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ABSTRACT
Objectives  Fatigue is common and severe in primary 
Sjögren’s syndrome (pSS). The aim of this study was to 
identify genetic determinants of fatigue in pSS through a 
genome-wide association study.
Methods  Patients with pSS from Norway, Sweden, UK 
and USA with fatigue and genotype data available were 
included. After genotype imputation and quality control, 
682 patients and 4 966 157 genetic markers were 
available. Association analysis in each cohort using linear 
regression with fatigue as a continuous variable and meta-
analyses between the cohorts were performed.
Results  Meta-analysis of the Norwegian and Swedish 
cohorts identified five polymorphisms within the same 
linkage disequilibrium block at the receptor transporter 
protein 4 (RTP4)/MASP1 locus associated with fatigue 
with genome-wide significance (GWS) (p<5×10−8). 
Patients homozygous for the major allele scored 25 mm 
higher on the fatigue Visual Analogue Scale than patients 
homozygous for the minor allele. There were no variants 
associated with fatigue with GWS in meta-analyses of the 
US/UK cohorts, or all four cohorts. RTP4 expression in pSS 
B cells was upregulated and positively correlated with the 
type I interferon score. Expression quantitative trait loci 
effects in whole blood for fatigue-associated variants at 
RTP4/MASP1 and levels of RTP4 and MASP1 expression 
were identified.
Conclusion  Genetic variations at RTP4/MASP1 are 
associated with fatigue in Scandinavian pSS patients. RTP4 
encodes a Golgi chaperone that influences opioid pain 
receptor function and MASP1 is involved in complement 
activation. These results add evidence for genetic influence 
over fatigue in pSS.

INTRODUCTION
Primary Sjögren’s syndrome (pSS) is a 
chronic systemic autoimmune disease. 
Fatigue, described as ‘an overwhelming sense 
of tiredness, lack of energy and feeling of 

exhaustion’, affects 70%–80% of pSS patients 
and causes a marked reduction of quality 
of life.1–3 The exact mechanisms leading to 
fatigue are unknown. Activation of innate 
immunity and proinflammatory cytokines are 
recognised as important factors.4 5 Evolution-
arily, fatigue can be considered to be a part 
of sickness behaviour, a protective behaviour 
that increases the chances of survival during 
acute sickness.6 This behaviour turns inexpe-
dient in states of chronic inflammation.

Key messages

What is already known about this subject?
►► Fatigue is a common phenomenon in chronic in-
flammatory diseases including primary Sjögren’s 
syndrome (pSS).

►► Genetic and epigenetic studies indicate a genetic 
component of fatigue.

What does this study add?
►► Our study demonstrates that genetic variants are as-
sociated with fatigue in pSS and specifically that the 
major allele of the indel rs60344347 at the receptor 
transporter protein 4 (RTP4)/MASP1 locus was asso-
ciated with higher fatigue in Scandinavian patients 
with pSS.

►► RTP4 encodes a protein involved in pain perception 
and may represent a functional link between pain 
and fatigue.

How might this impact on clinical practice or 
further developments?

►► Insight into genetic susceptibility to fatigue encour-
ages a better understanding of the phenomenon, 
which may facilitate improved patient education, 
possibilities for precision medicine and eventually 
development of targeted treatment.
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Fatigue seems to persist in the individual pSS patient.3 7 
This persistence, as well as the observation that patients 
with similar disease activity often report large differences 
in fatigue severity, could indicate that genetic variation 
influences fatigue. Polymorphisms in genes encoding 
tumour necrosis factor-α, interleukin (IL)1β, IL4 and IL6 
have been associated with fatigue in various conditions.8 9 
We have previously reported that genes involved in regu-
lation of innate and adaptive immunity are differentially 
methylated in pSS subjects with high vs low fatigue.10 Our 
hypothesis is that specific genes contribute to regulation 
of fatigue and that genetic variation can influence fatigue 
severity. Consequently, we sought to identify genetic vari-
ants implicated in fatigue in pSS through a Genome-
Wide Association Study (GWAS).

