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Liquid biopsies offer a minimally invasive sample collection, outperforming

traditional biopsies employed for cancer evaluation. The widely used mate-

rial is blood, which is the source of tumor-educated platelets. Here, we

developed the imPlatelet classifier, which converts RNA-sequenced platelet

data into images in which each pixel corresponds to the expression level of

a certain gene. Biological knowledge from the Kyoto Encyclopedia of

Genes and Genomes was also implemented to improve accuracy. Images

obtained from samples can then be compared against standard images for

specific cancers to determine a diagnosis. We tested imPlatelet on a cohort

of 401 non-small cell lung cancer patients, 62 sarcoma patients, and 28

ovarian cancer patients. imPlatelet provided excellent discrimination

between lung cancer cases and healthy controls, with accuracy equal to 1

in the independent dataset. When discriminating between noncancer cases

and sarcoma or ovarian cancer patients, accuracy equaled 0.91 or 0.95,

respectively, in the independent datasets. According to our knowledge, this

is the first study implementing an image-based deep-learning approach

combined with biological knowledge to classify human samples. The per-

formance of imPlatelet considerably exceeds previously published methods

and our own alternative attempts of sample discrimination. We show that

the deep-learning image-based classifier accurately identifies cancer, even

when a limited number of samples are available.
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1. Introduction

Sequencing technologies have enabled in-depth analy-

sis of liquid biopsies in cancer, offering a minimally

invasive sample collection. This new approach to

patient management has lately revolutionized cancer

diagnostics, allowing for accurate detection of cancer

[1], monitoring of therapy efficiency [1], tracking treat-

ment resistance [2], or detecting minimal residual dis-

ease [3]. The most widely used material for liquid

biopsy analysis is blood—the source of circulating

tumor cells (CTCs) [4], circulating tumor DNA

(ctDNA) [5], circulating microRNAs [6], extracellular

vesicles [7], and, lately, tumor-educated platelets

(TEPs) [8].

Multiple nucleic acid-based assays are applied to

study liquid biopsy material [9–12]. Since the introduc-

tion of high-throughput analysis methods, data com-

plexity and multitude of features requires more

advanced approaches than assuming a simple cutoff for

the interpretation of the final result. Machine learning

has been used to classify RNA expression microarrays

[13]. Later, more complex classifiers provided useful

prognosis estimates [13,14], classified malignant and

benign tumors [15,16], and helped to identify the primary

site of the tumor [17]. Methods such as support vector

machines (SVM), particle swarm optimization (PSO),

random forests, or elastic nets in convolutional neural

networks have been widely used in cancer research [18–
21]. The utility of SVM and PSO-enhanced SVM,

applied to spliced (intron-spanning) platelet RNA reads,

has been demonstrated for non-small cell lung cancer

(NSCLC), glioblastoma, colorectal cancer, pancreatic

cancer, breast cancer, hepatobiliary cancer, multiple

myeloma, and sarcoma [9,15–18]. However, further opti-

mization of machine-learning methodologies is required

to improve detection accuracies.

As artificial intelligence includes multiple types of

machine-learning and deep-learning approaches, we

hypothesized that medical diagnostics could also bene-

fit from this ongoing machine-learning revolution. We

observed that thromboSeq method, which relies on

PSO-enhanced SVM [22], might benefit from improve-

ments in the aspect of balanced classification accuracy,

the computational power needed, user experience, or

execution time. Therefore, we developed an enhanced

bioinformatics approach and termed the method

imPlatelet. Among different types of data analysis and

processing methods, we selected a training approach

that works similarly to a human brain. When process-

ing platelet transcriptomics data, we applied an image-

based classification which has lately introduced new

levels of precision to fields other than medicine. In

addition to creating pictures of platelet RNA reads,

we also implemented biological knowledge from Kyoto

Encyclopedia of Genes and Genomes (KEGG) data-

base [23]. This enabled us to reach higher accuracies,

even in a small cohort of patients.

First, we tested imPlatelet method on a published

cohort of NSCLC patients, sarcoma patients, former

sarcoma patients, and healthy donors [24,25]. Next, we

applied the developed tool to platelets collected from

an independent cohort of patients, unpublished before.

