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ARTICLE INFO ABSTRACT
MSC: In this article, we present new random walk methods to solve flow and transport problems in satu-
76505 rated/unsaturated porous media, including coupled flow and transport processes in soils, heterogeneous systems
65N12 modeled through random hydraulic conductivity and recharge fields, processes at the field and regional scales.
2222: The numerical schemes are based on global random walk algorithms (GRW) which approximate the solution by
76R50 moving large numbers of computational particles on regular lattices according to specific random walk rules. To

cope with the nonlinearity and the degeneracy of the Richards equation and of the coupled system, we imple-
Keywords: mented the GRW algorithms by employing linearization techniques similar to the L-scheme developed in finite
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element/volume approaches. The resulting GRW L-schemes converge with the number of iterations and provide
numerical solutions that are first-order accurate in time and second-order in space. A remarkable property of
the flow and transport GRW solutions is that they are practically free of numerical diffusion. The GRW solvers
are validated by comparisons with mixed finite element and finite volume solvers in one- and two-dimensional
benchmark problems. They include Richards’ equation fully coupled with the advection-diffusion-reaction equa-

tion and capture the transition from unsaturated to saturated flow regimes.

1. Introduction

The accuracy and the robustness of the numerical schemes is the
primary requirement for reliable and meaningful results of the current
efforts to improve the understanding of the complexity and interde-
pendence of the flow and transport processes in subsurface hydrology
through numerical investigations. Numerical solvers for partial differen-
tial equations modeling individual or coupled processes are often used as
basic elements in the formulation of the more complex problems of prac-
tical interest, such as parameter identification (Franssen et al., 2009),
hydraulic tomography (Bellin et al., 2020), Monte Carlo approaches for
systems with randomly distributed parameters (Pasetto et al., 2011), or
upscaling for mutiphase flows in heterogeneous subsurface formations
(Hajibeygi et al., 2020), among others.

A central issue in subsurface hydrology is the need of robust and
computationally efficient numerical models for partially saturated soil-
groundwater systems. The transition between unsaturated and saturated
zones is particularly challenging. In unsaturated flows the water content
0 and the hydraulic conductivity K depend nonlinearly on the pressure
head y through material laws based on experiments, as far as y < 0. The
evolution of y is governed by the parabolic Richards’ equation which

degenerates to a (generally) linear elliptic equation (i.e. the equation
for steady-state flow in aquifers) if y > 0 (Alt and Luckhaus, 1983).
Since the regions where degeneracy takes place depend on the evolu-
tion of the pressure y in time and space, they are not known a priori.
To cope with the nonlinearity and degeneracy of the Richards’ equa-
tion, different linearization methods are needed, such as the Newton
scheme (Schneid, 2000; Hajibeygi et al., 2020; Knabner and Anger-
mann, 2003), which is second-order convergent but converges only lo-
cally (requires a starting point close enough to the solution) or the
more robust but only first-order convergent Picard, modified Picard,
or L schemes (Slodicka, 2002; Pop et al., 2004; List and Radu, 2016;
Radu et al., 2018).

Explicit and implicit schemes proposed for nonlinear flows in unsat-
urated regime provide solutions with comparable accuracy but are gen-
erally ambiguous to compare in terms of computing time. Since they
do not need to solve systems of linear algebraic equations at every time
step, explicit schemes are in principle faster (Liu et al., 2020) but their
speed may be seriously affected by the need to use very small time steps
(Haverkamp et al., 1977; Caviedes-Voullieme et al., 2013; Alecsa et al.,
2019). The time step in explicit schemes is constraint by stability con-
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ditions (Strikwerda, 2004; Liu et al., 2020; Caviedes-Voullieme et al.,
2013) and has to be significantly reduced to ensure small local Péclet
number (Pé), defined with respect to the space step. Large (global) Pé
characterizes advection-dominated transport problems (Bause and Kn-
abner, 2004; Kuzmin, 2009). In such cases, reducing the local Pé is a
remedy to avoid the numerical diffusion and the oscillatory behavior of
the solution (Radu et al., 2011). The criterion of small local Pé is also
recommended for numerical schemes solving the pressure equation in
saturated flows (Gotovac et al., 2009) and, since Richards’ equation has
the structure of the advection-diffusion equation, the recommendation
holds for the unsaturated flows as well.

Well known approaches to avoid the numerical diffusion are the par-
ticle tracking in continuous space and the discrete random walk on lat-
tices (Suciu, 2019). The accuracy of these schemes is determined by the
number of computational particles undergoing random jumps in con-
tinuous space or on discrete lattices. In random walk schemes, the in-
crease of the computation time with the number of particles is simply
avoided by randomly distributing the particles along the spatial direc-
tions with a global procedure, according to appropriate jump proba-
bilities. In this way, one obtains a global random walk (GRW) which
performs the spreading of all the particles from a given site with com-
putational costs that are practically the same as for generating the jump
of a single random walker in sequential procedures (Vamos et al., 2003).
In particular cases (e.g., when using biased jump probabilities to account
for variable coefficients or for advective displacements) the GRW algo-
rithms are equivalent to explicit finite difference schemes with time step
size constrained by stability requirements. In unbiased GRW schemes for
transport problems with variable coefficients, which still satisfy stabil-
ity conditions, no restrictions on the time step are needed to reduce the
local Pé number, which renders the approach particularly efficient in
large scale simulations of transport in groundwater (see Suciu (2019) for
details and examples).

The elliptic and parabolic equations governing the pressure head for
flows in unsaturated/saturated porous media are essentially diffusion
equations with second order operator in Stratonovich form. They can
be recast as Fokker-Planck equations, with drift augmented by the row
derivative of the coefficient tensor, and further solved by random walk
approaches (Suciu, 2019). An alternative approach starts with a stag-
gered finite difference scheme, further used to derive biased random
walk rules governing the movement on a regular lattice of a system of
computational particles. The particle density at lattice sites provides a
numerical approximation of the pressure head solution. This approach
has been already illustrated for flows in saturated porous media with
heterogeneous hydraulic conductivity (Alecsa et al., 2019; Suciu, 2020).

In this article, we present new GRW schemes for nonlinear and non-
steady flows in soils which model the transition from unsaturated to
saturated regime in a way consistent with the continuity of the con-
stitutive relationships 6(y) and K(y). Following List and Radu (2016);
Radu et al. (2018), the nonlinearity of the Richards equation is solved
with an iterative procedure similar to the L-scheme used in finite ele-
ment/volume approaches. Numerical tests demonstrate the convergence
of the L-scheme for unsaturated/saturated flows. For fully saturated
flow regime with constant water content § and time independent bound-
ary conditions the GRW L-scheme is equivalent to a transient finite dif-
ference scheme.

Coupled flow and reactive transport problems for partially saturated
soils rise new stability and consistency issues and demand augmented
computational resources. Our GRW approach in this case consists of
coupling the flow solver described above with existing GRW transport
solvers (Suciu, 2019) adapted for nonlinear problems, which are imple-
mented as L-schemes as well. The flow and transport solvers are coupled
via an alternating splitting procedure (Illiano et al., 2020) which suc-
cessively iterates the corresponding L-schemes until the convergence
of the pressure head and concentration solutions is reached, within the
same tolerance, at every time step. Code verification tests using analyt-
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ical manufactured solutions are employed to verify the convergence of
the iterations and the accuracy of the splitting scheme.

The GRW scheme for one-dimensional solutions of the Richards
equation, which captures the transition from unsaturated to saturated
flow regimes is validated by comparisons with solutions provided by
RICHY software, based on the mixed finite element method (MFEM),
with backward Euler discretization in time and Newton linearization,
developed at the Mathematics Department of the Friedrich-Alexander
University of Erlangen-Niirnberg (Schneid et al., 2000; Schneid, 2000).
For the particular case of unsaturated flows, the one-dimensional GRW
solutions are also tested by comparisons with experimental data (Zadeh,
2011; Zambra et al., 2012) and exact solutions published in the litera-
ture (Warrick et al., 1985; Watson et al., 1995). The two-dimensional
GRW solutions are compared on benchmark problems with two-point
flux approximation (TPFA) finite volume solvers using backward Euler
discretization in time and L-scheme linearization (Illiano et al., 2020).
The TPFA codes are implemented in MRST, the MATLAB Reservoir Sim-
ulation Toolbox (Lie, 2019).

The paper is organized as follows. Section 2 presents the GRW al-
gorithm and the linearization approach for one-dimensional flow prob-
lems. The one-dimensional solver is further validated through compar-
isons with MFEM solutions, experimental data, and exact analytical so-
lutions in Section 3. Two dimensional GRW algorithms for fully coupled
and decoupled flow and transport problems are introduced in Section 4.
Code verification tests and comparisons with TPFA solutions for bench-
mark problems are presented in Section 5. Some examples of flow and
transport solutions for groundwater problems at the field and regional
scale are presented in Section 6. The main conclusions of this work are
finally presented in Section 7. GRW codes implemented in Matlab for
model problems considered in this article are stored in the Git reposi-
tory RichardsEquation (Suciu et al., 2021).

2. One-dimensional GRW algorithm for unsaturated/saturated
flow in soils

We consider the water flow in unsaturated/saturated porous media
described by the one-dimensional Richards equation (Haverkamp et al.,
1977; Schneid et al., 2000; Knabner and Angermann, 2003) in the space-
time domain [0, L,] X [0,T],

0w) 9
ot 0z

where y(z,1) is the pressure head expressed in length units, 6 is the
volumetric water content, K stands for the hydraulic conductivity of
the medium, and z is the height oriented positively upward. According
to (1), the water flux given by Darcy’s law is ¢ = —K (0(‘”))3%(‘” + z).

