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Numerous complex systems, both natural and artificial, are
characterized by the presence of intertwined supply and/or
drainage networks. Here, we present a minimalist model of
such coevolving networks in a spatially continuous domain,
where the obtained networks can be interpreted as a part of
either the counter-flowing drainage or co-flowing supply and
drainage mechanisms. The model consists of three coupled,
nonlinear partial differential equations that describe spatial
density patterns of input and output materials by modifying
a mediating scalar field, on which supply and drainage
networks are carved. In the two-dimensional case, the scalar
field can be viewed as the elevation of a hypothetical
landscape, of which supply and drainage networks are
ridges and valleys, respectively. In the three-dimensional
case, the scalar field serves the role of a chemical signal,
according to which vascularization of the supply and
drainage networks occurs above a critical ‘erosion’ strength.
The steady-state solutions are presented as a function of
non-dimensional channelization indices for both materials.
The spatial patterns of the emerging networks are classified
within the branched and congested extreme regimes,
within which the resulting networks are characterized based
on the absolute as well as the relative values of two
non-dimensional indices.
1. Introduction
Many natural and man-made systems consist of materials being
conveyed in and/or out of the domain through preferred routes,
which result in the evolution of supply and/or drainage
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networks. In some biological systems, motile cells regulate their movement based on the affinity or
aversion to specific environmental factors (temperature, chemical/biological signal) [1–4]. Two
coexisting materials, moving up and down a signal gradient, drive the formation of the competing
networks. In other systems, the material is supplied throughout a domain and gets collected once it
has been used (and often also transformed), resulting in the formation of co-flowing supply and
drainage networks. Examples include the cardiovascular network of blood and nutrients in animals,
the supply-chain network of a commodity from the manufacturer to the customer and the related
disposal, as well as the aqueduct and waste-flow network in urban water systems [5–11]. In all these
systems, the coexisting networks must evolve or be designed in a way that is coordinated, depending
on different constraints, such as the configuration of the distribution region, the cost and modes of
transportation for supply and drainage materials, etc.

A great deal of research has explored the quantitative laws that explain the structure of networks in
different disciplines, but this has been typically done considering either the supply or the drainage
network separately [12–16]. In many cases, the general framework for studying such systems has been
a static cost optimization problem typical of optimal transport theory [17–20]. As a result, the
topology of the underlying supply or drainage network depends on the definition of the cost,
including minimum energy dissipation, geometrical constraints, etc. [21–24]. Recently, there have been
efforts to interpret this static principle as the result of a dynamic evolution based on partial
differential equation (PDE) [25–28].

Less efforts have been devoted to analyse the coevolution of supply and/or drainage transport
systems within a continuous domain, which is complicated by the presence of common and
individual factors that affect transportation for both materials, including shape and size of the region,
parametrization of production/consumption rate, flux velocities, etc. As a step in this direction, this
study aims at formulating and analysing a minimalist model that captures the essential interactions
between two materials being conveyed in a continuous domain, where the system can be interpreted
either as a counter-flowing drainage system or a co-flowing supply and drainage system. The model
can be generalized to incorporate multi-species interplay, but for simplicity we limit the discussion to
two-species interactions.

The conceptual framework developed here stems from observing the complex ridges and valleys
patterns in topographic landscapes, and the related work in the fields of image processing,
geomorphology and hydrology related to the duality between the interlocking network of ridges and
valleys [29–31]. For its mathematical formulation, we draw inspiration from the landscape evolution
models (LEMs), which have been successful in describing the formation of river and stream networks
[11,32–35]. Generalizing these models, we develop a simple system consisting of three nonlinear
coupled PDEs with an essential parametrization. We introduce a scalar field in continuous spatial
domain that mediates two competing mechanisms of either two counter-flowing drainage or two co-
flowing supply and drainage problems. We show the influence of rules of production and/or
consumption as well as the boundary conditions on the obtained steady-state network patterns.

The paper is structured as follows. In §2, we first present the conceptual framework for two
viewpoints of the model. We construct the three-field mathematical model and define non-
dimensional indices to describe the relative importance of various factors that alters the characteristics
of the coupled networks. We also show that for unitary value of exponents, the proposed model can
be re-written as a two-field model. The steady-state closed-form solutions for non-channelized flows
in two and three dimensions are derived in §3. In §4, the numerical simulation results for the two-
dimensional and three-dimensional cases are presented and the spatial patterns are analysed for
different levels of complexity and branching. Conclusions and future research directions are discussed
in §5. In appendix A, we discuss the two-field equivalent formulation for the proposed PDE model
and the complexity in the boundary conditions that emerges from this model reduction.
2. Mathematical model
2.1. Conceptual model inspired by the ridge and valley duality
We begin by considering the geometry of a topographic field (figure 1a), visualized as a scalar field h in
three-dimensional Euclidean space, where the vertical direction points toward gravity. Avoiding maxima
(summits) and minima (pits), the curves of particular significance here are the ridges and valleys, which
provide a skeleton for the structure of the drainage network [36,37]. With the assumption of negligible
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Figure 1. Conceptualization of supply and drainage networks using the dual ridge and valley networks in a topographic landscape.
(a) Three-dimensional surface h for the selected topography. (b) Drainage network for a− following the negative gradient of h. (c) The
inverted surface of the original topography, where H is the maximum elevation in the domain. (d ) Drainage network for a+ flowing
along the negative gradient of the inverted h. (e) Interlocked planar ridge and valley networks with prominent ridge-lines (red) and
valley-lines (blue). ( f ) The white curve represents the interface a+ = a− and separates the red region representing high accumulation of
a+ (a+ > a−) from the blue region showing aggregation of a− (a− > a+). The selected topography is from the Calhoun Critical Zone
landscape in South Carolina (obtained from the OpenTopography facility (https://opentopography.org/)).
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inertial effects, a fluid present in the domain flows under gravity over the scalar field along the direction
of the steepest descent. This way, the scalar field, h, can be perceived as a potential field guiding the
material flow, which results in the distribution of material density, say a−, as shown in figure 1b,
highlighting the drainage network for the topography. This density, a−, is drained by the stream
network and flows out of the system at the boundary.

