (\Omega ),(2.1)

meaning that (u, v) is bounded for u \in L2
\alpha (\Omega ) and v \in L2

 - \alpha (\Omega ). Furthermore, the
dual space of L2

\alpha (\Omega ) coincides with L2
 - \alpha (\Omega ) [39, Lemma 2.1.7].

For \alpha \in ( - 1, 1), the weights r\alpha are said to be Muckenhoupt, and we have the
imbedding L2

\alpha (\Omega ) \lhook \rightarrow L1(\Omega ) [46, section 1.2.2]. The space L2
\alpha (div; \Omega ) then admits

properties such as density of smooth functions C\infty 
0 (\Omega ; dx). For general \alpha , the prop-

erties of L2
\alpha are best understood in the context of measure theory. Let d\mu = r(x)\alpha dx;

this defines a measure for all \alpha \in \BbbR , and the triple (\Omega , \sigma , d\mu ) constitutes a measure
space. The space L2

\alpha (\Omega ) can then equivalently be defined as the L2 space on (\Omega , \sigma ,d\mu ):

L2(\Omega ; d\mu ) = \{ u measurable :

\int 
\Omega 

u2d\mu < \infty \} .

Thus, L2
\alpha (\Omega ) admits the standard properties of L2 spaces with respect to (\Omega , \sigma ,d\mu ),

such as density of smooth functions C\infty 
0 (\Omega ; d\mu ). In particular, it is complete [40,

Theorem 13.11].
Let Hm

\alpha (\Omega ) denote the space [35, 33]:

Hm
\alpha (\Omega ) = \{ u \in L2

\alpha (\Omega ) : D
\beta u \in L2

\alpha (\Omega ) for all | \beta | \leq m\} .

This is a Hilbert space equipped with the inner product

(u, v)Hm
\alpha (\Omega ) =

\sum 
| \beta | \leq m

(D\beta u,D\beta v)L2
\alpha (\Omega )

and is a Sobolev space in the sense that r\alpha u \in Hm(\Omega ). The space Hm
\alpha (\Omega ) is often

referred to as a nonhomogeneous weighted Sobolev space, as the weight is not adjusted
to compensate for the regularity lost when taking a derivative. In this work, we shall
work mainly with homogeneous weighted Sobolev spaces of the type [33, 29, 26]

V m
\alpha (\Omega ) = \{ u \in L2

\alpha  - 1(\Omega ) : D
\beta u \in L2

\alpha +| \beta |  - m(\Omega ) for all | \beta | \leq m\} ,
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which is a Hilbert space with the inner product

(u, v)V m
\alpha (\Omega ) =

\sum 
| \beta | \leq m

(D\beta u,D\beta v)L2
\alpha +| \beta |  - m

(\Omega ).

For m = 1, we then have V 1
\alpha (\Omega ) = \{ u \in L2

\alpha  - 1(\Omega ) : \nabla u \in (L2
\alpha (\Omega ))

3\} . The Hm
\alpha (\Omega ) and

V m
\alpha (\Omega ) norms are equivalent; this follows from the following inequality [6, Theorem

2.1]:

\| u\| L2
\alpha  - 1(\Omega ) \leq C\alpha \| u\| H1

\alpha (\Omega ).(2.2)

The properties of the spaces H1
\alpha (\Omega ) and V 1

\alpha (\Omega ) depend on the choice of weights. For
\alpha \in ( - 1, 1), the weights used in the space H1

\alpha (\Omega ) are both Muckenhoupt. One then
has density of smooth functions and the imbedding L1(\Omega ) \subset H1

\alpha (\Omega ). By equivalence
of norms, the same holds for the space V\alpha (\Omega ).

Finally, let us define the weighted H-div--type space V\alpha +1(div; \Omega ):

V\alpha +1(div; \Omega ) = \{ q \in (L2
\alpha (\Omega ))

3 : \nabla \cdot q \in L2
\alpha +1(\Omega )\} .

This is a Hilbert space equipped with the inner product

(q,v)V\alpha +1(\Omega ;div) = (q,v)L2
\alpha (\Omega ) + (\nabla \cdot q,\nabla \cdot v)L2

\alpha +1(\Omega ).

Note that elements of this space have a weak divergence \nabla \cdot q \in L2
\alpha +1(\Omega ), which

is non-Muckenhoupt for \alpha > 0. Consequently, the weak divergence of functions in
V\alpha +1(div; \Omega ) may not belong to L1(\Omega ).

3. Existence of a solution. In the previous section, we gave the definition of
the weighted Sobolev spaces. With these at our disposal, we are now ready to give
the variational formulation of (1.1a)--(1.1c): Find (u,q) \in L2

\alpha  - 1(\Omega ) \times V\alpha +1(div; \Omega )
such that

(\kappa  - 1q,v) - (u,\nabla \cdot v) + (u0,v \cdot n)\partial \Omega = 0 \forall v \in V - \alpha +1(div; \Omega ),(3.1a)

(\nabla \cdot q, \theta ) = (f \~\delta \Lambda , \theta ) \forall \theta \in L2
 - \alpha  - 1(\Omega ),(3.1b)

where n is the unit normal of \partial \Omega and \~\delta \Lambda is defined as

\~\delta \Lambda = lim
\epsilon \rightarrow 0

\delta \epsilon \Lambda in L2
\alpha +1(\Omega ),(3.2)

with \delta \epsilon \Lambda being the sequence of nascent Dirac functions defined in (1.3). We note
that it is necessary here to interpret the Dirac line source in a weighted rather than
distributional sense, as the test function \theta \in L2

 - \alpha  - 1(\Omega ) may not be smooth enough
to admit a trace on \Lambda . To be more precise, the limit (f\delta \Lambda , \theta ) = lim\epsilon \rightarrow 0(f, \theta )\Omega \epsilon 

=
(f, \theta )\Lambda may not be well defined. For the variational formulation (3.1a)--(3.1b), we
therefore interpret the line source in the sense of weighted L2 spaces and show that
\~\delta \Lambda \in L2

\alpha +1(\Omega ).
The solution space is chosen so that r\alpha  - 1u \in L2(\Omega ), r\alpha q \in (L2(\Omega )3), and r\alpha +1\nabla \cdot 

q \in L2(\Omega ), where the weighing is increased to account for the regularity loss caused by
taking a derivative. This ensures that the velocity and pressure spaces are sufficiently
large to capture the expected structure of the solution while selecting the largest
test spaces admissible with respect to the bilinear forms appearing in the variational
formulation. The main result of this section is the following existence theorem.
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Theorem 3.1. Let \Omega \subset \BbbR 3 be a bounded open 3D domain with smooth boundary
\partial \Omega , \Lambda \subset \Omega be a differentiable manifold with topological dimension 1, u0 \in C2(\=\Omega ),
f \in C0(\=\Omega ), and \kappa \in L\infty (\Omega ) be strictly positive. For \alpha > 0 small enough, there then
exists (u,q) \in L2

\alpha  - 1(\Omega )\times V\alpha +1(div; \Omega ) solving (3.1a)--(3.1b).

