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Simple Summary: The number of endometrial cancer (EC) cases is constantly growing. However, the
current diagnostic approach is still rather imprecise, leaving 1/3 of patients temporarily undiagnosed.
Moreover, final diagnosis is made after the surgery. That mean the histology of tumor, which
influences scope of resection, is uncertain during procedure. This results in over- and undertreatment
of EC patients. Those diagnostic problems might be solved by liquid biopsy—a new, minimally
invasive method to obtain tumor biomarkers. Therefore, this study aimed to evaluate the usefulness
of information obtained from liquid biopsy components (tumor educated platelets and circulating
tumor DNA) coupled with random forest algorithm and deep neural networks to diagnose EC
patients and evaluate tumor histology preoperatively.

Abstract: Background: Liquid biopsy is a minimally invasive collection of a patient body fluid sample.
In oncology, they offer several advantages compared to traditional tissue biopsies. However, the
potential of this method in endometrial cancer (EC) remains poorly explored. We studied the utility of
tumor educated platelets (TEPs) and circulating tumor DNA (ctDNA) for preoperative EC diagnosis,
including histology determination. Methods: TEPs from 295 subjects (53 EC patients, 38 patients with
benign gynecologic conditions, and 204 healthy women) were RNA-sequenced. DNA sequencing
data were obtained for 519 primary tumor tissues and 16 plasma samples. Artificial intelligence was
applied to sample classification. Results: Platelet-dedicated classifier yielded AUC of 97.5% in the test
set when discriminating between healthy subjects and cancer patients. However, the discrimination
between endometrial cancer and benign gynecologic conditions was more challenging, with AUC of
84.1%. ctDNA-dedicated classifier discriminated primary tumor tissue samples with AUC of 96%
and ctDNA blood samples with AUC of 69.8%. Conclusions: Liquid biopsies show potential in EC
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diagnosis. Both TEPs and ctDNA profiles coupled with artificial intelligence constitute a source of
useful information. Further work involving more cases is warranted.

Keywords: endometrial cancer; tumor educated platelets; circulating tumor DNA; molecular mark-
ers; liquid biopsy; artificial intelligence

1. Introduction

Liquid biopsy, being a minimally invasive alternative to surgical tissue biopsies, has
recently revolutionized cancer diagnostics. This type of analysis is typically achieved using
a blood sample. The procedure enables interrogation of tumor-derived material such as
circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating free RNA
(cfRNA), tumor-derived extracellular vesicles (EVs), and more recently, tumor educated
platelets (TEPs), all present in the body fluids of cancer patients [1,2]. So far, mutational
burden [3] and methylation pattern in ctDNA [4], along with circulating miRNA signa-
tures [5], were used for screening and diagnosis of EC. Liquid biopsies as a diagnostic
tool are expected to predict: (a) tumor aggressiveness with ctDNA level determination [6];
(b) relapse with ctDNA mutational profiling [7]; (c) recurrence risk using EV annexin A2
and L1CAM level analysis [8]; and (d) immunotherapy response by assessing microsatellite
instability [9].

Liquid biopsies are poorly explored in endometrial cancer (EC). There is an apparent
need for improving preoperative diagnosis of EC. Limitations of the currently used diagnos-
tic procedures (insufficient tissue amount, technical failures) leave approximately 30% of
EC patients temporarily undiagnosed [10]. This problem is even more important nowadays
due to a rising incidence of EC cases among younger women and higher prevalence of
more aggressive EC subtypes [11,12].

An unexplored method of liquid biopsy in EC is TEPs technology. TEPs are platelets
that interact with cancer cells and are heavily involved in the progression of solid tumors,
and their transcriptomic profile changes dramatically under the influence of the disease.
Best et al. have demonstrated that the platelet transcriptome allows for distinguishing
between healthy, asymptomatic subjects and cancer patients in various malignancies
including glioblastoma, sarcoma, non-small cell lung cancer, pancreatic adenocarcinoma,
colorectal cancer, and breast cancer [2,13]. To the best of our knowledge, there have been
no investigations on platelet transcriptome in EC patients. This approach might find its
application in preoperative diagnosis of EC, as the planning of surgical intervention based
on traditional biopsy results is relatively imprecise. As mutations found in ECs reflect
their histology [14,15], ctDNA analysis could also be applied to preoperative histology
evaluation and may optimize treatment planning.