We focused on blood platelet RNA collected from

patients with ovarian cancer (OC). We used blood

samples collected from gynecological patients suffering

from noncancer conditions, referred to as benign con-

trols, and healthy donors as a frame of reference.

Finally, to further validate the algorithm, we applied it

to bulk RNA-sequencing tissues deposited at The Can-

cer Genome Atlas. The newly developed classification

was then compared with currently used thromboSeq

method [22]. In this work, we show a deep-learning

image-based classifier which identifies cancer cases very

accurately.

2. Materials and methods

2.1. Blood samples

The detailed list of all cases, along with their charac-

teristics, is presented in Table 1. Healthy control,

NSCLC, and sarcoma samples were collected at VU

University Medical Center (Amsterdam, the Nether-

lands), Netherlands Cancer Institute (Amsterdam, the

Netherlands), and Massachusetts General Hospital

(USA). Whole blood samples of OC patients were

collected to 6 mL EDTA Vacutainer tubes at the

Department of Gynecology, Gynecological Oncology

and Gynecological Endocrinology, Medical Univer-

sity of Gda�nsk (MUG). Benign control samples and

OC samples were collected at MUG. The study was

approved by the Independent Ethics Committee of

the MUG (NKBBN/434/2017). All patients signed

informed consent. Procedures involving human sub-

jects were in accordance with the Helsinki Declara-

tion, as revised in 1983.

Blood collected in Gda�nsk was processed within

48 h upon collection, strictly according to thromboSeq

protocol [22]. Briefly, tubes were centrifuged to obtain

platelet-rich plasma (20 min, 120 g), pelleted (20 min

360 g), and carefully resuspended in RNAlater

(Thermo Scientific, Waltham, MA, USA). After over-

night incubation at 4 °C, platelets were stored at

�80 °C. Blood collected in Gda�nsk was shipped to
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Cancer Center Amsterdam, VU University Medical

Center for further processing. RNA was extracted with

mirVana miRNA isolation kit (Ambion, Thermo Sci-

entific). For RNA quality verification, the RNA 6000

Pico Chip (Bioanalyzer 2100; Agilent, Waltham, MA,

USA) was used. Subsequently, SMARTer Ultra Low

RNA Kit for Illumina Sequencing v3 (Clontech,

Mountain View, CA, USA) was used for cDNA

amplification. Next, cDNA was subjected to nucleic

acid shearing by sonication (Covaris Inc., Woburn,

MA, USA) and then labeled with single index bar-

codes for Illumina sequencing using the TruSeq Nano

DNA Sample Prep Kit (Illumina, San Diego, CA,

USA). Labeled platelet cDNA library was measured

with the DNA 7500 chip or DNA High Sensitivity

chip (Agilent). High-quality samples were pooled and

submitted for 100 bp Single-Read sequencing on the

Illumina HiSeq 2500 and HiSeq 4000 platform.

2.2. Data preparation

Raw RNA-seq data encoded in FASTQ-files were sub-

jected to a standardized RNA-seq alignment pipeline,

as described in thromboSeq protocol [22]. Briefly,

reads were subjected to trimming of sequence adapters

by TRIMMOMATIC (v. 0.22) https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC4103590/, mapped to the human

reference genome (hg19) using STAR (v. 2.3.0), and

summarized using HTSEQ (v. 0.6.1), guided by the

Ensembl gene annotation version 75. The expression

data for each sample were normalized using DESeq2

package [26] with variance-stabilizing transformation

[27]. Gencode v19 GRCh37 annotation [28] was used

for annotation. Importantly, samples with < 100 000

total reads were excluded from further analysis. The

cutoff was determined arbitrarily as a compromise

between the number of samples available and quality

of samples. Ensemble IDs were converted into gene

names using Gencode v19 GRCh37 annotation [28].