The proof of Theorem 3.1 relies on two lemmas. The first of these guarantees a
solution to (3.1a)--(3.1b) for a source term g \in L2

\alpha +1(\Omega ) for \alpha > 0 small enough.

Lemma 3.2. Let g \in L2
\alpha +1(\Omega ) with \alpha > 0 small enough. Under the assumptions

of Theorem 3.1, there then exists (u,q) \in L2
\alpha  - 1(\Omega )\times V\alpha +1(div; \Omega ) solving

(\kappa  - 1q,v) - (\nabla \cdot v, u) + (u0,v \cdot n)\partial \Omega =0 \forall v \in V - \alpha +1(div; \Omega ),(3.3a)

(\nabla \cdot q, \theta ) = (g, \theta ) \forall \theta \in L2
 - \alpha  - 1(\Omega ).(3.3b)

The second lemma addresses the line source interpreted in the sense of (3.2).

Lemma 3.3. For \alpha > 0 and \~\delta \Lambda in (1.3), one has \~\delta \Lambda \in L2
\alpha +1(\Omega ).

This section will proceed as follows. First, we state the Brezzi--Ne\v cas--Babu\v ska
(BNB) theorem [8, Theorem 2.1] (sometimes referred to as the generalized Lax--
Milgram theorem). After this, we give a proof of Lemma 3.2; this is done by verifying
the assumptions of the BNB theorem. Next, we give a proof of Lemma 3.3. This is
done by showing that the sequence \delta \epsilon \Lambda is Cauchy in L2

\alpha +1(\Omega ) (which is complete) and

thus converges in L2
\alpha +1(\Omega ). It follows that the line source

\~\delta \Lambda belongs to L2
\alpha +1(\Omega ). We

conclude by giving a proof of Theorem 3.1.

Theorem 3.4 (BNB theorem). Let Xi and Mi be real reflexive Banach spaces
(i = 1, 2). Assume we are given three continuous bilinear forms: a : X2 \times X1 \rightarrow 
\BbbR , b1 : X1 \times M1 \rightarrow \BbbR , b2 : X2 \times M2 \rightarrow \BbbR . For any given g1 \in (X1)

\ast and g2 \in (M2)
\ast ,

we consider the following problem:
Find (q, u) \in X2 \times M1 s.t.

a(q, v) + b1(v, u) = \langle g1, v\rangle ,(3.4a)

b2(q, \theta ) = \langle g2, \theta \rangle (3.4b)

for all (v, \theta ) \in X1 \times M2.
Let Ki denote the kernel space of bi:

Ki = \{ v \in Xi : bi(v, u) = 0 \forall u \in Mi\} .

The problem (3.4a)--(3.4b) then admits a solution (q, u) \in X2 \times M1 if the following
assumptions hold:

Condition (C0): Weak coercivity of a(\cdot , \cdot ): There exists constants \gamma 1, \gamma 2 > 0 s.t.

sup
v\in K1

a(q, v)

\| v\| X1

\geq \gamma 1\| q\| X2 \forall q \in K2(3.5)

and

sup
q\in K2

a(q, v)

\| q\| X2

\geq \gamma 2\| v\| X1
\forall v \in K1.(3.6)

Condition (Ci): Inf-sup condition on bi(\cdot , \cdot ): For i = 1, 2, there exists \beta i > 0 s.t.

sup
v\in Xi

bi(v, u)

\| v\| Xi

\geq \beta i\| u\| Mi
\forall u \in Mi.(3.7)
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Fig. 3.1. A generalized cylinder \Omega \epsilon with centerline \Lambda and a constant radius \epsilon . The curve \Lambda is
associated with a Frenet frame er, en, \bfittau ; here, \bfittau denotes its unit tangent vector, er its unit normal
vector, and en its unit binormal vector.

Proof of Lemma 3.2. The proof consists of verifying the conditions of the BNB
theorem, taking the variational forms

a(q,v) = (\kappa  - 1q,v),

b1(q, \theta ) = b2(q, \theta ) := b(q, \theta ) =  - (\nabla \cdot q, \theta ),
\langle g1, v\rangle =  - (u0,v \cdot n)\partial \Omega ,
\langle g2, \theta \rangle = (g, \theta )

and the function spaces X2 = V\alpha +1(div; \Omega ), X1 = V - \alpha +1(div; \Omega ),M1 = L2
\alpha  - 1(\Omega ), and

M2 = L2
 - \alpha  - 1(\Omega ). The kernel spaces K1 and K2 are then given as

K1 = \{ v \in V - \alpha +1(div; \Omega ) : b1(v, u) = 0 \forall u \in L2
\alpha  - 1(\Omega )\} ,

K2 = \{ q \in V\alpha +1(div; \Omega ) : b2(q, \theta ) = 0 \forall \theta \in L2
 - \alpha  - 1(\Omega )\} .

By an application of Cauchy--Schwarz (2.1), it follows that the bilinear form
a(\cdot , \cdot ) is bounded on V\alpha +1(div; \Omega )\times V - \alpha +1(div; \Omega ). The same holds true for b2(\cdot , \cdot ) on
V\alpha +1(div; \Omega )\times L2

 - \alpha  - 1(\Omega ) and b1(\cdot , \cdot ) on V - \alpha +1(div; \Omega )\times L2
\alpha  - 1(\Omega ). Next, as the dual

space of L2
\alpha +1(\Omega ) coincides with L2

 - \alpha  - 1(\Omega ), the duality pairing \langle g2, \theta \rangle is well defined
with g2 = g. Finally, the boundedness of the form (u0,v \cdot n)\partial \Omega follows from standard
theory, as the weighted Sobolev spaces are equivalent with standard spaces away from
\Lambda .

Before we show (3.5) in Condition (C0), let us first note a central property of the
kernel spacesK1 andK2. Fix arbitrary q \in K2, and take \theta = r2(\alpha +1)\nabla \cdot q \in L2

 - \alpha  - 1(\Omega ).

This yields b(q, r2(\alpha +1)\nabla \cdot q) = \| \nabla \cdot q\| L2
\alpha +1(\Omega ) = 0 for all q \in K2. Switching q with

v and reversing the sign of \alpha , one similarly finds \| \nabla \cdot v\| L2
 - \alpha +1(\Omega ) = 0 for all v \in K1.