MATERIALS AND METHODS
Patient and public involvement statement
Patients were not involved in the planning or conduction 
of the study.

Subjects
The patients were part of a larger GWAS of pSS,11 and the 
690 patients with both genotype and fatigue data avail-
able were included in this study (online supplemental 
figure S1). All patients fulfilled the American-European 
Consensus Group (AECG) criteria for pSS,12 but because 
the study was performed prior to the publication of 
the EULAR primary Sjögren's syndrome disease activity 
index (ESSDAI)13 in 2010, validated disease activity 
measures were not available. Untreated hypothyreosis 
was an exclusion criterion. Patients were recruited from 
Norway (n=227) (Bergen (n=135), Stavanger (n=92)), 
Sweden (n=140) (Malmö (n=82), Uppsala (n=58)), UK 
(n=128) (UK Primary Sjögren’s Syndrome Registry) and 
USA (n=195) (Oklahoma Medical Research Founda-
tion, OMRF). After genotyping quality control (QC) 682 
patients remained for further analyses (table 1).

Measures of fatigue
The patients included in the study were evaluated for 
fatigue with two instruments; the fatigue Visual Analogue 
Scale (fVAS; all patients from Norway, UK, USA, Uppsala, 
and n=24 patients from Malmö) and the fatigue item of 
the EULAR Sjögren’s Syndrome Patient Reported Index 

(ESSPRI; n=58 patients from Malmö).14 15 The fVAS is a 
100 mm horizontal line with vertical anchors. The Norwe-
gian, Swedish and UK edition queried about fatigue 
during the last week using the wording ‘No fatigue’ at the 
left anchor (0 mm) and ‘Fatigue as bad as it can be’ at the 
right anchor (100 mm). The USA fVAS edition queried 
about fatigue during the last 3 days with the question 
‘How would you rate your energy level?’ and the word-
ings ‘Plenty of energy’ and ‘No energy’ at the left and 
right anchor, respectively. The ESSPRI fatigue item is a 
Likert scale (0–10) with the question ‘How severe has your 
fatigue been the last two weeks?’. Patient ESSPRI fatigue 
scores were multiplied by 10 to achieve the same range 
(0–100) as the fVAS. Both instruments were assessed 
simultaneously in 58 patients showing high correlation 
(Spearman’s r=0.87, p<0.0001) (online supplemental 
figure S2).

Genotyping, QC and imputation
The Swedish and Norwegian cohorts were genotyped 
using the Illumina OmniExpressExome array at the 
SNP&SEQ Technology Platform, National Genomics 
Infrastructure, Science for Life Laboratory, Uppsala, 
Sweden. The UK and USA cohorts were genotyped on 
the Illumina Omni1-Quad array at the Clinical Genomics 
Core of the OMRF as previously described.11 Genotype 
calling was performed using GenomeStudio (Illumina). 
QC was carried out within the PLINK V.1.9 software frame-
work.16 Only probes present on both genotyping arrays 
were included in the analysis. Variants with a genotype call 
rate <95%, Hardy-Weinberg equilibrium p<1×10−4 and/
or minor allele frequency (MAF)  <5% were excluded. 
Samples with <97% call rate or excessively increased hete-
rozygosity were excluded, and only samples from unre-
lated individuals were kept. Principal component anal-
ysis (PCA) was performed using Eigensoft (V.6.0.2) to 
account for population stratification. First, study samples 
were projected to a combined reference panel (1000 
Genomes and Human Genome Diversity Project)17 18 
and only samples clustering together with the European 
population were kept (online supplemental figure S3A). 
Second, to increase cohort homogeneity, an unsuper-
vised PCA was performed where samples <5 SD from the 
corresponding cohort mean in the first three dimensions 
were kept (online supplemental figure S3B). After QC, 

