
Logical Methods in Computer Science
Volume 17, Issue 4, 2021, pp. 14:1–14:22
https://lmcs.episciences.org/

Submitted Jan. 08, 2020
Published Nov. 29, 2021

ON SUPERGRAPHS SATISFYING CMSO PROPERTIES

MATEUS DE OLIVEIRA OLIVEIRA

Department of Informatics - University of Bergen, Bergen, Norway
e-mail address: mateus.oliveira@uib.no

Abstract. Let CMSO denote the counting monadic second-order logic of graphs. We
give a constructive proof that for some computable function f , there is an algorithm A
that takes as input a CMSO sentence ϕ, a positive integer t, and a connected graph G of
maximum degree at most ∆, and determines, in time f(|ϕ|, t) · 2O(∆·t) · |G|O(t), whether G
has a supergraph G′ of treewidth at most t such that G′ |= ϕ.

The algorithmic metatheorem described above sheds new light on certain unresolved
questions within the framework of graph completion algorithms. In particular, using this
metatheorem, we provide an explicit algorithm that determines, in time f(d)·2O(∆·d)·|G|O(d),
whether a connected graph of maximum degree ∆ has a planar supergraph of diameter at
most d. Additionally, we show that for each fixed k, the problem of determining whether
G has an k-outerplanar supergraph of diameter at most d is strongly uniformly fixed
parameter tractable with respect to the parameter d.

This result can be generalized in two directions. First, the diameter parameter can be
replaced by any contraction-closed effectively CMSO-definable parameter p. Examples of
such parameters are vertex-cover number, dominating number, and many other contraction-
bidimensional parameters. In the second direction, the planarity requirement can be relaxed
to bounded genus, and more generally, to bounded local treewidth.

1. Introduction

A parameterized problem L ⊆ Σ∗ ×N is said to be fixed parameter tractable (FPT) if there
exists a function f : N → N such that for each (x, k) ∈ Σ∗ × N, one can decide whether

(x, k) ∈ L in time f(k) · |x|O(1), where |x| is the size of x [DF99]. Using non-constructive
methods derived from Robertson and Seymour’s graph minor theory, one can show that
certain problems can be solved in time f(k) · |x|O(1) for some function f : N → N. The
caveat is that the function f arising from these non-constructive methods is often not
known to be computable. Interestingly, for some problems it is not even clear how to obtain
algorithms running in time f1(k) · |x|f2(k) for some computable functions f1 and f2. In
this work we will use techniques from automata theory and structural graph theory to
provide constructive FPT and XP algorithms for problems for which only non-constructive
parameterized algorithms were known.

Key words and phrases: CMSO Logic, Algorithmic Metatheorems, Graph Completion, Bidimensionality.
A preliminary version of this work appeared at the 26th EACSL Annual Conference on Computer Science

Logic, CSL 2017 [dOO17].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-17(4:14)2021
© Mateus de Oliveira Oliveira
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

14:2 Mateus de Oliveira Oliveira Vol. 17:4

The counting monadic second-order logic of graphs (CMSO) extends first order logic
by allowing quantifications over sets of vertices and sets of edges, and by introducing
the notion of modular counting predicates. This logic is expressive enough to define
several interesting graph properties, such as Hamiltonicity, 3-colorability, connectivity,
planarity, fixed genus, minor embeddability, etc. Additionally, when restricted to graphs
of constant treewidth, CMSO logic is able to define precisely those properties that are
recognizable by finite state tree-automata operating on encodings of tree-decompositions,
or equivalently, those properties that can be described by equivalence relations with finite
index [Cou90, AF93, BP16, BP17].

The expressiveness of CMSO logic has had a great impact in algorithmic theory due to
Courcelle’s model-checking theorem [Cou90]. This theorem states that for some computable
function f : N2 → N, one can determine in time1 f(|ϕ|, t) · |G| whether a given graph G of
treewidth at most t satisfies a given CMSO sentence ϕ. As a consequence of Courcelle’s
theorem, many combinatorial problems, such as Hamiltonicity or 3-colorability, which are
NP-hard on general graphs, can be solved in linear time on graphs of constant treewidth. In
this work we will consider a class problems on graphs of constant treewidth which cannot be
directly addressed via Courcelle’s theorem, either because it is not clear how to formulate
the set of positive instances of such a problem as a CMSO-definable set, or because although
the set of positive instances is CMSO-definable, it is not clear how to explicitly construct
a CMSO sentence ϕ defining such set. For instance, sets of graphs that are closed under
minors very often fall in the second category due to Robertson and Seymour’s graph minor
theorem.

1.1. Main Result. Let ϕ be a CMSO sentence, and t be a positive integer. We say that
a graph G′ is a (ϕ, t)-supergraph of a graph G if the following conditions are satisfied: G′

satisfies ϕ, G′ has treewidth at most t, and G′ is a supergraph of G (possibly containing
more vertices than G).

In our main result, Theorem 6.2, we devise an algorithm A that takes as input a CMSO
sentence ϕ, a positive integer t, and a connected graph G of maximum degree ∆, and
determines in time f(|ϕ|, t) · 2O(∆·t) · |G|O(t) whether G has a (ϕ, t)-supergraph. We note
that our algorithm determines the existence of such a (ϕ, t)-supergraph G′ without the need
of necessarily constructing G′. Therefore, no bound on the size of a candidate supergraph
G′ is imposed. Note that a priori even the fact that the problem is decidable is not clear.

In the next three sub-sections we show how Theorem 6.2 can be used to provide partial
solutions to certain long-standing open problems in parameterized complexity theory.

1.2. Planar Diameter Improvement. In the planar diameter improvement problem
(PDI), we are given a graph G, and a positive integer d, and the goal is to determine whether
G has a planar supergraph G′ of diameter at most d. Note that the set of YES instances for
the PDI problem is closed under minors. In other words, if G has a planar supergraph of
diameter at most d, then any minor H of G also has such a supergraph. Therefore, using
non-constructive arguments from Robertson and Seymour’s graph minor theory [RS95, RS04]
in conjunction with the fact planar graphs of constant diameter have constant treewidth,
one can show that for each fixed d, there exists an algorithm Ad which determines in linear
time whether a given G has diameter at most d. The problem is that the non-constructive

1|G| denotes the number of vertices in G, and |ϕ|, the number of symbols in ϕ.

Vol. 17:4 ON SUPERGRAPHS SATISFYING CMSO PROPERTIES 14:3

techniques mentioned above provide us with no clue about what the algorithm Ad actually
is. This problem can be partially remedied using a technique called effectivization by
self-reduction introduced by Fellows and Langston [FL89, DF99]. Using this technique one
can show that for some function f : N→ N, there exists a single algorithm A which takes a
graph G and a positive integer d as input, and determines in time f(d) · |G|O(1) whether G
has a planar supergraph of diameter at most d. The caveat is that the function f : N→ N
bounding the influence of the parameter d in the running time of the algorithm mentioned
above is not known to be computable.

Obtaining a fixed parameter tractability result for the PDI problem with a computable
function f is a notorious and long-standing open problem in parameterized complexity
theory [DF99, FD95, CFK+15]. Indeed, when it comes to explicit algorithms, the status
of the PDI problem is much more elusive. As remarked in [CGK+15], even the problem

of determining whether PDI can be solved in time f1(d) · |G|f2(d) for computable functions
f1, f2 : N→ N is open.

Using Theorem 6.2 we provide an explicit algorithm that solves the PDI problem for
connected graphs in time f(d) · 2O(∆·d) · |G|O(d) where f : N→ N is a computable function,
and ∆ is the maximum degree of G. This result settles an open problem stated in [CGK+15]
in the case in which the input graph is connected and has bounded (even logarithmic) degree.
We note that our algorithm imposes no restriction on the degree of a prospective supergraph
G′.

1.3. k-Outerplanar Diameter Improvement. A graph is 1-outerplanar if it can be
embedded in the plane in such a way that all vertices lie in the outer-face of the embedding.
A graph is k-outerplanar if it can be embedded in the plane in such a way that that
deleting all vertices in the outer-face of the embedding yields a (k − 1)-outerplanar graph.
The k-outerplanar diameter improvement problem (k-OPDI) is the straightforward variant
of PDI in which the completion is required to be k-outerplanar instead of planar. In
[CGK+15] Cohen at al. devised an explicit polynomial time algorithm for the 1-OPDI
problem. The complexity of the k-outerplanar diameter improvement problem was left open
for k ≥ 2. Using Theorem 6.2 we show that the k-OPDI problem can be solved in time
f(k, d) · 2O(∆·k) · |G|O(k) where f : N× N→ N is a computable function. In other words, for
each fixed k, the k-outerplanar diameter improvement problem is strongly uniformly fixed
parameter tractable with respect to the diameter parameter d for bounded degree connected
input graphs.

1.4. Contraction-Closed Parameters. A graph parameter is a function p that associates
a non-negative integer with each graph. We say that such a parameter is contraction-closed
if p(G) ≤ p(G′) whenever G is a contraction of G′. For instance, the diameter of a graph
is clearly a contraction-closed parameter. We say that a graph parameter p is effectively
CMSO-definable if there exists a computable function α, and an algorithm that takes a
positive integer k as input and constructs a CMSO formula ϕk that is true on a graph G if
and only if p(G) ≤ k.

The results described in the previous subsections can be generalized in two directions.
First, the diameter parameter can be replaced by any effectively CMSO-definable contraction
closed parameter that is unbounded on Gamma graphs. These graphs were defined in [FGT11]
with the goal to provide a simplified exposition of the theory of contraction-bidimensionality.

14:4 Mateus de Oliveira Oliveira Vol. 17:4

In particular, many well studied parameters that arise often in bidimensionality theory
satisfy the conditions listed above. Examples of such parameters are the sizes of a minimum
vertex cover, feedback vertex set, maximal matching, dominating set, edge dominating set,
connected dominating set etc. On the other direction, the planarity requirement can be
relaxed to CMSO definable graph properties that exclude some apex graph as a minor.
These properties are also known in the literature as bounded local-treewidth properties. For
instance, embeddability on surfaces of genus g, for fixed g, is one of such properties.