To design a GRW algorithm, we start with the staggered finite differ-
ence scheme with backward discretization in time which approximates
the solution of Eq. (1) at positions z = iAz,i=1,...,I, I = L,/Az, and
time points r = kAt, k = 1,...,T/At, according to

KOw) 2w +2)] =0, )

O ) — 0 1)

At
Vel [KWis1/200 Wi = Wir) = KWisi 0,0 Wik = Wim1 4]

+ (KWis1 200 = Kwioi jox)) Az} @)

To cope with the double nonlinearity due to the dependencies K(6)
and 6(y) we propose an explicit scheme similar to the linearization ap-
proach known as “L-scheme”, originally developed for implicit methods
(e.g. Pop et al., 2004; List and Radu, 2016; Radu et al., 2018). The ap-
proach consists of the addition of a stabilization term L(y/izl - V’i o
L = const, in the left-hand side of (2) and of performing successive iter-
ations s = 1,2, ... of the modified scheme until the discrete L2 norm of

the solution y;} = (. ...,y ) verifies

i —wi™'ll < e, + e llwill 3)
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for some given tolerances ¢, and ¢,. The adapted L-scheme reads

1 s : s s s
v = [1 :+l/2,k + riy—l/Z,k)]Wiik + r§+1/2,k"’;+1,k + riy—l/2,sz:y—1,k
+ (’;+1/2,k Fi- 1/2k> (‘9(‘/’, W H(Wi,kfl))/L’ Q)
where
Tk = KW, DAL/(LAZ). ®)

For fixed time step k, the iterations start with the solution after the last
iteration at the previous time k — 1, w,.], ¢ = Wik-1-i=1,...,1. Note that,
unlike implicit L-schemes (e.g., (Slodicka, 2002; Pop et al., 2004; List
and Radu, 2016)), the explicit scheme (4) uses forward increments of
w. In this way, the solution q/“rl is obtained from values of y and r
evaluated at the previous iteration, without solving systems of algebraic
equations.

The solution 79 is further represented by the distribution of " com-
putational partlcles at the sites of the one-dimensional lattice, y;’ R
n!, a/ N, with a being a constant equal to a unit length, and the L- scheme
(4) becomes

n’ 1 _ s s s
i [1 ( Fivy2utric 1/2,k>] Mo ek T oo |V,
(6)

3 : S — s _ .S _
where the source term is defined as f* = (ri+l sk~ Timl /2¢k)Az

[H(nf,k) - 0(n,-yk_1]/L and |-| denotes the floor function.

The physical dimension of the parameter L of the scheme is that
of an inverse length unit to ensure that rl%'il ok defined by (5) are non-
dimensional parameters, as needed in random walk approaches (Vamos
et al., 2003; Suciu, 2019). By imposing the constraint r; 11/2k S <1/2,

the parameters r; L1/2 €0 be thought of as biased jump probablhtles

Hence, the contributions to nszl from neighboring sites i + 1 summed up
in (6) can be obtained with the GRW algorithm which moves particles
from sites j to neighboring sites i = j ¥ 1 according to the rule

n

j,k=5“k+5" +5nj+ljk (@)

j—1.j.k
For consistency with (6), the quantities 6»* in (7) have to satisfy in the
mean (Suciu, 2019, Sect. 3.3.4.1),

s _ s s s S .8 s
ont = [1 (rj—1/2,k + ’/+|/2,k> nk 5nj¢]/2,j,k =Tiz124" k0 ®

The quantities 6n* are binomial random variables approximated by
using the unaveraged relations (8) for the mean, summing up the re-
minders of multiplication by r and of the floor function | N f*At¢]|, and
allocating one particle to the lattice site where the sum reaches the unity.

Remark 1. The finite difference L-scheme (4) and the derived GRW
relation (6) are explicit iterative schemes for Richards equation in
mixed form (1). The essential difference of the L-schemes from ex-
plicit schemes in mixed formulation designed for unsaturated regime
(Haverkamp et al., 1977; Caviedes-Voullieme et al., 2013; Liu et al.,
2020) is that they apply to both unsaturated and saturated flow condi-
tions.

Remark 2. Consider the saturated regime, 0 = const, with space-
variable hydraulic conductivity K and a given source term f. With
the parameter L set to L = 1/a, after disregarding the time index k
the scheme (6) solves the following equation for the hydraulic head
h=y+z

1oh 0 [Kah

ds ozl oz

ads 0z ] =/ ©)

For boundary conditions independent of s, the solution of Eq. (9) ap-
proaches a steady-state regime corresponding to the saturated flow (see
also (Alecsa et al., 2019; Suciu, 2020)). The modified GRW scheme (6) is
equivalent to a convergent finite difference scheme first order accurate
in time and second order in space (Suciu et al., 2020, Remark 1).
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3. Validation of the one-dimensional GRW flow algorithm
3.1. Transition from unsaturated to saturated flow regime

The one-dimensional algorithm for flow in unsaturated/saturated
soils is validated in the following by comparisons with MFEM solu-
tions obtained with the RICHY software (Schneid et al., 2000; Schneid,
2000). For this purpose, we solve one-dimensional model-problems for
the vertical infiltration of the water through both homogeneous and
non-homogeneous soil columns (Srivastava and Yeh, 1991), previously
used in Schneid (2000) to assess the accuracy and the convergence of
the MFEM solutions.

We consider the domain z € [0, 2] and the boundary conditions spec-
ified by a constant pressure y(0, ) = y at the bottom of the soil column
and a constant water flux ¢, at the top. Together, these constant condi-
tions determine the initial pressure distribution y(z, 0) as solution of the
steady-state flow problem. For ¢ > 0, the pressure y, is kept constant, at
the bottom, and the water flux at the top of the column is increased
linearly from ¢, to ¢, until < ¢, and is kept constant for 7 > 7,.

For the unsaturated regions (y < 0) we consider the constitutive re-
lationships given by the simple exponential model (Gardner, 1958)

O(y) = Hres + (0507 - ores)eaw’ (10
_ H(W) - Ores
K@Ow)) = K“‘”W an

sat res

where 6 = 6, and K = K,,, denote the constant water content respec-
tively the constant hydraulic conductivity in the saturated regions (v >
0) and 6,,, is the residual water content.

The flow problem for Eq. (1) with the parameterization 10-(11) is
solved in two Scenarios: (1) homogeneous soil, with K, = 2.77 - 1076,
8,05 = 0.06,8,, = 0.36,a = 10, gy = 2.77 - 1077, g; = 2.50 - 107, which are
representative for a sandy soil, and (2) non-homogeneous soil, with the
same parameters as in Scenario (1), except the saturated hydraulic con-
ductivity, which takes two constant values, K, =2.77 - 107 for z < 1
and 500K, for z > 1 (modeling, for instance, a column filled with sand
and gravel). To capture the transition from unsaturated to saturated
regime, the pressure at the bottom boundary is fixed at y; = 0.5. For
the parameters of the one-dimensional flow problems solved in this sec-
tion we consider meters as length units and seconds as time units. The
simulations are conducted up to 7 = 10* (about 2.78 h) and the inter-
mediate time is taken as ¢t; = T/10?.

We consider a uniform GRW lattice with Az = 1072, equal to the
length of the linear elements in the MFEM solver. The GRW compu-
tations are initialized by multiplying the initial condition by N = 10%
particles. Since, as shown by (11), the hydraulic conductivity varies in
time, the length of the time step determined by (5) for the maximum
of K at every time iteration and by specifying a maximum r,,,, = 0.8 of
the parameter r;,,, , may vary in time (see Fig. 1). The parameter of
the regularization term in the L-scheme is set to L = 1 for the computa-
tion of the initial condition (solution of the stationary problem, i.e. for
00/t = 01in (1)) and to L = 2 for the solution of the non-stationary prob-
lem. In both cases, the convergence criterion (3) is verified by choosing
€, = 0 and a relative tolerance ¢, = 107°.

The comparison with the MFEM solutions presented in Figs. 2,3,4
shows a quite good accuracy of the GRW solutions for pressure, water
content, and water flux. The relative errors, computed with the aid of
the L? norms by e, = [[y@RW — yMFEM|| /|y MFEM || “and similarly for
0 and g, are presented in Table 1.

The L-scheme converges with speeds depending on the problem. To
solve the problem for the initial condition, one needs 3.5 - 10* iterations
in Scenario (1) and 6.5 - 10° iterations in Scenario (2). Instead, to solve
the non-stationary problem for a final time 7' = 10*, one needs about 70
iterations in Scenario (1) and about 700 iterations in Scenario (2) (see
Figs. 5 and 6). The convergence of the iterative GRW L-scheme can be
further investigated through assessments of the computational order of
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Fig. 1. Time steps for Scenario (1) and Scenario (2).
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Fig. 2. Pressure head solutions at t = 10* s computed by GRW and MFEM codes.
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Fig. 3. Water content solutions at r = 10* s computed by GRW and MFEM codes.
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Fig. 4. Water flux solutions at r = 10* s computed by GRW and MFEM codes.

Table 1
Error norms of the GRW solutions.

Scenario (1) 1.81e-02 2.20e-02 3.50e-02
Scenario (2)  5.20e-03  2.35e-02  2.07e-02
1 0-3 : r T T T T T
—— t=2000
104 ——+——1t=4000 1
_ t=6000
= 105t —*—1=8000 -
~ t=10000
7 10%E
=>
I
5 107F
108}
1 0-9 L L L L L

0 10 20 30 40 50 60 _ 70

Fig. 5. Convergence of the L-scheme implementation of the GRW flow solver
in Scenario (1).

convergence of the sequence of successive correction norms || x//,f - y/;“ I
(Catinas, 2019; Catinas, 2020). Estimations provided in (Suciu et al.,
2020, Appendix A) indicate a linear convergence for Scenario (1) but
only a power law convergence ~ s~!, which is slower than the linear
convergence (Cdtinas, 2020), for Scenario (2).