Table 1  Clinical characteristics of patients with primary Sjögren’s syndrome included in the association analyses after 
genotyping quality control

Total
(n=682)

Norway
(n=225)

Sweden
(n=138)

UK
(n=128)

USA
(n=191)

Age, years (mean±SD) 58.8±12.8 58.0±12.1 55.2±12.3 67.2±10.8 56.9±13.0

Females, n (%) 638 (93.5) 206 (91.2) 127 (92.0) 123 (96.1) 182 (95.3)

Anti-SSA antibodies (%) 74 72 76 88 66

Anti-SSB antibodies (%) 50 40 52 70 46

fVAS, mm (mean±SD) 56.5±27.2 61.1±27.7 59.9±24.5 54.2±28.2 50.2±26.5

fVAS, fatigue Visual Analogue Scale; SSA, Sjӧgren's syndrome-related antigen A; SSB, Sjӧgren's syndrome-related antigen B.
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682 samples and 451 031 genetic markers were available 
for imputation.

Prephasing using SHAPEIT2 and genotype imputation 
using IMPUTE2 with the 1000 Genomes phase 3 inte-
grated haplotypes as reference panel were performed.19 
After QC (IMPUTE2 info score  ≥0.5 and MAF  ≥5%) a 
total of 4 966 157 markers were available for GWAS.

Statistical and bioinformatics analysis
The combined genotyped and imputed dataset was 
used in all analyses. First, association analyses in each 
of the four cohorts were performed separately using a 
linear regression model as implemented in SNPTEST 
V.2.5.2 with fatigue as continuous variable (0–100), and 
including sex and the five first principal components 
as covariates. Results are presented with beta-value and 
SE referring to the regression coefficient of the associa-
tion analysis. Beta-values represent the effect size of the 
minor allele on the level of fatigue as determined by fVAS 
(mm). Then meta-analysis of the Norwegian and Swedish 
cohorts, and the UK and USA cohorts, respectively, was 
performed in PLINK V.1.9 using a fixed effect weighted 
z-score approach. Finally, a meta-analysis including all 
four cohorts was conducted. Genome-wide significance 
(GWS) was defined as p<5×10−8, and suggestive signifi-
cance as p<1×10−5. Results were plotted using R Biocon-
ductor (https://​bioconductor.​org/) and LocusZoom 
(http://​locuszoom.​org/). For annotation and functional 
characterisation HaploReg V.4.1 (http://​pubs.​broadin-
stitute.​org), Human Protein Atlas (http://​proteinatlas.​
org/) and blood expression quantitative trait loci (eQTL) 
Browser (http://​genenetwork.​nl/​bloodeqtlbrowser/) 
were queried.

Receptor transporter protein 4 gene and protein expression 
analyses
Transcriptome data of peripheral CD19+ B cells were 
available from 16 pSS patients (Uppsala, Sweden) and 
20 matched healthy controls.20 As previously described, 
mRNA expression was analysed within the Cufflinks/
Cuffdiff pipeline, and type I interferon (IFN) scores 
were calculated based on mRNA expression levels of 
IFI35, IFITM1, IRF7, MX1 and STAT1.21 Correlations were 
analysed using Spearman’s rank test, and continuous 
variables using Mann-Whitney U test applying p<0.05 
as significance cut-off. Receptor transporter protein 4 
(RTP4) concentration in plasma was measured by ELISA 
in 92 pSS patients (Stavanger, Norway). All samples were 
analysed in duplicate and ELISA plates were read on a 
Synergy H1 microplate reader. Linear regression was 
performed with fVAS as the dependent variable and 
RTP4 protein level as the constant.