1.5. Related Work. As mentioned above, given a CMSO sentence ψ and a positive integer
t, one can use Courcelle’s model checking theorem to determine in time f(|ψ|, t) · |G|O(1)

whether a given graph G of treewidth at most t satisfies ψ. Therefore, given a CMSO
sentences ϕ and a positive integer t, we may consider the following algorithmic approach to
decide whether a given graph G has a (ϕ, t)-supergraph: first, we construct a formula ψϕ,t
which is true on a graph G if there is a model G′ of ϕ of treewidth at most t such that G is
a subgraph of G′. In other words, ψϕ,t defines the subgraph closure of the set of models of ϕ
of treewidth at most t. Then, to determine whether G has a (ϕ, t)-supergraph, it is enough
to determine whether G satisfies ψϕ,t using Courcelle’s model checking theorem.

Unfortunately, this approach cannot work in general. The problem is that there exist
CMSO definable families of graphs whose subgraph closure is not CMSO definable. For
instance, let L = {Ln}n∈N be the family of ladder graphs, where Ln is the ladder with n
steps2. It is easy to see that L is CMSO definable and every graph in L has treewidth at
most 2. Nevertheless, the subgraph closure of L does not have finite index. Therefore, this
subgraph closure is not CMSO definable, since CMSO definable classes of graphs of constant
treewidth have finite index.

Interestingly, when the property defined by ϕ is contraction closed, then the sentence
ψϕ,t defines a minor-closed property P whose treewidth is bounded by t. Additionally, it
follows from Robertson and Seymour graph minor theorem that each minor-closed property
can be characterized by a finite set M of forbidden minors. Therefore, if we were able to
enumerate the minors in M constructively, we would immediately obtain a constructive
polynomial time algorithm for determining whether a given graph G has a (ϕ, t)-supergraph.
It is worth noting that Adler, Kreutzer and Grohe have shown that if a minor-free graph
property P is MSO definable and has constant treewidth, then one can effectively enumerate
the set of forbidden minors for P [AGK08]. In particular, by giving the sentence ψϕ,t as
input to the algorithm in [AGK08] we would get a list of forbidden minors characterizing the
set of graphs that have a (ϕ, t)-supergraph. Nevertheless, the problem with this approach is
that it is not clear how the sentence ψϕ,t can be constructed from ϕ and t.

In the embedded planar diameter improvement problem (EPDI), the input consists of a
planar graph G embedded in the plane, and a positive integer d. The goal is to determine
whether one can add edges to the faces of this embedding in such a way that the resulting
graph has diameter at most d. The difference between this problem and the PDI problem
mentioned above is that in the EPDI problem, an embedding is given at the input, and edges
must be added in such a way that the embedding is preserved, while in the PDI problem,
no embedding is given at the input. Recently, it was shown in [LdOOS18] that EPDI for

2The vertices of Ln are a1, ..., an and b1, ..., bn, and the edges are {ai, bi} for i ∈ [n], {ai, ai+1} for
i ∈ [n− 1], and {bi, bi+1} for i ∈ [n− 1].

Vol. 17:4 ON SUPERGRAPHS SATISFYING CMSO PROPERTIES 14:5

n-vertex graphs can be solved in time 2d
O(d)

nO(d), while the analogous embedded problem

for k-outerplanar graphs can be solved in time 2d
O(d)

nO(k).
It is worth noting that the algorithms in [LdOOS18] heavily exploit the embedding

of the input graph by viewing separators as nooses - simple closed curves in the plane
that touch the graph only in the vertices (see e.g. [BMT03]). Additionally, it is currently
unknown both whether PDI can be reduced to EPDI in XP time and whether EPDI can
be reduced in XP time to PDI. Therefore it is not clear if the algorithm for EPDI can be
used to provide a strongly uniform XP algorithm for PDI on general graphs. It is also worth
noting that no hardness results for either PDI or EPDI are known. Indeed, determining
whether either of these problems is NP-hard is also a long-standing open problem.

1.6. Proof Sketch And Organization of the Paper. In Section 2 we state some pre-
liminary definitions. In Section 3 we define the notions of concrete bags, and concrete tree
decompositions. Intuitively, a concrete tree-decomposition is an algebraic structure that
represents a graph together with one of its tree decompositions. Using such structures we
are able to define infinite families of graphs via tree-automata that accept infinite sets of tree
decompositions. In particular, Courcelle’s theorem can be transposed to this setting. More
precisely, there is a computable function f such that for each CMSO sentence ϕ and each
t ∈ N, one can construct in time f(|ϕ|, t) a tree automaton A(ϕ, t) which accept precisely
those concrete tree decompositions of width at most t that give rise to graphs satisfying ϕ
(Theorem 3.3).

In Section 4 we define the notion of sub-decomposition of a concrete tree decomposition.
Intuitively, if a concrete tree decomposition T represents a graph G, then a sub-decomposition
of T represents a sub-graph of G. We show that given a tree-automaton A accepting a
set L(A) of concrete tree decompositions, one can construct a tree automaton Sub(A)
which accepts precisely those sub-decompositions of concrete tree decompositions in L(A)
(Theorem 4.2).

In Section 5, we introduce the main technical tool of this work. More specifically, we
show that for each connected graph G of maximum degree ∆, one an construct in time
2O(∆·t) · |G|O(t) a tree-automaton A(G, t) whose language L(A(G, t)) consists precisely of
those concrete tree decompositions of width at most t that give rise to G (Theorem 5.5).

In Section 6 we argue that the problem of determining whether G has a supergraph of
treewidth at most t satisfying ϕ is equivalent to determining whether the intersection of
L(A(G, t+ 1)) with L(Sub(A(ϕ, t+ 1))) is non-empty. By combining Theorems 3.3, 4.2 and

5.5, we infer that this problem can be solved in time f(|ϕ|, t) · 2O(∆·t) · |G|O(t) (Theorem
6.2). Finally, in Section 7, we apply Theorem 6.2 to obtain explicit algorithms for several
supergraph problems involving contraction-closed parameters.

2. Preliminaries

For each n ∈ N, we let [n] = {1, ..., n}. We let [0] = ∅. For each finite set U , we
let P(U) denote the set of subsets of U . For each r ∈ N and each finite set U , we
let P≤(U, r) = {U ′ ⊆ U | |U ′| ≤ r} be the set of subsets of U of size at most r, and
P=(U, r) = {U ′ ⊆ U | |U ′| = r} be the set of subsets of X of size precisely r. If A,A1, ..., Ak
are sets, then we write A = A1 ∪̇ A2 ∪̇...∪̇ Ak to indicate that Ai ∩ Aj = ∅ for i 6= j, and
that A is the disjoint union of A1, .., Ak.

14:6 Mateus de Oliveira Oliveira Vol. 17:4

Graphs: A graph is a triple G = (VG, EG, IncG) where VG is a set of vertices, EG is a
set of edges, and IncG ⊆ EG × VG is an incidence relation. For each e ∈ EG we let
endpts(e) = {v | IncG(e, v)} be the set of endpoints of e, and we assume that |endpts(e)| is
either 0 or 2. We note that our graphs are allowed to have multiple edges, but no loops. We
say that a graph H is a subgraph of G if VH ⊆ VG, EH ⊆ EG and IncH = IncG ∩ EH × VH .
Alternatively, we say that G is a supergraph of H. The degree of a vertex v ∈ VG is the
number d(v) of edges incident with v. We let ∆(G) denote the maximum degree of a vertex
of G.

A path in a graph G is a sequence v1e1v2...en−1vn where vi ∈ VG for i ∈ [n], ei ∈ EG for
i ∈ [n− 1], vi 6= vj for i 6= j, and {vi, vi+1} = endpts(ei) for each i ∈ [n− 1]. We say that G
is connected if for every two vertices v, v′ ∈ VG there is a path whose first vertex is v and
whose last vertex is v′.

Let G and H be graphs. An isomorphism from G to H is a pair of bijections µ =
(µ̇ : VG → VH , µ : EG → EH) such that for every e ∈ EG if endpts(e) = {v, v′} then
endpts(µ(e)) = {µ̇(v), µ̇(v′)}. We say that G and H are isomorphic if there is an isomorphism
from G to H.

Treewidth: A tree is an acyclic graph T containing a unique connected component. To avoid
confusion we may call the vertices of a tree “nodes” and call their edges “arcs”. We let
nodes(T) denote the set of nodes of T and arcs(T) denote its set of arcs. A tree decomposition
of a graph G is a pair (T, β) where T is a tree and β : nodes(T)→ P(VG) is a function that
labels nodes of T with subsets of vertices of G in such a way that the following conditions
are satisfied.

(1)
⋃
u∈nodes(T) β(u) = VG

(2) For every e ∈ EG, there exists a node u ∈ nodes(T) such that endpts(e) ⊆ β(u)
(3) For every v ∈ VG, the set Tv = {u ∈ nodes(T) | v ∈ β(u)}, i.e., the set of nodes of T

whose corresponding bags contain v, induces a connected subtree of T .

The width of a tree decomposition (T, β) is defined as maxu∈nodes(T)|β(u)| − 1, that is,
the maximum bag size minus one. The treewidth of a graph G, denoted by tw(G), is the
minimum width of a tree decomposition of G.