We now show (3.5). Fixing again q \in K2, the proof is by construction of a suit-
able v\bfq \in K1. We begin by giving this construction. Let v\bfq = r2\alpha q + \Psi , where
\Psi is the solution of \nabla \cdot \Psi =  - 2\alpha r2\alpha  - 1\nabla r \cdot q. To see that such a suitable function
\Psi exists, set \Psi =  - \nabla \phi ; one then has  - \Delta \phi =  - 2\alpha r2\alpha  - 1\nabla r \cdot q := f\phi . Note that
\nabla r = er, where er denotes the unit normal with respect to \Lambda , as illustrated in Figure
3.1. A calculation then shows f\phi \in L2

 - \alpha +1(\Omega ). By [39, Theorem 1.2.8], there then
exists \phi \in V 2

 - \alpha +1(\Omega ) satisfying

\| \phi \| V 2
 - \alpha +1(\Omega ) \leq CS\| f\phi \| L2

 - \alpha +1(\Omega ) \leq 2| \alpha | CS\| q\| L2
\alpha (\Omega ),(3.8)

where CS > 0 denotes some stability constant. With this in hand, we can verify
v\bfq \in V - \alpha +1(div; \Omega ). First, \| \Psi \| V - \alpha +1(div;\Omega ) \leq \| \phi \| V 2

 - \alpha +1(\Omega ). Combining this with
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(3.8), one then has \Psi \in V - \alpha +1(div; \Omega ). Similarly, we have r2\alpha q \in V - \alpha +1(div; \Omega ); to
see this, we calculate

\| r2\alpha q\| 2V - \alpha +1(div;\Omega ) = \| r2\alpha q\| 2L - \alpha (\Omega ) + \| \nabla \cdot (r2\alpha q)\| 2L - \alpha +1(\Omega )

\leq \| q\| 2L\alpha (\Omega ) + \| r2\alpha \nabla \cdot q\| 2L - \alpha +1(\Omega ) + \| 2\alpha r2\alpha  - 1er \cdot q\| 2L - \alpha +1(\Omega )

= \| q\| 2L\alpha (\Omega ) + \| \nabla \cdot q\| 2L\alpha +1(\Omega ) + \| 2\alpha er \cdot q\| 2L\alpha (\Omega )

\leq (1 + 2| \alpha | )\| q\| 2V\alpha +1(div;\Omega ).

It follows that v\bfq \in V - \alpha +1(div; \Omega ). Finally, we can verify v\bfq \in K1. By the product
rule, one has \nabla \cdot v\bfq = r2\alpha \nabla \cdot q. For u \in L2

\alpha  - 1, it follows that

b(v\bfq , u) = (\nabla \cdot v\bfq , u) = (\nabla \cdot q, r2\alpha u) = 0(3.9)

as r2\alpha u \in L2
 - \alpha  - 1 and q \in K2.

With the construction v = r2\alpha q + \Psi \in K1 in hand, one can finally proceed to
show (3.5). First,

a(q,v\bfq ) = a(q, r2\alpha q) + a(q,\Psi ) = \| \kappa  - 1
2q\| 2L2

\alpha (\Omega ) + a(q,\Psi )

\geq \| \kappa  - 1
2q\| 2L2

\alpha (\Omega )  - | a(q,\Psi )| 

\geq 1

C\kappa ,max
\| q\| 2L2

\alpha (\Omega )  - 
1

C\kappa ,min
\| q\| L2

\alpha (\Omega )\| \Psi \| L2
 - \alpha (\Omega )

\geq 1

C\kappa ,max
\| q\| 2L2

\alpha (\Omega )  - 
1

C\kappa ,min
\| q\| L2

\alpha (\Omega )\| \Psi \| V 1
 - \alpha +1(\Omega )

\geq 
\biggl( 

1

C\kappa ,max
 - 1

C\kappa ,min
2| \alpha | CS

\biggr) 
\| q\| 2L2

\alpha (\Omega ),

(3.10)

where C\kappa ,min, C\kappa ,max are constants associated with \kappa . Next, \| \nabla \cdot q\| L2
\alpha +1(\Omega ) = 0,

meaning that

a(q,v\bfq ) \geq 
\biggl( 

1

C\kappa ,max
 - 1

C\kappa ,min
2| \alpha | CS

\biggr) 
\| q\| 2V 1

\alpha +1(\Omega ).(3.11)

A further computation shows

\| v\bfq \| 2V - \alpha +1(div;\Omega ) \leq \| r2\alpha q\| 2L2
 - \alpha (\Omega ) + \| \Psi \| 2L2

 - \alpha (\Omega ) + \| r2\alpha \nabla \cdot q\| 2L2
 - \alpha +1(\Omega )

\leq (1 + 2| \alpha | CS)\| q\| 2L2
\alpha (\Omega ) + \| \nabla \cdot q\| 2L2

\alpha +1(\Omega )

\leq (1 + 2| \alpha | CS)\| q\| 2V\alpha +1(div;\Omega ).

(3.12)

Combining (3.11) and (3.12), it follows that

sup
\bfv \in K1

a(q,v)

\| v\| V - \alpha +1(div;\Omega )
\geq a(q,v\bfq )

\| v\bfq \| V - \alpha +1(div;\Omega )

\geq 

\Bigl( 
1

C\kappa ,\mathrm{m}\mathrm{a}\mathrm{x}
 - 1

C\kappa ,\mathrm{m}\mathrm{i}\mathrm{n}
2| \alpha | CS

\Bigr) 
\sqrt{} 
1 + 2| \alpha | CS

\| q\| V\alpha +1(div;\Omega ) \forall q \in K2,

(3.13)
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where the right-hand side is positive given

| \alpha | < 1

2

C\kappa ,min

C\kappa ,maxCS
.(3.14)

For \alpha small enough, (3.5) then holds for some \gamma 1 > 0. To show that (3.6) holds, one
can switch the sign of \alpha and repeat this argument with (\theta ,q\bfv ) switched with (u,v\bfq ).
It follows that Condition (C0) holds.

Next we will verify Condition (Ci). Consider first i = 1. For a given u \in L2
\alpha  - 1(\Omega ),

we now define vu as the solution of the equation \nabla \cdot vu = r2\alpha  - 2u \in L2
1 - \alpha (\Omega ). Set-

ting vu =  - \nabla \xi then requires solving the Poisson problem  - \Delta \xi = r2\alpha  - 2u, where
r2\alpha  - 2u \in L2

\alpha  - 1. Invoking again [39, Theorem 1.2.8], we know there exists such a
solution \xi \in V 2

\alpha  - 1(\Omega ) such that \| \xi \| V 2
\alpha +1(\Omega ) \leq CS\| u\| L2

\alpha  - 1(\Omega ), where CS denotes a sta-

bility constant. Thus, a solution vu \in V\alpha  - 1(div; \Omega ) exists solving \nabla \cdot vu = r2\alpha  - 2u
such that \| vu\| V - \alpha +1(div;\Omega ) \leq CS\| u\| L2

\alpha  - 1\Omega 
. For this vu, b(vu, u) = (r\alpha  - 1u, r\alpha  - 1u)) =

\| u\| 2
L2

\alpha  - 1(\Omega )
. It follows that

sup
\bfv \in X1

b1(v, u)

\| v\| X1

\geq b1(vu, u)

\| vu\| V - \alpha +1(div;\Omega )
=

\| u\| 2
L2

\alpha  - 1

\| vu\| V - \alpha +1(div;\Omega )
\geq \beta 1\| u\| L2

\alpha  - 1(\Omega ),

and (3.7) holds with \beta 1 = 1/CS . To show (3.7) for i = 2, one can switch the sign of
\alpha and repeat this argument with (\theta ,q\theta ) switched with (u,vu).

Proof of Lemma 3.3. First, let us rewrite \~\delta \Lambda to an equivalent definition using
\epsilon = 1/k,

\~\delta \Lambda = lim
k\rightarrow \infty 

\delta k\Lambda , \delta k\Lambda =

\Biggl\{ 
k2

\pi for x \in \Omega 1/k,

0 otherwise,
(3.15)

where the limit is taken in L2
\alpha +1(\Omega ). The proof is by showing that \delta k\Lambda is a Cauchy

sequence in L2
\alpha +1(\Omega ) for \alpha > 0.