RESULTS
Fatigue
All four cohorts reported a high level of fatigue as 
defined as mean fVAS  >50. However, fatigue scores 
differed between the cohorts with significantly lower 

fVAS in the UK and USA cohorts compared with the 
Swedish and Norwegian cohorts (table  1, figure  1 and 
online supplemental figure S4). Fatigue scores did not 
correlate significantly with age (rs=−0.06, p=0.12) (online 
supplemental figure S5) or haemoglobin-levels (tested 
in the Norwegian and Swedish cohort only, results not 
shown) and did not differ significantly between patients 
positive for Sjögren’s syndrome-related antigen A (SSA) 
autoantibodies compared with patients negative for SSA 
(tested in the Norwegian and Swedish cohorts, p=0.34) 
(online supplemental table S1).

Genome-wide association analysis
Separate analyses in each of the four cohorts
To identify genetic determinants of fatigue in pSS, we 
used the genome-wide imputed dataset of 4 966 157 auto-
somal genetic markers (MAF ≥5%). First, we performed 
association analyses in each of the four cohorts separately 
(Norway, Sweden, UK, USA). In the Norwegian cohort 
this analysis revealed 45 variants at six independent loci 
reaching suggestive significance (p<1×10−5), with the 
most significant signal for an intronic single nucleotide 
polymorphism (SNP) at the Chromodomain helicase 
DNA binding protein 6 gene (rs1969700, p=8.5×10−7, 
beta (SE)=12.89 (2.55)) (online supplemental table S2). 
The analysis in the Swedish cohort found 95 variants 
(p<1×10−5) at eight independent loci. One intronic variant 
at the Rho GTPase activating protein 26 (ARHGAP26) 
gene exceeded GWS (rs10039856, p=9.4×10−9, beta 
(SE)=−32.84 (5.29)) (online supplemental table S3). In 
addition, strong associations were observed for variants 
upstream of the RTP4 gene and the Mannan binding 
lectin serine peptidase 1 (MASP1) gene (top variant 
rs60344347, p=1.1×10-6, Beta (SE)=−14.96 (2.94)).

Figure 1  Boxplot of fVAS scores (in mm) in the Norwegian, 
Swedish, UK and USA cohorts of patients with primary 
Sjögren’s syndrome. Boxes represent median and 
IQR, whiskers indicate total range with p<0.05 defining 
significance. fVAS, fatigue Visual Analogue Scale.
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Association analysis of the UK cohort found 88 variants 
at twelve independent loci (p<1×10−5), with the top SNP 
at tumour suppressor candidate 3 gene (rs12679528, 
p=1.2×10−7, Beta (SE)=17.95 (3.21)) (online supple-
mental table S4). The separate analysis in the US cohort 
identified 25 suggestive variants at eight indepen-
dent loci, with the top signal at the Xin actin binding 
repeat containing 2 gene (rs7605830, p=2.6×10−6, beta 
(SE)=−28.18 (5.76)) (online supplemental table S5).

Meta-analyses
Since mean and distribution of fatigue scores were 
similar in Norway and Sweden with significantly higher 
fatigue than in the UK and US cohorts, we hypothe-
sised that patients from the two Scandinavian countries 
may share a common genetic predisposition to fatigue 
(table  1, figure  1, online supplemental figure S4). We, 
therefore, performed separate meta-analyses of Norway/
Sweden and UK/USA, respectively. The meta-analysis in 
the Norwegian and Swedish cohorts revealed five poly-
morphisms (one insertion/deletion (indel) and four 
SNPs) within the same linkage disequilibrium (LD) block 
(R2 between 0.94–1.0 to top variant rs60344347) located 
between RTP4 and MASP1 on chromosome 3 that 
exceeded GWS (figure 2A,B). The minor allele of these 
variants was associated with less fatigue with a regression 
coefficient of the top variant rs60344347 (p=3.9×10−8) 
of beta (SE)=−12.5 (3.08) (table 2). This implicates that 
compared with an individual being homozygote for the 
minor allele, on average a heterozygote individual will 
have a 12.5 mm higher fVAS score, and correspond-
ingly, an individual homozygote for the major allele (risk 
allele) has a 25 mm higher fVAS score (table  2, online 

supplemental figure S6). Suggestive significance was 
exceeded by three additional SNPs within the RTP4/
MASP1 region and 45 variants located at twelve other 
independent loci (figure  2A,B, online supplemental 
table S6). Of these, SNPs at endoplasmic reticulum to 
nucleus signalling 1 (ERN1) with top variant rs75160892 
(p=9.1×10−7) were the second most significantly associ-
ated region after RTP4/MASP1.