CMSO Logic: The counting monadic second-order logic of graphs, here denoted by CMSO,
extends first order logic by allowing quantifications over sets of vertices and edges, and
by introducing the notion of modular counting predicates. More precisely, the syntax of
CMSO logic includes the logical connectives ∨,∧,¬,⇔,⇒, variables for vertices, edges, sets
of vertices and sets of edges, the quantifiers ∃, ∀ that can be applied to these variables, and
the following atomic predicates:

(1) x ∈ X where x is a vertex variable and X a vertex-set variable;
(2) y ∈ Y where y is an edge variable and Y an edge-set variable;
(3) Inc(x, y) where x is a vertex variable, y is an edge variable, and the interpretation is

that the edge x is incident with the edge y.
(4) carda,r(Z) where 0 ≤ a < r, r ≥ 2, Z is a vertex-set or edge-set variable, and the

interpretation is that |Z| = a (mod r);
(5) equality of variables representing vertices, edges, sets of vertices and sets of edges.

A CMSO sentence is a CMSO formula without free variables. If ϕ is a CMSO sentence,
then we write G |= ϕ to indicate that G satisfies ϕ.

Vol. 17:4 ON SUPERGRAPHS SATISFYING CMSO PROPERTIES 14:7

Terms: Let Σ be a finite set. The set Ter(Σ) of terms over Σ is inductively defined as
follows.

(1) If a ∈ Σ, then a ∈ Ter(Σ).
(2) If a ∈ Σ, and t ∈ Ter(Σ), then a(t) ∈ Ter(Σ).
(3) If a ∈ Σ, and t1, t2 ∈ Ter(Σ), then a(t1, t2) ∈ Ter(Σ).

Note that the alphabet Σ is unranked and the symbols in Σ may be regarded as function
symbols or arity 0, 1 or 2. The set of positions of a term t = a(t1, ..., tr) ∈ Ter(Σ) is defined
as follows.

Pos(t) = {λ} ∪
⋃

j∈{1,...,r}

{jp | p ∈ Pos(tj)}.

Note that Pos(t) is a set of strings over the alphabet {1, 2} and that λ is the empty
string. If t = a for some a ∈ Σ, then Pos(t) = {λ}. If p, pj ∈ Pos(t) where j ∈ {1, 2},
then we say that pj is a child of p. Alternatively, we say that p is the parent of pj. We say
that p is a leaf if it has no children. We let τ(t) be the tree that has Pos(t) as nodes and
{{p, pj} | j ∈ {1, 2}, p, pj ∈ Pos(t)} as arcs. We say that a subset P ⊆ Pos(t) is connected
if the sub-tree of τ(t) induced by P is connected. If P is connected, then we say that a
position p ∈ P is the root of P if the parent of p does not belong to P .

If t = a(t1, ..., tr) is a term in Ter(Σ) for r ∈ {0, 1, 2}, and p ∈ Pos(t), then the symbol
t[p] at position p is inductively defined as follows. If p = λ, then t[p] = a. On the other
hand, if p = jp′ where j ∈ {1, 2}, then t[p] = tj [p

′].

Tree Automata: Let Σ be a finite set of symbols. A bottom-up tree-automaton over Σ is a
tuple A = (Q,Σ, F,∆) where Q is a set of states, F ⊆ Q a set of final states, and ∆ is a set
of transitions of the form (q1, ..., qr, a, q) with a ∈ Σ, 0 ≤ r ≤ 2, and q1, ..., qr, q ∈ Q. The
size of A, which is defined as |A| = |Q|+ |∆|, measures the number of states in Q plus the
number of transitions in ∆. The set L(A, q, i) of all terms reaching a state q ∈ Q in depth
at most i is inductively defined as follows.

L(A, q, 1) = {a | (a, q) ∈ ∆}

L(A, q, i) = L(A, q, i− 1) ∪
{a(t1, ..., tr) | r ∈ {1, 2}, and ∃(q1, ..., qr, a, q) ∈ ∆, tj ∈ L(A, qj , i− 1)}

We denote by L(A, q) the set of all terms reaching state q in finite depth, and by L(A)
the set of all terms reaching some final state in F .

L(A, q) =
⋃
i∈N
L(A, q, i) L(A) =

⋃
q∈F
L(A, q) (2.1)

We say that the set L(A) is the language accepted by A.
Let π : Σ → Σ′ be a map between finite sets of symbols Σ and Σ′. Such mapping

can be homomorphically extended to a mapping π : Ter(Σ) → Ter(Σ′) between terms
by setting π(t)[p] = π(t[p]) for each position p ∈ Pos(t). Additionally, π can be further
extended to a set of terms L ⊆ Ter(Σ) by setting π(L) = {π(t) | t ∈ Ter(Σ)}. Below we
state some well known closure and decidability properties for tree automata.

Lemma 2.1 (Properties of Tree Automata [CDG+07]). Let Σ and Σ′ be finite sets of
symbols. Let A1 and A2 be tree automata over Σ, and π : Σ → Σ′ be a mapping.

14:8 Mateus de Oliveira Oliveira Vol. 17:4

(1) One can construct in time O(|A1|·|A2|) a tree automaton A1∩A2 such that L(A1∩A2) =
L(A1) ∩ L(A2).

(2) One can determine whether L(A1) 6= ∅ in time O(|A1|).
(3) One can construct in time O(|A1|) a tree automaton π(A1) such that L(π(A1)) =

π(L(A1)).

3. Concrete Tree Decompositions

A t-concrete bag is a pair (B, b) where B ⊆ [t], and b ⊆ B with b = ∅ or |b| = 2. We note
that B is allowed to be empty. We let B(t) be the set of all t-concrete bags. Note that
|B(t)| ≤ t2 · 2t. We regard the set B(t) as a finite alphabet which will be used to construct
terms representing tree decompositions of graphs.

A t-concrete tree decomposition is a term T ∈ Ter(B(t)). We let T[p] = (T[p].B,T[p].b)
be the t-concrete bag at position p of T. For each s ∈ [t], we say that a non-empty subset
P ⊆ Pos(T) is s-maximal if the following conditions are satisfied.

(1) P is connected in Pos(T).
(2) s ∈ T[p].B for every p ∈ P .
(3) If P ′ is a connected subset of Pos(T) and s ∈ T[p].B for every p ∈ P ′, then either

P ∩ P ′ = ∅ or P ′ ⊆ P .

Note that if P and P ′ are s-maximal then either P = P ′, or P ∩ P ′ = ∅. Additionally,
for each p ∈ Pos(T), and each s ∈ T[p].B, there exists a unique subset P ⊆ Pos(T) such
that P is s-maximal and p ∈ P . We denote this unique set by P (p, s). Intuitively, each such
set P (p, s) corresponds to a vertex in the graph represented by T. Two disjoint s-maximal
sets P (p, s) and P (p′, s) correspond to two distinct vertices in the graph.

Definition 3.1. Let T ∈ Ter(B(t)). The graph G(T) associated with T is defined as follows.

(1) VG(T) = {vs,P | s ∈ [t], P ⊆ Pos(T), P is s-maximal}.
(2) EG(T) = {ep | p ∈ Pos(T), b 6= ∅}.
(3) IncG(T) = {(ep, vs,P (p,s)) | ep ∈ EG(T), s ∈ T[p].b}.

Intuitively, a t-concrete tree decomposition may be regarded as a way of representing a
graph together with one of its tree decompositions. This idea is widespread in texts dealing
with recognizable properties of graphs [BP16, AGK08, CE12, Elb16, FFG02]. Within this
framework it is customary to define a bag of width t as a graph with at most t vertices
together with a function that labels the vertices of these graphs with numbers from {1, ..., t}.
Our notion of t-concrete bag, on the other hand, may be regarded as a representation of a
graph with at most t vertices injectively labeled with numbers from {1, ...t} and at most
one edge. Within this point of view, the representation used here is a syntactic restriction of
the former. On the other hand, any decomposition which uses bags with arbitrary graphs
of size t can be converted into a t-concrete decomposition, by expanding each bag into a
sequence of t2 concrete bags. The following observation is immediate, using the fact that if
a graph has treewidth t, then it has a rooted tree decomposition in which each node has at
most two children [Elb16].

Observation 3.2. A graph G has treewidth t if and only if there exists some (t+1)-concrete
tree decomposition T ∈ Ter(B(t+ 1)) such that G(T) is isomorphic to G.

Vol. 17:4 ON SUPERGRAPHS SATISFYING CMSO PROPERTIES 14:9

The next theorem (Theorem 3.3) may be regarded as a variant of Courcelle’s theorem
[CE12]. For completeness, we include a proof of Theorem 3.3 in Appendix A.

Theorem 3.3 (Variant of Courcelle’s Theorem). There exists a computable function f :
N×N→ N such that for each CMSO sentence ϕ, and each t ∈ N, one can construct in time
f(|ϕ|, t) a tree-automaton A(ϕ, t) accepting the following tree language.

L(A(ϕ, t)) = {T ∈ Ter(B(t)) | G(T) |= ϕ}. (3.1)

4. Sub-Decompositions

In this section we introduce the notion of sub-decompositions of a t-concrete decomposition.
Intuitively, if a t-concrete tree decomposition T represents a graph G then sub-decompositions
of T represent subgraphs of G. The main result of this section states that given a tree
automaton A over B(t), one can efficiently construct a tree automaton Sub(A) over B(t)
which accepts precisely the sub-decompositions of t-concrete tree decompositions in L(A).

We say that a t-concrete bag (B, b) is a sub-bag of a t-concrete bag (B′, b′) if B ⊆ B′
and b ⊆ b′.

Definition 4.1. We say that a t-concrete tree decomposition T ∈ Ter(B(t)) is a sub-
decomposition of a t-concrete tree decomposition T′ ∈ Ter(B(t)) if the following conditions
are satisfied.

S1. Pos(T) = Pos(T′).
S2. For each p ∈ Pos(T), T[p] is a sub-bag of T′[p].
S3. For each p, pj ∈ Pos(T), and for each s ∈ [t], if s ∈ T′[p].B and s ∈ T′[pj].B, then

s /∈ T[p].B if and only if s /∈ T[pj].B.