Both TEPs and ctDNA can be obtained from one vial of blood. Thus, we decided
to perform both assays in a parallel manner. We hypothesized that the analysis of TEPs
could aid initial EC diagnosis by discrimination between healthy women and EC patients,
whereas ctDNA interrogation would facilitate EC histology evaluation. As sequencing of
either RNA or DNA generates massive, difficult to interpret amounts of data, we used
the artificial intelligence for decision making: deep neural network and random forest, as
presented in Figure 1.
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Figure 1. The concept of the future EC diagnosis and initial therapy planning based on the proposed experiment.

2. Materials and Methods

Sample collection: Liquid biopsies were collected from gynecologic patients treated at
the Department of Gynecology, Oncologic Gynecology and Gynecological Endocrinology,
Medical University of Gdańsk (MUG, Gdańsk, Poland) between 2017 and 2019. Addi-
tionally, the sequencing data were obtained from: (a) platelets collected from 204 healthy
women referred as healthy donors (Dutch cohort) [16]; (b) primary tumors of 519 EC
patients available at Genomic Data Commons (GDC) Data Portal (referred as GDC cohort).
To avoid reproducibility bias, all TEPs samples and all ctDNA samples were sequenced in
one institution (Amsterdam and Gdańsk, Poland respectively).

The inclusion criteria for this study included EC before the initiation of any treatment
or benign gynecologic condition (BGC), and age above 18 years. Each patient signed an
informed consent form. The study was accepted by the Independent Ethics Committee of
Medical University of Gdańsk (NKBBN/434/2017). Procedures involving human subjects
were in accordance with the Helsinki Declaration of 1975, as revised in 1983. Stage evalua-
tion was based on classification of Federation of Gynecology and Obstetrics (FIGO) from
2014 [17]. EC was divided into type 1 (endometrioid and mucinous histology) and type 2
(serous, clear cell and undifferentiated tumors) [18].

Blood processing: Blood from gynecologic patients was collected into 6 mL BD va-
cutainer tubes with EDTA as an anti-coagulant. Samples were processed up to 48 h after
collection according to the protocol presented in Figure 2. Frozen platelets were shipped on
dry ice to VUmc Cancer Center Amsterdam (Amsterdam UMC, the Netherlands) for further
processing and sequencing, strictly according to the protocol published by Best et al. [19].
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Figure 2. The blood processing protocol for the collection of platelets, ctDNA-rich plasma (somatic mutations), and buffy
coat (germline mutations).

Platelet RNA sequencing and sample classification: Expression data for each sample
were normalized using DESeq2 package [20] with variance stabilizing transformation [21]
and then annotated with Gencode v19 GRCh37 [22]. Samples with less than 100,000 total
reads were excluded from further analysis. For platelet RNA-seq profiles, we used im-
Platelet classifier published by Pastuszak et al. [23]. The classifier is based on deep neural
networks and yields a TEPs score that can be interpreted as a quantitative measure of the
similarity of the considered transcription profile to the profile from a healthy donor (0) and
patients with EC or benign gynecologic control (1) from the training cohort. In this classifi-
cation, we used leave-one-out cross-validation, where in each fold, the test set consisted
of one distinct sample. Cross-validated area under curve (AUC) was computed using
cvAUC r package [24]. Cross-validated receiver operating characteristic (ROC) curves were
generated using ROCIT r package [25].

