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Aims The lack of effective therapies for patients with heart failure with preserved ejection fraction (HFpEF) is often ascribed
to the heterogeneity of patients with HFpEF. We aimed to identify distinct pathophysiologic clusters of HFpEF based
on circulating biomarkers.
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Methods
and results

We performed an unsupervised cluster analysis using 363 biomarkers from 429 patients with HFpEF. Relative
differences in expression profiles of the biomarkers between clusters were assessed and used for pathway
over-representation analyses. We identified four distinct patient subgroups based on their biomarker profiles:
cluster 1 with the highest prevalence of diabetes mellitus and renal disease; cluster 2 with oldest age and frequent
age-related comorbidities; cluster 3 with youngest age, largest body size, least symptoms and lowest N-terminal
pro-B-type natriuretic peptide (NT-proBNP) levels; and cluster 4 with highest prevalence of ischaemic aetiology,
smoking and chronic lung disease, most symptoms, as well as highest NT-proBNP and troponin levels. Over a
median follow-up of 21 months, the occurrence of death or heart failure hospitalization was highest in clusters 1 and
4 (62.1% and 62.8%, respectively) and lowest in cluster 3 (25.6%). Pathway over-representation analyses revealed
that the biomarker profile of patients in cluster 1 was associated with activation of inflammatory pathways while the
biomarker profile of patients in cluster 4 was specifically associated with pathways implicated in cell proliferation
regulation and cell survival.
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Conclusion Unsupervised cluster analysis based on biomarker profiles identified mutually exclusive subgroups of patients
with HFpEF with distinct biomarker profiles, clinical characteristics and outcomes, suggesting different underlying
pathophysiological pathways.
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Graphical Abstract

In patients with heart failure with preserved ejection fraction (HFpEF), machine learning techniques were able to identify four subgroups of HFpEF
patients based on their protein biomarkers. These subgroups differed in comorbidity patterns and outcome, with ‘renal disease/diabetes’ and chronic
obstructive pulmonary disease (COPD) subgroups at highest risk of adverse outcomes, while ‘elderly’ and ‘young/obese’ subgroups were at lower
risk. These HFpEF subgroups also had remarkably differing protein biomarker profiles, suggesting differing underlying mechanisms. Even though these
findings do not have direct clinical implications, the identification of HFpEF subgroups, with differing underlying pathological mechanisms could aid
in the identification of novel treatment targets in the future.
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Introduction
Heart failure (HF) with preserved ejection fraction (HFpEF)
is labelled as the ‘single largest unmet need in cardiovascular
medicine’.1 Despite accounting for approximately half of HF cases,
an effective therapy for HFpEF is yet to be found. Several patho-
logical mechanisms have been proposed as underlying mecha-
nisms in HFpEF including systemic microvascular inflammation,
cardio-metabolic abnormalities and cellular and extracellular struc-
tural changes. However, studies targeting these mechanisms have
yielded mixed results and have yet to show improved prognosis in
these patients.2

The ‘heterogeneity’ of HFpEF has been cited as a reason for
clinical trials not being effective in HFpEF patients, suggesting
that a ‘one size fits all’ approach may not work in HFpEF.1,3 The
pathophysiology of HFpEF is highly complex.4 The identification
of mutually exclusive subgroups of patients with HFpEF based on
their underlying pathophysiology may allow for the development
of targeted treatment options. Several studies have sought to
identify subgroups of patients with HFpEF using machine learning
techniques, classifying these patients into clinical phenotypes and
advocated phenotype specific treatment of these subgroups.5–9

Such techniques have managed to identify subgroups of patients
with similar phenotypic characteristics with differences in out-
come. However, subgroups based on clinical characteristics do ..
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. not necessarily represent differences in pathological mechanisms.
Similar to HFpEF, HF with reduced ejection fraction represents
a heterogeneous group comprising patients with a multitude of
HF aetiologies, yet a common pathway of systemic neuroen-
docrine activation.2 Therefore, there are limitations in using this
approach.