For each k \in \BbbR , the function \delta k\Lambda can be interpreted as the indicator function of
a generalized cylinder \Omega 1/k with centerline \Lambda and a constant radius 1/k. Using then
the notation of generalized cylinders [19], we let er, en, \bfittau be the Frenet frame of \Lambda , as
illustrated in Figure 3.1. We further let X and Y denote the axes along the vectors
er, en of the Frenet frame; the coordinate axes X,Y thus form a local coordinate
system having origin on \Lambda . With this notation in hand, we have

\| \delta k+m
\Lambda  - \delta k\Lambda \| 2L2

\alpha +1(\Omega ) =

\int 
\Omega 1/k

(\delta k+m
\Lambda  - \delta k\Lambda )

2r2\alpha +2d\omega 

=

\int 
\Lambda 

\int 
D(s)

(\delta k+m
\Lambda  - \delta k\Lambda )

2r2\alpha +2dX(s)dY (s)ds

=

\int L

0

\| \bfitlambda \prime (s)\| 
\int 2\pi 

0

\int 1
k

0

(\delta k+m
\Lambda  - \delta k\Lambda )

2r2\alpha +2rdr(s)d\theta (s)\underbrace{}  \underbrace{}  
I(r,\theta ;s)

ds,

where \omega denotes the generic volume Lebesgue measure, \| \bfitlambda \prime (s)\| the Jacobian of \bfitlambda ,
\| \cdot \| the Euclidean norm, D(s) some parametrization of the cross section of \Omega 1/k at
the point \bfitlambda (s), L the length of \Lambda , and r(s), \theta (s) the polar coordinates of X,Y .
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Consider for a moment s to be fixed. A calculation then shows

I(r, \theta ; s) =

\int 2\pi 

0

\int 1
k

0

(\delta k+m
\Lambda  - \delta k\Lambda )

2r2\alpha +2rdrd\theta 

=
2\pi 

\pi 2

\Biggl( \int 1
k+m

0

((k +m)2  - k2)2r2\alpha +3dr +

\int 1
k

1
k+m

k4r2\alpha +3dr

\Biggr) 

=
2

\pi (2\alpha + 4)

\bigl( 
k - 2\alpha + (m2(2k +m)2  - k4)(k +m) - 4 - 2\alpha 

\bigr) 
.

Note now that each term in the last line has a negative exponent, meaning that each
term has a zero limit as k,m \rightarrow \infty . It follows that

lim
k,m\rightarrow \infty 

I(r, \theta ; s) = 0,(3.16)

and consequently

lim
k,m\rightarrow \infty 

\| \delta k+m
\Lambda  - \delta k\Lambda \| 2L2

\alpha +1(\Omega ) = 0.(3.17)

The sequence is thus Cauchy. Moreover, as the space L2
\alpha +1(\Omega ) is complete, it follows

that

lim
k\rightarrow \infty 

\delta k\Lambda = \~\delta \Lambda \in L2
\alpha +1(\Omega ).(3.18)

Finally, with Lemmas 3.2 and 3.3 in hand, the proof of Theorem 3.1 is straight-
forward.

Proof of Theorem 3.1. By Lemma 3.3, one has \~\delta \Lambda belonging to L2
\alpha +1(\Omega ). Conse-

quently, one has by Cauchy--Schwarz

(f \~\delta \Lambda , \theta )\Omega \leq \| f\| L\infty (\Omega )\| \~\delta \Lambda \| L2
\alpha +1(\Omega )\| \theta \| L2

 - \alpha  - 1(\Omega ).(3.19)

By Lemma 3.2, the problem (3.1a)--(3.1b) then satisfies all the conditions of the BNB
theorem.

4. Solution splitting. In the previous section, we proved the existence of (u,q) \in 
L2
\alpha  - 1(\Omega )\times V\alpha +1(div; \Omega ) solving (3.1a)--(3.1b). As was discussed in section 2, the space

V\alpha +1(div; \Omega ) is not Muckenhoupt. Consequently, V\alpha +1(div; \Omega )�\subset L1(\Omega ). This leaves
the approximation properties of V\alpha +1(div; \Omega ) nonstandard.

In this section, we will construct a solution splitting that can later be used to
define a singularity removal--based method for approximating (u,q). Let \Lambda be a
straight line segment \Lambda \subset \Omega and f \in C2(\=\Omega ) and \kappa \in W 2,\infty (\Omega ) be scalar valued such
that \kappa > 0. To make the derivations simpler to follow, we further assume that \kappa is
constant and that f = f(s) in \Omega \epsilon for some \epsilon > 0. The first of these assumptions could
be dropped using the splitting shown in [21, section 3.3]. The second assumption can
be dropped by the use of an extension operator; this is discussed in Remark 3.

With the stated assumptions in hand, consider again the strong formulation of
the line source problem:

q+ \kappa \nabla u = 0 in \Omega ,

\nabla \cdot q = f\delta \Lambda in \Omega ,

u = u0 on \partial \Omega .
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The solution then admits a splitting into higher- and lower-regularity terms

(u,q) = (us,qs) + (ur,qr) where

\Biggl\{ 
(us,qs) \in L2

\alpha  - 1(\Omega )\times V\alpha +1(div; \Omega ),

(ur,qr) \in L2(\Omega )\times H(div; \Omega ).
(4.1)

Here, the lower-regularity pair (us,qs) is defined as

us := fG, qs :=  - \kappa \nabla us,(4.2)

with G taken as the solution of

 - \kappa \Delta G = \delta \Lambda in \BbbR 3(4.3)

in an appropriately weak sense. In the next section, we will show that this property
ensures that (us,qs) capture the singular behavior by \delta \Lambda . This allows the remainder
pair (ur,qr) to enjoy higher regularity. Inserting (4.1) into (1.1a)--(1.1c) and using
(4.3), one finds that the remainder pair must satisfy

qr + \kappa \nabla ur = 0 in \Omega ,(4.4a)

\nabla \cdot qr = fr in \Omega ,(4.4b)

ur = ur,0 on \partial \Omega ,(4.4c)

with

fr = \kappa (\Delta f G+ 2\nabla f \cdot \nabla G) ,(4.5a)

ur,0 = u0  - fG.(4.5b)

Thus, (1.1a)--(1.1c) can be solved by finding (ur,qr) satisfying (4.4a)--(4.4c) and re-
constructing (u,q) from (4.1). As (ur,qr) enjoy higher regularity compared to the
full solution, one expects this approach to yield improved approximation properties.
We will return to this observation in section 5 when introducing a numerical approach
to approximate the solution.

The section will proceed as follows. In section 4.1, we show how one can construct
the solution splitting (4.1) so that (us,qs) capture the solution singularity. In section
4.2, we discuss in more detail the regularity of the splitting terms. In particular, we
give a justification of (4.1).

4.1. Construction of the solution splitting. In this section, we will show how
to construct the solution splitting in (4.1). The solution splitting can be constructed
in two steps: (1) identifying an explicit function G capturing the solution singularity
induced by \delta \Lambda and (2) identifying the system that the remainder pair (ur,qr) must
solve.