Germline DNA and ctDNA extraction: Germline DNA was isolated from 100 µL
buffy coat using QIAamp® DNA Blood Mini Kit according to the manufacturer’s guide-
lines. Circulating tumor DNA was isolated from 0.5–3 mL of plasma, using the QIAamp®

MinElute ccfDNA Mini Kit according to the manufacturer’s guidelines, with an additional
step of double plasma spinning after thawing (10 min at 1600× g, followed by 10 min at
16,000× g) in order to reduce plasma contamination with germline DNA. Quantification
of the extracted ctDNA was performed on TapeStation 4200 platform using the Agilent
High Sensitivity D1000 ScreenTape and Agilent High Sensitivity Assay Kit. Quantification
of the extracted germline DNA was performed with the use of Qubit Flourometer and
Qubit DNA High Sensitivity Assay Kit. Extracted material was stored at −80 ◦C for later
library construction.

Library construction and sequencing: For ctDNA and germline DNA sequencing,
library construction was performed using QIAseq Targeted Human Colorectal Cancer Panel
covering 71 genes. Complete gene list is available in Table S1. The panel was composed of
2929 primers, with a size of 215,328 bp. Genes typically differentiating endometrioid from
non-endometrioid EC include ERBB2, KRAS, CDH1, PTEN, TP53, PIK3R1, and PIK3CA.
However, it is highly likely that some mutations in ctDNA of EC patients were below
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the limit of detection and thus remain uncalled [26]. This prompted us to apply machine
learning instead of manual (subjective) EC-type classification. For the library construction,
we used 0.5–13 ng of ctDNA and 40 ng germline DNA. The procedure was performed
according to the manufacturer’s guidelines. Prepared libraries were stored at −20 ◦C.
Libraries were sequenced in a paired-end (2 × 151 bp) manner on HiSeq X Ten (ctDNA
libraries) and MiniSeq (germline libraries) Illumina platform. Expected coverage for
ctDNA-based libraries was 5000×, whereas for germline DNA-based libraries, it was 100×.

Tumor DNA sequencing and sample classification: For DNA sequencing, the align-
ment was performed using bwa-mem [27] 0.7.17-r1188, included in the cgp-wxs docker
container version 3.1.7, suitable for exome and panel sequencing. Reads were aligned to
the reference human genome GRCh37d5, with filtering of the capture kit provided by the
panel manufacturer (DHS-002Z, Human Colorectal Cancer Panel). Mosdepth [28] tool
(mosdepth 0.2.4 docker container) was applied to evaluate the quality and depth of the
sequenced samples. Finally, single nucleotide variants were called using sinvict [29] version
1.0. Determination of EC type based on ctDNA mutational profile was performed using a
random forest classifier. The model development procedure involved DNA sequencing
data from 519 primary tumors. The procedure and results of the classifier development
are presented as Tables S2 and S3 and Figures S1–S18. The model development procedure
was tested on two independent cohorts. The classifier divides the patients into two groups:
patients who have a tumor with endometrioid (type 1) and non-endometrioid histology
(type 2).

3. Results
3.1. Patients

The study group included liquid biopsy samples collected from 53 EC patients
(16 ctDNA and 37 TEPs samples, not matched), 38 patients with benign gynecologic
conditions (TEPs) and 204 healthy donors (TEPs). Benign gynecologic conditions included
myomas, endometriosis, cysts, polyps, and Brenner tumors. Primary tumor samples were
only used for the training of the classifier. Patient characteristics are summarized in Table 1,
and a more detailed sample list in shown in Tables S4 and S5.

Table 1. Clinicopathologic data of the study subjects: liquid biopsy of patients with EC, liquid biopsy of patients with
benign gynecologic conditions (BGC, MUG cohort), liquid biopsy of healthy controls and EC primary tumors (GDC cohort).
* BGC, benign gynecologic conditions, NA–not applicable.

