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Abstract We present an iterative coupling scheme for the numerical approximation

of the mixed hyperbolic-parabolic system of fully dynamic poroelasticity. We prove

its convergence in the Banach space setting for an abstract semi-discretization in

time that allows the application of the family of diagonally implicit Runge–Kutta

methods. Recasting the semi-discrete solution as the minimizer of a properly defined

energy functional, the proof of convergence uses its alternating minimization. The

scheme is closely related to the undrained split for the quasi-static Biot system.

1 Introduction

Information on flow in deformable porous media has become of increasing impor-

tance in various fields of natural sciences and technology. It offers an abundance of

technical, geophysical, environmental and biomedical applications including mod-

ern material science polymers and metal foams, gaining significance particularly in

lightweight design and aircraft industry, design of batteries or hydrogen fuel cells for

green technologies, geothermal energy exploration or reservoir engineering as well

as mechanism in the human body and food technology. Consequently, quantitative

methods, based on numerical simulations, are desirable in analyzing experimental

data and designing theories based on mathematical concepts. Recently, the quasi-

static Biot system (cf., e.g., [12, 14]) has attracted researcher’s interest and has been

studied as a proper model for the numerical simulation of flow in deformable porous
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media. The design, analysis and optimization of approximation techniques that are

based on an iterative coupling of the subproblems of fluid flow and mechanical de-

formation were focused strongly. Iterative coupling offers the appreciable advantage

over the fully coupled method that existing and highly developed discretizations and

algebraic solver technologies can be reused. For the quasi-static Biot system, pioneer-

ing work is done in [10, 12]. Further research is presented in, e.g., [2, 4, 7, 8, 9, 13].

In the case of larger contrast coefficients that stand for the ratio between the

intrinsical characteristic time and the characteristic domain time scale the fully

dynamic hyperbolic-parabolic system of poroelasticity has to be considered. In [11],

this system (referred to as the Biot–Allard equations) is derived by asymptotic

homogenization in the space and time variables. Here, to fix our ideas and carve out

the key technique of proof, a simplified form of the system proposed in [11] is studied.

However, its mixed hyperbolic-parabolic structure is preserved. Our modification of

the fully dynamic poroelasticity model in [11] comes through a simplication of the

solution’s convolution with the dynamic permeability that is defined as the spatial

average of pore system Stokes solutions on the unit cell. The fully dynamic system

of poroelasticity to be analyzed here is given by (cf. [14, p. 313])

ρ ∂2
t u −∇ · (Cε(u) − αp) = f , (1a)

∂t (c0p +α : ε(u)) +∇ · q = h , (1b)

κ−1q +∇p = g . (1c)

System (1) is equiped with appropriate initial and boundary conditions. In (1), the

variable u is the unkown effective solid phase displacement and p is the unkown

effective pressure. The quantity ε(u) = (∇u + (∇u)⊤)/2 denotes the symmetrized

gradient or strain tensor. Further, ρ is the effective mass density, C is Gassmann’s

fourth order effective elasticity tensor, α is Biot’s pressure-storage coupling tensor

and c0 is the specific storage coefficient. In the three field formulation (1), the vector

field q is Darcy’s velocity and κ is the permeability tensor. All tensors are assumed

to be symmetric, bounded and uniformly positive definite, the constants ρ and c0

are positive. By A : B we denote the Frobenius inner product of A and B. The

functions on the right-hand side of (1) are supposed to be elements in dual spaces

and, therefore, can include body forces and surface data (boundary conditions).

So far, the numerical simulation of the system (1) has been studied rarely in the

literature despite its numerous applications in practice. This might be due to the mixed

hyberbolic-parabolic character of the system and severe complexities involved in the

construction of monolithic solver or iterative coupling schemes with guaranteed

stability properties. Space-time finite element approximations of hyperbolic and

parabolic problems and the quasi-static Biot system were recently proposed, analyzed

and investigated numerically by the authors in [1, 2, 3]. Here, we propose an iterative

coupling scheme for the system (1) and prove its convergence. This is done in

Banach spaces for the semi-discretization in time of (1). An abstract setting is used

for the time discretization such that the family of diagonally implicit Runge–Kutta
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methods becomes applicable. The key ingredient of our proof of convergence is

the observation that we can recast the semi-discrete approximation of (1) as the

minimizer of an energy functional in the displacement and Darcy velocity fields. To

solve the minimization problem, the general and abstract framework of alternating

minimization (cf. [5, 6]) is applied. The resulting subproblems of this minimization

are then reformulated as our final iterative coupling scheme. Thereby, the proof

of convergence of the iterative scheme is traced back to the convergence of the

alternating minimization approach. This shows that the latter provides an abstract

and powerful tool of optimization for the design of iterative coupling schemes.