Let us start with the first step. Let \scrL =  - \kappa \Delta denote the differential operator
in (1.1a)--(1.1b). Formally, \scrL G should return the ``unit line source,"" meaning that
\scrL G = \delta \Lambda in the sense of distributions. Let G3D denote Green's function of \scrL in \BbbR 3,

G3D(x) =
1

4\pi \kappa 

1

\| x\| 
,(4.6)

where \| \cdot \| denotes the Euclidean norm. By the theory of Green's functions, a candidate
G can then be defined as G = \delta \Lambda \ast G3D, where \ast denotes the convolution operator.
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By the definition of the Dirac line source in (1.3), we have

G(x) = lim
\epsilon \rightarrow 0

\int 
\Omega 

\delta \epsilon \Lambda (y)G3D(x - y) dy

= lim
\epsilon \rightarrow 0

\int 
\Omega \epsilon 

1

\pi \epsilon 2
G3D(x - y) dy.

(4.7)

Let now x \in \Omega be such that x�\in \Lambda . For any y \in \Omega \epsilon and \epsilon small enough, one then has
x - y�\in \Omega \epsilon for all y \in \Omega \epsilon . Thus, G3D(x - y) is continuous in the integration domain
\Omega \epsilon . Invoking the mean-value theorem, one has

G(x) =

\int 
\Lambda 

lim
\epsilon \rightarrow 0

\int 
D(s)

1

\pi \epsilon 2
G3D(x - y) dy

=

\int 
\Lambda 

lim
\epsilon \rightarrow 0

\pi \epsilon 2

\pi \epsilon 2
G3D(x - c) ds,

where c \in D(s) and D(s) again denote the same parametrization of the cross section
of \Omega \epsilon at \bfitlambda (s). Passing to the limit, one then has

G(x) =

\int 
\Lambda 

G3D(x - \bfitlambda (s)) ds.(4.8)

An explicit solution for G can thus be found by evaluating this line integral. To do so,
note that the line segment \Lambda can be described by the parametrization \Lambda : a+ \tau \tau \tau s for
s \in (0, L), where \tau \tau \tau denotes the normalized tangent vector of \Lambda , i.e., \tau \tau \tau = (b  - a)/L.
A calculation then reveals

G(x) =
1

4\pi 

\int 
\Lambda 

1

\| x - \bfitlambda (s)\| 
ds

=
1

4\pi 

\int L

0

1

\| x - (a+ \bfittau s)\| 
ds

=
1

4\pi 
ln

\biggl( 
rb + L+ \tau \tau \tau \cdot (a - x)

ra + \tau \tau \tau \cdot (a - x)

\biggr) 
,

(4.9)

where ra = \| x - a\| and rb = \| x - b\| .
Returning to the splitting ansatz (u,q) = (us,qs)+(ur,qr), the singular solution

pair can then be defined as in (4.1). Inserting (4.1) into (1.1a)--(1.1c), we find that
the remainder terms (ur,qr) solve (4.4a)--(4.4c). Here, we used that

\nabla \cdot qs +\nabla \cdot qr =  - \kappa \Delta 
\bigl( 
fG
\bigr) 
+ fr

=  - \kappa f\Delta G\underbrace{}  \underbrace{}  
f\delta \Lambda in the sense of distributions

 - 2\kappa \nabla f \cdot \nabla G - \kappa \Delta f G+ fr\underbrace{}  \underbrace{}  
=0

.(4.10)

Remark 1. By the superposition principle, the solution splitting (4.1) can be ex-
tended to a collection of straight line segments \Lambda = \cup i\Lambda i. More concretely, this can
be achieved by setting

G(x) =
1

4\pi \kappa 

\sum 
i

ln

\biggl( 
rb,i + Li + \bfittau i \cdot (ai  - x)

ra,i + \bfittau i \cdot (ai  - x)

\biggr) 
(4.11)

while keeping (us,qs) as was defined in (4.2) and (ur,qr) as defined by (4.4a)--
(4.4c) and (4.5a)--(4.5b). Here, ai,bi denotes the endpoints of line segment \Lambda i,
rb,i = dist(x,bi) and ra,i = dist(x,ai) the distance from its endpoints, Li = \| bi - ai\| 
the line segment length, and \bfittau i its normalized tangent vector.
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Remark 2. The explicit construction of the function G in (4.9) requires \Lambda to be a
straight line segment. For more general lines, \Lambda could be approximated by a set of line
segments \Lambda i, and G could be constructed approximately by (4.11). Alternatively, it is
possible to base the construction of G on a curvilinear coordinate system wherein \Lambda 
coincides with a coordinate line and subsequently transform the resulting expression
back to \BbbR 3.

4.2. Regularity of the splitting terms. The key point of the solution splitting
(4.1) is that it forms a split into lower- and higher-regularity terms. In this section,
we will discuss in more detail the regularity of the splitting terms. In particular, we
will show that for 0 < \alpha < 1,

(us,qs) \in L2
\alpha  - 1(\Omega )\times V\alpha +1(div; \Omega ),(4.12a)

(ur,qr) \in L2(\Omega )\times H(div; \Omega ).(4.12b)

We start by showing (4.12a). As the singular terms in the splitting are explicitly
given using the function G, this can be done by straightforward calculation. Formally,
G contains a logarithmic-type singularity and a\nabla G a r - 1-type singularity in the plane
normal to \Lambda . We refer here to our earlier work in [21, section 3.2], where the precise
regularity of G was determined using weighted Sobolev spaces. Therein, it was found
that

G \in L2
\alpha  - 1(\Omega ), \nabla G \in (L2

\alpha (\Omega ))
3, and \partial sG \in L2(\Omega ).(4.13)

As f was assumed to belong to C2(\=\Omega ), it then follows directly that

us \in L2
\alpha  - 1(\Omega ) and qs \in L2

\alpha (\Omega ).(4.14)

Finally, a calculation of \nabla \cdot qs shows that \nabla \cdot qs = 0 a.e. The exception is at r = 0,
wherein it admits a r - 2-type singularity. The divergence of qs therefore belongs to
L2
\alpha +1(\Omega ). It follows that qs \in V\alpha +1(div; \Omega ).

In order to identify the regularity of (ur,qr), consider the right-hand side fr in
(4.5a). A calculation shows

\| fr\| L2(\Omega ) \leq \kappa 
\bigl( 
\| \Delta fG\| L2(\Omega ) + \| 2\nabla f \cdot \nabla G\| L2(\Omega )

\bigr) 
\leq \kappa \| \Delta f\| L\infty (\Omega )\| G\| L2(\Omega ) + 2\kappa \| \nabla f\| L\infty (\Omega \setminus \Omega \epsilon )\| \nabla G\| L2(\Omega \setminus \Omega \epsilon )

+ 2\kappa \| (\partial sf)(\partial sG)\| L2(\Omega \epsilon )

< \infty ,

(4.15)

where we used the assumption that there exists \epsilon > 0 such that f = f(s) in \Omega \epsilon ;
this implies that the normal and binormal components of \nabla f vanish in \Omega \epsilon . With
fr \in L2(\Omega ), the existence of (ur,qr) \in L2(\Omega ) \times H(div; \Omega ) solving (4.4a)--(4.4c) then
follows by standard elliptic theory; see, e.g., [9].