Supplementary tests done in Scenario (1) indicate the existence
of a lower bound of the constant L which ensures the convergence
(Suciu et al., 2020, Sect. 3.1). It is found that increasing L above the
value which ensures the convergence of the GRW L-scheme with a de-
sired accuracy only results in increasing number of iterations and more
computing time. The parameter L has to be established experimentally
by checking the convergence and, as highlighted by the examples pre-
sented in Section 5 below, it depends on the complexity of the problem
to be solved.
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Fig. 6. Convergence of the L-scheme implementation of the GRW flow solver
in Scenario (2).

3.2. Comparison with experiments and exact solutions for unsaturated
flows

An experiment consisting of free drainage in a 600 cm deep lysime-
ter filled with a material with silty sand texture conducted at the Los
Alamos National Laboratory (Abeele, 1984) is often used to validate
one-dimensional schemes for unsaturated flows (see e.g., (Zadeh, 2011;
Zambra et al., 2012; Caviedes-Voullieme et al., 2013)). This example is
provided with the HYDRUS 1D software (Simunek et al., 2008), which is
also used for validation purposes in the papers cited above.

The relationships defining the water content 6(y) and the hydraulic
conductivity K(6(y)) are given by the van Genuchten-Mualem model

w<0

1 _ my=m,
o) = {(1 Hom e (12)
1 1\m]?
KO®W)) = K:atg(ll/)z [1 - (1 —O@y)n ) ] , w<0 13)
Ko, w >0,

where 0,,, 0,,, and K, represent the same parameters as for the ex-
ponential model considered in Section 3.1, © = (0 — 0,,,)/ (0,4 — 0,.) is
the normalized water content, and «, n and m = 1 — 1 /n are model pa-
rameters depending on the soil type.

With the parameters given in the HYDRUS 1D example, 0,,, = 0.0,
0., =0331, K., =25 ecm/d, a =0.0143 cm~!, n= 1.5, for initial and
boundary conditions for free drainage given by w(z,0) =0 cm and
q(0,7) =0 cm/d Zadeh, 2011), the solutions provided by the GRW L-
scheme (6-(8) for simulation times from 1 d to 100 d are obtained with
stabilization parameter L = 0.5 after a number of 9 to 35 iterations (tol-
erance specified by e, = ¢, =5- 1076 in (3)). The spatial resolution is set
to Az = 10 cm, while the time step varies slightly between 10~2 d and
3.16 - 1072 d, according to (5). The results are compared in Figs. 7 and
8 with HYDRUS 1D results and experimental data. The water content
profiles (Fig. 7) are quite close to measurements and similar to those
presented in Zambra et al. (2012); Caviedes-Voullieme et al. (2013).
The pressure profiles (Fig. 8) deviate from experiment, mainly for T = 1
d and T = 100 d, with approximately the same amount as in (Caviedes-
Voullieme et al., 2013, Fig. 12). An improved prediction of the pressure
profiles is obtained in Zadeh (2011) with slightly modified parameters
of the van Genuchten-Mualem model, but with the price of larger devi-
ations for the water content.

The #-based form of Richards equation has shown significantly im-
proved performance in numerical schemes for unsaturated flows in spa-
tially homogeneous soils (e.g., constant K,), especially in modeling
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a0l —e—T=
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P00F 12100
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01 015 02 025 03 035
0(z,t)

Fig.7. Spatiotemporal distribution of the water content during the drainage ex-
periment simulated by the GRW scheme. Continuous black lines represent the
solution provided by HYDRUS 1D model. Black markers correspond to measure-
ments picked-up from (Zambra et al., 2012, Fig. 2).

0_
| |
-100}
-200}
[ |
« -300}
[ |
-400} o— T=1
T4
_ T=20
S00F e T_100
-600 ' ' ' ' ' :
350 -300 -250 -200 -150 -100 -50 O

¥(2,t)

Fig. 8. Spatiotemporal distribution of the pressure head during the drainage ex-
periment simulated by the GRW scheme. Continuous black lines represent the
solution provided by HYDRUS 1D model. Black markers correspond to measure-
ments picked-up from (Zadeh, 2011, Fig. 4).

infiltration into dry media (Zadeh, 2011), and is well suited to analyti-
cal approaches (Philip, 1969; Warrick et al., 1985; Sander et al., 1988).
Philip (Philip, 1969) derived an exact solution for infiltration problems
expressed in the form z(0, 1), that is, the depth where the water content
takes specified values at given time points 7. Philip’s solution has been
used in Warrick et al. (1985) to construct a table of coefficients which
allow the computation of z(6, ¢) for three different # and arbitrary ¢. The
solution verifies the dimensionless form the §-based Richards equation

0 _ 9

©_ 0 _ 4K(©) 06)
ot oz

7]
[D(G)E(Q)] de oz’ 14
where z is positive downward, D(®) = K(®)dy /d®, and K(©) is given
according to the van Genuchten-Mualem model by the upper branch of
(13). Such analytical solutions have been used in Phoon et al. (2007);
Caviedes-Voullieme et al. (2013) to verify various one-dimensional nu-
merical schemes based on finite volume and finite element approaches.

In order to test the GRW L-scheme 6-(8), we solve the same infiltration
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Table 2
Relative errors of the GRW solution z(6, r) with respect
to the exact solution from Warrick et al. (1985).

t (h) 6=0.24 6=0.31 6=0.38

0.5 5.31e-02 5.31e-02 5.69e-02
1.0 —2.46e-03  2.175e-02 5.10e-02
1.5 -5.70e-02  -1.41e-02  4.55e-02
2.0 -9.69e-02  -3.88e-02  4.91e-02

problem (soil column 100 cm deep, constant unsaturated initial water
content 6;, and infiltration imposed by y = 0 on the upper boundary).
We use a van Genuchten-Mualem parameter n = 1.5 together with the
parameters of the hypothetical loam soil used in Warrick et al. (1985):
K, =6-107% cm/s, 0,,, = 045, 0,,, = 0.1, 0, = 0.17, « = 0.01 cm~!. The
pressure corresponding to the initial water content is obtained by (12),
w(6;) = —24.87 cm. The computations are carried out with Az = 1 cm, Az
between 9.26 - 10~* h and 5.23 - 10~* h, L = 0.2, and the convergence is
achieved after a number of 15 to 160 iterations (¢, =€, =5 - 107%). The
analytical solutions Z(6, t) for  =0.24, 0.31, and 0.38 at successive times
between 0.5 h and 2 h are obtained with the coefficients for n = 1.5 and
©(6;) = 0.2 given in (Warrick et al., 1985, Table 3). The GRW results
z(60,1) for the same 6 and ¢ are obtained by linear interpolation of the
numerical solution 6(z, t). Relative errors (z — Z)/Z of the numerical so-
lution z(0, t) with respect to the analytical solution Z(0,t) are shown in
Table 2.

An exact solution for constant flux infiltration with dry initial con-
dition ©(z,0) = 0 has been derived in Sander et al. (1988) and further
used to verify the numerical solution provided by a pressure formula-
tion of the Richards equation (Watson et al., 1995). The solution solves
Eq. (14) with coefficient given by Fujita’s model (Fujita, 1952),

D(®) = Dy/(1 — v8)?,

where D, and v are positive constants. Since O(z,0) =0 implies
w(0(z,0)) = oo as initial condition for the numerical scheme in pressure
formulation, the singularity was avoided in Watson et al. (1995) by con-
sidering ©(z,0) = 3.4483 - 10~° as a numerical simulation parameter. As
for the GRW scheme 6-(8), we would have K(0(z,0)) = 0 and, accord-
ing to (5), the condition r?xl/Z,k < 1/2 implies At = oo, for finite Az. Us-
ing the same initial y as in Watson et al. (1995) requires a very fine
discretization which would slow down considerably the computation.
Therefore, we opt for the direct approach of solving (14) as a diffusion
equation with drift coefficient defined by V' (©) = dK(®)/d®. The latter
will be computed analytically from the parameterization K(®) used in
Watson et al. (1995).

Proceeding as in Section 2, we start with a forward-time centered-
space finite difference discretization of Eq. (14),

0 k41— Op k1
At
= +_Az2 [D(®i+l/2,k)(®i+l,k = 0;) = DO;_1 2O — 0,14

_ A
2Az

we approximate the solution by a distribution of A particles on a regular
lattice, ©;, ~ n;, /N, and end up with

Vi,k(9f+1,k - G)i—l,k)’

g = 0= (i + iz o0k
1 1
+ E(ri+l/2,k = Vi1t E(ri—l/z,k + VN k- 15)

The dimensionless parameters in Eq. (15) are given by

2At At

r; ==—0D, = = F; <1 | L .
i+1/2,k AZ i+1/2,k> Vik Az TiEl/2k S ikl < Fisijok

Eq. (15) sums up contributions of random walkers jumping on the lattice
according to the rule

N = 06N, +0m_1jx+ 0Nk (16)
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Table 3
GRW solution 6(z, t) compared to the analytical so-
lution from Sander et al. (1988).

z(em)  6(z,0) 0(z,1) ©—-06)/6
0 0.0907 0.0929  2.53e-02
-0.2 0.0861  0.0884  2.68e-02
-04 0.0819  0.0842  2.70e-02
-0.6 0.0782  0.0802  2.60e-02
-0.8 0.0748  0.0766  2.40e-02
-1.0 0.0719  0.0734  2.12e-02
-2.0 0.0631 0.0635  6.40e-03

which defines a biased global random walk algorithm (BGRW)
(Suciu, 2019, Sect. 3.3.3). The numbers of particles 6n in (16) are
binomial random variables determined by the same procedure as in
Section 2 and their ensemble averages verify

— _— — 1 _
ony=1[1- ("i+|/2,k + "i—l/z,k)]"i,ks onj k= E(riil,k F U N k-

Following Watson et al. (1995), we set on the top boundary the
constant flux condition Q = ¢/(0,,, — 6,,,) = 0.2759 cm/min, with 6, =
0.35, 6,,, =0.06, and consider the constant parameters D, = 2.75862
cm?/min and v = 0.85 of the Fujita’s model. The BGRW results for the
final time T = 0.3625 min, obtained with Az = 1072 cm and At between
1.51- 107 min and 1.23 - 107> min, are compared in Table 3 with the
analytical solution presented in (Watson et al., 1995, Table 1).