We use standard notation. In particular, we denote by 〈·, ·〉 the standard inner

product of L2(Ω) and by ‖ · ‖ the norm of L2(Ω).

2 Variational formulation of a semi-discrete approximation of

the system of dynamic poroelasticity

Firstly, we discretize the continuous system of dynamic poroelasticity (1) in time by

using arbitrary (diagonally implicit) Runge–Kutta methods and formulate the semi-

discrete approximation as solution to a minimization problem, following the approach

in [5]. For this, we consider an equidistant partition 0 = t0 < t1 < . . . < tN = T of

the time interval of interest [0,T ] with time step size ∆t. In the sequel, we use the

following function spaces for displacement, pressure, and flux, respectively,

V
n :=

{
v ∈ H1(Ω)d ��vn satisfies prescribed BC at time tn

}
,

Qn := L2(Ω) ,

W
n :=

{

w ∈ H (div;Ω) ��w satisfies prescribed BC at time tn
}

.

Further, letV 0, Q0, andW 0 denote the corresponding natural test spaces, andV⋆

0
,

Q⋆

0
, andW⋆

0 their dual spaces.

Applying any diagonally implicit Runge–Kutta method for the temporal dis-

cretization of (1), eventually involves solving systems of the following structure.

Problem 1 In the n-th time step, find the displacementun ∈ Vn, pressure pn ∈ Qn,

and flux qn ∈Wn, satisfying for all (v, q,w) ∈ V0 × Q0 ×W0 the equations

ρ

∆t2

〈

un, v
〉

+ θ1
〈

Cε(un), ε(v)
〉

−
〈

αpn, ε(v)
〉

=

〈

fn

θ,∆t, v
〉

, (2a)

c0

〈

pn, q
〉

+

〈

α : ε(un), q
〉

+ θ2∆t
〈

∇ · qn, q
〉

=

〈

hn

θ,∆t, q
〉

, (2b)

〈

κ−1qn,w
〉

−
〈

pn,∇ ·w
〉

=

〈

gn

θ,∆t,w
〉

. (2c)

In (2), the quantities θ1, θ2 ∈ (0, 1] are discretization parameters, and the right-

hand side functions fn

θ,∆t
∈ V⋆

0
, hn

θ,∆t
∈ Q⋆

0
, gn

θ,∆t
∈W⋆

0 include information on
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external volume and surface terms, as well as previous time steps depending on the

choice of the implicit Runge–Kutta discretization.

Assuming positive compressibility, i.e., c0 > 0 for the specific storage coeffi-

cient, the semi-discrete approximation satisfies equivalently the following variational

problem; cf. [5] for the derivation of a similar equivalence in the framework of the

quasi-static Biot system.

Problem 2 Find (un, qn) ∈ Vn ×W n, satisfying

(un, qn) = arg min
(u,q)∈V n×Wn

E (u,q) , (3)

where the energy E :Vn ×Wn → R at time tn is defined by ((u,q) ∈ Vn ×Wn)

E (u,q) :=
ρ

2∆t2
‖u‖2 +

θ

2
〈Cε(u), ε(u)〉 +

θ1θ2∆t

2

〈

κ−1q, q
〉

+

θ1

2c0




hn

θ,∆t − α : ε(u) − θ2∆t∇ · q



2
−

〈

fn

θ,∆t,u
〉

−
〈

gn

θ,∆t, q
〉

.

(4)

The semi-discrete pressure pn may then be recovered by the post-processing step

pn = c−1
0

(

hn

θ,∆t − α : ε(un) − θ2∆t ∇ · qn
)

. (5)

3 Iterative coupling for the system of dynamic poroelasticity

Following the philosophy of [5], we propose an iterative coupling of the semi-

discrete equations (2) of dynamic poroelasticity by firstly applying the fundamental

alternating minimization to the variational formulation (3); cf. Alg. 1.

