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We extend the convergence results in Svärd and Nordström (2019) [7] for single-domain 
energy-stable high-order finite difference schemes, to include domains split into several 
grid blocks. The analysis also demonstrates that reflective boundary conditions enjoy 
the same convergence properties. Finally, we briefly indicate that these results (and the 
previous ones in [7]) also hold in multiple dimensions.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Background

The convergence rate of finite-difference schemes that are closed at the boundaries with stencils of lower order accu-
racy1 than the interior stencils is a long-standing problem that has been treated extensively in the literature in e.g. [3,4,1,5]. 
Recently the problem was addressed in [7], where it was shown that energy-stable schemes, satisfying some natural con-
straints, automatically “gain” as many orders on the boundary as the highest spatial derivative.

The case when the domain is split into (at least) two computational domains that are conjoined at an interface, was not
treated in [7]. The interface case is fundamentally different from the boundary case. In the theory for boundary conditions, 
the semi-discretisation of the initial-boundary value problem is Laplace transformed. This allows a decomposition of the 
modes into those that decay into the domain from the boundary, and should be supplied with boundary conditions, and 
those that do not. The boundedness of the boundary data and the energy stability of the scheme, enabled a proof of the 
convergence result.

This proof, however, does not immediately encompass interfaces, since they take data from the conjoining domain, which 
may or may not be sufficiently bounded. Moreover, the treatment at an interface need not abide to the minimal number of 
boundary conditions requirement, since data at an interface can be considered exact. Likewise, the previous theory did not 
consider reflective boundaries, i.e., those that feed out-going waves back into the domain via the in-going characteristics, 
since sufficient boundedness of the solution that is fed back has to be established.
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1 Convergence rate is the rate by which the solution error decreases with grid refinements. The order of accuracy is given by the truncation error and 
can be different at different points. It represents how accurately the equation (not the solution) is approximated.
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Here, we address both interfaces and reflective boundary conditions and we discuss possible generalisations to multiple 
dimensions. Specifically, we require

(1) that the semi-discrete scheme is energy stable, has a polynomial nullspace (possibly empty), is nullspace consistent, and 
nullspace invariant. (All the assumptions used in [7].)

(2) that the number of interface conditions, as seen from one side, is consistent with the minimal number of boundary 
conditions. That is, data from across the interface can be replaced by smooth and bounded data, and result in a well-
posed problem.

Remark. The second requirement immediately rids one of the problems discussed above. It prohibits over-specification at the interface. 
Furthermore, it is the most robust choice that is most often used in practice.

The programme for analysing interface accuracy is to view the interface as an external boundary and, with the aid of the 
requirements above, the a priori estimates and previous theory, infer the optimal convergence rates.

We will demonstrate this for a few examples. The generalisations are obvious and will only be discussed briefly.

2. The hyperbolic case

We consider the advection equation on the real line,

ut + aux = 0, a > 0. (1)

We split the domain into two: x < 0 and x > 0 with an interface at x = 0 and discretise each with a Summation-by-Parts 
(SBP) scheme (see [6]). (We assume appropriate trail-off conditions to the left and right and denote the left and right 
domain as �L,R .) The grid is equidistant with indexing xi = ih, i = 0, ±1, ±2, ..., such that x0 represents the interface in 
both domains.

vL
t + aP−1 Q vL = 0 (2)

vR
t + aP−1 Q vR = −P−1a(v R

0 − v L
0)e0

where vL = (...v L−1, v
L
0)

T and vR = (v R
0 , v R

1 , ...)T are the unknowns to the left and right and e0 = (1, 0, ...0)T . The SBP 
operator has the following properties: P = P T > 0, Q + Q T = B = diag(−1, 0, ..., 0, 1) and P−1 Q v is a first-derivative 
approximation. (See [7] for more information.) To adhere with the second requirement above, there is only a penalty term 
to the right in agreement with the characteristic direction.

Remark. Generally, one can penalise both equations at x0 and, with a proper scaling, stability can be proven. Although stable and 
convergent, such a “two-way” coupling renders the left problem ill-posed viewed as a stand-alone problem. Hence, Requirement (2) is 
not satisfied.

We apply the energy method in a somewhat unconventional way. Multiply the first equation in (2) by vL P to obtain(
‖vL‖2

)
t
+ a(v L

0)
2 = 0.

The left problem is well-posed as a stand alone problem and we obtain the bound v L
0 ∈ L2(0, T ). Next, we multiply the 

second equation in (2) by (vR)T P ,(
‖vR‖2

)
t
− a(v R

0 )2 = −2av R
0 (v R

0 − v L
0).