Remark 3. The requirement on f to be locally constant with respect to s in \Omega \epsilon 

can be relaxed to f \in C2(\=\Omega ) by the construction of an extension operator. Let \~\Lambda 
denote the elongation of \Lambda , \~\Lambda = \Omega \cap \{ \bfittau s + a for s \in ( - \infty ,\infty )\} . For an illustration
of this, we refer the reader to Figure 2 in [21]. As f \in C2(\=\Omega ), f | \Lambda \in C2(\~\Lambda ). Let P
denote the projection operator P : \Omega \rightarrow \~\Lambda ,x \rightarrow (x - a) \cdot \bfittau mapping points x \in \Omega onto
their closest point on \~\Lambda . We then define the extension operator

E : C2(\~\Lambda ) \rightarrow C2(\Omega ) with E(f)(x) \rightarrow \~f(P (x)),(4.16)
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where \~f denotes some smooth extension of f on \~\Lambda . One then has E(f) = E(f)(s) in
\Omega \epsilon for some \epsilon > 0. A solution splitting of the type (4.1) can then be constructed by
switching f with E(f).

5. Discretization. In this section, we will introduce the finite element dis-
cretization of the line source problem. We give here two different discretization meth-
ods: The first solves directly for the full solution (u,q) via (3.1a)--(3.1b), while the
second solves for the remainder pair (ur,qr) using the weak formulation of (4.4a)--
(4.4c). Since the remainder pair are of higher regularity than the full solution, we
expect this second approach to achieve improved convergence rates.

Assume, for simplicity, the domain \Omega to be polyhedral; \Omega then readily admits a
decomposition \scrT h into tetrahedra K,

\=\Omega =
\bigcup 

K\in \scrT h

K,

where h denotes the mesh size h = maxK\in \scrT h
hK and \scrT h is assumed to satisfy all

the requirements of a conforming, quasi-uniform mesh. This mesh does not have to
conform to \Lambda . We use piecewise polynomial elements of degree k to approximate u
and ur,

\BbbD \BbbG k
h := \{ wh \in L2(\Omega ) : wh| K \in Pk(K) \forall K \in \scrT h\} ,

and the Hdiv-conforming Raviart--Thomas elements of degree k to approximate q and
qr,

\BbbR \BbbT k
h := \{ w \in (L2(\Omega ))3 : wh| K \in Pk - 1(K,\BbbR n)\oplus xPk - 1(K) \forall K \in \scrT h\} .

Here, Pk denotes the standard space of polynomials of degree \leq k with k \geq 1 integer
valued. The (standard) mixed finite element formulation of (3.1a)--(3.1b) then reads
as follows: Find (uh,qh) \in \BbbD \BbbG k - 1

h \times \BbbR \BbbT k
h such that

(\kappa  - 1qh,vh) - (\nabla \cdot vh, uh) + (vh, u0)\partial \Omega = 0 \forall v \in \BbbR \BbbT k
h,(5.1a)

(\nabla \cdot qh, \theta h) = (f, \theta h)\Lambda \forall \theta \in \BbbD \BbbG k - 1
h .(5.1b)

Stability and convergence rates for this formulation are nontrivial to prove, as the
solution belongs to the nonstandard space L2

\alpha  - 1(\Omega )\times V\alpha +1(div; \Omega ). We leave it here
as an open question and investigate it only numerically. Let us note, however, that
L2
\alpha +1(\Omega )�\subset L1(\Omega ) and that \BbbD \BbbG k - 1

h �\subset L - \alpha  - 1(\Omega ). For this reason, we will now define an
alternative solution strategy.

Assuming the assumptions stated in section 4 hold, one can solve for (u,q) via
the higher-regularity remainder terms: Find (ur,h,qr,h) \in \BbbD \BbbG k - 1

h \times \BbbR \BbbT k
h such that

(k - 1qr,h,vr,h) - (\nabla \cdot vr,h, ur,h) + (vr,h, ur,0)\partial \Omega = 0 \forall vr,h \in \BbbR \BbbT k
h,(5.2a)

(\nabla \cdot qr,h, \theta r,h) = (fr, \theta r,h) \forall \theta r,h \in \BbbD \BbbG k
h,(5.2b)

where the right-hand side fr and boundary data ur,0 are given by (4.5a) and (4.5b),
respectively. We will refer to this method as the singularity removal--based mixed
finite element method for the line source problem. As fr \in L2(\Omega ), the stability
and convergence properties of (5.2a)-(5.2b) follow from the standard theory of the
mixed finite element method. For later discussion, let us note the results. Given
(ur,qr) \in Hk(\Omega )\times (Hk+1(\Omega ))3 and (ur,h,qr,h) \in \BbbD \BbbG k - 1

h \times \BbbR \BbbT k
h solving (5.2a)--(5.2b),

one has [10, III.3.4, Proposition 3.9]

\| ur  - ur,h\| L2(\Omega ) + \| qr  - qr,h\| H(div;\Omega ) \leq Chk
\bigl( 
\| ur\| Hk(\Omega ) + \| qr\| (Hk+1(\Omega ))3

\bigr) 
.(5.3)
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Remark 4. The convergence rate in (5.3) is given with respect to the higher-
regularity terms (ur,qr) in the solution splitting (4.1) and their numerical approxi-
mation (ur,h,qr,h). Given (ur,h,qr,h), an approximation of the full solution could be
constructed as (uh,qh) = (\scrI (us), \scrI (qs)) + (ur,h,qr,h), where \scrI would denote some
interpolation operator. The convergence rates for the approximation (uh,qh) would
then depend on the choice of interpolation operator.

6. Numerical results. In this section, we will test the approximation properties
of the two discretization methods given in the last section, i.e., the (standard) mixed
method (5.1a)--(5.1b) and the singularity removal--based mixed method (5.2a)--(5.2b).
The section will proceed as follows. In section 6.1, we compare the convergence
properties of the approximation methods. For the standard method, we compute
convergence rates with respect to both weighted and unweighted norms. For the
singularity removal--based method, we approximate the remainder function, which
belongs to the standard L2(\Omega )\times H(div; \Omega ) spaces; we therefore compute convergence
with respect to standard (unweighted) norms. Finally, we illustrate in section 6.2 the
effectiveness of the singularity removal--based method in handling data sets with a
large number of line segments by using it to treat a data set for the vascular system
of a rat tumor.