Algorithm 1: Single iteration of the alternating minimization

1 Input: (un,k−1, qn,k−1) ∈ Vn ×W n

2 Determine un,k := arg minu∈Vn E (u,qn,k−1)

3 Determine qn,k := arg minq∈W n E (un,k, q)

Secondly, the resulting scheme is equivalently reformated in terms of a stabilized

splitting scheme applied to the three-field formulation (2). For this, a pressure it-

erate pn,k = c−1
0

(

hn

θ,∆t
− α : ε(un,k ) − θ2∆t ∇ · qn,k

)

∈ Qn, k ≥ 0, is introduced,

consistent with (5), and the optimality conditions corresponding to the two steps of

Alg. 1 are reformulated. The calculations are skipped here. We immediately present

the resulting scheme, which in the end is closely related to the undrained split for

the quasi-static Biot system [10].
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Problem 3 Let (un,0, pn,0) ∈ Vn × Qn be given and k ≥ 1.

1. Step (Update of mechanical deformation): For given (un,k−1, pn,k−1) ∈ V n ×

Qn, find un,k ∈ V n satisfying for all v ∈ V 0,

ρ

∆t2

〈

un,k, v
〉

+ θ1

〈

Cε(un,k ) +
α ⊗ α

c0

ε(un,k − un,k−1), ε(v)

〉

(6)

− θ1
〈

αpn,k−1, ε(v)
〉

=

〈

fn

θ,∆t, v
〉

,

where ⊗ : Rd×d × Rd×d → Rd×d×d×d denotes the standard tensor product.

2. Step (Update of Darcy velocity and pressure): For given (un,k, pn,k−1) ∈

V
n × Qn find (pn,k, qn,k ) ∈ Qn ×Wn satisfying for all (q,w) ∈ Q0 ×W 0,

c0

〈

pn,k, q
〉

+

〈

α : ε(un,k ), q
〉

+ θ2∆t
〈

∇ · qn,k, q
〉

=

〈

hn

θ,∆t, q
〉

, (7a)

〈

κ−1qn,k,w
〉

−
〈

pn,k,∇ ·w
〉

=

〈

gn

θ,∆t,w
〉

. (7b)

We note that the splitting scheme defined by (6), (7) utilizes the identical stabi-

lization as the undrained split for the quasi-static Biot equations [10].

4 Convergence of the iterative coupling scheme

The identification of the undrained split approach (6), (7) as the application of the

alternating minimization, cf. Alg. 1, to the variational problem (3) yields the basis for

a simple convergenceanalysis. For this, we utilize the following abstract convergence

result, that is rewritten here in terms of the specific formulation of Alg. 1.

Theorem 1 (Convergence of the alternating minimization [6]) Let | · |, | · |m, and

| · |f denote semi-norms on V0 ×W0, V 0, andW0, respectively. Let βm, βf ≥ 0

satisfy the inequalities

|(v,w) |2 ≥ βm |v |
2
m and |(v,w) |2 ≥ βf |w |

2
f

for all (v,w) ∈ V0×W0. Furthermore, assume that the energy functional E of (4)

satisfies the following conditions:

• The energy E is Frechét differentiable with DE denoting its derivative.

• The energy E is strongly convex wrt. | · | with modulus σ > 0, i.e., for all

u, ū ∈ Vn and q, q̄ ∈Wn it holds that

E (ū, q̄) ≥ E (u,q) + 〈DE (u,q), (ū − u, q̄ − q)〉 +
σ

2
|(ū − u, q̄ − q) |2 .
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• The partial functional derivatives DuE and DqE are uniformly Lipschitz con-

tinuous wrt. | · |m and | · |f with Lipschitz constants Lm and Lf , respectively, i.e.,

for all (u,q) ∈ Vn ×W n and (v,w) ∈ V 0 ×W0 it holds that

E (u + v, q) ≤ E (u,q) + 〈DuE (u,q), v〉 +
Lm

2
‖v‖2m ,

E (u,q +w) ≤ E (u,q) +
〈

DqE (u,q),w
〉

+

Lf

2
‖w‖2f .

Let (un, qn) ∈ Vn ×W n denote the solution to (3), and let (un,k, qn,k ) denote the

corresponding approximation defined by Alg. 1. Then, for all k ≥ 1 it follows that

E (un,k, qn,k ) − E (un, qn) (8)

≤

(

1 −
βmσ

Lm

) (

1 −
βfσ

Lf

)

(

E (un,k−1, qn,k−1) − E (un, qn)
)

.

A simple application of Theorem 1 now yields the main result of the work, namely

the global linear convergence of the undrained split (6), (7).