Only genes with gene status known were used. If two

IDs were mapped to the same gene name, expression

data for ID marked in Gencode Gene Transfer For-

mat as level 1 were used. Transcripts that could not be

mapped to a transcript with Gencode status ‘known’

were excluded. Filtered expression profiles were then

used to build images, where each pixel corresponded

to the expression level of a certain gene. As each sam-

ple consisted of 39 843 splice variants, we decided to

arrange pixels. As our classifier was developed to rec-

ognize TEPs of cancer patients, we decided to espe-

cially focus on pathways which might be deregulated

due to tumor development. We visited KEGG data-

base [23] and selected signaling pathways correspond-

ing to three aspects: cancer, metabolism, and signaling

processes. Combining these three groups of pathways

resulted in higher accuracy than using just pathways

marked as directly related to cancer. R package gage

was used to gather KEGG pathway data [29]. In each

pathway, KEGG IDs which were not linked to the

expression level of a particular gene were removed

from the corresponding row.

2.3. Deep neural network

Deep neural network (DNN) model was built using

keras R package [30] with TensorFlow 2.0 backend

[31]. It consisted of 10 layers, including eight hidden

layers: two 2-dimensional convolutional layers, each

with four filters and kernel size of 3 9 3, four densely

connected layers with gradually reduced number of

Table 1. Demographic data of cases enrolled for the study (N—number of samples, %). For healthy controls in ovarian dataset, male

samples were also used. As imPlatelet classifier is based on KEGG pathways, and not the entire transcriptome, observed TEP scores

demonstrated that gender did not affect accuracy of classification in this particular case.

NSCLC dataset Sarcoma dataset OC dataset

NSCLC

Healthy

control Sarcoma

Former

sarcoma

Healthy

control OC

Benign

control

Healthy

control

N = 401 N = 204 N = 62 N = 37 N = 75 N = 28 N = 30 N = 204

Median age (min-

max)

63 (27–88) 43 (18–86) 60 (27–78) 63 (31–83) 55 (21–76) 62.0 (36–83) 49.5 (24–

81)

42.5 (18–86)

Females 164 (40.90%) 118

(58.13%)

28 (45.16%) 19 (51.35%) 75 (100%) 28 (100%) 30 (100%) 119

(58.33%)

Stage I 57 (14.21%) NA 7 (11.29%) NA NA 4 (1429%) NA NA

Stage II NA 1 (1.61%) NA NA 5 (17.86%) NA NA

Stage III NA 9 (14.51%) NA NA 14 (50.00%) NA NA

Stage IV 343 (85.54%) NA 44 (70.97%) NA NA 2 (7.14%) NA NA

Unknown 1 (0.25%) NA 1 (1.61%) NA NA 3 (10.71%) NA NA
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units, and two dropout layers. Binary cross-entropy

was used as a loss function. Gradient optimization was

performed using adadelta algorithm [32]. Since the

dataset was imbalanced, classes received weights pro-

portionate to their frequencies. To further improve

sensitivity, the weight of OC cases was increased by an

additional scaling factor of 1.06 (determined experi-

mentally). Training data were shuffled before each

epoch using keras built-in functionality. Hyperparame-

ters of the model were selected experimentally.

2.4. Model validation

In OC, independent test set consisted of 40% of strati-

fied random samples. Remaining 60% of the samples

were used for stratified five-fold cross-validation, with

four subgroups used for training of the neural network

and one subgroup used for the built-in keras valida-

tion. Class balance was preserved in each of the sub-

sets, including split of controls into healthy donors

and benign controls used in OC classification. In sar-

coma and NSCLC datasets, samples followed the splits

from original articles [24,25], with minor differences

caused by modified quality control process. Each

model was then tested using independent test set.

Assignment of samples to each data subset is presented

in Table S1. Cross-validated area under curve (AUC)

was computed using cvAUC R package [33]. Cross-

validated receiver operating characteristic (ROC)

curves were generated using ROCIT R package [34].

3. Results

3.1. Method overview

In this work, we present imPlatelet—a new classifica-

tion method which accurately recognizes platelet tran-

scriptome, utilizing deep learning. The method is a

part of the liquid biopsy protocol, focused on the anal-

ysis of the sequencing data from platelet RNA

(Fig. 1A and Movie S1) [22]. This methodology has

been developed to further improve the classification

accuracies over the currently employed PSO-enhanced

SVM algorithm. It is based on the hypothesis that due

to external queues, platelet pre-mRNA is subjected to

splicing in a pathway-specific manner. Our approach

introduces two additional steps to the gold standard

RNA data classification procedure, namely pathway

panel construction and image-based classification.