Variable
Liquid Biopsy of EC

Patients—MUG
Cohort (n = 53)

Liquid Biopsy of BGC
* Patients—MUG

cohort (n = 38)

Liquid Biopsy of
Healthy Donors—Dutch

Cohort (n = 204)

Primary
Tumors—GDC Cohort

(n = 519)

Age
<50 2 (3.8%) 19 (50.0%) 127 (62.3%) 45 (8.7%)
>50 50 (94.3%) 19 (50.0%) 77 (37.8%) 471 (90.8%)

Missing data 1 (1.9%) 0 0 3 (0.6%)
Histology

Endometrioid 31 (58.5%) NA NA 389 (75.0%)
Non-endometrioid 22 (41.5%) NA NA 130 (25.1%)

Stage
IA-IB 31 (58.5%) NA NA 326 (62.8%)

II 5 (9.4%) NA NA 51 (9.8%)
IIIA-IIIC 9 (17.0%) NA NA 116 (22.4%)
IVA-IVB 1 (2.0%) NA NA 26 (5.0%)

Missing data 7 (13.2%) NA NA 0
Grade

1 7 (13.2%) NA NA 96 (18.5%)
2 24 (45.3%) NA NA 118 (22.7%)
3 16 (30.2%) NA NA 305 (58.8%)

Missing data 6 (11.3%) NA NA 0
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3.2. Platelet-Based Classification

In EC discrimination versus non-cancer patients and healthy volunteers, imPlatelet
classifier reached an accuracy of 99.7%, 93.1% and 93.1% in the training (N = 168), validation
(N = 111) and test set (N = 279, LOOCV), respectively (Figure 3). However, average TEPs
score of classification was 80.1% for EC patients, 50.0% for patients with benign gynecologic
condition, and 0.01% for healthy donors in the test set (Figure 4).

Figure 3. Receiver operating characteristic (ROC) curves representing the accuracy of imPlatelet classifier performance in
the training, validation, and independent test set.

Figure 4. Probability scores for TEPs sequencing results in the test set.
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3.3. ctDNA-Based Classification

The liquid biopsy cohort applied to the trained random forest classifier included the
ctDNA mutations from the patients with endometrioid and non-endometrioid EC collected
in Gdańsk. On the test set, which included mutational profiles found in primary tumors
(data from GDC database, not matched with the liquid biopsy samples), the classifier
reached an AUC of 96%. Classification of plasma ctDNA, using the optimal decision
threshold, reached a specificity of 0.58, sensitivity of 0.778, and accuracy of 68.7%, with
11/16 samples classified correctly (Figure 5).

Figure 5. The summary of ctDNA sample classification compared with histology evaluation. The columns contain
information regarding the genes that had nonsynonymus, stop gain or frameshift mutations in the corresponding samples
(marked in dark blue). Tumor histology: 1–endometrioid, 2–non-endmetrioid.

4. Discussion

Accurate diagnosis is crucial for effective EC management, and there is a need for
new preoperative molecular diagnostic tools [30,31]. We demonstrated that liquid biopsies
could fulfil this niche in the future. To the best of our knowledge, this is the first study to
explore potential of preoperative histological evaluation based on ctDNA profile in EC. Of
importance, liquid biopsy analysis typically does not provide information on the type of
tumor histology.

TEPs analysis so far has been successfully applied in NSCLC, ovarian cancer, and
glioblastoma [2,23]. Our results suggest that TEPs transcriptional profile can also be used
for distinguishing between EC patients and asymptomatic controls, as in other types of
cancer, as earlier presented by Best et al. [2]. Nevertheless, as TEPs profiling usually
indicates the tumor-site-of-origin localization, the discrimination between cancer cases
and healthy subjects is effective, whereas distinguishing EC from BGC is less efficient.
Therefore, imPlatelet classifier refinement should be considered with respect to the splice
variants that specifically indicate EC.