We hypothesised that unsupervised machine learning techniques
applied to protein biomarkers in HFpEF patients would allow the
identification of biological HFpEF subgroups, representing different
pathological mechanisms in HFpEF.

Methods
Patient population
This study utilized patients from the Scottish cohort of BIOSTAT-CHF,
which is described elsewhere.10 In brief, the Scottish cohort of
BIOSTAT-CHF includes 1738 patients from six centres in Scot-
land, United Kingdom. Patients were required to be ≥18 years
of age, diagnosed with HF and previously admitted with HF
requiring diuretic treatment. Patients were also sub-optimally
treated with angiotensin-converting enzyme inhibitors and
beta-blockers with an anticipated up-titration over the following
3 months.

Of the 1738 patients included, only patients with a left ventricu-
lar ejection fraction of ≥50% were included. Of the remaining 441
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patients, there were 12 patients with missing biomarker values. Subse-
quent analyses were done with the remaining 429 patients.

Clinical and biomarker measurements
Medical history, physical examinations, echocardiography and labora-
tory tests were recorded at baseline as previously described.10

An overview of biomarkers and their pathophysiological functions
are presented in the online supplementary Figures S1 and S2. Four
biomarker panels comprising each of 92 protein biomarkers provided
by the Olink Bioscience analysis service (Uppsala, Sweden) were mea-
sured. These respective panels were Cardiovascular II, Cardiovascu-
lar III, Immune response and Oncology II panels. The proteins were
profiled using Olink Proseek® Multiplex Inflammatory96x96 platform.
The Proseek® kit uses proximity extension assay technology, whereby
oligonucleotide-labelled antibody probe pairs bind to their respec-
tive targets. Quantification was achieved using a Fluidigm BioMark™
real-time polymerase chain reaction platform. The platform provides
normalized protein expression (log2-normalized), rather than an abso-
lute quantification.

Across the panels there were several duplicates, therefore the
mean of normalized protein expression duplicates was used (online
supplementary material). Further analyses were completed using the
set of 363 non-redundant protein biomarkers.

Statistical analysis
A more comprehensive description of statistical methods used is
provided in online supplementary material. In short, the primary aim
of this study was to identify mutually exclusive subgroups of patients
based on their biomarker profile using 363 biomarkers, which are
referred to as clusters. Principle component analysis was performed
in order to reduce biomarker dimensions and collinearity. Clustering
was performed on principle components with an eigenvalue of one or
above using a hierarchical clustering algorithm. The NbClust package
in R, which utilises an array of different indexes, was used in order to

Figure 1 Heatmap displaying biomarkers across heart failure
with preserved ejection fraction clusters.
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.. determine the optimal number of clusters. The number most often

selected by these indexes is then selected as the optimal number
of clusters.11,12

Differences between clinical characteristics of the clusters
were compared using one-way analysis of variance (ANOVA),
the Kruskal–Wallis test or chi-squared test where appropriate.
Differences between clusters biomarker means were plotted using a
heatmap after z-standardization.

The association of cluster membership with all-cause mortality and
HF hospitalization was investigated using Kaplan–Meier curves and the
log-rank test. For multivariable analyses, Cox-regression models were
performed, correcting for age, sex and previous HF hospitalization and
New York Heart Association (NYHA) class.

Relative differences in protein biomarker levels between clusters
were assessed using the Limma package in R.13 Proteins were con-
sidered differentially expressed at a log2 fold-change cut-off of 0.8 and
false discovery rate corrected P-value of <0.05. Protein biomarkers
identified to be differentially expressed were further investigated for
pathway over-representation.

Over-representation was assessed using ClueGo (in Gene Ontol-
ogy in biological processes, KEGG and Reactome pathways).14 This
was performed using the hypergeometric test and the default Bon-
ferroni step down method for multiple testing corrections. The
whole annotation option was used as a reference set and only bio-
logical processes with a corrected P-value ≤0.05 were considered
significant.