The meta-analysis of the UK and USA cohorts found 
no associations exceeding GWS. However, 34 variants at 
six loci reached suggestive significance, including the 
PR/SET domain 1 (PRDM1) gene (top SNP rs12175002, 
p=1.0×10−6) (online supplemental table S7). No associ-
ation was found between fatigue and polymorphisms 
in the RTP4/MASP1 locus in the UK and USA cohorts 
(online supplemental table S8). Finally, we performed 
a meta-analysis including all four cohorts and observed 
two suggestive associations with fatigue; an intronic 
variant at the LIM homeobox 1 locus (LHX1/LHX1-
DT) on chromosome 17 (rs10048170, p=9.6×10−7) and 
at the LOC102723654 on chromosome 5 (rs4509075, 
p=3.0×10−6) (online supplemental table S9).

RTP4 gene expression and protein expression
Several genetic variants exceeding GWA were identified 
at the RTP4/MASP1 locus in the meta-analysis of the 
Scandinavian cohorts. We, therefore, aimed to further 
characterise potential functions of RTP4/MASP1 and 
the fatigue-associated variants by investigating gene and 
protein expression data. RTP4 has a low tissue specificity 
and is widely expressed in various tissues and cell types. 
MASP1 expression is specifically seen in liver, brain, female 
tissues and muscular tissues. We queried public databases 

Figure 2  GWAS meta-analysis results of the Scandinavian cohorts. (A) Manhattan plot illustrating the –log 10 p value of 
all genetic variants analysed in the GWAS meta-analysis of the Norwegian and Swedish cohorts against their chromosomal 
position. The red horizontal line represents the genome-wide significance threshold (p<5×10−8), the blue line represents 
the suggestive significance threshold of p<1×10−5. (B) LD link plot with the association p-values on the –log 10 scale of all 
analysed variants in a 150 kb window around the top associated variant (indel rs60344347) identified in the meta-analysis 
of the Norwegian and Swedish cohorts plotted against their chromosomal position using the top biallelic SNP (rs7611640) 
as query variant (indicated in blue) for the regional LD structure in the European reference population, where light red means 
low LD and dark red corresponds to full LD (R2=f) with the query variant. GWAS, genome-wide association study; LD, linkage 
disequilibrium; RTP4, receptor transporter protein 4

copyright.
 on M

arch 14, 2022 at U
niversity of B

ergen. P
rotected by

http://rm
dopen.bm

j.com
/

R
M

D
 O

pen: first published as 10.1136/rm
dopen-2021-001832 on 14 D

ecem
ber 2021. D

ow
nloaded from

 

https://dx.doi.org/10.1136/rmdopen-2021-001832
https://dx.doi.org/10.1136/rmdopen-2021-001832
https://dx.doi.org/10.1136/rmdopen-2021-001832
https://dx.doi.org/10.1136/rmdopen-2021-001832
https://dx.doi.org/10.1136/rmdopen-2021-001832
https://dx.doi.org/10.1136/rmdopen-2021-001832
https://dx.doi.org/10.1136/rmdopen-2021-001832
https://dx.doi.org/10.1136/rmdopen-2021-001832
https://dx.doi.org/10.1136/rmdopen-2021-001832
https://dx.doi.org/10.1136/rmdopen-2021-001832
https://dx.doi.org/10.1136/rmdopen-2021-001832
http://rmdopen.bmj.com/