The following theorem states that sub-decompositions of T′ are in one to one correspon-
dence with subgraphs of G(T′).

Theorem 4.2. Let G and G′ be graphs and let T′ ∈ Ter(B(t)) be a t-concrete tree decom-
position such that G(T′) = G′. Then G is a subgraph of G′ if and only if there exists some
T ∈ Ter(B(t)) such that T is a sub-decomposition of T′ with G(T) = G.

Proof.

(1) Let G be a subgraph of G(T′). We show that there exists a sub-decomposition T of
T′ such that G(T) = G. Since G is a subgraph of G(T), we have that VG ⊆ VG(T′),
EG ⊆ EG(T′), and IncG = IncG(T′) ∩ EG × VG. We define T by setting T[p] as follows
for each p ∈ Pos(T) = Pos(T′).
(a) T[p].B = T′[p].B\{s | vs,P (p,s) ∈ VG(T′)\VG}.
(b) T[p].b = ∅ if ep ∈ EG(T′)\EG and T[p].b = T′[p].b otherwise.

First, we note that vs,P ∈ VG(T) if and only if vs,P ∈ VG, ep ∈ EG(T) if and only if ep ∈ EG,
and (ep, vi,P) ∈ IncG(T) if and only if (ep, vi,P) ∈ VG. Therefore, G = G(T). We will
check that the t-concrete decomposition T defined above is indeed a sub-decomposition
of T′. In other words, we will verify that conditions S1, S2 and S3 above are satisfied.
The fact that S1 is satisfied is immediate, since we define T[p] for each p ∈ Pos(T′).
Therefore, Pos(T) = Pos(T′). Condition S2 is also satisfied, since by (a) and (b) we
have that T[p].B ⊆ T′[p].B and that T[p].b is either ∅, or equal to T′[p].b. Finally,
condition S3 is also satisfied, since (a) guarantees that for each number s ∈ [t], and

14:10 Mateus de Oliveira Oliveira Vol. 17:4

each s-maximal set P ⊆ Pos(T′), if s is removed from T′[p].B for some p ∈ P , then s is
indeed removed from T′[p].B for every p ∈ P .

(2) For the converse, let T be a sub-decomposition of T′. We show that the graph G(T) is
a subgraph of G(T′). First, we note that condition S3 guarantees that for each s ∈ [t]
and each P ⊆ Pos(T), if P is s-maximal in T then P is s-maximal in T′. Therefore,
VG(T) ⊆ VG(T′). Now, Condition S2 guarantees that ep ∈ EG(T) implies that ep ∈ EG(T′).
Therefore, EG(T) ⊆ EG(T′). Finally, by definition (ep, vs,P) ∈ IncG(T) if and only if
s ∈ T[p].b for each p ∈ P . Since the fact that s ∈ T[p].b implies that s ∈ T′[p].b, we have
that (ep, vs,P) ∈ IncG(T) implies that (ep, vs,P) ∈ IncG(T′). Therefore, IncG(T) ⊆ IncG(T′).
Additionally, since (ep, vs,P (s,p)) ∈ IncG(T) for each ep ∈ EG(T) and each s ∈ T[p].b, we
have that IncG(T) = IncG(T′) ∩ EG(T) × VG(T). This shows that G(T) is a subgraph of
G(T′).

The following theorem states that given a tree automaton A over B(t), one can efficiently
construct a tree automaton Sub(A) which accepts precisely the sub-decompositions of
t-concrete tree decompositions in L(A).

Theorem 4.3 (Sub-Decomposition Automaton). Let A be a tree automaton over B(t).

Then one can construct in time 2O(t) · |A| a tree automaton Sub(A) over B(t) accepting the
following language.

L(Sub(A)) = {T ∈ Ter(B(t)) | ∃T′ ∈ L(A) s.t. T is a sub-decomposition of T′}.

Proof. Let A = (Q,B(t), ∆, F) be a tree automaton over B(t). As a first step we create an
intermediate tree automaton A′ = (Q′,B(t), ∆′, F ′) which accepts the same language as A.
The tree automaton A′ is defined as follows.

Q′ = {qB | q ∈ Q, B ⊆ [t]} F ′ = {qB | q ∈ F, B ⊆ [t]}

∆′ = {(q1B1
, ..., qrBr , (B, b), qB) | (q1, ..., qr, (B, b), q) ∈ ∆, Bi ⊆ [t] for i ∈ [r]}.

Note that for each q ∈ Q, each B ⊆ [t], and each T ∈ Ter(B(t)), T reaches state qB in
A′ if and only if T reaches state q in A and T[λ].B = B, where T[λ] is the t-concrete bag
at the root of T. In particular, this implies that a term T belongs to L(A′) if and only if
T ∈ L(A).

Now, consider the tree automaton Sub(A) = (Q′′,B(t), ∆′′, F ′′) over B(t) where

Q′′ = {qB,B′ | q ∈ Q,B ⊆ B′ ⊆ [t]} F ′′ = {qB,B′ | q ∈ F,B ⊆ B′ ⊆ [t]}

∆′′ = {(q1B1,B′1
, ..., qrBr,B′r , (B, b), qB,B

′) | ∃(q1B′1 , ..., q
r
B′r
, (B′, b′), qB′) ∈ ∆′ such that

Bi ⊆ B′i, B ⊆ B′,
(B, b) is a sub-bag of (B′, b′)
for each j ∈ [r], if s ∈ B′ ∧ s ∈ B′j then s /∈ B ⇔ s /∈ Bj}.

It follows by induction on the height of terms that a term T ∈ Ter(B(t)) reaches a
state qB,B′ in Sub(A) if and only if there exists some term T′ ∈ Ter(B(t)) such that T′

reaches state qB′ in A′, T[λ].B = B, T′[λ].B = B′, and T is a sub-decomposition of T′. In
particular, T reaches a final state of Sub(A) if and only if T is a sub-decomposition of some
T′ which reaches a final state of A′.

Vol. 17:4 ON SUPERGRAPHS SATISFYING CMSO PROPERTIES 14:11

5. Representing All Tree Decompositions of a Given Graph

In this section we show that given a connected graph G of maximum degree ∆, and a positive
integer t, one can construct in time 2O(∆·t) · |VG|O(t) a tree automaton A(G, t) over B(t) that
accepts the set of all t-concrete tree decompositions of G (of all shapes and sizes).

Let G be a graph. A (G, t)-concrete bag is a tuple (B, b, ν, η, y, ρ) where (B, b) is a
t-concrete bag; ν : B → VG is an injective function that assigns a vertex of G to each element
of B; η : B → P≤(EG, ∆(G)) is a function that assigns to each element s ∈ B, a set of edges
incident with ν(s) of size at most ∆(G); y is a subset of EG such that |y| ≤ 1 and y ⊆ η(s)
whenever s ∈ b; and ρ is a subset of B.

We let B(G, t) be the set of all (G, t)-concrete bags. Note that B(G, t) has at most

2O(∆(G)·t) · |VG|O(t) elements. We let Ter(B(G, t)) be the set of all terms over B(G, t). If T̂

is a term in B(G, t) then for each p ∈ Pos(T), the (G, t)-concrete bag of T̂ at position p is
denoted by the tuple

(T̂[p].B, T̂[p].b, T̂[p].ν, T̂[p].η, T̂[p].y, T̂[p].ρ).

.

Definition 5.1. We say that a term T̂ ∈ Ter(B(G, t)) is a (G, t)-concrete tree decomposition

if the following conditions are satisfied for each each p ∈ Pos(T̂) and each s ∈ [t].

C1. If pj ∈ Pos(T̂) and s ∈ T̂[p].B ∩ T̂[pj].B then T̂[p].ν(s) = T̂[pj].ν(s).

C2. If T̂[p].b = {s, s′} then T̂[p].y = {e} for some edge e with

endpts(e) = {T̂[p].ν(s), T̂[p].ν(s′)}.
C3. Let r ∈ {0, 1, 2}, and p1, ..., pr be the children3 of p, then

T̂[p].η(s) = T̂[p].y ∪̇ T̂[p1].η(s) ∪̇ ... ∪̇ T̂[pr].η(s).

C4. If s ∈ T̂[p].ρ then T̂[p].η(s) = {e | (e, T̂[p].ν(s)) ∈ IncG}.
C5. If p = λ then T̂[p].ρ = T̂[p].B. If pj ∈ Pos(T̂) then s ∈ T̂[pj].ρ if and only if

s ∈ T̂[pj].B and s /∈ T̂[p].B.

Let π : B(G, t) → B(t) be a function such that π(B, b, ν, η, y, ρ) = (B, b) for each
(G, t)-concrete bag (B, b, ν, η, y, ρ) ∈ B(G, t). In other words, π transforms a (G, t)-concrete

bag into a t-concrete bag by erasing the four last coordinates of the former. If T̂ is a term
in Ter(B(G, t)) then we let π(T̂) be the term in Ter(B(t)) which is obtained by setting

π(T̂)[p] = π(T̂[p]) for each position p ∈ Pos(T̂).

Theorem 5.2. Let G be a connected graph and let T ∈ Ter(B(t)). Then T is a t-concrete
tree decomposition of G if and only if |VG(T)| = |VG| and there exists a (G, t)-concrete tree

decomposition T̂ ∈ Ter(B(G, t)) such that T = π(T̂).

Proof. Assume that G = G(T). Then we have |VG| = |VG(T)|. We will show how to construct

a (G, t)-concrete tree decomposition T̂ ∈ Ter(B(G, t)) such that π(T̂) = T. Clearly, we

must have Pos(T̂) = Pos(T), and for each p ∈ Pos(T), we must have T̂[p].B = T[p].B and

T̂[p].b = T[p].b. Additionally, the set T[p].ρ is completely determined by the sets T[p].B
and T[p′].B, where p′ is the parent of p. Therefore, it is enough to specify the functions

T̂[p].ν, T̂[p].η, and the set T̂[p].y for each p ∈ Pos(T).