6.1. Comparison of standard and singularity removal--based mixed fi-
nite element methods. The purpose of this section is to numerically investigate the
approximation properties of the standard versus singularity removal--based finite ele-
ment method. Here, the two approximation methods are given by (5.1a)--(5.1b) and
(5.2a)--(5.2b), respectively. To this end, we consider the unit cube domain \Omega = (0, 1)3

with a line cutting vertically through its midpoint:

\Lambda = \{ (0.5, 0.5, z) : z \in (0, 1)\} .(6.1)

The domain \Omega is discretized using a uniform tetrahedral mesh. We prescribe a man-
ufactured solution

u =  - 1

2\pi 

\biggl( \bigl( 
z2 + 1

\bigr) 
ln(r) +

1

2
r2(1 - ln(r))

\biggr) 
(6.2)

that solves the line source problem (3.1a)--(3.1b) with permeability \kappa = 1, line source
intensity f(z) = z2 + 1, flux q :=  - \nabla u, and Dirichlet boundary conditions given by
(6.2). Because the line \Lambda extends through the domain, u admits a splitting of the
type (4.1) with G defined as

G =  - 1

2\pi 
ln(r),(6.3)

(us,qs) still defined as in (4.2) and (ur,qr) as the solution of (4.4a)--(4.4c). The
singularity removal--based method then solves (5.2a)--(5.2b) with problem parameters

fr = (\Delta f)G+ 2\nabla G \cdot \nabla f =  - 1

\pi 
ln(r), ur,0 = u0  - 

z2 + 1

2\pi 
ln(r)(6.4)

for the remainder pair

ur =  - 1

2\pi 
r2(1 - ln(r)), qr =  - \nabla ur.(6.5)

The full solutions u and q, along with the splitting terms, are shown in Figure 6.1.
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(a) Singular solution compo-
nents us and \bfq s.

(b) Remainder components
ur and \bfq r.

(c) Total solutions u = us+ur

and \bfq = \bfq s + \bfq r.

Fig. 6.1. The full solutions u = us + ur and q = qs + qr and their components to the line
source problem (3.1a)--(3.1b), solved on the unit domain with line source intensity f(z) = z2 + 1
and Dirichlet boundary data as in (6.2).

For the standard finite element method (5.1a)--(5.1b), we want to investigate the
error using weighted norms. This requires comparatively fine meshes for the numerical
convergence order to be established. For this to be computationally tractable, we fix
z = 1 so that the problem can be solved on the unit square domain \Omega = (0, 1)2.
Restricting our attention to the singular part of the solution,

us =  - 1

2\pi 
f(z = 1) ln(r),(6.6)

we then have a solution of (1.1a)--(1.1c) with right-hand side f\delta \bfx 0
. Here, \delta \bfx 0

is a
point source centered on x0 = (0.5, 0.5), and f = 2 is the point source intensity.

Table 6.1 shows the errors and convergence rates obtained using the (standard)
mixed finite element method (5.1a)--(5.1b) on this test problem. The variable s gives
the numerically computed convergence rate. The errors are given for \| u  - uh\| and
\| q - qh\| in the L2

\alpha -norm for different weights \alpha . Convergence was tested for different
element degrees k, with lowest-order k = 1 given in Tables 6.1(a) and 6.1(b), k = 2
in Tables 6.1(c) and 6.1(d), and k = 3 in Tables 6.1(e) and 6.1(f).

Optimal convergence is observed only in Table 6.1(a). The convergence is found
to be of order s = 1 independently of the weight \alpha , i.e.,

\| u - uh\| L2
\alpha (\Omega ) \leq Ch.(6.7)

To understand this result, let us note that the error rate in (5.3) requires u \in H1(\Omega ).
In this case, one has u \in H1

\alpha (\Omega ) for any \alpha > 0; formally, this can be interpreted
as u barely evading H1(\Omega ). Previously, the approximation of this type of problem
has been studied in [4] using the conformal finite element method with \BbbP 1 elements.
Therein, the convergence rate was shown to be of order h1 - \epsilon for any \epsilon > 0. Applying
a similar logic to the mixed finite element method, we formally expect \| u - uh\| L2(\Omega )

to converge with order s = 1  - \epsilon for arbitrarily small \epsilon > 0. As this \epsilon is allowed
arbitrarily small, the \epsilon loss of convergence need not be apparent in the numerical test
case.

The remaining convergence rates, conversely, were all found to scale with the error
norm weight. The following relationship was observed:

\| u - uh\| L2
\alpha (\Omega ) \leq Ch\alpha +1(6.8)
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Table 6.1
Convergence rates obtained using the (standard) mixed finite element method, as described by

(5.1a)--(5.1b), measured in the standard (\alpha = 0) and weighted L2
\alpha -norms. The results are given

for lowest-order \BbbR \BbbT 1 \times \BbbD \BbbG 0 elements in (a)--(b), \BbbR \BbbT 2 \times \BbbD \BbbG 1 elements in (c)--(d), and \BbbR \BbbT 3 \times \BbbD \BbbG 2

elements in (e)--(f).

(a) \| u - uh\| L2
\alpha (\Omega ) with k = 1

h
\alpha 

0 0.25 0.5 0.75

16 2.1e-1 2.5e-2 1.6e-2 1.1e-2
32 9.9e-2 1.3e-2 8.2e-3 5.4e-3
64 4.8e-2 6.9e-3 4.1e-3 2.7e-3
128 2.3e-2 3.6e-3 2.1e-3 1.3e-3

s 1.06 0.96 0.99 1.00

(b) \| \bfq  - \bfq h\| L2
\alpha (\Omega ) with k = 1

h
\alpha 

0.25 0.5 0.75

16 5.1e-1 2.6e-1 1.4e-1
32 4.3e-1 1.9e-1 8.9e-2
64 3.7e-1 1.3e-1 5.4e-2
128 3.1e-1 9.5e-2 3.3e-2

s 0.25 0.50 0.73

(c) \| u - uh\| L2
\alpha (\Omega ) with k = 2

h
\alpha 

0 0.25 0.5 0.75

16 8.3e-2 8.2e-3 3.8e-3 1.8e-3
32 4.0e-2 3.4e-3 1.3e-3 5.6e-4
64 1.9e-2 1.5e-3 4.8e-4 1.7e-4
128 8.8e-3 6.1e-4 1.7e-4 5.0e-5

s 1.08 1.25 1.50 1.73

(d) \| \bfq  - \bfq h\| L2
\alpha (\Omega ) with k = 2

h
\alpha 

0.25 0.5 0.75

16 5.5e-1 2.5e-1 1.2e-1
32 4.7e-1 1.8e-1 7.0e-2
64 3.9e-1 1.3e-1 4.2e-2
128 3.3e-1 8.9e-2 2.5e-2

s 0.25 0.50 0.75

(e) \| u - uh\| L2
\alpha (\Omega ) with k = 3

h
\alpha 

0 0.25 0.5 0.75

16 4.5e-2 5.2e-3 2.3e-3 1.0e-3
32 2.1e-2 2.2e-3 8.1e-4 3.1e-4
64 1.0e-2 9.2e-4 2.9e-4 9.2e-5
128 4.7e-3 3.9e-4 1.0e-4 2.7e-5

s 1.09 1.25 1.50 1.75

(f) \| \bfq  - \bfq h\| L2
\alpha (\Omega ) with k = 3

h
\alpha 

0.25 0.5 0.75

16 6.6e-1 2.9e-1 1.3e-1
32 5.5e-1 2.1e-1 7.8e-2
64 4.7e-1 1.5e-1 4.6e-2
128 3.9e-1 1.0e-1 2.8e-2

s 0.25 0.50 0.75

for k \in \{ 2, 3\} and

\| q - qh\| L2
\alpha (\Omega ) \leq Ch\alpha (6.9)

for k \in \{ 1, 2, 3\} . The convergence rate was not found to increase with the polynomial
degree k. This is a natural result, as the solutions do not have enough regularity
to benefit from higher-order elements. To increase the convergence order, one could
instead perform a grading of the mesh, as was proposed in, e.g., [17, 4]. We omit doing
that here, as we are interested in solving cases where there are a great number of line
sources. It would then be computationally infeasible to perform a mesh refinement
around each line segment.