Corollary 1 (Linear convergence of the undrained split) Let | · | be defined by

|(v,w) |2 :=
ρ

∆t2
‖v‖2 + θ1 〈Cε(v), ε(v)〉 + θ1θ2∆t

〈

κ−1w,w
〉

+

θ1

c0
‖α : ε(v) + θ2∆t∇ ·w‖2

for all (v,w) ∈ V 0×W 0. Furthermore, let (un, qn) ∈ Vn×Wn denote the solution

to (3), and let (un,k, qn,k ) ∈ V n ×Wn denote the corresponding approximation

defined by Alg. 1. Then, for all k ≥ 1 it holds that

���(un,k − un, qn,k − qn)
���2 ≤

(

‖α : C−1 : α‖∞

c0 + ‖α : C−1 : α‖∞

)2

·
���(un,k−1 − un, qn,k−1 − qn)

���2 .
Proof We first examine convexity and smoothness properties of E defined in (4) by

analyzing the second functional derivative of E. For this, let (u, q) ∈ Vn ×Wn

and (v,w) ∈ V0 ×W0 be arbitrary. Then, for the second functional derivative

D2E (u,q) : (V⋆

0
×W⋆

0 )2 → R of E it holds that

〈

D2E (u,q)(v,w), (v,w)
〉

= |(v,w) |2 . (9)

Next, we define a norm | · |m on V 0 by considering the partial second functional

derivative of E with respect to the displacement field,
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〈

D2
uE (u,q)v, v

〉

=

ρ

∆t2
‖v‖2 + θ1 〈Cε(v), ε(v)〉 +

θ1

c0

‖α : ε(v)‖2 =: |v |2m .

Similarly, we define a norm | · |f onW0 by means of

〈

D2
qE (u,q)w,w

〉

= θ1θ2∆t
〈

κ−1w,w
〉

+

θ1

c0

‖θ2∆t∇ ·w‖2 =: |w |2f .

It directly follows that E is strongly convex wrt. | · | with modulus σ = 1, and the

partial functional derivatives DuE and DqE are uniformly Lipschitz continuous wrt.

| · |m and | · |f with Lipschitz constants Lm = 1 and Lf = 1, respectively.

By the Hölder inequality we deduce that

‖α : ε(v)‖2 =

∫

Ω

|α : ε(v) |2 dx ≤

∫

Ω

���α : C−1 : α
��� |ε(v) : C : ε(v) | dx (10)

≤



α : C−1 : α




∞ 〈Cε(v), ε(v)〉 .

Hence, it follows that

|v |2m ≤
*.
,1 +




α : C−1 : α



∞

c0

+/
- |(v,w) |2 .

On the other hand, applying the triangle inequality and Young’s inequality, and

balancing the arising constants properly yields that

θ1

c0

‖θ2∆t∇ ·w‖2 ≤
θ1

c0

*.
,1 +




α : C−1 : α



∞

c0

+/
- ‖θ2∆t∇ ·w +α : ε(v)‖2

+

θ1

c0

(

1 +
c0

α : C−1 : α

∞

)

‖α : ε(v)‖2 .

Together with (10), we also conclude that

|w |2f ≤
*.
,1 +




α : C−1 : α



∞

c0

+/
- |(v,w) |2 .

Thereby, the assumptions of Theorem 1 are fulfilled and (8) is ensured with

constants σ = Lm = Lf = 1 and βm = βf =

(

1 +
‖α:C−1:α‖∞

c0

)−1

. Finally, the

assertion follows directly, since E is quadratic and (un, qn) is a local minimum of E

and | · | relates to the second functional derivative of E via (9). Therefore, we have

that E (un,k, qn,k ) − E (un, qn) = 2
���(un,k − un, qn,k − qn)

���2 for all k ≥ 0. �

Remark 1 (Convergence of pn,k ) The convergence of the sequence of pressures

{pn,k }k follows now immediately by a standard inf-sup argument.
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Remark 2 (Comparison with quasi-static case) The final convergence rate in Corol-

lary 1 coincides with the one for the undrained split applied to the quasi-static Biot

equations for an homogeneous and isotropic bulk; cf. [12]. In that case, the Biot

tensor α reduces to αI for some constant α ∈ (0, 1], and C is defined by the Lamé

parameters, such that α : C−1 : α = α
2

Kdr
, where Kdr is the drained bulk modulus.
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