3If r = 0 then p has no child.

14:12 Mateus de Oliveira Oliveira Vol. 17:4

Let β : Pos(T) → {∅, {ep}} be a function such that for each p ∈ Pos(T), β(p) = ∅ if
T[p].b = ∅ and β(p) = {ep} if T[p].b 6= ∅.
(1) For each p ∈ Pos(T) and each s ∈ T̂[p].B we set T̂[p].ν(s) = vs,P (s,p).

(2) For each p ∈ Pos(T) such that T[p].b 6= ∅, we set T̂[p].y = {ep}.
(3) For each p ∈ Pos(T), and each s ∈ T̂[p].B, we set

T̂[p].η(s) =

 β(p) ∪̇ T̂[p1].η(s) ∪̇ ... ∪̇ T̂[pr].η(s) if s ∈ T[p].b,

T̂[p1].η(s) ∪̇ ... ∪̇ T̂[pr].η(s) otherwise.

where p1, ..., pr are the children of p.

Now one can check by induction on the height of positions that for each s ∈ [t] and each

position p ∈ Pos(T̂), the five conditions C1-C5 of Definition 5.1 are satisfied. This implies

that T̂ is a (G, t)-concrete tree decomposition.

For the converse, suppose that T̂ ∈ Ter(B(G, t)) is a (G, t)-concrete tree decomposition

such that T = π(T̂) and |VG(T)| = |VG|. We will show that G(T) is isomorphic to G. Let
µ̇ : VG(T) → VG and µ : EG(T) → EG be functions that are defined as follows for each vertex
vs,P ∈ VG(T) and each edge ep ∈ EG(T) respectively.

µ̇(vs,P) = T̂[p].ν(s) if P = P (s, p) for some p ∈ P . (5.1)

µ(ep) = e if T̂[p].y = {e}. (5.2)

We claim that the pair µ = (µ̇, µ) is an isomorphism from G(T) to G. First, let
(ep, vs,P) ∈ IncG(T). Then, by Condition 3 of Definition 3.1, we have that s ∈ T[p].b.

Therefore, by Equation 5.2 and by Condition C2 of Definition 5.1, (µ(ep), T̂[p].ν(s)) ∈ IncG.

Since by Equation 5.1, µ̇(vs,P) = T̂[p].ν(s), we have that (µ(ep), µ̇(vs,P)) ∈ IncG. In other
words, whenever (ep, vs,P) ∈ IncG(T), we have that (µ(ep), µ̇(vs,P)) ∈ IncG. This shows that
the pair µ is a morphism from G(T) to G in the sense that it preserves adjacencies. In order
to show that µ is indeed an isomorphism, we need to prove that the functions µ̇ and µ are
bijections.

Since by assumption we have that |VG| = |VG(T)|, to show that µ̇ is a bijection, it is
enough to show that for each vertex v ∈ VG there is some vertex vs,P ∈ VG(T) such that
µ(vs,P) = v. In other words, it is enough to show that µ̇ is surjective. This proceeds as follows.
Let v ∈ VG and vs,P ∈ VG(T) be such that µ̇(vs,P) = v. By Equation 5.1, there is some p ∈ P
such that T[p].ν(s) = v. Therefore, since P = P (s, p), by Condition C1 of Definition 5.1,
T[p].ν(s) = v for every p ∈ P . By Conditions C3 and C4 of Definition 5.1, for each edge e

such that (e, v) ∈ IncG, there exists a (unique) p ∈ P such that T̂[p].y = {e}. Now, let p ∈ P ,

and e be the unique edge such that T̂[p].y = {e} and assume that endpts(e) = {v, v′}. Then

by Condition C2, there is some s′ such that T̂[p].b = {s, s′} and T̂[p].ν(s′) = v′. Therefore,
by Equation 5.1, we have that µ̇(vs′,P (s′,p)) = v′. In other words, we have shown that if
µ(vs,P) = v, then for each neighbour v′ of v, there is some p ∈ P and some s′ ∈ [t] such that
µ̇(vs′,P (s′,p)) = v′. Since G is connected, this implies that for each v ∈ VG there is some vs,P
such that µ̇(vs,P) = v.

Now, it remains to show that the function µ is also a bijection. Let e be an edge in EG,
and let v be an endpoint of e. Then there is some vs,P ∈ G(T) such that µ̇(vs,P) = v. By the

discussion above, this implies that for some p ∈ P , T̂[p].y = {e}. Therefore, by Equation 5.2,

Vol. 17:4 ON SUPERGRAPHS SATISFYING CMSO PROPERTIES 14:13

we have that µ(ep) = e. Thus we have shown that for each edge e ∈ EG there exists some
p ∈ Pos(T) such that µ(ep) = e. In other words, we have shown that µ is surjective. Now
we need to show that µ is injective. Towards this goal, assume that µ(ep) = µ(ep′) = e for
some e ∈ EG and some distinct positions p, p′ ∈ Pos(T) and assume that endpts(e) = {u, v}.
Then we have that there exists s1, s2 ∈ [t] such that T[p].b = {s1, s2} and T[p].ν(s1) = v
and T[p].ν(s2) = u. Analogously, there exists s′1, s

′
2 ∈ [t] such that T[p′].b = {s′1, s′2} and

T[p′].ν(s′1) = v and T[p].ν(s′2) = u. Then, from Equation 5.1 and from the fact that µ̇ is
injective, we have that s1 = s′1, P (s1, p) = P (s′1, p

′), s2 = s′2 and P (s2, p) = P (s′2, p). But by
Conditions C3 and C4 of Definition 5.1, there is a unique position p ∈ P (s1, p) = P (s1, p

′)
such that T[p].y = {e}. Therefore, p = p′. This shows that the function µ is injective.

Note that conditions C1-C5 are local in the sense that they may be verified at each
position p ∈ Pos(T̂) by analysing only the concrete bags T̂[p], T̂[p1], ..., T̂[pr] where p1, ..., pr

are the children of p. This allows us to define a tree automaton Â(G, t) over B(G, t) that

accepts a term T̂ ∈ Ter(B(G, t)) if and only if T̂ is a (G, t)-concrete tree decomposition.

Lemma 5.3. For each positive integer t and each graph G of maximum degree ∆, one
can construct in time 2O(∆) · |VG|O(t) a tree automaton Â(G, t) over B(G, t) accepting the
following language.

L(Â(G, t)) = {T̂ ∈ Ter(B(G, t)) | T̂ is a (G, t)-concrete tree decomposition.} (5.3)

Proof. Let B̂1, ..., B̂r, B̂ be (G, t)-concrete bags for 0 ≤ r ≤ 2, where B̂ = (B, b, ν, η, y)

B̂j = (Bj , bj , νj , ηj , yj) for j ∈ [r]. We say that the tuple (B̂1, ..., B̂r, B̂) is (G, t)-compatible
if the following conditions are satisfied for each s ∈ [t].

(1) If s ∈ Bj ∩B for some j ∈ [r] then ν(s) = νj(s).
(2) If s ∈ b then y = {e} for some edge e such that (e, ν(s)) ∈ IncG.
(3) η(s) = y ∪̇ η1(s) ∪̇ ... ∪̇ ηr(s).
(4) If s ∈ ρ then η(s) = {e | (e, ν(v)) ∈ IncG}.
(5) s ∈ ρj if and only if s ∈ Bj and s /∈ B.

We define the tree automaton A = (Q,B(G, t), F,∆) as follows.

Q = {qB̂ | B̂ is a (G, t)-concrete bag.} F = {qB̂ ∈ Q | B̂.ρ = B̂.B}

∆ = {(qB̂1
, ..., qB̂k

, B̂, qB̂) | (B̂1, ..., B̂r, B̂) is (G, t)-compatible.}
(5.4)

Now, it can be shown by induction on the height of terms that a term T̂ ∈ Ter(B(G, t))

reaches a state qB̂ if and only if T[λ] = B̂ and that conditions C1-C5 of Definition 5.1

are satisfied for each p ∈ Pos(T̂) and each s ∈ [t]. In particular, this implies that Â(G, t)

accepts a term T̂ ∈ Ter(B(G, t)) if and only if T̂ is a (G, t)-concrete tree decomposition.

The next lemma states that for each positive integers t and n, one can efficiently construct
a tree automaton A(t, n) which accepts precisely those t-concrete tree decompositions which
give rise to graphs with n vertices.

Lemma 5.4. Let t and n be positive integers with t ≤ n. One can construct in time 2O(t) ·n3
a tree automaton A(t, n) over B(t) accepting the following language.

L(A(t, n)) = {T ∈ Ter(B(t)) | |VG(T)| = n}

14:14 Mateus de Oliveira Oliveira Vol. 17:4

Proof. Let T be a term in Ter(B(t)). Recall that for each position p ∈ Pos(T), and each
s ∈ [t], the set P (s, p) is the unique s-maximal subset of Pos(T) that contains position p.
We say that (s, p) is a T-root-pair if p is the root of P (s, p). We note that the number of
vertices of the graph G(T) is equal to the number of T-root-pairs in [t]×Pos(T). Therefore,
in order to construct an automaton that accepts precisely the terms T ∈ Pos(T) that give
rise to graphs with n vertices, it is enough to define an automaton that accepts precisely
those terms T that admit n T-root-pairs.

A root marking for a set B ⊆ [t] is a set ρ ⊆ B. The automaton A(t, n) = (Q,B(t), F,∆)
is defined as follows.