Table 6.2 shows the convergence rates for \| ur  - ur,h\| and \| qr  - qr,h\| in different
norms. The variable s again gives the numerically computed convergence rate. Only
standard (unweighted) norms are used, as the remainder terms ur and qr are not
singular. Convergence is tested using element degrees k \in \{ 1, 2\} . As the remainder
terms enjoy improved regularity compared to the full solution, we here observe a
significant improvement in the convergence rate. To be more precise, we observe here
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Table 6.2
Convergence rates obtained when solving for the regular terms ur and qr with the mixed finite

element method, as described by (5.2a)--(5.2b). Optimal order convergence is seen in (a) using
\BbbD \BbbG k - 1 \times \BbbR \BbbT k elements with degree k = 1.

(a) k = 1

h \| ur  - ur,h\| L2(\Omega ) \| qr  - qr,h\| H(div;\Omega )

1/2 1.1e-2 1.8e-1
1/4 5.3e-3 9.6e-2
1/8 2.6e-3 5.0e-2
1/16 1.3e-3 2.6e-2

s 1.0 1.0

(b) k = 2

h \| ur  - ur,h\| L2(\Omega ) \| qr  - qr,h\| H(div;\Omega )

1/2 2.0e-3 3.1e-1
1/4 5.2e-4 1.4e-1
1/8 1.1e-4 6.1e-2
1/16 2.5e-5 2.6e-2

s 2.1 1.2

the convergence rates

\| ur  - ur,h\| L2(\Omega ) \leq Chk for k = 1, 2,(6.10)

\| qr  - qr,h\| L2(\Omega ) \leq Ch for k = 1, 2.(6.11)

Thus, the approximation converges optimally for lowest-order elements. By calcula-
tion, one finds (ur,qr) \in H3 - \epsilon (\Omega ) \times (H2 - \epsilon (\Omega ))3 for any \epsilon > 0. The error rate is
then better than what is expected in (5.3). This can be explained by noting that the
solution lies arbitrarily close to H3(\Omega )\times (H2(\Omega ))3. For the flux qh, a further increase
in the element degree is not seen to increase the convergence. This is to be expected,
as q is not arbitrarily close to (H3(\Omega ))3; thus, it is not regular enough to benefit from
this increase in the polynomial degree.

6.2. Convergence test with nontrivial geometry. In the previous section,
the singularity removal-based mixed finite element method was found to significantly
improve the approximation properties of solutions to (3.1a)--(3.1b). In this section,
we will test the capabilities of this method when the line sources are concentrated
on a nontrivial geometry. To do so, we consider a data set describing the vascular
network in the dorsal skin flap of a rat carcinoma [45]. The skin flap preparation
itself has overall dimension of 550\times 520 \times 230 \mu m3; 106 microvessels were identified
within the skin flap, with diameters ranging between 5.0 and 32.2 \mu m and lengths
ranging between 16.0 and 210.1 \mu m. Due to scale disparities between these values,
we therefore consider the skin flap to be a 3D domain \Omega and the vascular network to
be a 1D graph \Lambda , as is illustrated in Figure 6.2(a).

As test case, we choose the manufactured solutions

ua =

106\sum 
i=1

fiGi +
1

4\pi 
(r\bfb i

 - r\bfa i
) , qa =  - \nabla ua(6.12)
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(a) The (3D) simulation domain \Omega and the (1D) graph \Lambda representing the vascular network
of a rat tumor.

(b) The discretized reconstructed total pressure uh.

(c) The discretized reconstruction of total flux \bfq h.

Fig. 6.2. The pressure (b) and flux (c) solutions obtained when solving (1.1a)--(1.1c) using the
singularity removal--based mixed finite element on a problem with nontrivial geometry \Lambda .
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Table 6.3
Error and convergence rates obtained when solving for the regular terms ur and qr on the test

problem used in section 6.2.

h \| ur,a  - ur,h\| L2(\Omega ) \| qr,a  - qr,h\| L2(\Omega )

1/2 5.55e-4 4.50e-3
1/4 2.87e-4 2.28e-3
1/8 1.47e-4 1.12e-3
1/16 7.37e-5 6.17e-4

s 1.0 1.0

with fi = 1 + \alpha i\tau \tau \tau i \cdot (x  - ai) for some \alpha i \in \BbbR . By Remark 1, this solution can be
split into higher- and lower-regularity terms by defining (ur,qr) as the pair solving
(4.4a)--(4.4c) with

fr =
1

2\pi 

106\sum 
i=1

\biggl( 
1

r\bfa i

 - 1

r\bfb i

\biggr) 
, ur,0 =

1

4\pi 

106\sum 
i=1

(r\bfb i  - r\bfa i) .(6.13a)

The analytic solutions for the remainders are then given by

ur,a =
1

4\pi 

106\sum 
i=1

(r\bfb i  - r\bfa i) , qr,a =  - \nabla ur,a.(6.14)

Figures 6.2(b) and 6.2(c) show the pressure profile and flux solutions, respectively.
Table 6.3 lists the error rates and convergence rates obtained from solving this test
problem with the singularity removal--based mixed finite element method with \BbbD \BbbG 0\times 
\BbbR \BbbT 1 elements. As in section 6.1, s denotes the numerically computed convergence rate.
The convergence rates for ur,h and qr,h are observed to be of optimal order. Moreover,
convergence is obtained using coarse meshes h = \{ 1/2, 1/4, 1/8, 1/16\} . Convergence can
evidently be achieved independently of the length scale of \Lambda .

7. Conclusion. In this work, we have considered the analysis and approximation
of the dual-mixed Poisson problem posed in a (3D) domain with a (1D) line source in
the right-hand side. The pressure u and flux q solving this problem are well known to
be singular due to the dimensional gap between domain and source term. We showed
that the solutions of this problem exist in suitably weighted Sobolev spaces, where
the L2-norms are weighted by the distance to the line; this allows the solution to be
singular on the line itself. The flux solution q was found to require a non-Muckenhoupt
weight function for its divergence; in particular, we have \nabla \cdot q \in L2

\alpha +1�\subset L1(\Omega ) for
0 < \alpha < 1.

Approximating the solution with a mixed finite element method shows that the
flux fails to converge in the standard (unweighted) L2-norm. To deal with this, we
use a splitting of the solution into higher- and lower-regularity terms to define a sin-
gularity removal--based mixed finite element method where only the higher-regularity
term is approximated. This method is shown to yield significantly improved conver-
gence rates; in particular, it yields optimal convergence rates for lowest-order Raviart--
Thomas elements on quasi-uniform grids.
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