After standard preprocessing (Fig. 1B, steps 1–3),
numeric expression values from a sample are turned

into an image—a pathway panel (Fig. 2). Rows of the

image represent KEGG cancer-related pathways, pixels

represent particular genes in the pathways, while pixel

intensity represents the expression of a specific gene.

Importantly, one splice variant can occur in the image

multiple times, if it is relevant in several pathways

(i.e., splice variants encoding MAPK pathway ele-

ments or cyclins—crucial elements in cancer progres-

sion). Once the images are generated, the samples are

subject to image-based classification using DNN. The

network is trained using a subset of samples and tested

in an independent cohort. Compared with standard

methods (e.g., SVM, random forest, and other previ-

ously published), it additionally accounts for gene co-

expression and gene-to-gene interactions in a group of

preselected pathways.

3.2. Panel construction

RNA-based diagnostics can benefit from gene panels,

similarly to DNA-focused studies. We present here a

cancer panel based on KEGG Pathway database [23],

applied to TEPs. The panel consists of 243 pathways

extracted from KEGG database: 22 pathways directly

implicated in cancer, 131 signaling-related pathways,

and 90 pathways involved in metabolism (Table S1).

The pathways were ordered according to cancer, meta-

bolic, and signaling pathways delineated in KEGG.

Ordered and normalized spliced RNA transcripts of

each sample were used as input to generate a color

image, unique for each sample. Image created for can-

cer panel consists of 243 rows (pathways) and 345 col-

umns (length of the longest pathway). The spectrum of

pixel intensities varies from black (no spliced RNA

read counts) to red (high spliced RNA read counts)—
examples are presented in Fig. 2.

3.3. Classification using deep neural network

Panel approach transforms numeric RNA-sequencing

data into a set of figures. Each input sample is turned

into a separate image. Therefore, widely used classifi-

cation methods like SVM or random forests cannot be

utilized for this type of input. To classify the generated

image data, we employed a DNN, based on Ten-

sorFlow and Keras libraries, implemented in R [35].

In our approach, the network resembles visual cor-

tex of the brain, characterized by a high level of con-

nectivity. The DNN (Fig. 3) consists of convolution,

flatten and hidden layers. First, application of the con-

volution layer transforms the images into a feature

map, defined by a number of images, map width and

height, and feature channels. After convolution, the

stream of data is flattened to a one-dimensional array
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of elements. Next, a hidden layer with rectified linear

units is the highly connected part which is trained in a

similar way to human memory, using train data. The

dropout layers are additionally introduced in the hid-

den layers to avoid overfitting.

Once the network is trained using the input dataset,

a test set of independent samples (not used in the

training procedure) is classified. The final sample class

decision is conducted using the output unit, activated

by a sigmoid function. Because of the sigmoid function

application, our method currently supports only two-

class decision making.

3.4. Performance of the method

To evaluate imPlatelet, we tested the method in three

TEP datasets. Sample selection was preceded by quality

control filtering. The first dataset consisted of 401

NSCLC and 204 healthy donor samples [24,36], the sec-

ond dataset consisted of 62 sarcoma samples, 37 former

sarcoma samples, and 75 matched healthy donor sam-

ples [25], while the third, unpublished dataset included

platelets collected from 28 OC patients and 30 benign

control samples (cysts, Brenner tumors, cystadenofibro-

mas which sometimes resemble OC, and other ailments

such as mature teratomas, myomas of the uterus, ade-

nomyoses or leiomyomas), five patients with borderline

tumors and four nonstandard OC cases (relapses, OC

after surgery but prior to chemotherapy administra-

tion). For the training purposes, only OC cases, benign

controls, and healthy controls were used. Summary is

presented as Tables S2 and S3. Raw files are deposited

at Gene Expression Omnibus, under the accession num-

ber GSE158508 [37].