Results
Clustering outcomes
The optimal number of clusters was six (online supplemen-
tary Figure S3, S4 and S5). Due to the small size, clusters 5 and 6
(n = 3 and n = 2, respectively, online supplementary Table S1) were
excluded from the downstream analyses which focused on the
remaining four patient clusters. Expression patterns of biomarkers
across the four clusters are depicted in the heatmap in Figure 1.
Lower levels of biomarker means are depicted in lighter colours,
while darker colours represent higher biomarker levels. Cluster 1

biomarkers are markedly higher compared to other clusters, while
cluster 3 shows low levels of almost all biomarkers.

Clinical characteristics
Baseline characteristics of the four clusters are presented in
Table 1. Patients in cluster 1 had the highest prevalence of chronic
kidney disease (CKD, 73.7%) and diabetes mellitus (53.4%), and
had the highest plasma concentrations of creatinine, glucose,
gamma-glutamyl transferase and growth differentiation factor-15.
Patients in cluster 2 were the eldest (mean age 80 years), with a
high frequency of age-related comorbidities such as atrial fibril-
lation (46.5%) and hypertension (72.3%), however these did not
reach significance. Patients in cluster 3 were youngest (mean age
74 years), had the lowest prevalence of most comorbidities, except
obesity (mean body mass index 30.4 kg/m2, mean body surface area
2.02 m2), were the least symptomatic and had the lowest plasma
N-terminal pro-B-type natriuretic peptide (NT-proBNP) concen-
trations (median 591 pg/L). Patients in cluster 4 had the high-
est prevalence of chronic obstructive pulmonary disease (COPD)

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 1 Baseline characteristics stratified by heart failure with preserved ejection fraction cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P-value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n 58 159 164 43
Demographics

Age (years) 79.0 [73.0–82.0] 80.0 [72.5–86.5] 74.0 [66.8–81.0] 79.0 [71.5–83.0] <0.001

Male sex 35 (60.3%) 84 (52.8%) 93 (56.7%) 26 (60.5%) 0.689
BMI (kg/m2) 29.1 [24.8–33.2] 28.4 [24.2–34.2] 30.4 [25.4–34.7] 29.4 [25.4–33.4] 0.408
BSA (m2) 1.97 [1.80–2.11] 1.85 [1.68–2.01] 2.02 [1.79–2.21] 2.01 [1.79–2.13] 0.032
Ischaemic aetiology 31 (54.4%) 99 (65.1%) 101 (66.4%) 31 (72.1%) 0.272
Cardiomyopathy 4 (7.02%) 4 (2.63%) 3 (1.97%) 1 (2.33%) 0.293
NYHA class <0.001

I 0 (0.0%) 0 (0.0%) 4 (2.44%) 0 (0.0%)
II 15 (25.9%) 37 (23.3%) 72 (43.9%) 8 (18.6%)
III 32 (55.2%) 83 (52.2%) 65 (39.6%) 24 (55.8%)
IV 11 (19.0%) 39 (24.5%) 23 (14.0%) 11 (25.6%)

Medical history
Anaemia 27 (46.6%) 72 (45.9%) 50 (30.9%) 22 (51.2%) 0.012
Atrial fibrillation 31 (54.4%) 74 (46.5%) 67 (41.1%) 24 (55.8%) 0.185
Diabetes 31 (53.4%) 53 (33.3%) 57 (35.2%) 15 (35.7%) 0.048
COPD 11 (19.0%) 44 (27.7%) 36 (22.1%) 18 (41.9%) 0.034
CKD 42 (73.7%) 107 (67.7%) 34 (21.5%) 23 (53.5%) <0.001

Hypertension 42 (72.4%) 115 (72.3%) 102 (62.2%) 31 (72.1%) 0.190
Malignancy 6 (10.5%) 5 (3.14%) 6 (3.66%) 2 (4.65%) 0.141

Obesity 25 (43.9%) 69 (43.7%) 86 (53.8%) 19 (44.2%) 0.270
Stroke 13 (22.4%) 31 (19.5%) 30 (18.4%) 9 (21.4%) 0.913
Past/current smokers 25 (43.9%) 72 (45.9%) 69 (42.3%) 28 (65.1%) 0.063