5Norheim KB, et al. RMD Open 2021;7:e001832. doi:10.1136/rmdopen-2021-001832

Sjögren syndromeSjögren syndromeSjögren syndrome

eQTL effects of the genetic risk variants identified in the 
Scandinavian pSS cohorts. eQTLs were reported for the 
fatigue-associated variant rs7611640 and for two further 
variants within the same LD block (R2=0.79 to rs6797770, 
and R2=0.78 to rs1518868) and whole blood gene expres-
sion levels of RTP4 and MASP1 (table  3).22 The minor 
allele of the genetic variant rs7611640 was associated with 
decreased whole blood mRNA expression in both RTP4 
(p=1.4×10−10) and MASP1 (p=2.4×10−3).

Analysis of gene expression based on RNA-sequencing 
in pSS patients (n=16) and healthy controls (n=20) 
from our previous studies revealed upregulation of 
RTP4 expression in pSS B cells compared with controls 
(p<5×10−5, fold change=3.4) (figure  3A), while MASP1 
expression was generally low in B cells from both patients 
and controls (data not shown).20 21 In addition, we found 
a positive correlation of RTP4 gene expression with type 
I IFN scores in pSS B cells (rs=0.59, p=0.02) (figure 3B). 
While eQTLs between variants at the RTP4/MASP1 locus 
and gene expression levels of RTP4 and MASP1 have 
been reported in public databases (table 3), eQTLs could 
not be directly studied in our own dataset as the number 
of patients with both GWAS and RNA-sequencing data 
was insufficient. Investigation of a potential association 
between fatigue and RTP4 protein expression in plasma 
samples from 92 patients with pSS did not reveal a signif-
icant result (R2=0.003, p=0.6) (data not shown).

DISCUSSION
The main result of this study is the association between 
fatigue levels and the RTP4/MASP1 locus on chromosome 
3 with five variants exceeding GWS in the meta-analysis 
of the Norwegian and Swedish pSS cohorts. The major 
allele of the top variant showed a strong association with 
elevated levels of fatigue. The associated variants at this 
locus were in high LD to each other, located upstream of 
the RTP4 and MASP1 coding regions.

RTP4 encodes the RTP4, a Golgi chaperone involved 
in the organisation of γ-δ opioid pain receptors. The 
RTP4 protein enables proper assembly and routing of the 
receptors to the cell surface and interferes with signal-
ling.23 Pain can be considered a ‘danger signal’ analogue 
to how pathogens can induce sickness behaviour during 
infections.5 24 25 Fatigue is a dominant feature in the sick-
ness behaviour response, and the observation of the major 
allele associated with more fatigue severity may therefore 
be advantageous. Another aspect of sickness behaviour 
response is mental depression. Some studies indicate the 
involvement of RTP4 in severe depression and suicidal 
behaviour during IFN-a treatment of hepatitis C infec-
tions.26 27 These results were extended in a mouse model 
mimicking IFN-a-related depression; concomitant stimu-
lation with IFN-α and a toll-like receptor (TLR) 3 agonist 
was necessary to achieve upregulation of IFN-inducible 
genes, of which RTP4 reached maximum levels within 24 
hours.28 Many patients with pSS or other autoimmune 
diseases have an ‘IFN signature’ on the gene expression Ta
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level indicating the activation of this pathway.29 30 eQTLs 
between the fatigue-associated variants at the RTP4/
MASP1 locus and gene expression levels of RTP4 and 
MASP1 have been reported.22 Both are IFN-induced 
genes, and the minor allele, that is, the variant associ-
ated with less fatigue, showed reduced mRNA expression 
of RTP4 and MASP1 in whole blood. MASP1 encodes 
a serine protease important for the lectin pathway of 
complement activation, again strengthening the link 
between inflammation and fatigue.31 MASP1 cleaves C2 
and gives rise to a number of highly active complement 
components. Complement factor B has been associated 
with fatigue in a proteomics study of cerebrospinal fluid 
(CSF) in pSS.32 To further characterise a possible func-
tional impact of genetic variants in pSS-related fatigue, 
we assessed gene and protein expression levels of RTP4 
in pSS patients. Increased mRNA expression of RTP4 in 
patients compared with controls was found in peripheral 
B cells, supporting the hypothesis of a putative func-
tional role for RTP4 in fatigue. However, no correlation 
between fatigue severity and RTP4 protein expression 
in plasma was observed. It is unknown whether RTP4 
protein expression in plasma reflects intracellular and 
CSF RTP4 levels and activity, and whether complex regu-
latory mechanisms are involved. Additional studies to 
further dissect the functional molecular impact of RTP4 
and MASP1 in pSS-related fatigue are therefore needed.