The tests for unsaturated one-dimensional flows presented above
are completed in (Suciu et al., 2020, Sect. 5.2.4) by convergence in-
vestigations and estimations of convergence order of the GRW algo-
rithms for fully coupled nonlinear flow and transport problems for sat-
urated/unsaturated porous systems.

4. Two-dimensional GRW solutions
4.1. Two-dimensional GRW algorithm for flow in soils and aquifers

In two spatial dimensions the pressure head w(x, z,¢) satisfies the
equation

%0(111) - V- [KOW)V(y +2)] = 0. an

The two-dimensional GRW algorithm on regular staggered grids
(Ax = Az) which approximates the solution of (17) by computational
particles, y ~ na/N, is constructed similarly to 6-(8). The solution at
iteration s + 1 is obtained by gathering particles from neighboring sites
according to
= [1 - (’f+1/2,/,k 11 gu et ’f,j—1/2,k>]"§,j,k

S S
F 12 i Lk T i -1k

S S N
T2k Mgk Yy -1k T |V £, 18)

3 s S — s _ .S _
where the source term is defined as f*= (ri,j+] sk =i /2,k>AZ

[H(nf_j O =0 )] /L. The two-dimensional GRW rule which at time
k moves particles from sites (/, m) to neighboring sites (! ¥ 1, m ¥ 1) reads
as follows,

) +6 +6

+6 +6

S
MLk

19

s — S N N N
Mk = Otk T Ot mptmk T Ot mltmk T O m—111,m k

For consistency with (18), the numbers of particles én* verify in the
mean

5 _ |1 _ (. s s
oM} ik = [1 (rl—l/Z,m,k T r2me T m-1/2k

S —_ S S
Mt itk = T1x1/2.m kM k

6

S N
1 /24 )] oy

(20)

S —_ S N
M mztitmk = Timz1 26 L mke
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tt 2 A0 L
(5), are dimensionless positive real numbers. They represent biased
jump probabilities on the four allowed spatial directions of the GRW
lattice and are constraint by the first relation (20) such that their sum
be less or equal to one. A sufficient condition would be that each of them
verifies r < 1/4.

The binomial random variables variables 6n are approximated in the
same way as in the one-dimensional case. By giving up the particle in-
divisibility, one obtains deterministic GRW algorithms which represent
the solution » by real numbers and use the unaveraged relations (20) for
the computation of the é» terms. In the following we use this determin-
istic implementation of the GRW algorithm to compute flow solutions
for unsaturated/saturated porous media.

The parameters r; defined by relations similar to

Remark 3. After disregarding the index k and letting L = 1/a, 6 = const,
the algorithm 18-(20) becomes a transient scheme to solve the equation
governing flows in saturated porous media (Alecsa et al., 2019; Suciu,
2020) (see also Remark 2).

4.2. GRW algorithms for two-dimensional fully coupled flow and
surfactant transport

Let the pressure y(x,z,f) and the concentration c(x, z,t) solve the
equations of the following model of fully coupled flow and surfactant
transport in unsaturated/saturated porous media (Knabner et al., 2003;
Illiano et al., 2020),

%9(%6)—V [K(B(y, c)V(w +2)] =0, @2n

%[9(1,/, )] = V- [DVe — qc| = R(e), (22)

where q = —K(8(y, ¢)V(y + z) is the water flux (Darcy velocity) and R(c)
is a nonlinear reaction term. Equations 21-(22) are coupled in both di-
rections through the nonlinear functions 6(y, ¢) and 6(y, ¢)c. The pres-
sure Eq. (21) is solved with the GRW L-scheme described in the previ-
ous subsection, with a slight modification due to the dependence of § on
both y and ¢. New algorithms are needed instead to solve the coupled,
nonlinear transport Eq. (22).

4.2.1. Biased GRW algorithm for transport problems

To derive a GRW algorithm for the transport equation, we start with a
backward-time central-space finite difference scheme for Eq. (22). Con-
sidering a diagonal diffusion tensor with constant components D, and
D,, and denoting by U and V the components of the Darcy velocity
along the horizontal axis x and the vertical axis z, by Ar the time step,
and by Ax and Az the spatial steps, the scheme reads as

O, j ks i ja)Cijk —
At

OW; j k15 Ci j k1) j k=1

== E(UHl,j,kciJrl,j,k —Ui_ijxCic1x)
At
N (Vi,j+l,kci,j+l,k - Vi,j—l,kci,j—l,k)
D, At
Al (Civtje = 26154 + ci—l,j,k)
, Dot
A2(11+1k 2611k+cu 1k)+R(Cljk)At
20,41 2DyA
Ax2 Tazz )ik
D, At Ar
+ A2 Uit jk JCiv1jk
DA
+ Ax2 2 / 1,j.k Ci— 1,j.k
D, A
+ Az2 = 5= Vijik )Cijrik
DzAt
+ ZAZ i,j—Lk Clj Lk +R(Ci,j,k)At' (23)
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Next, similarly to the scheme for the flow equation, we add a regulariza-
tion term L(c”rl 'j ) in Eq. (23), define the dimensional parameters

_2D,At

_ . 2D,Ar At R A
LAx2’

= Tz Mirlik T Tax Jilik Vijrlk T LAz il
24

X

approximate the concentration by the density of the number of compu-
tational particles, cfj o~ nfj /N, and finally we obtain

ol _ )
n?,j,k —[1 = (re+ rz)]n?,j,k
1 s s 1
+ §<’x - ui+1,j,k)ni+1,j,k +5 ) (’ +up_ Lj k) i—1jk
1 1 )
+ §<’z - ”f,j+1,k>”f.j+1,k +5 ) (’ + ”:, lk) -1k T [NgAJ’ 25)

where g* :R(n DAL/ L— [9(11/” . k)"ij,k_g("’i,j,k—l , ni,j,k—l)n[,j,k—l]/L’
with y approxnnated by the distribution of particles in the flow solver
for Eq. (21). Note that the definition of the dimensionless numbers
(24) implies that the parameter L has to be a dimensionless number as
well.

The contributions to nfj]k in Eq. (25) are obtained with the BGRW
algorithm
Mok = 5"7,m|1,m,k + 5"7—1,m|l,m,k + 5”/S+1,m|/,m,k + 5ni,m—l\l,m,k + §nls,m+1|/,m,k’

(26)

where, for consistency with the finite difference scheme (25), the quan-
tities 6n verify in the mean

_ s s _ 2 — s
on; M omltmk = = [1=(re+7.)] Mk Mt it = 2(rx F UL M) i
—_— 1 EE—
s _ 2 — s
ON) et ke = 2(’1 F UM @D

The binomial random variables 6» used in the BGRW algorithm are ap-
proximated similarly to the algorithms described in the previous sec-
tions, by summing up to unity reminders of multiplication and floor
operations. A deterministic BGRW algorithm can be obtained, similarly
to the flow solver presented in Section 4.1 above, by giving up the par-
ticle’s indivisibility and using the un-averaged relations (27). However,
for the computations presented in the next section, we use a randomized
implementation of the BGRW algorithm.

As follows from (27), the BGRW algorithm is subject to the following
restrictions

re+r, <1, ‘”?mk| <r,,

Of | <7 (28)

Remark 4. The constraints (28) impose a limitation on the maximum
allowable value of the local Péclet number. Assume a constant flow ve-
locity —V and a constant diffusion coefficient D. Then, according to
(28) and (24), the condition v < r implies Pé = VAz/D < 2.

Remark 5. Taking into account that the iterations start with n, ; ,_,, set-
ting L =1, = 1, and dropping the superscripts s, the relation (25) be-
comes

Nk :[1 —(ry + rz)]ni,j,k—l

1 1

+ 5(& - ui+1,j,k—1)ni+1,j,k—1 + §<’x + ”i—l,j,k—l)”i—l,j,k—l
1 1

+ E(rz = Ui j+lk—1 )ni,j+1,k—] + E(rz + Ui,j—],k—l)ni,j—l,k—]

+ | N R, A (29

Relation (29), together with 26-(28), define a BGRW algorithm for (de-
coupled) reactive transport described by Eq. (22) with 6(y,¢) = 1.

4.2.2. Unbiased GRW algorithm for transport problems

The unbiased GRW algorithm is obtained by globally moving groups
of particles according to the rule
nf. . =én’ ) (30)

i.j.k 1+uu « j+U‘/ lisdk
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+on’ s o+ enS P
'+uh/,k+d’/+v1./,k|"j’k '+ML/,k_d’/+vt./,k|"j’k

+oén’ o oo+ent o
l+ui‘/.1k,j+bi7j.k+d|l¢j,k l+ui‘/’k,j+U’.7j.k—d|1,j,k

where d is a constant amplitude of diffusion jumps and the dimension-

less variables r, r,, u and v are defined similarly to (24) by
2D At 2D, At R At
= = =] ALy s,
T L P T Lazy Miik lLAx ik
S — At s
0l = | TazViw +05) 31

The particles distribution is updated at every time step by
s+l _ oo s s
";,:rn,k =om,  + Z 5n;,m|i,j,k + [NgYJ' (32
il j#m
The averages over GRW runs of the terms from (30) are now related
by

5n?+"?,k~f+vf,,,klf’f~k =[1=(re+r.)] e

~

én’. o ==n
l+u,_/'k1d,/+vln/'k|l.j,k 2 hjk

=~

nf+ul"lvk,j+u"?>j_k1d|i,j,k = EZ n ok (33)
Comparing with the BGRW relations (27), we remark that (31) defines
unbiased jump probabilities r, /2 and r,, /2 on the two spatial directions.