Signs and symptoms
Extent of peripheral oedema 0.121

Not present 7 (13.0%) 46 (31.7%) 54 (37.0%) 9 (22.5%)
Ankle 22 (40.7%) 52 (35.9%) 42 (28.8%) 15 (37.5%)
Below knee 18 (33.3%) 34 (23.4%) 40 (27.4%) 12 (30.0%)
Above knee 7 (13.0%) 13 (8.97%) 10 (6.85%) 4 (10.0%)

JVP elevated (%) 24 (49.0%) 41 (29.1%) 45 (34.1%) 9 (25.7%) 0.035
Pulmonary congestion with rales 36 (64.3%) 75 (48.4%) 70 (45.2%) 32 (74.4%) 0.001

Laboratory
Haemoglobin (g/dL) 12.2 [11.2–13.5] 12.5 [10.9–13.5] 13.3 [12.3–14.4] 12.5 [10.8–13.8] <0.001

Leucocytes (109/L) 7.45 [5.55–10.0] 7.55 [5.93–9.00] 7.25 [5.90–8.80] 9.90 [7.50–12.8] <0.001

Creatinine (μmol/L) 126 [96.0–148] 112 [88.0–142] 81.5 [66.8–94.2] 96.0 [79.0–121] <0.001

Urea (mmol/L) 11.1 [7.90–15.3] 9.80 [7.93–13.5] 6.60 [5.47–8.43] 10.2 [7.90–13.9] <0.001

eGFR (mL/min/1.73 m2) 46.0 [36.0–59.5] 51.0 [38.0–60.0] 60.0 [60.0–60.0] 58.0 [48.0–60.0] <0.001

Gamma-GT (U/L) 61.0 [39.5–138] 44.0 [27.0–80.0] 35.0 [25.0–62.0] 47.0 [32.0–94.8] 0.001

Glucose (mmol/L) 7.90 [5.60–10.6] 6.60 [5.60–9.10] 6.05 [5.10–8.40] 7.80 [6.00–10.2] 0.002
Iron (μmol/L) 8.00 [6.00–12.0] 9.00 [6.00–13.0] 13.0 [8.00–16.0] 8.00 [4.25–11.8] <0.001

Ferritin (ng/mL) 154 [58.0–270] 93.0 [43.0–209] 94.5 [35.5–202] 98.0 [52.0–262] 0.162
NT-proBNP (pg/L) 1720 [544–4831] 1304 [526–2938] 591 [234–1621] 2175 [898–4542] <0.001

GDF-15 (pg/mL) 5877 [3412–8555] 3510 [2507–5228] 2174 [1532–2982] 3777 [2815–5970] <0.001

Troponin T (ng/L) 45.0 [26.9–79.6] 32.6 [18.9–63.1] 19.0 [12.4–31.3] 46.2 [30.4–271] <0.001

BMI, body mass index; BSA, boy surface area; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate;
GDF-15, growth differentiation factor-15; GT, glutamyl transferase; JVP, jugular venous pressure; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York
Heart Association.

(41.9%), smoking (65.1%) and ischaemic aetiology (72.1%); were
the most symptomatic and had the highest levels of NT-proBNP
(median 2175 pg/L) and troponin (median 46.2 ng/L). Table 2 shows
the echocardiographic characteristics of the four clusters. In terms
of cardiac structure and function, clusters were remarkably similar,
except for a lower estimated right ventricular systolic pressure and
tricuspid regurgitation velocity in patients from cluster 3. ..

..
..

..
..

..
..

..
..