Inverting artificially the initial topography, as shown in figure 1c, the duality between ridges and
valleys is apparent, as ridges become valleys and valleys become ridges. The interlocked network of
ridge-lines and valley-lines extracted from the original topography is shown in figure 1e. Based on
this duality, and similarly to the density a− for the drained material, one can imagine another flow
with density a+ in this inverted topography, produced within the domain and drained by the ridge
network. The field of material density a+, marking the drainage network for the flipped topography, is

https://opentopography.org/
https://opentopography.org/
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shown in figure 1d, where the main courses of flow follow the ridge-lines of the original topography.
Therefore, the flow of a+/a− moving up/down the slope of the topographic field to be drained by the
ridge/valley network is the counter-flow problem (we will refer to this as Problem I).

Reversing the flow direction of the density a+ in the above scenario, the problem can be formulated as
a co-flowing supply-drainage problem (Problem II), where a+ represents the density of the supplied
material that flows down the slope similar to the drained material of density a−. Instead of having a
distributed source through the domain and exiting from the boundary through the ridge network, a+
enters from the boundary where the ridge network forms peaks, and flows along the ridge network
following the topographic steepest descent. Figure 1f displays the accumulation of a+ along the ridges
(red region) and the accumulation of a− along the valleys (blue region), with the white curve
subdividing the regions dominated by either material. One can envision the supplied material density
a+ entering the area at the boundary concentrated at the ridges of the scalar field h, flowing and
getting distributed over the hillslopes as it gets exhausted. In turn, the consumption of the supplied
material produces the drained material density a−, which moves under the scalar field potential, and
gets discharged out of the domain preferentially via the valleys.
c.Open
Sci.8:201407
2.2. Governing equations
The two-dimensional illustration presented above can be formalized and extended to an n-dimensional
space (Rn), considering a scalar field h : Rn→R, defined inside a domain Ω along with two scalar fields
a+ and a− playing the role of the material densities.

For the counter-flow drainage problem (Problem I), the continuity equation for the two materials (a+
and a−), that are produced at a unitary rate and flow with opposite velocity v+ and v−, respectively, can be
written under the assumption of quasi steady state as

r � (a+v+) ¼ 1: (2:1)

For simplicity, we assume that the velocity fields, v+ and v−, follow the positive and negative gradient
of h, respectively, with unit speed as

v+ ¼ +
rh
jrhj : (2:2)

The scalar field h is assumed to coevolve with the density fields of both materials. Specifically, the
temporal evolution of h consists of a diffusion term and nonlinear sink and source terms due to the
feedback from both materials as

@h
@t

¼ Dr2hþ K(rþaþ)mþ jrhjnþ � K(r�a�)m� jrhjn� , (2:3)

where D is the diffusion coefficient, K > 0, m± > 0 and n± > 0 are model parameters and r± indicate
production rates for the respective material. In this work, we keep these parameters constant over the
whole spatial domain. The coupled nonlinear equations (2.1) and (2.3) form a closed system for the
interaction of counter-flowing drainage mechanisms by modifying the scalar field h with appropriate
initial and boundary conditions for h, a+ and a−.

From the viewpoint of the co-flowing supply and drainage mechanism (Problem II), a+ represents the
density of the input material in the domain, which is used and drained out of the domain as the output
material with density a−. The continuity equation for a−, therefore, remains the same, with the
modification in the continuity equation for the input material supplied at the boundaries, that moves
with velocity v+ and gets consumed at the unitary rate, as

r � (a+v+) ¼ +1, (2:4)

where both velocity fields, v+ and v−, follow the negative gradient of h with unit speed as

v+ ¼ � rh
jrhj : (2:5)

Equations (2.3) and (2.4) form a general minimalist model for the interaction of two underlying
mechanisms of supply and drainage in a spatially continuous domain by modifying the scalar field h,
as apparent from equation (2.3), where r+ now represents the consumption rate of the supplied
material a+. For parsimony, we assume that the supply is consumed uniformly in space at constant
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rate, which is immediately disposed giving rise to a uniform and constant source of material that gets
drained. More complicated patterns of supply and drainage are certainly of interest and will be
investigated in future work. While the model can be analysed from either of two previously discussed
formulations, we will mostly consider the viewpoint of supply and drainage mechanisms (Problem II)
for the interpretation of the solutions.