The unbiased GRW algorithm for decoupled transport is obtained by
letting L = 1 and dropping the superscripts s (see also Remark 5).

The binomial random variables én used in the unbiased GRW al-
gorithm are approximated by the procedure used for the flow solver
and for the BGRW algorithm presented in the previous subsection. For
fixed space steps, the time step is chosen such that the dimensionless
parameters u; . and vk take integer values larger than unity which
ensure the desired resolution of the velocity components (Suciu, 2019,
Sect. 3.3.2.1). Further, the jumps’ amplitude d is chosen such that the
jump probabilities verify the constraint r, + r, < 1, imposed by the first
relation (33).

The unbiased GRW, as well as the BGRW algorithm introduced in
Section 4.2.1 above, have been tailored to solve problems with constant
diffusion coefficients, as those considered in Sections 5.2 and 6.3 be-
low. In case of diagonal diffusion tensors with space-time variable coef-
ficients D, and D,, the algorithms for the transport problem are straight-
forwardly obtained by assigning to r, and r, superscripts s and appro-
priate subscripts i, j, k.

5. Validation of the two-dimensional GRW algorithms
5.1. GRW flow solutions

For the beginning, we conduct verification tests of the GRW flow
code by comparisons with an analytical solution and compute numerical
estimates of the order of convergence. The results are further compared
with those obtained by a TPFA code implemented in the MRST software
(Lie, 2019; Illiano et al., 2020). The two codes are tested by solving a
problem with manufactured solution previously considered in Radu and
Wang (2014). The domain is the unit square [0, 1] X [0, 1] and the final
time is 7' = 1. The manufactured solution for the pressure head y,, is
given by

v, z,)=—tx(x-1)z(z-1) — L 34)

The water content # and the conductivity K are expressed as

1

o) =1 KOw)= . 35)

The analytical solution (34) defines the boundary and initial conditions
and induces a source term f, computed analytically from Eq. (17) with
parameters given by the expressions (35).
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We start the computations on a uniform mesh with Ax = Az =0.1
and halve the mesh size step three times successively. The accuracy of
the numerical solutions, at the final time ¢ = T, is quantified by the L?
normeg; = |y —y,|l, I =1,...,4, where I = 1 corresponds to the origi-
nal mesh. The estimated order of convergence (EOC) that describes the
decrease of the error in logarithmic scale is computed according to

Eoc=10g<i>/1og(2), I=1,...3. (36)
€141

The computations with the TPFA code start with a time step A7 = 0.1
which is also halved at each refinement of the mesh. The parameters of
the convergence indicator (3) are set to €, = 107° and e, = 0. Finally,
the linearization parameter L is set equal to 1/2 and the convergence
of the L-scheme is achieved after circa 100 iterations per time step,
independently of the mesh size.

In the GRW computations we use the same spatial refinement of the
grid and tolerances ¢, and ¢, as above but, according to (5), we have
to use adaptive time steps At = O(Az!/?) (see discussion in Section 3.1).
The convergence criterion (3) is already fulfilled by the GRW L-scheme
with parameter L =1 for numbers of iterations increasing from s =2
to s = 5 as the space step decreases. The accuracy ¢, instead is strongly
influenced by L. For L < 800 the ¢, values may increase with the refine-
ment of the mesh, leading to negative EOC, that is, the GRW solution
does not converge to the exact solution y,,. However, it is found that
the increase of ¢, is prevented by using a sufficiently large parameter L.

The results presented in Table 4 indicate the convergence of order
1 in space for TPFA and of order 2 for the GRW solutions. The higher
order of convergence also leads to much smaller errors of the GRW code
after the first refinement of the mesh.

Further, we solve the benchmark problem from (List and Radu, 2016,
Sect. 4.2), which describes the recharge of a groundwater reservoir from
a drainage trench in a two-dimensional geometry. The groundwater ta-
ble is fixed by a Dirichlet boundary condition on the right hand side. The
drainage process is driven by a Dirichlet boundary condition changing
in time on the upper boundary of Q.

The precise structure of the domain is defined by

Q= (0,2)x (0,3),
Ip, ={(x2)€0Q|xel0,1]Az=3),
Tp, ={(x2)€0Q|x=2Az€[0.1]}.
Ip=Tp UTp,.

Ty =9Q\T)p.

The Dirichlet and Neumann boundary conditions on I'j, and Iy, respec-
tively, as well as the initial condition consisting of hydrostatic equilib-
rium are specified as follows:

—2422t/Atp, onl'y . T < Atp,
w(x,z,t) =402, on FD],T>AID,

1-2z, on FDz’
K@ (x,z,))V(y(x,z,0)+z)-n = 0,
w(x,z,00) = 11—z, onQ,

onI'y,

where n represents the outward pointing normal vector.

We consider here two sets of soil parameters, presented in Table 5,
which correspond to a silt loam and a Beit Netofa clay, respectively.

The time unit is 1 day and spatial dimensions are given in meters.
Furthermore, we consider a regular mesh consisting of 651 nodes (i.e.,
Ax = Az =0.1).

By setting the stabilization parameters to L = 0.5 for loam and for
L =0.12 for clay, the convergence criterion (3) with e, =¢, =5-107°
is fulfilled after about 120 iterations of the GRW L-scheme, for both
soil models (Figs. 9 and 10). The results shown in Figs. 11 and 12 are
as expected for this benchmark problem (see Schneid (2000); List and
Radu (2016)): the drainage process in the clay soil is much slower, so
that the pressure distribution after three days is similar to that estab-
lished in the loam soil after 4.5 h.
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Table 4
Estimated order of convergence of the TPFA and GRW flow solvers.
£ EOC £, EOC £ EOC £y
TPFA 8.45e-03 0.94 4.40e-03 0.97 2.25e-03 0.97 1.15e-03
GRW (L=800) 7.20e-03 2.24 1.52e-03 3.21 1.65e-04 0.50 1.17e-04
GRW (L=1000) 9.24e-03 2.22 1.99e-03 2.83 2.80e-04 1.66 8.84e-05
GRW (L=1200)  8.89e-03  2.23 1.90e-03 2.80 2.72e-04 2.14  6.16e-05
Table 5 '(/J((IJ, 2, t)

Simulation parameters.

Silt loam Beit Netofa clay
Vam Genuchten parameters:
0 0.396 0.446
0,0 0.131 0
a 0.423 0.152
n 2.06 1.17
K, 496-102  82-107*
Time parameters:
Aty 1/16 1
At 1/48 1/3
T 3/16 3

1 0-5 L L e
0 20 40 60 80 100 120

Fig. 9. Convergence of the L-scheme implementation of the GRW flow solver
for the loam soil problem at three time levels (in hours).

0 20 40 60 80 100 120 1 40

Fig. 10. Convergence of the L-scheme implementation of the GRW flow solver
for the clay soil problem at three time levels (in days).

o

0.5 1 1.5
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N

Fig. 11. Pressure head solution at = 4.5 h obtained by the GRW code for the
benchmark problem of recharge from a drainage trench through a silt loam soil.

w(x7 z? t)

0

0.5 1 1.5

T

N

Fig. 12. Pressure head solution at t = 3 d obtained by the GRW code for the
benchmark problem of recharge from a drainage trench through a Beit Netofa
clay soil.

The results obtained with the TPFA L-scheme, with L =1 for both
soil models, are used as reference to compute the relative errors ¢,,, &,
€q.> and €, shown in Table 6. One remarks that £y and ¢, are close
to the corresponding errors for the one-dimensional case presented in
Table 1, but ¢, and ¢, are one order of magnitude larger than ¢, in
shown in Table 1. A possible explanation could be the occurrence of the
numerical diffusion in the flow TPFA code (see discussion at the end of
Section 5.2.3 below). The computational times of the GRW code are 1 s

and 1.6 s for loam and clay cases, respectively. The times of the TPFA
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Table 6
Comparison of GRW and TPFA solutions of the flow
benchmark problem.

Ey &9 €4, &,
loam  5.73e-02  4.00e-03  2.30e-01 1.04e-01
clay 5.48e-02 6.71e-04  4.73e-01 1.14e-01

Table 7
Estimated order of convergence of the TPFA and GRW solvers: pressure solu-
tions.

£ EOC £, EOC £3 EOC £y
TPFA 8.14e-03  0.93  4.27e-03 0.95 2.20e-03 0.97 1.12e-03
GRW  3.71e-03  2.02 9.18e-04 194  2.40e-04 1.45 8.78e-05

runs, on the same computer, are one order of magnitude larger, i.e., 25 s
and 38 s, respectively.

5.2. GRW/BGRW solutions for fully coupled flow and transport problems

5.2.1. Code verification tests

The code verification tests for coupled flow and transport problems
are conducted similarly to those for the flow solver presented in the
previous subsection, by considering, along with the exact flow solution
(34), the exact solution for the concentration field given by

cp(x,z,t)=tx(x—-1)z(z-1) + L 37

After setting R = 0 and D = 1, the coupled system of equations (21)-(22)
is solved in the unit square for a total time T = 1, with source terms,
initial conditions, and boundary conditions resulted from the exact so-
lutions (34) and (37) with a new parameterization given by

1
Oy, c) = Ty —c/10°

The GRW flow-algorithm 18-(20), with # and K given by (38), is
coupled with the BGRW transport-algorithm (25)-(28) initialized with
N = 10%* particles into an alternating splitting scheme (Illiano et al.,
2020). The approach alternates iterations of flow and transport solvers
until the convergence criterion (3) with ¢, = 10~% and e, = 0 is fulfilled
by the numerical solutions for both y and c. In order to highlight the
approach to the convergence order 2, the stabilization parameters of
the flow and the transport solvers are set to L, = L, = 100. The GRW
results presented in Tables 7 and 8 are compared with results obtained
with a TPFA solver applying the same alternating linearized splitting
procedure with parameters L, = L, = 1 which ensure the convergence
of order 1.