.. Differential expression analysis
and pathway over-representation analysis
In cluster 1, there were 29 proteins that were significantly
up-regulated compared to the rest of the clusters (Figure 2a online
supplementary Table S2). At the fold-change cut-off, no proteins
were found to be significantly up- or down-regulated in cluster 2

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 2 Echocardiography stratified by cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 P-value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n 58 159 164 43
LVEF (%) 54.0 [50.0–60.0] 55.0 [50.0–60.0] 54.5 [50.0–60.0] 55.0 [50.0–60.0] 0.953
LVEDD (mm) 46.2 (6.52) 47.9 (6.96) 48.6 (7.71) 48.5 (7.25) 0.359
LVESD (mm) 30.0 [26.0–33.5] 31.0 [24.0–37.0] 33.0 [26.0–37.5] 30.0 [24.5–38.5] 0.844
IVSd (mm) 13.0 [12.0–15.0] 13.0 [11.8–15.0] 13.0 [10.0–15.0] 13.0 [12.8–15.0] 0.502
PWd (mm) 12.0 [11.0–13.0] 11.0 [9.00–14.0] 10.0 [9.00–13.0] 12.0 [10.0–13.0] 0.477
Left atrial diameter (mm) 43.9 (6.30) 45.0 (7.15) 43.2 (7.27) 44.6 (6.87) 0.318
E/A ratio 0.80 [0.70–1.10] 1.00 [0.70–1.40] 0.90 [0.70–1.20] 0.90 [0.80–1.10] 0.671

IVC dilated 10 (17.2%) 26 (16.4%) 26 (15.9%) 5 (11.6%) 0.876
Right atrial pressure (mmHg) 10.0 [7.25–17.2] 10.0 [7.00–13.0] 9.00 [7.00–10.0] 9.00 [8.00–10.0] 0.440
RVSP (mmHg) 49.0 [39.0–63.5] 43.0 [35.0–55.0] 37.0 [30.0–49.0] 47.0 [37.0–52.0] 0.004
Right ventricular diameter ≥44 mm 11 (21.6%) 26 (20.5%) 27 (19.4%) 8 (22.2%) 0.978
Tricuspid regurgitation gradient 36.0 [28.0–50.0] 34.0 [27.0–42.5] 29.0 [24.0–38.0] 40.0 [32.0–45.5] 0.004

IVC, inferior vena cava; IVSd, interventricular septum thickness; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; LVESD, left ventricular
end-systolic diameter; PWd, posterior wall thickness; RVSP, right ventricular systolic pressure.

Figure 2 Differentially expressed proteins relative to other heart failure with preserved ejection fraction clusters. (A) Cluster 1 vs. clusters
2–4; (B) cluster 2 vs. clusters 1, 3 and 4; (C) cluster 3 vs. clusters 1, 2 and 4; and (D) cluster 4 vs. clusters 1–3. FC, fold change; FDR, false
discovery rate.

compared to the other clusters (Figure 2b). A total of 26 proteins
were discovered to be significantly down-regulated in cluster 3
(Figure 2c, online supplementary Table S3). In cluster 4, one protein
was significantly down-regulated, while 34 proteins were found
to be significantly up-regulated (Figure 2d, online supplementary
Table S4).

Pathway over-representation analysis of the differentially
expressed proteins per cluster yielded several significant pathways. ..

..
..

..
..

..
..

..
..

..
..

. The 29 differentially expressed proteins in cluster 1 yielded four
significant biological processes (P< 0.001): ‘tumour necrosis
factor-activated receptor activity’; ‘TNFs bind to their physi-
ological receptors’; ‘regulation of natural killer cell mediated
immunity’ and ‘regulation of regulatory T cell differentiation’.
The 26 down-regulated proteins in cluster 3 were significantly
associated with the following biological processes (P< 0.001):
‘tumour necrosis factor-activated receptor activity’, ‘viral protein

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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interaction with cytokine and cytokine receptor’ and ‘regulation
of cardiac muscle hypertrophy’. The 34 up-regulated proteins in
cluster 4 were significantly associated with six biological processes
(P< 0.001): ‘protein serine/threonine kinase inhibitor activity’;
‘regulation of receptor internalisation’; ‘viral myocarditis’; ‘Kaposi
sarcoma-associated herpes virus infection’; ‘PI3K/AKT signalling
in cancer’ and ‘positive regulation of phosphatidylinositol 3-kinase
activity’.