A physical understanding of the feedback mechanism related to the source/sink term in equation
(2.3) can be achieved by inspecting the example of an eroding overland flow in a natural landscape.
The sink term used in landscape evolution models (the same as that employed in equation (2.3))
implies that heavy erosion of h occurs for large values of material density a− and high magnitudes of
h gradients [11,38,39]. Following the steepest descent direction of h, more accumulation of the drained
material causes high erosion. This feedback loop in carving a preferential path creates a surface
instability, which tends to be inhibited by the smoothing effect of diffusion. A threshold exists, above
which the instability grows and results in the formation of a complex valley network [11,40].

In this model, the sink and source terms mathematically formalize the same conceptual framework
shown in figure 1, where the movement of materials carves out the preferential paths. Thus, for the
two-dimensional case, the scalar field h may be viewed as an elevation field of the ‘hypothetical’
landscape over which input and output materials move following equation (2.5). As indicated by
equation (2.3), the accumulation of drainage material decreases the elevation that results in the
formation of valleys (sink term). Conversely, the aggregation of the supply material increases the
surface elevation that leads to the formation of ridges (source term). Consequently, the input material
is accumulated on ridges, while the output material is concentrated in valleys.

In the three-dimensional case, the scalar field can be interpreted as the strength of a chemical signal
that drives the movement of the materials (chemotaxis). As equation (2.5) indicates, the concentration of
the chemical signal h stimulates the migration of the materials opposite to its gradient. Vascularization of
the supply and drainage networks takes place in the domain with high material density of the supply
material in high-valued scalar field region and high material density of the drainage material in low-
valued scalar field region due to the feedback of sink and source terms in equation (2.3).

The mathematical structure of the proposed model resembles complex models of drainage network
evolution, vasculogenesis, chemotaxis and, in general, biological network-formation models as well as
surface-growth models [3,41–47]. Specifically, the core component of the model resembles minimalist
versions of the well-known Keller–Segel model for chemotaxis under negligible diffusion of biological
cells [48–50].

2.3. Boundary conditions
The boundary conditions play a crucial role in obtaining solutions for the internal distribution of the
densities over the domain. We consider two-dimensional and three-dimensional domains in the shape
of a rectangle or parallelepiped, respectively, with the top edge/face (Ωt) at a fixed higher value (h =
H) compared with the bottom edge/face (Ωb) at a fixed lower value (h = 0). The remaining side
edges/faces (Ωs) follow zero Neumann boundary conditions in h, which provide closed boundary
conditions in the densities of the materials (a± = 0). For Problem I, the proposed arrangement induces
a directionality to the movement of the two materials in the domain with top (Ωt) and bottom (Ωb)
edges/faces functioning as the exit boundaries for a+ and a−, respectively. Assuming that the densities
of the two materials are negligible at their upstream domain boundaries, the boundary conditions
become simple and time-independent as a+(Ωb) = a−(Ωt) = 0. Under such boundary conditions and the
assumption of spatially uniform production rates (r+ and r−), the governing equations compute the
counter-flow of the materials across the domain (including at the boundaries where the densities are
not specified i.e. a+(Ωt) and a−(Ωb)). Figure 2 illustrates the boundary conditions used in this work as
well as the corresponding solutions near the first channel instability in the two-dimensional case.

For Problem II, the boundary conditions for h are the same as for Problem I, with top (Ωt) and bottom
(Ωb) edges/faces functioning now as the entry and exit boundaries for the domain, respectively. Under
the assumption that no drainage material exits from Ωt and no supply material is conveyed out of Ωb, the
boundary conditions of the material densities remain simple and time-independent as a+(Ωb) = a−(Ωt) = 0.
The zero Neumann boundary conditions in h on side edges correspond to closed boundary conditions
for both material densities (a± = 0). Under these conditions, the governing equations determine the
flow and distribution of supplied and drained materials over the spatial domain (including at the
boundaries where the densities are not specified i.e. a+(Ωt) and a−(Ωb)) under the assumption of
spatially uniform consumption (r+) and production (r−) rates.
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Figure 2. Schematic of the boundary conditions used in the model. (a) Surface profile of the scalar field h in a portion of the
rectangular domain near the first channel instability, where H is the maximum value in the domain (see §4.1 for details).
Three shallow ridges and two shallow valleys can be observed in the plotted profile. (c) Boundary conditions of a+ and a−
counter-flow drainage problem (Problem I) and co-flow supply and drainage problem (Problem II). Two (red) channels of a+
and three (blue) channels of a− corresponding to the ridges and valleys in (a) are observed. The white curve, representing the
interface a+ = a−, separates the regions dominated by each material. Four contour lines of the scalar field h are plotted along
with (black) streamlines which indicate the flow direction of the materials. (b,d ) Obtained signals of a+ and a− at Ωt and
Ωb, respectively, with peaks indicating channel formation at the corresponding domain boundaries.
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It is interesting to observe that the model can be reduced to a two-field system for the case m± = n± = 1
and constant r± over the spatial domain. Multiplying the continuity equations for a+ and a− (equation
(2.4)) by r+ and r−, respectively, and subtracting, one can write the single equation for a new spatial field

a� ¼ rþaþ � r�a�
rþ þ r�

, (2:6)

as

�r � a�
rh
jrhj

� �
¼ �1: (2:7)