The GRW flow solver approximates the Darcy velocity by centered
differences only in the interior Q of the computational domain. There-
fore, the velocity q|,o, needed to compute the number of biased jumps
from the boundary 0Q in the BGRW relation (25) has to be provided
in some way. The straightforward approach is to compute the veloc-
ity by using an approximate forward finite difference discretization of
Darcy’s law. Another option is to extend on the boundary the velocity
from the first neighboring interior site. Thanks to the manufactured so-
lution (34) on which the code verification test is based, we also have the
exact velocity computed analytically. The latter allows accuracy assess-
ments for the above approximations. We note that the GRW results for
the pressure solver obtained with analytical, approximate, and extend
q|,q are identical in the precision of three significant digits (Table 7).
For the concentration solutions (Table 8), we note the remarkably good
performance of approximate and extended q| -

KOW)) = ™. (38)

5.2.2. Estimates of numerical diffusion
The small errors shown in Table 8 indicate that the numerical diffu-
sion in solving the transport step of the coupled problem does not play

10
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a significant role. This is somewhat expected for the small Péclet num-
bers of order Pé=10"2 encountered in these computations. But for the
numerical setup of the benchmark problem presented in Section 5.1 and
realistic transport parameters Pé can be significantly larger than unity.
Therefore we proceed to estimate the numerical diffusion of the codes
compared here by following the procedure used in Radu et al. (2011).

We consider the analytical Gaussian solution c(x, z, t) of Eq. (22) with
0 =1, R =0, and constant coefficients D = 0.001 and V = —0.0331, cor-
responding to the Cauchy problem with a Dirac initial concentration
pulse located at the coordinates (1,2.1). The constant velocity V, ori-
ented downwards along the z-axis, is the steady-state solution of the
benchmark flow problem from Section 5.1 with K = K,,, corresponding
to the loam soil, initial condition y(x, z,0) = 1 — z/3, Dirichlet boundary
conditions y(x,0,7) = 1, w(x,3,t) = 0, and no-flow Neumann conditions
on the vertical boundaries. The initial condition c(x, z,0) is the same
Gaussian function evaluated at 1 = 1 and the final time is T = 3. For
decreasing mesh sizes Ax and Pé = V' Ax/D, the number of time steps
was restricted by the requirement that the support of the numerical so-
lution does not extend beyond the boundaries dQ (to mimic diffusion
in unbounded domains). The effective diffusion coefficients D, and D,
are computed from the spatial moments along the x- and z-directions of
the numerical solution (see (Radu et al., 2011, Egs. (38-41))). The nu-
merical diffusion is estimated by relative errors e, = |D, — D|/D and
€p = |D, — D|/D averaged over the time interval [0, T]. Table 9 shows
that while the TPFA results are strongly influenced by the mesh size, sim-
ilarly to the finite-volume results from Radu et al. (2011), the unbiased
GRW algorithm is practically unconditionally-free of numerical diffu-
sion. The BGRW algorithm is also free of numerical diffusion provided
that Pé < 2 (see also Remark 4). We also note that Ax = 0.05 defines the
coarsest grid acceptable for solving the benchmark problem for coupled
flow and transport with BGRW and TPFA codes.

5.2.3. Fully coupled water flow and surfactant transport

In the following we solve the coupled flow and transport problem 21-
(22) by using the setup of the benchmark flow problem problem from
Section 5.1 completed by parameters and initial/boundary conditions
modeling a situation of coupled water flow and surfactant transport. The
surfactant concentration in the domain Q has a stratified distribution
described by the plane c(x, z,0) = z/1.2. Further, the concentration is
set to ¢ = 1 on the Dirichlet boundary I', and to ¢ =0 on T, and no-
flow Neumann conditions are imposed on the vertical boundaries.

The flow and transport are coupled in both directions through
the van Genuchten-Mualem parameterization 12-(13) with O(y,c) =
0(y(c)y), where y(c) = 1/[1 — bln(c/a+ 1)] models the concentration-
dependent surface tension between water and air (Knabner et al., 2003).
The constant parameters of y(c) are set to a =0.44 and b= 0.0046
(Illiano et al., 2020). To describe a more realistic heterogeneous soil,
the saturated conductivity K, is modeled as a log-normal space ran-
dom function with a small variance o2 = 0.5 and Gaussian correlation
of correlation lengths 4, =0.1 m and 4, =0.01 m in horizontal and
vertical directions, respectively. The In K field is generated by sum-
ming up 100 random periodic modes with the Kraichnan algorithm pre-
sented in (Suciu, 2019, Appendix C.3.1.2). The diffusion coefficient is
set to a constant value, D = 10~ m/day, which is representative for
soils and aquifers (Radu et al., 2011; Schneid, 2000; Suciu, 2019). Fol-
lowing Illiano et al. (2020), the nonlinear reaction term is specified as
R(c) = 1073¢/(1 + ¢). Instead of using a fixed number of time steps, as in
the flow benchmark presented in Section 5.1, now we fix the total time
to T =3 days, set the intermediate time controlling the drainage pro-
cess to At = T/3, and keep the original time steps Ar which ensure the
appropriate resolution for contrasting fast and slow processes in loam
and clay soils, respectively.

Preliminary tests showed that, in order to obtain an acceptable reso-
lution of the velocity components in the benchmark setup, the unbiased
GRW requires extremely fine discretizations with Ax = ©(1073). There-
fore the transport step is solved with the BGRW algorithm for the mesh
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Table 8
Estimated order of convergence of the TPFA and GRW solvers: concentration solutions.
£ EOC £ EOC £ EOC £y
TPFA 6.26e-03 0.83 3.52e-03 0.89 1.90e-03 0.91 1.01e-03
GRW (analytical q|,q) 3.92e-03 2.00 9.78e-04 1.83 2.74e-04 1.05 1.32e-04
GRW (approximate q|,,)  4.72e-03 1.99 1.19e-03 1.85 3.29e-04 1.17 1.46e-04
GRW (g, from int(Q)) 5.26e-03 2.00 1.31e-03 1.87  3.59e-04 1.23 1.53e-04
Table 9 1 00 : T T T T T
Estimation of numerical diffusion for BGRW, GRW and TPFA
codes. o —O— t=1
Ax T/At  Pé ep, ep, 10k =2 |
BGRW 0.1 2 3.31 7.55e-02 2.60e-01 =
0.05 9 1.65 1.90e-16 1.48e-15 —
0.01 239 033  4.16e-16 1.02e-15 T 10'2 E
0.005 960 0.17 2.93e-15 3.63e-15 m\:K
GRW 0.1 4 3.31 1.94e-16 6.14e-16 |
0.05 4 1.65 6.60e-17 8.05e-16 @
=103 3
0.01 19 0.33 1.94e-16 4.79e-16 =
0.005 39 0.17 2.10e-15 8.92e-16
TPFA 0.1 5 3.31 9.16e-03 1.99e-01
0.05 10 1.65 4.69e-03 9.94e-02 1 0—4 J
0.01 50 0.33 9.58e-04 1.99e-02
0.005 100 0.17 5.38e-04 9.89e-03 ~
105'”m““”““““:x aryiass s TUTTIVTY N
101 0 2000 4000 6000 8000 10000 12000 14000
s
—o—t=1
Fig. 14. The same as in Fig. 13 for the clay soil problem.
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Fig. 13. Convergence of the L-scheme implementation of the GRW flow solver
for the loam soil problem at three time levels (in days).

size Ax = 0.05 suggested by the above investigations on numerical diffu-
sion. The velocity q|,, on boundaries is approximated by forward finite
differences.

The convergence of the flow and transport L-schemes using GRW
algorithms requires relatively large linearization parameters, L, = L, =
20, for loam soil, and L, = L, = 100 for clay soil models. These are two
order of magnitude larger than for the decoupled-flow benchmark pre-
sented in Section 5.1, probably due to the increased complexity of the
coupled problem. By setting the tolerances of the convergence criterion
Btog,=¢,=5- 10~¢ the convergence is achieved after about 2000
iterations for the loam soil and about 14000 iterations for the clay soil
(see Figs. 13,14,15,16).

The results obtained by coupling the GRW-flow and BGRW-transport
solvers are presented in Figs. 17,18,19,20,21,22,23,24,25,26. The ran-
domness of K, is especially felt by the pressure distribution in the more
permeable loam soil (Fig. 17), while in the clay soil the pressure remains
almost stratified (Fig. 18). The same contrast is shown by the water con-
tent, with almost saturated loam soil (Fig. 19) and partially stratified

11
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Fig. 15. Convergence of the L-scheme implementation of the GRW transport
solver for the loam soil problem at three time levels (in days).

saturation in the clay soil (Fig. 20). Since the Darcy velocity is propor-
tional to the gradient of the random pressure, the heterogeneity of the
advective component of the transport process is mainly manifest in the
final distribution of the concentration in the loam and clay soils (com-
pare Figs. 21 and Fig. 22). Significant differences between the loan and
clay soils are also illustrated by the spatial distribution of the velocity
components (Figs. 23,24,25,26).