Clinical outcome
After a median follow-up of 21 months, approximately 44% of
patients either had been hospitalized for HF or died. The occur-
rence of death or HF hospitalization was highest in clusters 1 and
4 (62.1% and 62.8%, respectively) and lowest in cluster 3 (25.6%).
Rate of HF hospitalization alone was highest in cluster 1 (36.2%),
compared with 23.3% in cluster 2, 17.7% in cluster 3, and 20.9%
in cluster 4 (Figure 3). After correction for age, sex, previous HF
hospitalization and NYHA class, compared to cluster 1, patients
in clusters 2 and 3 had a lower risk of death or HF hospitalization
[hazard ratio (HR) 0.58, 95% confidence interval (CI) 0.39–0.87;
and HR 0.30, 95% CI 0.19–0.48, respectively; online supplemen-
tary Table S5].

Discussion
In this study, unsupervised machine learning identified distinct
HFpEF clusters based on circulating biomarker profiles. The iden-
tified HFpEF clusters were remarkably different in their clinical
characteristics and outcomes. Using a novel approach of employ-
ing differential expression analysis and pathways analysis on HFpEF
clusters, we were able to identify dysregulated biological pathways
in each cluster. This is the first study to provide a pathophysio-
logical basis on a proteomic level of clinical phenotypes of HFpEF
observed in previous studies (Graphical Abstract).

Previous studies that have identified HFpEF subgroups via clus-
ter analyses have typically done so based on clinical characteristics,
echocardiographic and laboratory data (online supplementary Table
S6).5–9 One such study conducted by Shah et al.5 demonstrated
that clustering based on clinical data, or ‘phenomapping’ provided
a better discrimination of risk than NT-proBNP and risk scores
alone. Nevertheless, studies employing these techniques have not
yet assessed the pathophysiology underlying these clinical pheno-
types. Our results therefore extend prior studies by providing
insights into potential biological mechanisms at a proteomic level,
that may underpin the observed clinical phenotypes, thus paving
the way to mechanism-based pathophysiologic interventions in spe-
cific HFpEF subgroups. The added value of our biomarker-based
approach is evident in that patients in different biomarker clusters
could have similar echocardiographic and clinical profiles, yet dif-
fer drastically in clinical outcome compared to other subgroups.
One such example of this is clusters 1 and 2 – both these clusters
were elderly patients with multiple age-related comorbidities who
had indistinguishable echocardiographic features; yet cluster 2 had
a 40% lower adjusted risk of death or HF hospitalization compared
to cluster 1. ..
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.. Clinical correlates of the clusters
The main discriminating clinical parameters identifying each of the
biomarker clusters were (i) age; (ii) diabetes and CKD; and (iii)
smoking/COPD, and ischaemic aetiology.

Age

Mean age was only 74 years in cluster 3, compared with
79–80 years in the other clusters. This was associated with
lower comorbidity burden in cluster 3 patients, except for obesity
where there was significantly greater body surface area and a
trend towards higher body mass index compared to other clus-
ters. Obokata et al.15 describe the obese HFpEF phenotype which
is characterized by increased concentric left ventricular remod-
elling, greater left ventricular filling pressures and increased plasma
volume despite lower NT-proBNP levels compared to non-obese
HFpEF patients. A prospective study from 11 Asian regions sought
to identify differences between ‘young’ (<65 years) and ‘elderly’
(≥75 years) HFpEF patients. This study found that younger age
HFpEF was associated with a male majority, higher prevalence of
obesity and lower NT-proBNP levels, while left ventricular filling
pressures and left ventricular hypertrophy were comparative with
elderly HFpEF patients.10 Similar results were observed in three
large HFpEF trials [TOPCAT (Aldosterone Antagonist Therapy
for Adults With Heart Failure and Preserved Systolic Function),
I-PRESERVE (Irbesartan in Heart Failure With Preserved Systolic
Function), and CHARM-Preserved (Candesartan Cilexetil in Heart
Failure Assessment of Reduction in Mortality and Morbidity)],
where younger patients with HFpEF were more often obese men,
whereas older patients with HFpEF were more often women
with a higher prevalence of atrial fibrillation, hypertension, and
CKD.16 Of note, Tromp et al.17 also found a separate ‘elderly/AF
HFpEF’ cluster, similar to cluster 2 in the present study; while Shah
et al.5 identified a distinct elderly pheno-group with highest serum
creatinine/lowest glomerular filtration rate, and highest natri-
uretic peptides and MAGGIC risk score values, thus resembling a
combination of clusters 1 and 2 in the current study.