Equation (2.3) then can be re-written using equations (2.6) and (2.7) as

@h
@t

¼ Dr2hþ K�a�jrhj, (2:8)

where K� ¼ K(rþ þ r�). Equations (2.7) and (2.8) form a two-field equivalent formulation (a�, h) to the
proposed three-field model (a+, a−, h) for unit values of the exponents in equation (2.3). The achieved
simplification is, however, only apparent, as the knowledge of a+ and a− is required in advance to obtain
the boundary conditions of the new spatial field a� in the reduced model corresponding to the solution
of the three-field model with the time-independent boundary conditions. We refer to appendix A for a
detailed discussion of the boundary conditions for the two-field model in the two-dimensional case.
2.4. Non-dimensionalization
For a typical value H of the scalar field and a typical length scale L of the domain, the following
dimensionless quantities are established: ĥ ¼ h=H, âþ ¼ aþ=L, â� ¼ a�=L, t̂ ¼ L2=D, x̂ ¼ x=L and
ŷ ¼ y=L. Using these quantities, equations (2.3) and (2.4) can be written in dimensionless form,

@ĥ
@ t̂

¼ r̂2ĥþ CIþ âmþþ jr̂ĥjnþ � CI� âm�� jr̂ĥjn� , (2:9)

� r̂ � â+
r̂ĥ

jr̂ĥj

 !
¼ +1, (2:10)
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where

CIþ ¼ Krmþþ L2þmþ�nþ

DH1�nþ
, CI� ¼ Krm�� L2þm��n�

DH1�n�
: (2:11)

As a result, two ‘channelization indices’, CIþ and CI� , describe the overall behaviour of the system for
the fixed value of the exponents m± and n±. As equation (2.9) indicates, an increase in the value of CIþ by
high consumption rate, r+, enhances the feedback of the source term. On the other hand, an increase in CI�
by high production rates, r−, strengthens the feedback of the sink term, keeping all other factors the same.
This mechanism results in a correlation of the density of the two materials to the value of the scalar field
at steady state which can be visualized by looking at the level set Lc(h) of the scalar field h for a constant
value c. High density of input/output material accruing on the different level sets of the scalar field is
shown in the steady-state solutions of the two-dimensional and three-dimensional cases (§4).
s
R.Soc.Open

Sci.8:201407
3. Closed-form solution
At steady state, a closed-form solution can be obtained for the case where diffusion in equation (2.9)
inhibits the instability formation in the scalar field. In the two-dimensional case, it can be visualized
as the smooth elevation field in a semi-infinite domain where the top edge, which is at a fixed higher
elevation H compared with the bottom edge, is separated by the distance L from the bottom edge.
This situation is analogous to the flow of two materials before vascularization across two infinite
parallel plates placed at a finite distance L in three dimensions, with a fixed high chemical signal
strength H at the top face compared with the fixed zero chemical signal strength at the bottom face,
which drives the flow of the materials.

Assuming that the scalar field ĥ decreases monotonically in the one-dimensional transect, equation
(2.10) can be solved with the boundary conditions âþ(ŷ ¼ 1) ¼ â�(ŷ ¼ 0) ¼ 0 to obtain âþ ¼ (1� ŷ)
and â� ¼ ŷ. For the case of m± = n± = 1, substituting the expressions for âþ and â� in equation (2.9) at
steady state can be written as

ĥ00 þ CI� ŷh0 � CIþ (1� ŷ)ĥ0 ¼ 0: (3:1)

Solving equation (3.1) gives

ĥ ¼
erf

CI�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(CI� þ CIþ )

p
 !

� erf
CI� ŷ� CIþ (1� ŷ)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2(CIþ þ CI� )
p

 !

erf
CI�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2(CI� þ CIþ )
p

 !
þ erf

CIþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(CI� þ CIþ )

p
 ! , (3:2)

jĥ0j ¼ e
�
(CI� ŷ� CIþ (1� ŷ))2

2(CI� þ CIþ )

erf
CI�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2(CI� þ CIþ )
p

 !
þ erf

CIþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(CI� þ CIþ )

p
 !�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(CI� þ CIþ )

p

r
, (3:3)

where erf ( · ) is the error function [51].
Smooth profiles using equation (3.2) and the corresponding slope variations following equation (3.3)

for CIþ ¼ 0, CI� ¼ 0 and CIþ ¼ CI� ¼ 25 are displayed in figure 3a,b. As expected, for CI� ¼ 0 the
contribution from the nonlinear sink term goes away and the surface attains a higher profile
compared with the case for CIþ ¼ 0.
4. Numerical solutions
Numerical experiments are started from a linear initial condition containing a small random spatial
noise. The added random noise produces small numerical perturbations around the smooth analytical
solution (equation (3.2)) so that, when the latter is unstable, channel instabilities grow resulting in the
formation of spatial patterns. The boundary conditions in all the numerical simulations for two-/
three-dimensional cases are taken the same as discussed in §2.3. Raster grid with a spacing of one
unit is used in the numerical simulations for two-/three-dimensional cases.
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ŷ Æ0 1