The NSCLC dataset included mostly stage IV cases

(343/401). As the advanced disease strongly affects the

A B

Fig. 1. Overview of the imPlatelet workflow. (A) An overview of the developed approach. A blood sample is collected from a patient with a

suspicion of cancer; isolated platelets are subjected to RNA extraction and sequencing; and read counts are normalized, followed by image

generation that is recognized by the DNN. (B) An overview of DNN-based method development, with a focus on sequencing data

processing.
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platelet expression profile, the performance of the clas-

sifier in this dataset was excellent. Specificity, sensitiv-

ity, and balanced accuracy were all equal to 100%

(Fig. 4A, Table 1), as opposed to 99% (training set)

and 98% (validation set) in the unmatched cohort

reported by Best et al. [24]. Note, that in work of Best

A B

C D

Fig. 2. Platelet RNA counts are converted into images representing pathway expression profiles. Images of the following samples are

shown: (A) TR1882 (healthy control), (B) TR2199 (NSCLC), (C) TR4550 (sarcoma), and (D) TR4379 (OC).

Fig. 3. Structure of the DNN illustrated using NN-SVG tool (http://alexlenail.me/NN-SVG/ LeNet.html). The figure illustrates how the images are

processed through convolution with hyperbolic tangent activation (tanh), hidden layers of rectified linear units (relu), and dropout thresholds.

The classification process with sigmoid function delivers a binary output of the classification (presumed healthy or disease suspected).
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et al., validation set was called evaluation set, and

independent test set was called validation set.

Sarcoma dataset was more challenging in classifica-

tion than NCSLC dataset. First, the number of sam-

ples was lower and the dataset was imbalanced (62

cancer cases versus 112 healthy donor and former

sarcoma cases collectively). Second, patients had less

advanced disease than NSCLC cohort (stages ranging

from I to IV, with 44 out of 62 classified as stage IV).

Both of these factors made DNN training and testing

more complicated (Fig. 4B). We focused on the bal-

anced accuracy instead of standard AUC of classifica-

tion, to account for sample size differences in the

affected and healthy group. Our method reached 87%

of balanced accuracy in an independent test set

(Table 1) when compared with 84% balanced accu-

racy calculated for the independent test set results

presented by Heinhuis et al. [25]. We also observed

A

B

C

Fig. 4. Cross-validated ROC curves for the training set (left), validation set (middle), and the independent test set (right) in (A) NSCLC

dataset (healthy donors N = 203, NSCLC cases N = 401); (B) sarcoma dataset (healthy donors and former sarcoma N = 112, sarcoma cases

N = 62); and (C) OC dataset (healthy donors and benign control samples N = 233, OC cases N = 28).
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an improved sensitivity for samples classified with

imPlatelet: 94%, compared to 88% reported for the

independent test set in thromboSeq method [25].

Finally, imPlatelet method was tested in our own,

previously unpublished OC dataset (Fig. 4C). In an

independent test set, imPlatelet reached 91% balanced

accuracy, with sensitivity and specificity equal to 95%

and 88%, respectively (Table 2). Despite the small

sample size, generated ROC curves would show high

performance with AUC equal to 0.95 in the indepen-

dent dataset (Fig. 4C), showing small standard devia-

tion and narrow 95% CI range (Table 1). To further

verify the performance of the developed method, we

recreated the ROC curves, using thromboSeq protocol

(Fig. 5). This time the performance would reach 56%

balanced accuracy, compared to 91% reached by

imPlatelet. Confusion matrices for the training, valida-

tion, and the independent test sets are presented as

Table S4).

Next, in order to provide better insight in the

classification dynamics of patients with OC, benign

controls and healthy donors, we generated the

distribution of the TEP scores in samples belonging

to the independent set, classified with imPlatelet and

thromboSeq, respectively (Figs 6 and 7). TEP scores

are classifier outputs which are nonbinary. TEP

score equal to 0 indicates a healthy donor, whereas

TEP score close to 1 indicates a cancer case. The

value is an indirect measure of probability of a sam-

ple being a cancer sample. While healthy donors

would always classify correctly, there was an overlap

between OC samples and benign controls, the latter

showing elevated an elevated CA-125 level in

roughly 40% of cases.

4. Discussion

Our imPlatelet classifier reached higher balanced

accuracy and sensitivity in all three tested indepen-

dent datasets: lung cancer, sarcoma, and OC. So far,

no data have been published on TEPs in OC. Liquid

biopsy alternatives, namely CTCs and ctDNA,

proved limited utility in the early diagnosis of the dis-

ease. Detection of CTCs in OC is difficult even in the

Table 2. Performance of imPlatelet classification in the used datasets (NSCLC, sarcoma, and OC). Sensitivity and balanced accuracy in an

independent test set are in bold. Some values of 1 are in fact round-offs of 0.999 values.