By recasting the boundary terms, we obtain(
‖vR‖2

)
t
+ a((v R

0 − v L
0)

2 = a(v L
0)

2.

This problem is bounded, and well-posed, since v L
0 ∈ L2(0, T ). Hence, the theory of [7] applies to both the left and right 

problems individually and we conclude that (2) will converge with optimal rates.
This procedure can be generalised to symmetric systems, ut + Aux = 0 discretised by

vL
t + (A ⊗ P−1 Q )vL = +(A− ⊗ P−1)((v L

0 − v R
0 ) ⊗ eL

0) (3)

vR
t + (A ⊗ P−1 Q )vR = −(A+ ⊗ P−1)((v R

0 − v L
0) ⊗ eR

0 )

where eL,R are both one at x = 0 and zero elsewhere. (For more information on Kronecker products, see [6].) The division 
A = A+ + A− refers to the signs of the eigenvalues such that only in-going characteristics are penalised on each side of 
the interface. As in the scalar case, the outgoing characteristics on each side serve as data for the other side and are 
independently bounded in L2(0, T ) such that optimal rates are obtained.
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2.1. Reflective boundary conditions

Another way of looking at (1) is obtained by transforming the left domain, x < 0, to ξ > 0. That is, by x = −ξ and 
∂x = −∂ξ , such that,

uL
t − auL

ξ = 0, ξ > 0. (4)

Relabelling ξ as x, uL = u1, uR = u2, we obtain the system,

(
u1

u2

)
t
+

( −a 0
0 a

)(
u1

u2

)
x
= 0, x > 0

with the boundary condition, u1(0, t) = u2(0, t). (In particular we note that the problem is well-posed if u2(0, t) = g(t) ∈
L2(0, T ).) The previously derived a priori estimate guarantees that u1(0, t) ∈ L2(0, T ) and we can view the problem as a 
well-posed problem with a reflective external boundary that consequently enjoy optimal convergence rates.

3. The parabolic case

We consider the same setup for the advection-diffusion equation, ut +aux = εuxx , with an interface at x = 0 and trail-off 
conditions to the left and right. The SBP second-derivative operator is given as: D2 = P−1(−A + B S) where A is symmet-
ric positive semi-definite and S holds a first-derivative stencils at the boundary points. Following [2], the approximation 
becomes,

P vL + aQ vL = ε(−A + B S)vL + σ1e0(v L
0 − v R

0 ) + σ2εe0((SvL)0 − (SvR)0) (5)

P vR + aQ vR = ε(−A + B S)vR + σ3e0(v L
0 − v0

0) + σ4εe0((SvR)0 − (SvL)0).

In [2] the stable choices of the σ ’s are derived. Furthermore, these σ ’s have the following dependencies of h: σ1,3 ∼O(h−1)

and σ2,4 ∼O(1).
Consider the left problem. It is an approximation of the advection-diffusion equation with boundary condition

αLuL + hβ LuL
x = αLuR + hβ LuR

x = f (uR , uR
x ). (6)

A sufficient condition for this stand-alone problem to be well-posed is uR ∈ L2(0, T ) and uR
x ∈ L2(0, T ). (Or more precisely, 

huR
x ∈ L2(0, T ).) Furthermore, we simultaneously demand the mirrored conditions on the right side.

Remark. Note that the interface condition is an approximation of uL(0, t) = uR(0, t) and not a Robin-type condition since σ1,3 are 
O(h−1) and σ2,4 are O(1). Furthermore, parabolicity requires a boundary condition on all boundaries implying that an interface 
condition on both sides of the interface does not imply over-specification of the stand-alone problems, in accordance with Requirement 
(2).

Next, we investigate the stability of the stand-alone problems. That is, we want the numerical approximations of (6)
to be bounded in L2(0, T ). By perusing the stability proof in [2], it is clear that (SvL)0 and (SvR)0 are indeed bounded 
in L2(0, T ). (See p. 358-9. The eigenvalues associated with (SvL)0 + (SvR)0 and (SvL)0 − (SvR)0 are non-zero and non-
vanishing.) However, a bound on v R

0 or v L
0, which is needed for stand-alone well-posedness of the two problems, is not 

obtained from the interface stability. (The corresponding eigenvalue is zero on p. 359.) To recover the necessary estimates 
on v R

0 or v L
0, we proceed via the energy estimate of (5) which gives the bounds

sup
t∈{0,T }

‖vL‖ ≤ C,

T∫
0

(vL)AvL dt ≤ C, (7)

sup
t∈{0,T }

‖vR‖ ≤ C,

T∫
0

(vR)AvR dt ≤ C.