Q = {qB,ρ,j | j ∈ {0, ..., n}, B ⊆ [t], ρ is a root marking for B} F = {qB,ρ,n}

∆ = {(qB1,ρ1,j1 , ..., qBr,ρr,jr , (B, b), qB,ρ,j) | 0 ≤ r ≤ 2, (B, b) ∈ B(t), j = |ρ|+
∑r

i=1 |ρi|,
for each s ∈ [t], if s ∈ ρi for some i ∈ [r] then s /∈ B}

Then it follows by induction on the height of terms that a term T ∈ Ter(B(t)) reaches
a state qB,ρ,j if and only if T[λ].B = B, (s, λ) is a T-root-pair for each s ∈ ρ, and j is the
number of T-root-pairs in [t]× Pos(T). In particular, the number of T-root-pairs is equal

to n if and only if T reaches some final state of A. Note that since |B(t)| = 2O(t), and

since r ≤ 2, there are at most 2O(t) · n states in Q and at most 2O(t) · n3 transitions in ∆.
Therefore, A(t, n) can be constructed in time 2O(t) · n3.

The main result of this section (Theorem 5.5), follows by a combination of Theorem 5.2,
Lemma 5.3 and Lemma 5.4.

Theorem 5.5. Let G be a connected graph of treewidth t and maximum degree ∆. Then
one can construct in time 2O(∆·t) · |VG|O(t) a tree automaton A(G, t) over B(t) such that for
each T ∈ Ter(B(t)), T ∈ L(A(G, t)) if and only if T is a concrete tree decomposition of G.

Proof. By Lemma 5.3, one can construct in time 2O(∆·t) · |VG|O(t) a tree automaton Â(G, t)
over B(G, t) which accepts precisely the (G, t) concrete tree decompositions that belong to
Ter(B(G, t)).

Therefore, the tree automaton π(A) accepts precisely those t-concrete tree decompo-

sitions T ∈ Ter(B(t)) such that T = π(T̂) for some (G, t)-concrete tree decomposition

T̂ ∈ L(Â(G, t)). Note that π(Â(G, t)) can be constructed in time O(|Â(G, t)|) by Lemma
2.1.

Now, by Lemma 5.4 we can construct in time 2O(t) · |VG|O(1) a tree automaton A(t, |VG|)
over B(t) which accepts a t-concrete tree decomposition in Ter(B(t)) if and only if |VG(T)| =
|VG|.

Therefore if we set A(G, t) = π(Â(G, t))∩A(t, |VG|), then we have that A(G, t) accepts
precisely those t-concrete tree decompositions T ∈ B(t) such that |VG(T)| = |VG| and

T = π(T̂) for some (G, t)-concrete tree decomposition T̂. By Lemma 2.1, A(G, t) can be

constructed in time 2O(∆·t) · |VG|O(t).

6. (ϕ, t)-Supergraphs

Let ϕ be a CMSO sentence, and t be a positive integer. Let G and G′ be graphs. We say
that G′ is a (ϕ, t)-supergraph of G if the following three conditions are satisfied: G′ |= ϕ, G′

has treewidth at most t, and G is a subgraph of G′.

Vol. 17:4 ON SUPERGRAPHS SATISFYING CMSO PROPERTIES 14:15

Lemma 6.1. Let ϕ be a CMSO sentence and t be a positive integer. Then a graph G
has a (ϕ, t)-supergraph if and only if there exists a (t + 1)-concrete tree decomposition
T ∈ L(Sub(A(ϕ, t+ 1)) such that G(T) is isomorphic to G.

Proof. Assume that G is a graph that has a (ϕ, t)-supergraph G′. Then G′ satisfies ϕ, G′ has
treewidth at most t, and G is a subgraph of G′. By Observation 3.2, G′ has a (t+1)-concrete
tree decomposition T′ ∈ Ter(B(t + 1)), and therefore by Theorem 3.3, T′ ∈ L(A(ϕ, t)).
Since G is a subgraph of G′, by Theorem 4.2, T′ has a sub-decomposition T which is a
(t+ 1)-concrete tree decomposition of G. Therefore, T belongs to Sub(A(ϕ, t+ 1)).

For the converse, let T ∈ L(Sub(A(ϕ, t+ 1))) and let T be a (t+ 1)-concrete tree decom-
position of G. Then T is a sub-decomposition of some (t+ 1)-concrete tree decomposition
T′ in L(A(ϕ, t+ 1)). By Theorem 3.3, T′ is a (t+ 1)-concrete tree decomposition of some
graph G′ of treewidth at most t such that G′ |= ϕ. Since T is a sub-decomposition of T′, by
Theorem 4.2, G is a subgraph of G′. Therefore, G′ is a (ϕ, t)-supergraph of G.

We note that Lemma 6.1 alone does yield an algorithm to determine whether a graph G
has a (ϕ, t)-supergraph. If G does not admit such a supergraph, then no (t+ 1)-concrete
tree decomposition G belongs to L(Sub(A(ϕ, t + 1))). However, if G does admit a (ϕ, t)-
supergraph, then Theorem 4.3 only guarantees that some (t+ 1)-concrete tree decomposition
T of G belongs to Sub(A(ϕ, t + 1)). The problem is that G may have infinitely many
(t+ 1)-concrete tree decompositions and we do not know a priori which of these should be
tested for membership in L(Sub(A(ϕ, t+ 1))).

The issue described above can be remedied with the results from Section 5. More
specifically, from Theorem 5.5 we have that for any given connected graph G of treewidth
t and maximum degree ∆, one can construct a tree automaton A(G, t + 1) over B(t + 1)
which accepts a (t + 1)-concrete tree decomposition T if and only if the graph G(T) is
isomorphic to G. Note that L(A(G, t + 1)) is an infinite language that contains (t + 1)-
concrete tree decompositions of G of all shapes and sizes. Therefore, a connected graph G
has a (ϕ, t)-supergraph if and only if

L(A(G, t+ 1)) ∩ L(Sub(A(ϕ, t+ 1))) 6= ∅. (6.1)

The next theorem states that Equation 6.1 yields an efficient algorithm for testing
whether connected graphs of bounded degree have a (ϕ, t)-supergraph.

Theorem 6.2 (Main Theorem). There is a computable function f , and an algorithm A
that takes as input a CMSO sentence ϕ, a positive integer t, and a connected graph G
of maximum degree ∆, and determines in time f(|ϕ|, t) · 2O(∆·t) · |G|O(t) whether G has a
(ϕ, t)-supergraph.

Proof. By Lemma 6.1, G has a (ϕ, t)-supergraph if and only if there exists some T ∈
L(Sub(A(ϕ, t+ 1))) such that T is a (t+ 1)-concrete tree decomposition of G. By Theorem
5.5, L(A(G, t+1)) accepts a (t+1)-tree decomposition of G if and only if G(T) is isomorphic
to G. Therefore, G has a (ϕ, t)-supergraph if and only the intersection of L(A(G, t + 1))
with L(Sub(A(ϕ, t+ 1))) is nonempty.

By Theorem 5.5, the tree-automatonA(G, t+1) can be constructed in time 2O(∆·t)·|G|O(t),

and therefore the size of A(G, t+ 1) is bounded by 2O(∆·t) · |G|O(t). By Theorem 4.3 and
Theorem 3.3, the tree-automaton Sub(A(ϕ, t+ 1)) can be constructed in time f(|ϕ|, t) for
some computable function f : N2 → N, and therefore, the size of Sub(A(ϕ, t)) is bounded
by f(|ϕ|, t).

14:16 Mateus de Oliveira Oliveira Vol. 17:4

Finally, given tree automata A1 and A2, one can determine whether L(A1)∩L(A2) 6= ∅
in time O(|A1| · |A2|) (Lemma 2.1). In particular, one can determine whether

L(A(G, t+ 1)) ∩ L(Sub(A(ϕ, t+ 1))) 6= ∅
in time f(|ϕ|, t) · 2O(∆·t) · |G|O(t).

7. Contraction Closed Graph Parameters

In this section we deal with simple graphs, i.e., graphs without loops or multiple edges.
Therefore, we may write {u, v} to denote an edge e whose endpoints are u and v. Additionally,
whenever speaking of a property specified by an CMSO formula ϕ, we assume that ϕ ensures
that its models are simple graphs.

Let G be a graph and {u, v} be an edge of G. We let G/uv denote the graph that is
obtained from G by deleting the edge {u, v} and by merging vertices u and v into a single
vertex xuv. We say that G/uv is obtained from G by an edge-contraction. We say that a
graph G′ is a contraction of G if G′ is obtained from G by a sequence of edge contractions.
We say that G′ is a minor of G if G′ is a contraction of some subgraph of G. We say that a
graph G is an apex graph if after deleting some vertex of G the resulting graph is planar.

A graph parameter is a function p mapping graphs to non-negative integers in such a
way that p(G) = p(G′) whenever G is isomorphic to G′. We say that p is contraction closed
if p(G′) ≤ p(G) whenever G′ is a contraction of G.

A graph property is simply a set P of graphs. We say that a property P is contraction-
closed if for every two graphs G,G′ for which G′ is a contraction of G, the fact that G ∈ P
implies that G′ ∈ P.

7.1. Diameter Improvement Problems. Let u and v be vertices in an graph G. The
distance from u to v, denoted by dist(u, v) is the number of edges in the shortest path
from u to v. If no such path exists, we set dist(u, v) =∞. The diameter of G is defined as
diam(G) = maxu,v dist(u, v). In the planar diameter improvement problem (PDI), we
are given an graph G and a positive integer d, and the goal is to determine whether G has a
planar supergraph G′ of diameter at most d. As mentioned in the introduction, there is an
algorithm that solves the PDI problem in time f(d) · |G|O(1), where f : N→ N is not known
to be computable. Additionally, even the problem of determining whether PDI admits an
algorithm running in time f1(d) · |G|f2(d) for computable functions f1, f2 remains open for
more than two decades [FL89, CGK+15]. The next theorem solves this problem when the
input graphs are connected and have bounded degree.

Theorem 7.1. There is a computable function f : N→ N, and an algorithm A that takes as
input, a positive integer d, and a connected graph G of maximum degree ∆, and determines
in time f(d) · 2O(∆·d) · |G|O(d) whether G has a planar supergraph G′ of diameter at most d.