NSCLC and controls (healthy

donors)

N = 605

Sarcoma and controls (healthy

donors and former sarcoma)

N = 174

OC and controls (healthy donors

and benign controls)

N = 262

Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI

Training set

Sensitivity 100% NA NA 100% NA NA 100% 0 100–100%

Specificity 100% NA NA 100% NA NA 94% 2 92–96%

Balanced accuracy 100% NA NA 100% NA NA 97% 1 96–98%

Precision 100% 0 NA 100% NA 66% 5 60–73%

Recall 100% 0 NA 100% NA 100% 0 100–100%

Specificity at 100% 100% NA NA 100% NA NA 100% 0 100–100%

AUC 100% 0 100–100% 100% 0 100–100% 100% 0 100–100%

Validation set

Sensitivity 100% NA NA 86% NA NA 100% 0 84–100%

Specificity 100% NA NA 78% NA NA 90% 2 88–92%

Balanced accuracy 100% NA NA 82% NA NA 95% 1 94–96%

Precision 100% NA NA 70% NA NA 55% 5 49–61%

Recall 100% NA NA 86% NA NA 100% 0 100–100%

Specificity at 100% 100% NA NA 59% NA NA 87% 0.02 89–94%

AUC 100% 0 100–100% 92% 3 86–99% 94% 0.02 90–98%

Independent test set

Sensitivity 100% NA NA 94% NA NA 95% 8 84–100%

Specificity 100% NA NA 79% NA NA 88% 1 87–89%

Balanced accuracy 100% NA NA 87% NA NA 91% 4 87–96%

Precision 100% 0 100–100% 68% NA NA 48% 2 45–50%

Recall 100% 0 94% NA NA 95% 8 84–100%

Specificity at 100% 100% NA 100–100% 68% NA NA 87.5% 0 87–88%

AUC 100% 0 100–100% 91% 4 84–98% 95% 1 93–97%
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advanced stages of the disease [38], and the analysis

of ctDNA has limited application in cancer detection.

Studies on ctDNA in OC demonstrated relatively

high specificity (> 88%), with variable sensitivity (27–

100%) [38]. Importantly, tests such as CancerSEEK

or TEC-Seq would reach ~ 97% sensitivity and

> 99% specificity, but these studies relied on healthy

individuals [39,40], contrary to benign controls

Fig. 5. Cross-validated ROC curves for the training set (left), validation set (middle), and the independent test set (right) in OC dataset,

calculated with thromboSeq.

Independent test set

Group

TE
P

S
 s

co
re

Ovarian cancer Benign control Healthy donor

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Group

Healthy donor
Ovarian cancer stage I
Ovarian cancer stage II
Ovarian cancer stage III
Ovarian cancer stage IV
Ovarian cancer (missing stage)
Brenner tumor
Adenomyosis
Endometriosis
Myoma uteri
Cyst
Complex atypical endometrial hyperplasia
Endometrial hyperplastic polyp

Fig. 6. Distribution of platelets (TEP score) for the independent set, calculated with imPlatelet. Three discriminative cohorts were included:

patients with OC, gynecological patients with conditions other than OC (benign controls), and healthy donors. Samples are colored by their

cancer stage (OC) or their final diagnosis (benign controls). Scores are average values after a sample five-fold cross-validation run.

Independent set consisted of 11 OC patients, 12 benign gynecological patients, and 81 healthy controls. Boxes contain samples with TEP

scores between Q1 and Q3 of respective group, and the thick lines represent medians of each set. Whiskers mark minimum and maximum

scores in each set.
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included in our study. Furthermore, the median sensi-

tivity of CancerSEEK would drop to 73% for stage

II cancer [39].