Further, the meta-analysis of the Norwegian and 
Swedish cohorts identified three SNPs within the RTP4/
MASP1 locus and 45 variants at eleven other loci reaching 
suggestive significance (p<1×10−5). This included ERN1 
which encodes the Serine/threonine-protein kinase/
endoribonuclease inositol-requiring enzyme 1 (IRE1a), 
a transmembrane resident endoplasmatic reticulum 
protein important for sensing cellular stress signals. 
There is a complex interaction between IRE1a and the 
stress-inducible variant of HSP90a33 which has been asso-
ciated to severe fatigue in pSS.34 A possible mechanism 
for HSP90 signalling of fatigue is binding of HSP90α to 
TLR4 on microglia inducing fatigue through increased 
IL-1β production.34 35 The exact role of ERN1 and its 
possible influence on regulatory pathways for fatigue 
remain to be elucidated.

While the meta-analysis of the UK and USA cohort 
did not identify any association exceeding GWS, six loci 
reached suggestive significance, among others variants at 
the PRDM1 locus with rs12175002 as the top SNP. PRDM1 
encodes a transcription factor expressed by T and B 
cells involved in downregulation of immune responses 
and repression on IFN-β gene expression. The function 
of PDRM1 fits well with the hypothesis that downregu-
lating mechanisms of inflammation may be associated 
with fatigue. Genetic variants at PRDM1 have previously 
been associated with Crohn’s disease and systemic lupus 
erythematosus.36 37

Many animal and human studies have documented 
the importance of proinflammatory cytokines for gener-
ation of fatigue, especially IL-1β, and treatment with IL-1 
blocking agents has alleviated fatigue in patients with 
rheumatoid arthritis, diabetes type 2, pSS as well as in 
cancer.32 34 38–42 There were no direct associations with 
SNPs in genes coding for cytokines in our data, but as 
discussed above the pathways of the immune system are 
complex and it is difficult to pinpoint one specific cyto-
kine or molecule, rather a number of signalling pathways 
interact and generate fatigue.32

Several other studies aiming to explore the genetics of 
fatigue in various conditions have been conducted.43–46 
Although the top associated variants differ considerably 
between studies, the general trend points to association 
with genes involved in regulation of innate immunity, in 
line with the sickness behaviour theory.

There are some limitations to this study. The number 
of cases is relatively small, however, the 682 individuals 
included after rigorous QC constitute the largest cohort 
in any reported GWAS of fatigue in inflammatory disease 
to date. In this study we did not perform any genetic anal-
yses of sub-phenotypes of pSS as we believe this would 
reduce the power to detect genetic associations. Fatigue 
is a universal phenomenon observed across a wide range 
of inflammatory, neurodegenerative, cancer and other 
diseases, without good evidence that some diseases or 
conditions have more, or less, fatigue than the others.25 
In the current study, 505 patients were SSA positive 
and 177 were SSA negative, both groups too small to 
perform GWAS with reasonable power to detect genetic 

Table 3  Cis-Eqtl effects between genetic variants associated with the level of fatigue in PSS and whole blood gene 
expression levels at the RTP4/MASP1 locus