The results obtained with the GRW/BGRW flow and transport solvers
are compared with those provided by a TPFA code using L, = L. =1,
for both soils, and L, =2L,. The convergence is achieved in reason-
able computing times of 263 s (loam) and 177 s (clay) only when using
the Anderson acceleration procedure (Anderson, 1965; Walker and Ni,
2011; Both et al., 2019). Note that the GRW times on the same computer
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Fig. 16. The same as in Fig. 15 for the clay soil problem.
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Fig. 17. Pressure head solution y(x, z) at t = T for the benchmark problem of
recharge from a drainage trench through a silt loam soil coupled with advection-
dispersion-reaction transport.
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Fig. 18. The same as in Fig. 17 for a Beit Netofa clay soil.
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Fig. 19. Water content solution 6(x, z) at r = T for the benchmark problem of
recharge from a drainage trench through a silt loam soil coupled with advection-
dispersion-reaction transport.
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Fig. 20. The same as in Fig. 19 for a Beit Netofa clay soil.
Table 10

Comparison of GRW and TPFA solutions of the coupled flow-transport
benchmark problem.

EV/ E. £y qu qu
loam  2.89e-02  4.79e-01 7.25e-05  3.15e-01 2.18e-01
clay 595e-02  3.77e-02  7.61e-04  3.66e-01 5.36e-01

are of the same order of magnitude (526 and 178, respectively), without
appealing to the acceleration procedure.

The errors for pressure, water content and velocity components
shown in Table 10 are more or less similar to those for the flow bench-
mark problem given in Table 6. The difference of one order of magnitude
between the ¢, values for the two soils can be traced back to the amount
of numerical diffusion of the TPFA transport solver (see Table 9). The
estimated mean Péclet number for the loam soil, Pé ~ 1.3, is much larger
than the value Pé ~ 4 - 10~ estimated for the clay soil and can partially
explain the larger ¢, value in the first case. Since the pressure equation
is essentially an advection-diffusion equation with velocity given by the
derivatives of the coefficient K (e.g., Gotovac et al., 2009; Suciu, 2020),
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Fig. 21. Concentration solution c(x, z) at t = T for the benchmark problem of

recharge from a drainage trench through a silt loam soil coupled with advection-
dispersion-reaction transport.
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Fig. 22. The same as in Fig. 21 for a Beit Netofa clay soil.

theerrorse, ande,_, of order 10~ also could be produced by numerical
diffusion, in the flow solver. In the setup of the benchmark problems,
for both coupled flow and transport and decoupled flow, we estimate
a mean Péclet number Pé ~ 0.9 for both loam and clay soil models (for
comparison, in the one dimensional case with smaller €4 Pé was about
0.03 in Scenario 1 and 0.3 in Scenario 2). Since the flow and transport
solvers implemented in MRST basically use the same TPFA finite vol-
ume method, we may expect that the flow solver produces a numerical
diffusion comparable to that of the transport solver shown in Table 9.

A one-dimensional version of the benchmark problem for flow and
surfactant transport can be readily obtained and solved with one-
dimensional GRW algorithms (Suciu et al., 2020, Sect. 5.2.4). Even
though the lateral heterogeneity of the two-dimensional benchmark is
ignored, the main features are also revealed by the one-dimensional
drainage model: the discrepancy between fast-loam and slow-clay flow
and transport processes, the same intervals of variation of the solutions,
and similar behavior on the vertical direction.
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Fig. 23. Horizontal water flux ¢,(x, z) at t = T for the benchmark problem of
recharge from a drainage trench through a silt loam soil coupled with advection-
dispersion-reaction transport.

3 qx(x7z) X10-3
==
3
2.57 1
2.5
2_ 4
2
® 157 1 1.5
1k i 1
0.5
0.57 1
0
0 L L L
0 0.5 1 1.5 2
xr

Fig. 24. The same as in Fig. 23 for a Beit Netofa clay soil.

6. Two-dimensional GRW solutions for groundwater flow and
transport at regional and field scales

For saturated aquifers (6 = const) Eq. (17) reduces to a linear equa-
tion solved by the steady state hydraulic head solution in A(x, y), under
time independent boundary conditions. As noted in Remark 3, the GRW
L-scheme 18-(20) becomes, in this case, a transient scheme for the lin-
ear flow equation. In the following examples, we consider flow prob-
lems formulated in two-dimensional domains, (x,y) € [0, L,] X [0, L],
with Dirichlet boundary conditions A(0,y) = H, and h(L,,y) = H, and
no-flow Neumann conditions on top and bottom boundaries. In the sat-
urated flow regime, the transport Eq. (22) is also linear and decoupled
from the linear flow equation. Decoupled transport problems can be
solved by either biased- or unbiased-GRW algorithms (see Remark 5 and
Section 4.2.2) on the same lattice as that used to compute the flow ve-
locity.
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Fig. 25. Vertical water flux ¢,(x,z) at t =T for the benchmark problem of

recharge from a drainage trench through a silt loam soil coupled with advection-
dispersion-reaction transport.
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Fig. 26. The same as in Fig. 25 for a Beit Netofa clay soil.

6.1. Flow in heterogeneous aquifers at regional scale

For the beginning, we follow the setup for regional scale used in
Franssen et al. (2009) to compare approaches for inverse modeling of
groundwater flow. The domain and the boundary conditions are speci-
fied by L, =4900 m, L, = 5000 m, H,; = 0 m, H, = 5 m. The hydraulic
conductivity K is a log-normally distributed random field defined by
the mean (K) = 12-10~* m/s, the correlation length 1 =500 m, and
the variance o2 = 1 of the In K-field. The K-field is generated, as in
Section 5.2.3 above, by summing 100 random periodic modes with the
Kraichnan algorithm. Besides the exponential correlation considered in
Franssen et al. (2009), we also investigate the behavior of the flow solu-
tion for Gaussian correlation of the In K field with the same correlation
length, as well as in case of the smaller variance 6% = 0.1, for both cor-
relation models.

The two correlation models of the In K-field are of the form C(r) =
o? exp[—(r/1)*], where r = (2 + ri)l/ 2 is the spatial lag, the exponent
a = 1 corresponds to the exponential model, and a = 2 to the Gaussian
one. Since the correlation functions depend on spatial variables through
r/A, the computation can be done for spatial dimensions scaled by 4,
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that is, fields of dimensionless correlation length 4* = 1 and a domain
[0, L /A1 X [0, L,/4]. The results on the original grid are finally obtained
after the multiplication by A of the solution h(x, y) and of the spatial
coordinates.

The solutions h(x, y) of the stationary Eq. (17) corresponding to 6 =
const, for given realizations of the K-field with o2 = 0.1, are obtained
under the initial condition A((x, y), which is the plane defined by the
Dirichlet boundary conditions 4(0,y) =0 and A(L,/A,y) = H,/4. With
space steps set to Ax = Ay = 0.2 m, the steady state is reached after about
4. 10° iterations of the GRW solver. The relative errors of the solution
h obtained with the scaled geometry with respect to the solution of the
unscaled problem are of the order 10~'4, that is, close to the machine
precision (Suciu et al., 2020, Sect. 6.1).

To estimate the order of convergence of the GRW scheme for this par-
ticular flow problem, we use manufactured analytical solutions provided
in the Git repository https://github.com/PMFlow/FlowBenchmark and,
similarly to estimations performed in Section 5.1, we compute the
EOC according to (36) by successively halving the space steps from
Ax=Ay=2-10""upto Ax =Ay=25-10"2

We note that the EOC approach presented here differers somewhat
from that used in Alecsa et al. (2019); Suciu (2020). The reference so-
lution is now the manufactured solution, instead of the solution on the
finest grid, and the error norm is no longer computed after the first it-
eration but after large numbers of iterations (from 10° to more than
107), when the GRW solution approaches the stationarity. Due to the
limited number of iterations, the solutions are not yet strictly stationary
and the order of convergence may be not accurately estimated in some
cases. Therefore we also use a TPFA flow solver to compute EOC values
for the same scenarios.

The results presented in Tables 11 and 12 show significant differ-
ences between the two correlation models. For Gaussian correlation the
errors obtained with the two approaches are relatively small in all cases.
Instead, for exponential correlation, despite the strong EOC obtained af-
ter the first two refinements, the errors are extremely large for ¢% = 1
and become smaller than one only for 62 = 0.1, after the second refine-
ment of the grid. These results are consistent with those presented in
Alecsa et al. (2019), where similar benchmark problems were solved
for a larger range of parameters of the In K field.

6.2. Flow in conditions of random recharge

We consider in the following a flow problem formulated for the same
geometry and boundary conditions as in the previous subsection, which
has been used in Pasetto et al. (2011) to design a new Monte Carlo
approach for flow driven by spatially distributed stochastic sources.
Now the hydraulic conductivity is constant, K = 12 - 10~* m/s, and the
groundwater recharge is described by a source term f in Eq. (17), mod-
eled as a random space function of mean (/) = 362.912 mm/year, log-
normally distributed with exponential correlation specified by different
correlation lengths and variances of the In f field. Among different sce-
narios presented inPasetto et al. (2011), we consider for comparison
with the present computations only the case 4 = 500 m and the variance
o2 =1.

As in the previous subsection, we use the setup for the problem’s
geometry scaled by 4, for which the random recharge problem with 62 =
1 is solved with relative errors of the order 10~!5 (Suciu et al., 2020,
Sect. 6.2).

In a first validation test, we compare the GRW and TPFA solu-
tions of the random recharge problem on the computational domain
scaled by 4 = 500 m, for single-realizations of the random recharge with
both exponential and Gaussian correlation of the In f field and two
variances, 6> = 0.1 and ¢ = 1. The absolute and relative differences,
£,= ”hGRW _ hTPFA” and £, = ”hGRW _ hTPFA”/”hTPFA”’ presented
in Table 13 indicate a good agreement between the two approaches.