Proof. It should be clear that there is an algorithm that takes a positive integer d as input,
and constructs, in time O(d), a CMSO formula Diamd which is true on a graph G′ if and
only if G′ has diameter at most d. Additionally, using Kuratowski’s theorem, and the fact
that minor relation is CMSO expressible, one can define a CMSO formula Planar which
is true on a graph G′ if and only if G′ is planar. Finally, it can be shown that any planar
graph of diameter at most d has treewidth O(d) (see Lemma 1 of [Epp00]). Therefore, by
setting ϕ = Diamd ∧ Planar , t = O(d), and by renaming f(|ϕ|, t) to f(d) in Theorem 6.2,

Vol. 17:4 ON SUPERGRAPHS SATISFYING CMSO PROPERTIES 14:17

we have an algorithm running in time f(d) · 2O(∆·d) · |G|O(d) to determine whether G has a
planar supergraph G′ of diameter at most d.

We note that the algorithm A of Theorem 7.1 does not impose any restriction on the
degree of a prospective supergraph G′ of G. Theorem 7.1 can be generalized to the setting
of graphs of constant genus as follows.

Theorem 7.2. There is a computable function f : N × N → N, and an algorithm A that
takes as input, positive integers d, g, and a connected graph G of maximum degree ∆, and
determines in time f(d, g) · 2O(∆·d) · |G|O(d·g) whether G has a supergraph G′ of genus at
most g and diameter at most d.

Proof. It can be shown that there is an explicit algorithm that takes a positive integer
g as input and constructs a CMSO sentence Genusg that is true on a graph G′ if and
only if G′ has genus at most g [AGK08]. Additionally, it can be shown that graphs of
genus g and diameter d have treewidth at most O(g · d) [Epp00]. Therefore, by setting
ϕ = Genusg ∧Diamd, t = O(g · d), and by renaming f(|ϕ|, t) to f(g, d) in Theorem 6.2, we

have that one can determine in time f(d, g) · 2O(∆·d) · |G|O(d·g) whether G has a supergraph
G′ of genus at most g and diameter at most d.

A graph is 1-outerplanar if it can be embedded in the plane in such a way that every
vertex lies in the outer face of the embedding. A graph is k-outerplanar if it can be embedded
in the plane in such a way that after deleting all vertices in the outer face, the remaining graph
is (k − 1)-outerplanar. In [CGK+15] Cohen et al. have considered the k-outerplanar
diameter improvement problem (k-OPDI), a variant of the PDI problem in which the
target supergraph is required to be k-outerplanar instead of planar. In particular, they have
shown that the 1-OPDI problem can be solved in polynomial time. The complexity of the
k-OPDI problem with respect to explicit algorithms was left as an open problem for k ≥ 2.
The next theorem states that for each fixed k, k-OPDI is strongly uniformly fixed parameter
tractable with respect to the parameter d on connected graphs of bounded degree.

Theorem 7.3. There is a computable function f : N × N → N, and an algorithm A that
takes as input, positive integers d, k, and a connected graph G of maximum degree ∆, and
determines in time f(k, d) · 2O(∆·k) · |G|O(k) whether G has a k-outerplanar supergraph G′ of
diameter at most d.

Proof. There is an algorithm that takes an integer k as input and constructs in time O(k) a
CMSO sentence Outerk that is true on a graph G if and only if G is k-outerplanar [JB15].
Additionally, it can be shown that k-outerplanar graphs have treewidth O(k). Therefore,
by setting ϕ = Outerk ∧Diamd, and t = O(k) in Theorem 6.2, it follows that the problem
of determining whether G has a k-outerplanar supergraph of diameter at most d can be
decided in time f(k, d) · 2O(∆·k) · |G|O(k) for some computable function f : N× N→ N.

Finally, the series-parallel diameter improvement problem (SPDI) consists in
determining whether a graph G has a series parallel supergraph of diameter at most d. The
parameterized complexity of this problem was left as an open problem in [CGK+15]. The
next theorem states that SPDI is strongly uniformly fixed parameter tractable with respect
to the parameter d on connected graphs of bounded degree.

Theorem 7.4. There is a computable function f : N→ N, and an algorithm A that takes as
input, a positive integer d and a connected graph G of maximum degree ∆, and determines

14:18 Mateus de Oliveira Oliveira Vol. 17:4

in time f(d) · 2O(∆) · |G|O(1) whether G has a series-parallel supergraph G′ of diameter at
most d.

Proof. There is a CMSO formula SP which is true on a graph G′ if and only if G′ is series
parallel. Additionally, series parallel graphs have treewidth at most 2. Therefore, by setting
ϕ = SP ∧Diamd and t = O(1) in Theorem 6.2, it follows that the problem of determining
whether G has a series-parallel supergraph of diameter at most d can be decided in time
f(d) · 2O(∆) · |G|O(1) for some computable function f .

7.2. Contraction Bidimensional Parameters. Fomin, Golovach and Thilikos [FGT11]
have defined a sequence {Γk}k∈N of graphs and have shown that these graphs serve as
obstructions for small treewidth on H-minor free graphs, whenever H is an apex graph.
More precisely, they have proved the following result.

Theorem 7.5 (Fomin-Golovach-Thilikos [FGT11]). For every apex graph H, there is a
cH > 0 such that every connected H-minor-free graph of treewidth at least cH · k contains Γk
as a contraction.

We say that a graph parameter p is Gamma-unbounded if there is a computable function
α : N→ N such that α ∈ ω(1), and p(Γk) ≥ α(k) for every k ∈ N.

We say that a parameter p is effectively CMSO definable if there is a computable
function f : N → N, and an algorithm A that takes as input a positive integer k and
constructs, in time at most f(k), a CMSO-sentence ϕ which is true on an graph G if and
only if p(G) ≤ k. The following theorem is a corollary of Theorem 6.2 and Theorem 7.5.

Theorem 7.6. Let p be a Gamma-unbounded effectively CMSO definable graph parameter,
and let P be a CMSO definable graph property excluding some apex graph H as a minor.
Then there is a computable function f : N → N and an algorithm A that takes as input a
positive integer k, and a connected graph G of maximum degree ∆, and determines, in time
f(k) · 2O(∆·f(k)) · |G|f(k), whether G has a supergraph G′ such that G′ ∈ P and p(G′) ≤ k.

Note that similarly to the case of diameter improvement problem, if p is an unbounded
effectively CMSO definable graph parameter, then we can determine whether a graph G has
an r-outerplanar supergraph G′ with p(G′) ≤ k in time f(r, k) · 2O(∆·r) · |G|O(r) for some
computable function f : N× N→ N. In other words, this problem, for connected bounded
degree graphs, is strongly uniformly fixed parameter tractable with respect to the parameter
p for each fixed r.

Definition 7.7. A graph parameter p is contraction-bidimensional if the following conditions
are satisfied.

(1) p is contraction-closed.

(2) If G is a graph which has Γk as a contraction, then p(G) ≥ Ω(k2).

For instance, the following parameters are contraction bidimensional.

(1) Size of a vertex cover.
(2) Size of a feedback vertex set.
(3) Size of a minimum maximal matching.
(4) Size of a dominating set.
(5) Size of a edge dominating set.

Vol. 17:4 ON SUPERGRAPHS SATISFYING CMSO PROPERTIES 14:19

(6) Size of a clique traversal set.

Theorem 7.8 [FGT11, FLST10]. Let p be a bidimensional parameter. Then if p(G) ≤ k,

the treewidth of p is at most O(
√
k).

Theorem 7.9. For each effectively CMSO-definable contraction-bidimensional parameter
p, there exists a computable function f : N→ N and an algorithm A that takes as input a
positive integer k, and a connected graph G of maximum degree ∆, and determines in time

f(k) · 2O(∆·
√
k) · |G|O(

√
k) whether G has a planar supergraph G′ with p(G′) ≤ k.

Proof. Since p is effectively CMSO definable, there is some computable function α and
an algorithm that take a positive integer k as input and constructs in time α(k) a CMSO
sentence ϕp which is true on an graph G if and only if p(G) ≤ k. Additionally, by Theorem

7.8, if p(G) ≤ k, then the treewidth of G is bounded by
√
k. Therefore, by applying Theorem

6.2 with ϕ = ϕp, and t = O(
√
k), the theorem follows.

For instance, Theorem 7.9 states that for some computable function f : N → N, one

can determine in time f(k) · 2O(∆·
√
k) · |G|O(

√
k) whether G has a planar supergraph G′

with feedback vertex set at most k. We note that in view of Theorem 7.8, the planarity
requirement of Theorem 7.9 can be replaced for any CMSO definable property P which
excludes some apex graph as a minor.

Acknowledgements

This work was supported by the Bergen Research Foundation and by the Research Council
of Norway (Proj. no. 288761). The author thanks Michael Fellows, Fedor Fomin, Petr
Golovach, Daniel Lokshtanov and Saket Saurabh for interesting discussions. The author also
thanks anonymous reviewers for several useful comments and suggestions for improvement.

References

[AF93] Karl Abrahamson and Michael Fellows. Finite automata, bounded treewidth, and well-
quasiordering. Contemporary Mathematics, 147:539–539, 1993.

[AGK08] Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Proc. of
the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pages 641–650.
SIAM, 2008.

[BMT03] Vincent Bouchitté, Frédéric Mazoit, and Ioan Todinca. Chordal embeddings of planar graphs.
Discrete Mathematics, 273(1):85–102, 2003.

[BP16] Miko laj Bojańczyk and Michal Pilipczuk. Definability equals recognizability for graphs of bounded
treewidth. In Proc. of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2016), pages 407–416. ACM, 2016.

[BP17] Mikolaj Boja’nczyk and Michal Pilipczuk. Optimizing tree decompositions in MSO. In Proc. of
the 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017), volume 66 of
LIPIcs, pages 15:1–15:13, 2017.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. 2007.