According to our knowledge, this is the first study

implementing an image-based approach to classify bio-

logical samples. While works of Matsubara et al., Ali-

per et al., and Antonio et al. rely on deep learning, the

authors focus on data other than RNA sequencing

and the architecture of their network differs consider-

ably [41–43]. In the current study, we show high per-

formance of imPlatelet method applied to cancer

sample classification. Despite the early stage, many

OC samples would still classify correctly in most of

cross-validations. High accuracy, despite the low num-

ber of cases, is partially owed to biological knowledge

implemented into the algorithm. Integrating insight of

KEGG Pathway Encyclopedia adds an additional

layer of input data, arranging all the analyzed splice

variants according to their biological context, thus

providing the level of details unattainable before.

Eventually, not only the splice variants alone, but also

their mutual codependence is taken into account.

Important features of imPlatelet classifier are the

calculation of balanced accuracy and execution time.

Some methods tend to classify all samples as cases or

controls in an unbalanced dataset, leading to perfor-

mance estimation bias. Balanced accuracy is therefore

suitable also for datasets with a small number of

cases. In terms of execution time, the training process

in the DNN-based approach takes minutes, up to

hours, as opposed to thromboSeq which requires

days, up to weeks. five-fold cross-validation of the

model with OC data takes approximately 6 min, com-

pared to over 3 days using thromboSeq. Once the

model is trained, the testing procedure in imPlatelet

requires less than one second per sample, using a

desktop computer (CPU: Intel i-7 9700k, RAM:

64 GB, GPU: GeForce GTX 1060 6GB). Conse-

quently, for diagnostic use, imPlatelet could be exe-

cuted on a laptop with an attached tensor processing

unit accelerator.

Several limitations of the study need to be acknowl-

edged. First, we had a limited number of OC cases

when compared with nonmalignant and healthy
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Fig. 7. Distribution of platelets (TEP score) for the independent set, calculated with thromboSeq. Three discriminative cohorts were

included: patients with OC, gynecological patients with conditions other than OC (benign controls), and healthy donors. Samples are colored

by their cancer stage (OC) or their final diagnosis (benign controls). Scores are average values after a sample five-fold cross-validation run.

Independent set consisted of 11 OC patients, 12 benign gynecological patients, and 81 healthy controls. Boxes contain samples with TEP

scores between Q1 and Q3 of respective group, and the thick lines represent medians of each set. Whiskers mark minimum and maximum

scores in each set.
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controls. The recently published studies suggest that

even 70–80 cases are a reasonable number [25,44], but

ideally we would prefer to work on hundreds of sam-

ples. These are very likely to be available in the near

future. Another limitation was control samples belong-

ing to volunteers of different age and sex. However,

platelet transcriptome remains relatively consistent in

healthy controls and all healthy samples would classify

correctly, irrespectively of these two variables. As

much as from human perspective, it might be difficult

to discriminate between the case and the control sam-

ples; contrary to human perception, DNN identifies

patterns and relations in panel images, resulting in

high classification accuracy.

Summing up, our developed algorithm shows supe-

rior performance, detecting cancer cases even in the

early I and II stage OC. It shows remarkable poten-

tial in healthy individuals’ indication, paving the way

to correct classification in other diseases. We believe

that similar approach could be applied to sequencing

data in tissues. For example, analysis of splice vari-

ants in tumor tissue has been considered promising in

cancer immunotherapy [45]. In the field of liquid

biopsy, imPlatelet could hopefully be adapted to

studying cells other than single tumor cells, as the

disease also affects other cells’ expression profiles, for

example, NK or T lymphocytes [46]. For the future

projects, our DNN-based classification could benefit

from including additional panels, such as KEGG sig-

naling pathways associated with the immune system

or drug development. Another option could be the

introduction of integrative omics analysis, with a

panel including both splice variant and protein

expression data, as reported by Mantini et al. [47].

Furthermore, even though imPlatelet yields typically

binary output, the method could be adapted to multi-

class classification.

5. Conclusions

To our knowledge, this is the first report that uses a

DNN to analyze RNA-sequencing data. We believe we

have created a classifier which significantly outper-

forms other available tools used in cancer diagnostics:

GRAIL [48], CancerSEEK [39], and, previously pub-

lished by our collaborators, thromboSeq [22]. The

developed algorithm shows superior performance,

detecting cancer cases even in the early OC, partially

owing its accuracy to another layer of information on

the biological significance of RNA reads—the KEGG.

The classifier’s remarkable potential to indicate healthy

individuals paves the way to the correct classification

of other diseases.
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