Diabetes and chronic kidney disease

Patients in cluster 1 had a substantially higher prevalence of
diabetes than cluster 2, 3, and 4. Similarly, Tromp et al.17 identified
a ‘lean diabetic HFpEF’ cluster with a high prevalence of diabetes
and CKD while clustering on comorbidities in a large unselected
population of Asian patients with HF. Shah et al.5 also identified
a diabetes-predominant pheno-group among three HFpEF clusters
based on clinical characteristics, although in this US-based cohort
the diabetic pheno-group also had the highest prevalence of obesity
and obstructive sleep apnoea. High prevalence of CKD, observed
in cluster 1 and to a lesser extent in cluster 2, have often
been observed in HFpEF populations and represent a high-risk
phenotype with a poor prognosis.6–9,18 A prospective analysis by
Unger et al.18 in HFpEF patients found that CKD was independently
associated with several echocardiographic parameters, including
left atrial reservoir strain and left ventricular longitudinal strain,
after adjusting for potential cofounders. Development of cardiac
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Figure 3 Kaplan–Meier curves for (A) heart failure hospitalization and (B) combined outcome of all-cause mortality and/or heart failure
hospitalization at 24 months stratified according to clusters.

abnormalities prior to onset of clinical symptoms in patients with
renal dysfunction underpins the hypothesis that the pathogenesis
of CKD HFpEF subgroups, such as that identified by cluster 1, may
lie with renal dysfunction and its downstream effects.

Smoking/chronic obstructive pulmonary disease
and ischaemic aetiology

Cluster 4 was predominantly characterized by a high prevalence
of COPD (>40%), double that of the other ‘high-risk’ cluster
1 (<20%), associated with smoking history, ischaemic aetiology
in >70% and highest troponin and NT-proBNP levels. Previous
studies have not described subgroups of HFpEF patients with pul-
monary disease. However, several studies have reported a close
association between COPD and HFpEF. The Framingham Heart
Study reported that several subclinical non-cardiac organ dysfunc-
tions were associated with increased risk of HF. In particular,
ratio of forced expiratory volume in 1 s to forced vital capac-
ity (FEV1:FVC ratio) was associated with incident HFpEF.19 The
importance of the link with smoking history lies in the potential
to modify the risk of both COPD and ischaemic heart disease by
smoking cessation. Indeed, current or prior smoking was associ-
ated with higher prevalence of coronary microvascular dysfunc-
tion among patients with HFpEF in PROMIS-HFpEF (Prevalence of
Microvascular Dysfunction in Heart Failure with Preserved Ejec-
tion Fraction).20 Both micro- and macrovascular coronary artery
disease may contribute to myocardial ischaemia and worsening
HFpEF.21 Importantly, revascularization in those with macrovascu-
lar coronary artery disease may be associated with preservation of
cardiac function and improved outcomes in HFpEF.21

Echocardiographic findings
Echocardiography was performed in all patients. We found remark-
able similarities in cardiac phenotype between the clusters. Left
ventricular size and function and left atrial dimensions were similar ..
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.. between the clusters. The only discriminating parameter was right
ventricular systolic pressure, which was significantly lower in clus-
ter 3, consistent with less severe symptoms and better outcomes
in these patients.