SNP SNP position Major/minor allele eQTL gene eQTL Z-score P value*

rs7611640 3:188 561 096 G/A RTP4 −6.41 1.4×10–10

MASP1 −3.04 2.4×10–3

rs6797770 3:188 567 203 T/C RTP4 −7.2 5.9×10–13

MASP1 −3.64 2.8×10–4

rs1518868 3:188 572 262 T/C RTP4 −7.33 2.4×10–13

MASP1 −3.56 3.7×10–4

*P value for the eQTL between the SNP and whole blood mRNA expression of RTP4, respectively, MASP1, according to Westra et al.18

eQTL, expression quantitative trait locus; MASP1, mannan binding lectin serine peptidase 1; PSS, primary Sjögren’s syndrome; RTP4, 
receptor transporter protein 4.
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associations specific for one of the subphenotypes. 
However, comparing fatigue levels in the 367 subjects in 
the Scandinavian cohorts stratified for SSA/SSB status we 
found no difference in fatigue levels between SSA posi-
tive or negative, nor between SSA/SSB positive or nega-
tive patients.

Depression scores were not available for all patients 
and could not be included as a covariate in the regres-
sion analyses. However, in inflammatory conditions, 
depression and fatigue probably share some signalling 
pathways, making it potentially erroneous to adjust for 
depression.47 48

Disease activity measures were not available as the data 
were collected prior to the publication of ESSDAI.13 We 
cannot exclude the possibility that correction for disease 
activity could have had an impact on the results. However, 
across diseases, influence of disease activity measures on 
fatigue scores appears to be a phenomenon associated 
with the use of disease-specific fatigue instruments that 
comprise elements of disease activity or other disease 
features, not solely those related to fatigue. This asso-
ciation is seldom observed in studies using generic and 
uni-dimensional fatigue instruments, like we employed 
in our study.49 50

The results from the Norwegian/Swedish meta-analysis 
were not replicated in the UK/USA meta-analysis. The 
lack of replication may indicate spurious results from the 
Scandinavian meta-analysis, however, we find discrep-
ancies in use of fatigue instruments and accordingly 
distribution of fatigue between the different cohorts a 
more plausible explanation. Variation in measurement 
procedures and socio-cultural influenced differences in 
perception of fatigue can act as contributing factors. The 
fVAS version used in Norway and Sweden has the same 
wording and was applied in the same manner at all sites. 
The questionnaire that was used in USA differs both in 
wording and timeframe (last 3 days vs 1 week), and mean 
as well as distribution of fatigue levels were different from 
the other cohorts. The words ‘Fatigue as bad as it can be’ 
at the right end of the fVAS was used in the Norwegian, 
Swedish and UK cohorts, while the words ‘No energy’ was 
used in the USA cohort. It is not possible to estimate what 
this semantic difference means to the individual patients 
answering the question, but it is doubtless that it might 
influence the scoring. In addition, the centres in UK 
used a similar fVAS as in Norway and Sweden, but sent 
out the form by mail, while in Norway and Sweden the 
patients answered when visiting the rheumatology clinic.

In addition, underlying genetic heterogeneity may play 
a role. However, the MAF of associated variants at the 
RTP4/MASP1 locus was intermediate in patients from the 
UK (MAF 0.21) and USA (MAF 0.20) compared with the 
Norwegian cohort (MAF 0.17) and the Swedish cohort 
(MAF 0.23). The strengths of the current study are inclu-
sion of patients according to well-defined classification 
criteria and generic and robust measures of unidimen-
sional fatigue.

In conclusion, the results of this GWAS point to genetic 
variants that may contribute to fatigue in pSS. The top 
associated variants, RTP4/MASP1, ERN1 and PRDM1, are 
located at genes related to relevant functions and pheno-
types that fit well into the concept of sickness behaviour 
with fatigue as a major element.
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