In a traditional model, EC is divided into type 1 and type 2 cancer. Both types have
mutations in certain genes: type 1 in PTEN, ARID1A, PIK3CA and KRAS, and type 2 in
TP53. Currently, the histology evaluation relies on the uterine biopsy or uterine curet-
tage [32]. This study points a potential of patient ctDNA mutational profile for preoperative
assessment of EC histology. The classifier correctly categorized primary tumors of the test
set, whereas ctDNA profile proved less informative, likely due to small sample size. In a
similar attempt, Martinez-Garcia et al. used protein markers in fluid fraction of uterine
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aspirates for preoperative evaluation of tumor histology. Accuracy of their EC vs. non-EC
differentiation was slightly lower than our TEPs classifier (96.0% vs. 100.0%), and the
accuracy of serous vs. endometrioid EC was higher than our ctDNA classifier (99.0% vs.
68.7%) [33]. However, our method is more convenient for the patient, provides informa-
tion on a larger number of molecular targets (71 genes instead of 29 proteins), and the
applied machine learning makes the diagnosis more objective and time-efficient. This holds
promise in the future for a clinical setting. On the other hand, our classifier was tested on a
small number of ctDNA samples and should be validated on a larger group.

Several limitations of the study need be acknowledged. The first is a small number
of liquid biopsies and the lack of matching between TEPs and ctDNA samples. Hence,
the presented classifier accuracies should be intepreted with caution. However, for the
training process, we have used all the asymptomatic controls (N = 204) and primary tumors
(N = 519) we had had at our disposal at the moment of the analysis. Although we admit
that enrolling more samples would likely result in the further refinement, we believe our
results are meaningful and worth presenting despite the small liquid biopsy sample size.
Additionally, we admit that imPlatelet classifier needs refinement to better distinguish
BGC from EC. Further, under ideal conditions, BGC cohort should be limited to myoma,
cyst, polyp and endometriosis cases, which are not considered pre-cancer conditions. The
proposed approach is also expensive in a clinical setting, but the sequencing costs are
expected to continue decreasing [34,35].

Random forest algorithm also needs refinement. The results of algorithm stability
analysis (Figure S19) suggest that collecting more training data will result in significant
improvements in the classification performance. These data should preferably be collected
through liquid biopsies, since our analyses suggest that the data from biopsies and solid
tumors do not follow the same distributions (Figure S20). To further test this hypothesis,
more data are needed. We also observed that mutation frequencies in type-specific genes
differed from the literature data [14,15]. For example, TP53 and ERBB2 gene mutations
were found in both endometrioid and non-endometrioid EC types, and PTEN mutation
frequency was lower than expected. This might be due to limitations of the used gene
panel, or the fact that some mutations in ctDNA were below the limit of detection and
thus remained uncalled. There is also a risk of false-negative results due to low volume of
plasma yield and thus limited total number of available genome copies. Previous studies
showed that tumor fraction of cfDNA varies between cancer types, and even metastatic
tumors may demonstrate low amounts of ctDNA [26,36–38].

One of the advantages of applying machine learning is its flexibility. Recent pub-
lications provide evidence that type 1 and 2 EC classification should be replaced with
ultramutated and non-mutated POLE gene discrimination [39–42]. Therefore, the division
of endometrial cancer into type 1 and type 2 may shortly be considered obsolete. In the fu-
ture, the developed random forest-based classifier can be adapted to optimize classification.

5. Conclusions

In conclusion, liquid biopsies show a great promise in EC. Our preliminary results
show that both TEPs and ctDNA profiles constitute informative material for EC diagnosis
and management. Further work, with a larger sample size and refined classifiers is war-
ranted. In the future, the presented test might be strategically positioned as a screening tool.
The interrogation of TEPs profile would aid initial EC diagnosis, particularly discrimination
between healthy women and EC patients. Meanwhile, ctDNA analysis could serve as
means of preoperative EC histology evaluation. This feasibility study shows that both TEPs
and ctDNA profiles constitute informative material for EC diagnosis and management.
Further work with a larger sample size and refined classifiers is warranted. In the future,
both TEPs and ctDNA profiling can be considered in monitoring treatment response in
EC patients.



Cancers 2021, 13, 5731 9 of 11

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13225731/s1, Figure S1: The stages of model development and testing, Figure S2: The
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