Figure 3. (a,b) Steady-state solutions given by equations (3.2) and (3.3) for three cases of CIþ ¼ 0 (red), CI� ¼ 0 (green) and
CI+ ¼ 25 (blue).
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We use the efficient numerical algorithm presented in [40] to update the scalar field h over the entire
domain until the steady state is reached. The numerical scheme consists of a time-splitting approach
where we use a five-point stencil second-order central-difference formula for discretizing the Laplace
operator for the diffusion and a modified breadth-first topological sorting algorithm for implicitly
updating the nonlinear source/sink term. The sorting algorithm presented in [40] belongs to the so-
called ‘task-scheduling’ problems, where the edges of the network symbolize the tasks’ dependency.
In this model, edges represent the relationship among points in the flow-distribution network of the
material, which is traversed in a way to make the matrix system upper/lower triangular for the
efficient implicit computation. The development and the applications of this category of sorting
algorithm are discussed in [52–56].

The accuracy of the employed numerical algorithm has been carefully tested for the case of the
drainage-network evolution model in the natural landscape against analytical solutions in non-
channelized/vascularized conditions as well as against analytical results of linear stability analysis
[11,40]. The temporal evolution of the mean-field solution in the fully channelized/vascularized
regime agrees with the exact analytical expression for the transient solution [40]. We refer to these
references for further details.

4.1. Two-dimensional case

4.1.1. Code verification

We first simulate a rectangular domain with high aspect ratio (length = 500, width = 100) for unitary
exponents (m± = n± = 1). The mean elevation profile along the length is compared with equation (3.2)
for varying values of CI+ to verify the implemented code. The closed-form solution is applicable for
the cases when the field h is smooth enough (no channelization). For this case, the first channelization
in the domain occurs at the value of CI+ ¼ 3:5. The mean surface profile starts deviating from the
closed-form solution for CI+ � 3:5 (figure 4a) due to channel formation. This is apparent from the
accumulation plot of a+ and a−, where the white curve represents the interface for a+ = a−. For CI+ ¼ 1,
the interface is a straight line, while for CI+ ¼ 3:5 (the onset of first channelization) and 12.5, the
interface becomes a curve due to the emergence of channels in supply and drainage networks
(figure 4b–d ).

The coupled supply and drainage networks obtained as steady-state solutions near the first
channelization have a non-uniform gap between them, as shown in figure 4. These symmetry-
breaking irregularities, or dislocation defects, in the channel spacing are essentially created by the
mismatch between the solution geometry with the domain geometry used in the model, a behaviour
which is not unexpected in nonlinear pattern-forming systems [57,58]; see [11] for a discussion of the
effect of domain shape on the non-symmetric spacing in the drainage network near the first
channelization.

We also verify that the spatial randomness added to the linear initial condition to trigger the channel
instabilities does not alter the overall solution creating asymmetric valley spacing. Adding random
samples from a uniform distribution over [0, ûr) for three levels of ûr (10−2, 10−3, 10−4), we observe
the steady-state solutions for the same rectangular domain and fixed value of CI+ ¼ 10 (near the first
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channelization). As presented in figure 5a, the steady-state scalar field ĥ distributions agree very well for
three initial conditions. The obtained coupled networks of supply and drainage networks for ûr ¼ 10�2

and ûr ¼ 10�3 are also shown in figure 5b,c. For both cases, as expected, we obtain an equivalent
distribution of both material densities with primary channels starting from boundaries having small
defects in the spacing.
4.1.2. Effect of erosion and supply/consumption parameters

In this numerical experiment, we fix the exponents to unitary values (m± = n± = 1) and focus on how the role
of parameters related to the relative rate of consumption (r+) of the supplied material versus the generation
rate (r−) of the drained material that affects the feedback on the scalar field, which in turn affects the
structure of the coupled networks. Keeping the value of all other parameters fixed, the change in these
rates can be expressed as the modification in two non-dimensional channelization indices, CIþ and CI� .

The extent and spatial patterns of a− and a+ for 55 cases with CI+ [ [50, 100, . . . , 500] and CIþ � CI�
are analysed in this numerical study. Figure 6 shows the simulation results, where the supply network is
represented in red (highlighting high-density region of a+, i.e. a+ > a−) and the drainage network is shown
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in blue (accentuating high-density region of a−, i.e. a− > a+) with the white curve representing the interface
a+ = a−. These spatial networks that evolve for various values of CI+ are quite distinctive, indicating the
role of absolute as well as relative values of CIþ and CI� on the overall pattern formation. Figure 6a,b
displays the plots where the number of channels of the supply and drainage network is high, with
mostly straight channels and very little branching. Panels (c,e,g) present the plots where comparatively
less number of channels are observed with more branching. Panels (d,f,h) show the plots where
maximum branching is observed with curved channels compared with previous other cases.