Since the estimates obtained with the A-matrix above correspond to L2-estimates of the gradients, we intend to use Sobolev 
embedding to bound vL and vR in L2(0, T ; L∞(�L,R)). To demonstrate this, we define the N × N matrix
3



M. Svärd and J. Nordström Journal of Computational Physics 429 (2021) 110020
D = h−1

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 . . .

0 −1 1 0 . . .

. . .

−1 1
0 0

⎞
⎟⎟⎟⎟⎟⎠

,

such that Dv is an approximation of the derivative in the domain and ‖Dv‖2
h = hvT DT Dv bounds the L2-norm of the 

derivative of v (interpreted as a piecewise linear function).

Lemma 3.1. For any grid function v, vT Av > c‖Dv‖2
h for some c > 0.

Proof. By assumption of nullspace consistency, A has one zero eigenvalue associated with its rows summing to zero. (By 
symmetry its columns therefore also sum to zero.) Furthermore, its components are O(h−1) and we assume that A is N × N .

A Cholesky factorisation is given as U T U = A. Since A is semi-definite, it will result in one zero on the diagonal of the 
upper-triangular matrix U . Furthermore, the banded structure of A is preserved in U . Since A1 = 0, we must have U 1 = 0. 
Hence, the element in the lower right corner has to be 0.

Since the rows of U sum to zero, we can write U = R D , where R is an N × N matrix with the last row being zero. (The 
last column is also taken to be zero since it does not contribute anyway due to the band structure.) Furthermore, no other 
row of R sum to zero, since (most) rows of A = DT RT R D are second derivative approximations and the two derivatives 
are accounted for by DT and D . Hence, RT R is symmetric positive semi-definite with one zero eigenvalue associated with 
the last row and column. Moreover, we denote the upper-left (N − 1) × (N − 1) submatrix of R T R as M , which is then 
symmetric positive definite and has elements of O(h). Furthermore, since R is banded, M ≥ chI for some c > 0 where I is 
the (N − 1)2-identity matrix. Consequently, (Dv)T RT R(Dv) ≥ c‖Dv‖2

h , since the zero in the last row of RT R coincide with 
the zero in Dv and M defines a norm. �

By (7) and Lemma 3.1, we have DvL,R ∈ L2(0, T ; L2(�L,R)) which, together with the L2 bounds in (7) on vL,R and Sobolev 
embedding, implies v L,R

i ∈ L2(0, T ; L∞(�L,R)) for all i. With these a priori estimates, and since we already know from the 
stability proof that (SvL,R)0 ∈ L2(0, T ), the right problem bounds the “data” f in (6) for the left problem (and vice versa for 
the right problem).

Remark. Above, we used the bound on (SvL,R)0 obtained from the stability proof. However, since only h(SvL,R)0 ∈ L2(0, T )

was needed, we could also have obtained that directly from the L2(0, T ; L2(�L,R)) bounds on DvL,R , which gives 
√

hDvL,R ∈
L2(0, T ; L∞(�L,R)). Seeing that (SvL,R)0 are linear combinations of (DvL,R)i , the L2(0, T ) bounds on 

√
h(SvL)0 and 

√
h(SvR)0

follow.

We end this section with a few remarks. The same reasoning applies to parabolic systems since they too yield L2(0, T )

bounds on both the variables and their gradients, which is the only requirement needed to apply the theory in [7]. Further-
more, by mirroring one domain and rewriting a parabolic equation (scalar or system) such that the interface turns into a 
reflective boundary, the convergence rate of the latter follows immediately.

4. Multi-dimensions

A possible problem with the previous procedure is that L∞ is not embedded in H1 in multiple dimensions. However, 
in multiple dimensions the boundedness requirements are suitably milder. Consider the 2D advection-diffusion equation, 
ut + aux + bu y = ε(uxx + u yy), with periodicity in the y-direction (and N points).

Using von Neumann analysis in the y-direction reduces the problem to k = 1...N 1-D problems, one for each mode, 
v̂L,R

k in the y-direction. The y-derivative is reduced to a low-order term and can be ignored. The H1 embedding implies an 
L2(L∞) bound on v̂k , for all k = 1...N . Each mode converges with optimal rate and by Parseval’s relation, so does vL,R .

This reasoning shows that a bound on 
∫ T

0

∫
∂�L,R

(uL,R)2 ds dt is sufficient in the periodic (in the extra dimensions) case, 
and given by the H1 embedding. Theory for the non-periodic case is lacking, but it appears reasonable that the same bound 
would be sufficient.
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