Further, we perform statistical inferences of the mean and variance
obtained from an ensemble of 100 Monte Carlo simulations within the
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Table 11
Computational order of convergence of the GRW scheme estimated according to (36).
Correlation model o2 £ EOC ¢ EOC & EOC ¢
Exponential 0.1 1.35e+01 3.67 1.06e+00 1.86 2.92e-01 0.66 1.85e-01
1 1.80e+02 3.24 1.90e+01 2.09 4.47e+00 1.96 1.15e+00
Gaussian 0.1 7.37e-02 1.98 1.87e-02 1.63 6.03e-03 1.14 2.73e-03
1 1.31e-01 1.59 4.35e-02 1.51 1.53e-02 1.47 5.51e-03
Table 12
Computational order of convergence of the TPFA solver estimated according to (36).
Correlation model o2 £ EOC ¢ EOC ¢ EOC ¢
Exponential 0.1 4.67e+00 1.71 1.43e+00 1.95 3.70e-01 0.48 2.65e-01
1 1.01e+02 2.23 2.14e+01 3.11 2.48e+00 0.41 1.86e+00
Gaussian 0.1 9.22e-02 2.00 2.30e-02 2.00 5.75e-03 2.00 1.44e-03
1 1.84e-01 2.00 4.61e-02 2.00 1.16e-02 2.00 2.89e-03

Table 13
Comparison of GRW and TPFA solutions of the
random recharge problem.

Correlation model  ¢° £, £,
Exponential 0.1 63.44 5.97e-2
1 101.71  9.82e-2
Gaussian 0.1 84.12 8.72e-2
1 137.09  1.62e-2
Table 14

Statistical moments of the hydraulic head
(Monte Carlo and spatial averages).

mean variance
GRW  21.51+9.17 41.11£27.82
TPFA 19.74+7.84 32.09+21.33
Table 15

Statistical moments of the hydraulic head (MC
averages at the center of the domain).

mean variance
GRW 31.67 65.14
TPFA 28.31 53.39
(Passeto et al,, 2011)  31.05  40.08

setup of Pasetto et al. (2011) for random recharge term with exponen-
tial correlation and variance 62 = 1. The mean and the variance of the
hydraulic head h are computed as averages over realizations of the In f
field followed by spatial averages, with standard deviation estimated by
spatial averaging. The results presented in Table 14 show, again, that
the GRW and TPFA results are in good statistical agreement.

Finally, we compare the mean and the variance estimated at the cen-
ter of the computational domain by GRW and TPFA simulations with
the results presented in Pasetto et al. (2011). As seen in Table 15, the
mean values compare quite well but both the GRW and TPFA approaches
overestimate the variance computed for the same parameters in (Pasetto
etal., 2011, Fig. 6). This discrepancy can be attributed either to the large
errors expected for exponential correlation model (see Tables 11 and
12) or to the statistical inhomogeneity of the Monte Carlo ensemble of
100 realizations indicated by the large standard deviations shown in
Table 14.

6.3. Flow and advection-dispersion transport in aquifers
In the following we consider an incompressible flow in the domain

[0,20] x [0, 10], driven by Dirichlet boundary conditions (0, y) = 1 and
h(20,y) =0 and zero Neumann conditions on top and bottom bound-
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aries. The hydraulic conductivity is a random space function with mean
(K) = 15 m/day, with Gaussian correlation of the In K field, correlation
length A = 1 m, and variance o2 = 0.1, generated by summing 10 random
modes with the Kraichnan algorithm. An ensemble of velocity fields cor-
responding to 100 realizations of the K field is obtained with the flow
solver used in Section 6.1, for the resolution of the GRW lattice defined
by space steps Ax = Ay =0.1.

Further, Monte Carlo simulations of advection-diffusion are carried
out using the velocity realizations and the isotropic local dispersion co-
efficient D = 0.01 m?/day. The linear transport equation obtained by
setting 6 = const in Eq. (22) is solved with the unbiased GRW algorithm
described in Section 4.2.2 by using N = 10%* particles to represent the
concentration. The final time 7" = 10 days is chosen such that the support
of the concentration does not reach the boundaries during the simula-
tion. Hence, the Monte Carlo inferences can be compared with results
of linear theory which provides first-order approximations of disper-
sion coefficients for small variances o2 (Bellin et al., 1992). In turn,
such linear approximations are accurately retrieved by averaging over
ensembles of particle tracking simulations of diffusion in realizations
of velocity fields approximated to the first-order in o> by a Kraichnan
procedure (Schwarze et al., 2001). Following this approach, to infer dis-
persion coefficients in linear approximation, we use an ensemble of 10*
realizations of Krainchan velocity fields, computed with 100 random
modes by the algorithm described in (Suciu, 2019, Appendix C.3.2.2),
and the unbiased GRW solver, with A" = 10?* particles in each realiza-
tion. Longitudinal and transverse “ensemble” dispersion coefficients, D,
and D,, are computed as half the slope of the ensemble average of the
second spatial moments of the concentration distribution, centered at
the ensemble average center of mass (Bellin et al., 1992; Radu et al.,
2011; Schwarze et al., 2001). The results presented in Fig. 27 show a
that, in spite of relatively small ensemble of velocity realizations, the
ensemble dispersion coefficients obtained with the 100 GRW solutions
of the full flow problem are quite close to the reference linear results.

The computation of the velocity realizations with the transient GRW
flow solver requires 10* to 10° iterations to fulfill the convergence cri-
terion (3) with tolerances e, = ¢, = 5 - 10~/ and about 160 s per realiza-
tion. For the chosen discretization, Ax = Ay = 0.1, the unbiased GRW
transport solver requires, according to (31), a relatively rough time dis-
cretization of A7 = 0.5. This leads to a total computation time of about
1.4 s for the estimation of the dispersion coefficients by averaging over
the 100 realizations of the statistical ensemble. By comparison, the TPFA
codes needs about 3.8 s to compute a velocity realization and about 13 s
for a single transport realization, by using the same spatial resolution
and a time step Ar = 0.05. But the TPFA estimates of the dispersion co-
efficients deviate by more than one order of magnitude from the lin-
ear reference solution. Since reducing the spatial steps and the local Pé
to reduce the numerical diffusion dramatically increases the computa-
tional burden for the TPFA codes, we solved a rescaled problem. So,
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Fig. 27. Dispersion coefficients estimated from GRW solutions for 100 real-
izations of the isotropic hydraulic conductivity K, with Gaussian correlated
InK field of variance > = 0.1 and correlation length 1 = 1m, in the domain
[0,20] x [0, 10], compared to first-order results (dots).
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Fig. 28. Comparison of dispersion coefficients obtained by GRW, TPFA, and
first-order approximation (dots) fron an ensemble of 100 realizations of the
isotropic hydraulic conductivity K, with Gaussian correlated In K field of vari-
ance 6> = 0.1 and correlation length 4 = 0.1m, in the domain [0,2] x [0, 1].

to preserve the mean and the spatial variability of the velocity field,
we chose a smaller domain [0, 2] x [0.1], correlation length of the In K
field A = 0.1, and a new Dirichlet condition, 4(0, y) = 0.1. Now, the TPFA
codes require about 60 s to compute one flow realization and about 3 h
for a transport realization, with Ax = Ay = 0.001 and Ar = 0.0005. The
computation times for the GRW codes to solve the rescaled problem by
using Ax = Ay = 0.01 and Az = 0.07 are practically unchanged. Figure 28
shows that the GRW estimations of the dispersion coefficients are again
close to the linear approximation. Instead the TPFA results overestimate
the linear approximation by 10% to 20%. The deviations of the TPFA co-
efficients shown in Fig. 28 are comparable with the numerical diffusion
(estimated for constant velocity) in case of the longitudinal coefficient
D, but two orders of magnitude larger for the transverse coefficient D,
(Suciu et al., 2020, Table 17).
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7. Conclusions

The GRW schemes for simulating flow in either unsaturated or satu-
rated porous media are equivalent to finite-difference schemes, in their
deterministic implementation, or for sufficiently large numbers of parti-
cles in randomized implementations. The same, in case of BGRW solver
for transport problems. Instead, the unbiased GRW is a superposition of
Euler schemes for It6 equation (Suciu, 2019), which is no longer equiva-
lent with a finite difference scheme, unless the coefficients of the trans-
port equation are constant. In simulations of reactive transport, GRW
algorithms can use huge numbers of computational particles, even as
large as the number of molecules involved in reactions, allowing simple
and intuitive representations of the process.

While unbiased GRW algorithms are mainly efficient in obtaining
fast solutions for large-scale transport in aquifers, BGRW solvers are ap-
propriate for computing solutions of fully coupled flow and transport
problems in soil systems with fine variation of the parameters. The al-
gorithms are implemented as iterative L-schemes which linearize the
Richards equation and describe the transition from unsaturated to sat-
urated regime. The GRW/BGRW solutions are first-order accurate in
time and second-order accurate in space. For saturated regimes, the flow
solver becomes a transient scheme solving steady-state flows in aquifers.

Since the GRW algorithms are explicit schemes which do not need
to solve systems of algebraic equations, they are simpler and, in some
cases, faster than finite element/volume schemes. The GRW L-schemes
for non-steady coupled problems for flow and transport in soils, as well
as for transport simulations in saturated aquifers, are indeed much faster
than the TPFA codes used as reference in this study. However, the flow
solutions for saturated porous media in large domains (e.g. field or re-
gional scale) require much larger computing time than classical numer-
ical schemes, due to the large number of iterations needed to achieve
the convergence of the transitory scheme used to compute steady-state
solutions (see also a detailed analysis in Alecsa et al. (2019)).

The obvious advantage of the GRW schemes is that they are practi-
cally free of numerical diffusion. This is demonstrated by the results for
decoupled transport presented in Table 9. But, as shown by the discus-
sion at the end of Section 5.2.3, the flow solvers also can be affected by
numerical diffusion, which is difficult to isolate from other errors occur-
ring in coupled flow and transport problems. Such errors are avoided by
GRW algorithms, which prevent the occurrence of the numerical diffu-
sion by using consistent definitions of the jump probabilities as functions
of the coefficients of the flow and transport equations.
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