The effect of the relative strength of CIþ and CI� on the shape of the surface h and hence on the spatial
patterns of both networks is apparent from figure 7, which shows the three-dimensional surface plots of h
from the selected regions in figure 6. Panels (a) and (c) display the surface plots where the comparable
opposing strength of a+ and a− results in the formation of shallow ridge and valley patterns. Panels
(b) and (d) show the surface plot for the branched region of CIþ ¼ 100, CI� ¼ 400 and CIþ ¼ 50,
CI� ¼ 250, where high value of CI� compared with CIþ results in branched channels of the networks
with wide valleys and thin ridges at steady state.

The interplay between model parameters and boundary conditions becomes apparent when
considering figure 6f,g. These cases have the same total CIþ þ CI� for the two-field model, and thus,
both solutions satisfy the same differential equations (2.7) and (2.8). Nevertheless, as is apparent in
figure 6, the resulting branched structures are vastly different. This shows that the non-trivial
boundary conditions allowed by the three-field model (as opposed to the two-field model) influence
the solution throughout the domain, both quantitatively and qualitatively. A full discussion of this is
included in appendix A.

The variety of patterns can be explained by the structure of equation (2.9) for the three-field model.
Increasing the value of the respective channelization index enhances the feedback of supplied (a+) and
drained material (a−) to actively form ridges and valleys of the two-dimensional ‘landscape’. Pushing
beyond the critical value of CI+ for the first channelization (3.5 in this case), we observe primary
channels for both materials starting from the corresponding boundary (figure 4). As the value of CI+
increases, primary channels for both materials tend to form secondary branching, and so on. For a
high and similar value of CI+ , both networks have strong and comparable feedback to carve their
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respective networks by coalescing a large number of primary networks already formed to which the
other material’s network counteracts. This tendency of both networks to grow, competing against each
other, makes them stuck in a large number of primary channels.

Reducing the value of CIþ compared with CI� results in more branching as the primary channels of a−
dominate and coalesce together to form branched patterns due to relatively smaller feedback from a+.
This effect of varying feedback of materials on the spatial patterns of coupled networks is shown in
figure 8 by plotting the interface length a+ = a− for CI� ¼ 500 and varying CIþ from 500 to 50. For fixed
value of CI� ¼ 500, decreasing the value CIþ from 500 to 50 changes the spatial pattern with more
branching and reduced number of stuck primary channels, as apparent from the reduced length of
the interface a+ = a−.

Figure 9a reports the length of the interface a+ = a− (denoted by Li) for various values of CI+ . High
values of Li occur for large and comparable values of CI+ , shown as the red region. Conversely, for
disproportionate values of CI+ , the interface length (Li) is smaller as shown in the blue region. We
define a quantity Nc, which refers to the maximum number of either main supply or drainage
channels of length greater than half of the width of the domain (50 in this case) originating from the
boundaries of the domain. Nc is plotted for 55 cases of various values of CI+ as figure 9b, which looks
similar to the plot of Li as expected. High values of Nc occur for large and similar values of CI+ again
shown as the red region. More branching results in smaller number of main channels for CIþ � CI�, as
indicated by the blue in figure 9b. The scatter plot of Li versus Nc with best-fit line having correlation
coefficient r = 0.988 corroborates the close relationship between number of main channels and the
interface length (figure 9c).

The simulation results shown in figure 6 can be mapped to different regions in the colour-plot of the
contour length Lc. Figure 6a,b belong to the red region in figure 9a, where a high density of nearly
unswerving main channels with a few offshoots is observed. For this reason, we refer to it as the
congested region. Figure 6d,f,h exhibit the plots for the blue (branched) area in figure 9a, with heavily
branched channels. Figure 6c,e,g display the plots from the yellow/green (transient) region, which lie
within these two extremes.
4.1.3. Role of the exponents

Non-dimensionalization of the governing equations in §2.4 shows that the steady-state solution, for a
fixed set of exponents in source and sink terms, can be described based on the absolute and relative
values of two channelization indices. This has been verified in the previous section, where we obtain
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a range of coupled networks as steady-state solutions that are classified by the value of both
channelization indices for the unit value of exponents. In this section, we analyse the role of exponent
values m± and n± on the model solutions.

In particular, we analyse the effect of m± and n± on the critical CI+ value for channelization instability
for a rectangular domain with a high aspect ratio (width =100, length = 500). Keeping the value of m± = 1
and varying n± from 0.025 to 2.5, the value of critical CI+ remains nearly constant in that range (blue
points in figure 10).

We fix n± = 1 in the next numerical experiment and observe the critical CI+ for varying m± from 0.025
to 2.5. The critical CI+ remains constant for m± between 1 and 2.5 and increases for lowering the value of
m± below 1 (orange points in figure 10). For the range of m± from 0.025 to 0.5, there is a power-law scaling
of critical CI+ as shown in figure 10. This result indicates that the exponent of the gradient (n±) in the
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sink/source term has little bearing on the first instance of channelization, while decreasing the exponent
of the material densities (m±) below one reduces the feedback of accumulated material density for
channel formation in the domain, which is indicated by the high values of the critical CI+ .