Up- and down-regulated biological
pathways
Pathways identified by up-regulated biomarkers in cluster 1 were
related to cells of both innate and adaptive immunity. Natu-
ral killer (NK) cells are important in repairing tissue damage
and appear to be preventative against development of fibrosis.22

Chronic decreases in NK cells have been reported to be corre-
lated with low-grade inflammation in the heart.14 In addition, the
T cell-mediated immune response is implicated in cardiac remod-
elling and the progression of HF.23,24 In mice with cardiac hyper-
trophy, depletion of T cells led to reduced myocardial fibrosis
and decreased infiltration of macrophages.24 In a previous clus-
ter analysis, Cohen et al.9 identified a CKD/DM pheno-group in
HFpEF, which also exhibited biomarkers for tumour necrosis factor
alpha-mediated inflammation.

Differential expression analysis of cluster 2 did not result in any
up- or down-regulated biomarkers relative to the other clusters at
a fold-change of 0.8. Considering the overlap in clinical phenotype
of clusters 1 and 2, we postulate that this may have overshadowed
any differential expression of biomarkers in cluster 2.

Several significant pathways identified in cluster 4 were related
to phosphoinositide 3-kinases (PI3K) and their downstream effects.
These effects include signalling pathways involved in protein syn-
thesis, cell proliferation, metabolism and cell survival and have been
implicated in the pathogenesis of various diseases.25,26 Interestingly,
increased PI3K/AKT axis activity is postulated to play an important
role in cell senescence, which is considered as a key mechanism in
COPD pathogenesis.27 A study observed that increased PI3K/AKT
axis activity was found in lung tissue and peripheral blood mononu-
clear cells of COPD patients when compared to controls.28 PI3K
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isoforms are found in both cardiomyocytes and leucocytes and
have been implemented in pathways influencing hypertrophy, con-
tractility, vascular and myocardial inflammation.29 In addition, AKT
effects on monocytes/macrophages are postulated to have an
effect on atherosclerosis formulation, with increased AKT signalling
postulated to accelerate atherosclerosis.26 We postulate that
increased PI3K/AKT axis in airway obstruction could have adverse
effects on the heart and endothelium, leading to the development
of HF.

Strengths and limitations
The strengths of this study are the use of a large panel of
biomarkers from several biological domains. This is especially
important for HFpEF for which it is postulated to be a disease highly
influenced by cardiac and non-cardiac comorbidities. In addition,
by clustering on biomarkers rather on clinical variables, this allows
for the identification of potential biological phenotypes that may
represent underlying biological heterogeneity in HFpEF and in turn
different pathophysiological mechanisms. We acknowledge there
are several limitations to this study including the small number
of patients and the lack of external validation. BIOSTAT-CHF is
also primarily a Caucasian cohort and the extent to which the
results of this study represent the general HFpEF population is
unclear. Despite a lack of external validation, there does appear to
be overlap between the results of cluster analyses and subgroups
previously identified in other studies, suggesting that there is
commonality across different methods and cohorts. We aim to
validate our findings in further studies.

Conclusion
Using unsupervised cluster analysis based on a broad range of
circulating biomarkers, we identified four distinct clusters of
HFpEF with remarkable differences in clinical characteristics and
outcomes, potentially reflecting differences in underlying patho-
physiology. Cluster 1 patients can be identified as those with dia-
betic nephropathy, high event rates and a specific activation of
inflammatory pathways; cluster 2 are the elderly patients with
frequent age-related comorbidities; cluster 3 are young with low
burden of comorbidities except obesity, lowest NT-proBNP lev-
els and lowest risk of adverse outcomes; and cluster 4 are those
with ischaemic aetiology, smoking and chronic lung disease, most
symptoms, as well as highest NT-proBNP and troponin levels, char-
acterized by increased activity of the PI3K/AKT pathway and with
the highest risk of death and/or HF hospitalization. Left ventricu-
lar and atrial size and function did not differ among groups. These
data provide a pathophysiological basis on a proteomic level of clin-
ical phenotypes of HFpEF observed in previous studies, and thus
open the door to mechanism-based pathophysiologic interventions
in specific HFpEF subgroups.

Supplementary Information
Additional supporting information may be found online in the
Supporting Information section at the end of the article. ..
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