Similarly to the spatial patterns between branched versus congested regime for the unit exponents of
the source and sink terms, the solutions for non-unitary values of the exponents reflect an analogous
spectrum of branched versus congested regime after the first channelization for a different range of
CI+. Figure 11 presents simulation results for the rectangular domain (width = 100, length = 200)
varying the value of m± around one keeping n± = 1, CIþ ¼ 100 and CI� ¼ 400. The coupled supply and
drainage networks are shown for m± 0.75 (<1), m± = 1.0 and m± 1.25 (>1), where relatively more
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branched channels are observed in m± = 0.75 compared with the networks in m± = 1.25. The three-
dimensional surface plots for these cases show that the thinnest ridges and deepest valleys are present
in m± = 0.75 (the scenario with the highest branching) among three solutions, which re-emphasizes the
relationship between the shape of the field h and the spatial patterns of coupled networks obtained in
the domain.
4.2. Three-dimensional case
We apply the proposed model to a three-dimensional domain for a parallelepiped (x = 50, y = 80, z = 60),
where h now refers to a density field (can be viewed as a chemical signal’s strength). There are fixed
boundary conditions for two faces (h(x, 0, z) =H = 10 and h(x, 80, z) = 0) and zero Neumann boundary
conditions at the remaining faces. a− is zero at h(x, 0, z) =H = 10 and a+ is zero at h(x, 80, z) = 0, with
closed boundary conditions in a± for the remaining four faces. We explore two cases keeping
CI� ¼ 1000, while changing CIþ from 1000 to 200 for m± = n± = 1. The simulation results are shown in
figure 12, where the contour plots for the field h are drawn on the two side faces (closed boundary
conditions in a±) along with contour line plots for the two cross-sections near the faces along the y-axis.

The steady-state solutions for the three-dimensional case agree with the patterns observed in the two-
dimensional results. As shown in figure 12a, a large number of red contour curves (high-density region of
h) in cross-section near the face h(x, 0, z) extend over the domain and reach the cross-section near the face
h(x, 80, z), which is dominated by the blue contour curves (low-density region of h). This spatial pattern
for CI+ ¼ 1000 is similar to the solutions obtained in the two-dimensional case for the comparable value
of two channelization indices, where a large number of shallow ridges and valleys, starting from either
edge of the rectangular domain, propagate to the opposite end. We display the largest drainage conduit
from the steady-state solution in figure 12c,d, where green haze in panel (c) indicates the points in the
domain from which the flow is collected in the given conduit.

Similarly, the contour patterns for CIþ ¼ 200 and CI� ¼ 1000 on the faces resemble the thin ridges and
wide valleys obtained in the two-dimensional branched case when the values of CIþ and CI� are
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disproportionate (figure 12b). This is apparent as the tiny red contour curves (high-density region of h) in
the cross-section near the face h(x, 0, z) vanish in the cross-section near the face h(x, 80, z) dominated by
the blue contour curves (low-density region of h). This parallels the thin ridges that start from the fixed
elevation end (h =H) and disappear near the fixed elevation end (h = 0) surrounded by deep and wide
valleys, leading to the branched supply and drainage networks.
publishing.org/journal/rsos
R.Soc.Open

Sci.8:201407
5. Conclusion
The minimalist model developed in this work leads to the formation of spatial patterns of combined
supply and drainage networks in a continuous domain, whereby the corrugations of a mediating
scalar field, h, cleave these competing networks in the same continuous domain. A channelization
index (CI+ ) corresponding to each material governs the relative intensity of the branching of these
networks and the instability in the profile of h. The crucial role of the boundary condition for these
coupled PDEs is particularly evident when reducing the presented three-field model to a two-field
model for unit values of the exponents in source and sink terms, as the achieved simplification in the
number of equations entails a complication in the boundary conditions, which is necessary to solve
the same coexisting supply and drainage networks of the three-field model.

The role of different values of the two channelization indices on the shape of the scalar field h and the
formation of coupled networks for m± = n± = 1 in equation (2.9) was explored along with the effect of non-
unitary exponents on the first instant of channelization in a semi-infinite domain. As the specific patterns
depend on these nonlinearities and the source and sink terms, future work will be devoted to adjusting
them to cater to specific applications, as has been done in various other models, such as the minimalist
versions of the well-known Keller–Segel model for chemotaxis [4,48] as well as the mechanochemical
models of angiogenesis and vasculogenesis [2,42]. Concerning landscape evolution models, where h
represents the elevation field of a natural landscape, a simple mathematical interpretation of the
presented model can be a unique scenario where the tectonic uplift (source term) is a slope-dependent
term that equals the erosion flux (sink term).

In the formulation of this minimalist model, we assume that the material flows along the direction of
the steepest descent of field h with unit speed (equation (2.2)). There are network evolution models in
geomorphology, hydrology, chemotaxis and vasculogenesis, where the flow has different spatio-
temporal scales [2,4,59]. Different laws of material transport and diffusion properties can be employed
in the presented numerical scheme for any loop-less flow-distribution network. The high adaptability
of the numerical algorithm in [40] to any (structured/unstructured) grid can be attributed to its
dependency on the node connectivity in a flow network rather than their spatial location in the
discretized domain.

Initial and boundary conditions, as well as the domain geometry, are crucial in the proposed model.
In particular, dislocation defects in the spatial patterns are expected to arise whenever the solution
geometry does not match the domain geometry, as typical of pattern-forming systems [57,58]. These
are evident in figure 4c,d, where the first-order networks form with small defects in the channel
spacing. Increasing values of CI+ drive the formation of complex networks, which are resolved up to
the grid spacing. The reduced accuracy in the network approximation for heavy channelization is
reflected on the imprint of the initial condition on the final steady-state solution for a very high value
of channelization index, as the obtained channels get stuck due to the finite resolution of the
discretized domain. Future work will be devoted to analysing the combined effect of these factors
(geometry shape, grid resolution and alignment, initial and boundary conditions) on the uniqueness
of numerical steady-state solutions in the proposed model.

The employed algorithm decreased the time complexity of the implicit solver by making the matrix
system upper/lower triangular. This represented a crucial improvement in two-dimensional cases, where
the memory requirement of the algorithm is not an issue [40]. However, the simulations in the three-
dimensional domain require a large amount of memory, compared with the two-dimensional cases
due to the increased input size of nodes and the corresponding auxiliary memory used by the
algorithm during the execution. Since this increases the overall computational cost of the simulations
in the three-dimensional cases, reducing the memory requirements of the numerical solver remains a
priority so that the coupled patterns for a three-dimensional domain can be analysed in more depth.

Data accessibility. Data and relevant code for this research work are stored in GitHub: https://github.com/
ShashankAnand1996/Supply_Drainage and have been archived within the Zenodo repository: https://doi.org/
10.5281/zenodo.4435229.
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Appendix A
In §2, we show that the original three-field model can be reduced to a two-field model consisting of
equations (2.7) and (2.8) for the new spatial field, a�, and the scalar field, h, under the assumption of
unit exponents of the source and sink term in equation (2.3). These equations form a closed system
where the dynamics of h depends on the parameter K�, which is determined by the summation of r+
and r− only, instead of the two channelization indices that are defined for the three-field model.

We discuss here the dependency of complex boundary conditions of a� on the solution of spatial
fields a+ and a− by presenting steady-state solutions for a two-dimensional square domain with top
edge (y = 0) at fixed high elevation (H = 10) and bottom edge (y = L = 100) at fixed zero elevation, with
zero Neumann boundary conditions on the side edges. With the same values of D = 10−3, K = 10−5

and (r+ + r−) = 5, two cases are simulated as r+ = 1, r− = 4 (CIþ ¼ 100, CI� ¼ 400) and r± = 2.5 (CI+ ¼ 250).
Figure 13a,b shows the plot of steady-state supply and drainage material densities a+ and a− for these
cases. The difference in the obtained supply and drainage networks can be interpreted as the role of
different values of CI+ in the three-field model. However, the two cases correspond to the same value
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Figure 14. Blue (t = 0), green (t = intermediate) and red (t = steady state) curves represent the value of a� at the domain
boundaries at different time steps. (a,b) a� at the top edge for CIþ ¼ 100, CI� ¼ 400 and CIþ ¼ 250, CI� ¼ 250,
respectively. (c,d ) a� at the bottom edge for CIþ ¼ 100, CI� ¼ 400 and CIþ ¼ 250, CI� ¼ 250, respectively.
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of K� ¼ 5� 10�5 for the two-field model, which indicates the crucial role of time-dependent boundary
condition of a� on the obtained supply and drainage networks.

For the three-field model, the time-independent boundary conditions for a+ is well defined, with a+ =
0 at the bottom edge (h = 0) for both cases. Similarly, the boundary condition for a− is fixed in time
throughout the simulations with a− = 0 at the top edge of the square domain. For the two-field model,
the boundary condition for a� in the two cases is different and is defined by specifying individual
values of r+ and r− initially, as shown in figure 13c,d. The blue curves for both cases, representing
a� ¼ 0, vary in time, indicating the contribution of time-dependent boundary condition of a� on the
simulation results.

This dependency is further shown in figure 14, where the value of a� at top and bottom edges of the
square domain at different time steps are displayed for both cases. The different values of a� in time at
domain boundaries indicate that the steady-state solutions with the same value of parameters
(K� ¼ 5� 10�5) are different because of the distinct time-varying boundary conditions for a�.
Therefore, the model can be simulated using the two fields of supply and drainage density with
simple boundary conditions for the densities of the materials. In this way, the results can be
interpreted in simple terms as the interplay of two indices of the supply and drainage density fields.
If the two-field model is employed, the time-dependent boundary conditions for a� are extremely
complex, and in practice the obtained coexisting networks can only be constructed from each of the
two fields from which the sum a� originates.
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