[CE12] Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic: A
language-theoretic approach, volume 138. Cambridge University Press, 2012.

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

14:20 Mateus de Oliveira Oliveira Vol. 17:4

[CGK+15] Nathann Cohen, Daniel Gonçalves, Eunjung Kim, Christophe Paul, Ignasi Sau, Dimitrios M.
Thilikos, and Mathias Weller. A polynomial-time algorithm for outerplanar diameter improvement.
In Proc. of the 10th International Computer Science Symposium in Russia (CSR 2015), volume
9139 of LNCS, pages 123–142, 2015.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer, 1999.

[dOO17] Mateus de Oliveira Oliveira. On supergraphs satisfying CMSO properties. In Proc. of the 26th
Conference on Computer Science Logic (CSL 2017), volume 82 of LIPIcs, 2017.

[Elb16] Michael Elberfeld. Context-free graph properties via definable decompositions. In Proc. of the
25th Conference on Computer Science Logic (CSL 2016), volume 62 of LIPIcs, pages 17:1–17:16,
2016.

[Epp00] David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27(3):275–
291, 2000.

[FD95] Michael R. Fellows and Rodney G. Downey. Parameterized computational feasibility. Feasible
Mathematics II, 13:219–244, 1995.

[FFG02] Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. Journal
of the ACM (JACM), 49(6):716–752, 2002.

[FGT11] Fedor V Fomin, Petr Golovach, and Dimitrios M Thilikos. Contraction obstructions for treewidth.
Journal of Combinatorial Theory, Series B, 101(5):302–314, 2011.

[FL89] Michael R Fellows and Michael A Langston. On search decision and the efficiency of polynomial-
time algorithms. In Proc. of the 21st Annual ACM Symposium on Theory of Computing (STOC
1989), pages 501–512. ACM, 1989.

[FLST10] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M Thilikos. Bidimensionality
and kernels. In Proc. of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2010), pages 503–510, 2010.

[JB15] Lars Jaffke and Hans L. Bodlaender. Definability equals recognizability for k-outerplanar graphs.
In Proc. of the 10th International Symposium on Parameterized and Exact Computation, IPEC
2015, volume 43, pages 175–186, 2015.

[LdOOS18] Daniel Lokshtanov, Mateus de Oliveira Oliveira, and Saket Saurabh. A strongly-uniform slicewise
polynomial-time algorithm for the embedded planar diameter improvement problem. In Proc.
of the 13th International Symposium on Parameterized and Exact Computation, IPEC 2018,
volume 115 of LIPIcs, pages 25:1–25:13, 2018.

[RS95] Neil Robertson and Paul D Seymour. Graph minors. XIII. the disjoint paths problem. Journal
of combinatorial theory, Series B, 63(1):65–110, 1995.

[RS04] Neil Robertson and Paul D Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004.

Appendix A. Proof of Theorem 3.3

Restatement of Theorem 3.3. There exists a computable function f : N× N→ N such
that for each CMSO sentence ϕ, and each t ∈ N, one can construct in time f(|ϕ|, t) a
tree-automaton A(ϕ, t) accepting the following tree language.

L(A(ϕ, t)) = {T ∈ Ter(B(t)) | G(T) |= ϕ}. (A.1)

Proof. Let S and S′ be sets and let R ⊆ S × S′ be a relation. For each element s ∈ S, we
let Im(R, s) = {s′ : (s, s′) ∈ R} be the image of s under R.

Let X be a set of first-order variables and second-order variables and let G be a graph.
An interpretation of X in G is a function J : X → (V ∪E)∪ (2V ∪ 2E) that assigns a vertex
J (x) to each first-order vertex-variable x, an edge J (y) to each first-order edge-variable
y, a set of vertices J (X) to each second-order vertex-variable X, and a set of edges J (Y)

Vol. 17:4 ON SUPERGRAPHS SATISFYING CMSO PROPERTIES 14:21

to each second-order edge-variable Y . The semantics of a formula ϕ with free variables X
being true on a graph G under interpretation J is the standard one.

Let X be a set of free first-order and second-order variables, and let (B, b) be a t-concrete
bag. An interpretation of X in (B, b) is a relation I ⊆ X × (B ∪ {b}) such that the following
conditions are satisfied: Im(I, x) ⊆ B and |Im(I, x)| ≤ 1 for each first-order vertex-variable
x; Im(I,X) ⊆ B for each second-order vertex-variable X; Im(I, y) ⊆ {b} for each first-order
edge-variable y; and Im(I, Y) ⊆ {b} for each second-order variable Y . We let B(t,X) be the
set of all triples of the form (B, b, I) where (B, b) is a t-concrete bag and I is an interpretation
of X in (B, b).

If T is a t-concrete decomposition in Ter(B(t)), then an interpretation of X in T is a
function I : Pos(T)→ B(t,X) where for each position p ∈ Pos(T), I(p) is an interpretation
of X in the t-concrete bag T[p], and for each first-order vertex-variable x (edge-variable y),
there is at most one position p ∈ Pos(T) such that |Im(I, x)| = 1 (|Im(I, y)| = 1). If I is an
interpretation of X in T, then the interpretation of X in G(T) induced by I is the function

Î : X → (VG(T) ∪ EG(T)) ∪ (2VG(T) ∪ 2EG(T))

defined as follows.

(1) For each s ∈ [t], each s-maximal component P ⊆ Pos(T), and each first-order or

second-order vertex-variable x, the vertex vs,P belongs to Im(Î,x) if and only if there
exists a position p ∈ P such that (x, s) ∈ I(p).

(2) For each p ∈ Pos(T) such that T[p].b 6= ∅, and each first-order or second-order edge-

variable y, the edge ep belongs to Im(Î,y) if and only if (y,T[p].b) ∈ I(p).

If T is a t-concrete decomposition in Ter(B(t)) and I is an interpretation of X in T, then
we write TI to denote the term in Ter(B(t,X)) where TI [p] = (T[p], I(p)) for each position
p ∈ Pos(T). We say that TI is an interpreted term. We note that one can straightforwardly
construct a tree automaton A(t,X) over the alphabet B(t,X) that accepts precisely the
interpreted terms in Ter(B(t,X)).

For each CMSOformula ψ with free variables X we will construct a tree-automaton
A(ψ, t) over the alphabet B(t,X) whose language L(A(ψ, t)) consists of all interpreted terms

TI ∈ Ter(B(t,X)) such that G(T) |= ψ under the interpretation Î of X in G(T) induced
by I. The tree-automaton A(ψ, t) is constructed by induction on the structure of the
formula ψ.

Base Case. In the base case, the formula ψ is an atomic predicate. There are five cases to
be considered. Below, we describe the behavior of the tree-automaton A(ψ, t) in each of
these five cases. The proper specification of the set of states and set of transitions of each of
the tree-automata described below is straightforward.

(1) If ψ ≡ (z1 = z2) where z1 and z2 are both vertex-variables, both edge-variables, both
vertex-set variables or both edge-set variables, then A(ψ, t) accepts a term TI if and
only if TI is an interpreted term, and for each position p ∈ Pos(T), and each s ∈ T[p].B,
(z1, s) ∈ I(p)⇔ (z2, s) ∈ I(p).

(2) If ψ ≡ z ∈ Z where either z is a vertex-variable and Z is a vertex-set variable, or z is
an edge-variable and Z is an edge-set variable, then A(ψ, t) accepts a term TI if and
only if TI is an interpreted term and for each position p ∈ Pos(T), and each element
r ∈ T[p].B ∪ {T[p].b}, (z, r) ∈ I(p)⇔ (Z, r) ∈ I(p).

14:22 Mateus de Oliveira Oliveira Vol. 17:4

(3) If ψ ≡ Inc(y, x) where y is an edge variable and x is a vertex variable, then the automaton
A(ψ, t) accepts a term TI if and only if TI is an interpreted term and there is some
position p ∈ Pos(T) and some s ∈ T[p].B such that (x, s) ∈ I(p), s ∈ T[p].b, and
(y,T[p], b) ∈ I(p).

(4) If ψ ≡ carda,r(Z) where 0 ≤ a < r, r ≥ 2, and Z is an edge-set variable, then the tree
automaton A(ψ, t) accepts TI if and only if TI is an interpreted term, and the number
of positions p ∈ Pos(T) such that T[p].b 6= ∅ and (Z,T[p].b) ∈ I(p) is equal to a mod r.

(5) If ψ ≡ carda,r(Z) where 0 ≤ a < r, r ≥ 2, and Z is a vertex-set variable then the tree
automaton A(ψ, t) accepts TI if and only if TI is an interpreted term and the number
of pairs of the form (s, p) ∈ [t]× Pos(T) such that s ∈ T[p].B and p is the root of Ps,p
is equal to a mod r.

Disjunction, conjunction and negation. The three boolean operations ∨,∧,¬ are dealt
with using the fact that tree-automata are effectively closed under union, intersection and
complement (Lemma 2.1). Below, we let A(t,X) be the tree automaton generating the set
of interpreted terms over B(t,X).

A(ψ ∨ ψ′, t) = A(ψ, t) ∪ A(ψ′, t)

A(ψ ∧ ψ′, t) = A(ψ, t) ∩ A(ψ′, t)

A(¬ψ, t) = A(ψ, t) ∩ A(t,X)

(A.2)

Observe that in the definition of A(¬ψ, t), the intersection with the tree-automaton
A(t,X) guarantees that all terms in L(A(¬ψ, t)) are interpreted.

Existential Quantification. Let I be an interpretation of X in (B, b), and let Z be either
a first-order or a second-order variable in X . We let I − Z = I ∩ [(X\Z)× (B ∪ {b})]
be the relation obtained from I by deleting all pairs of the form (Z, r) for r ∈ B ∪ {b}.
To eliminate existential quantifiers we proceed as follows: For each variable Z ∈ X , we
let ProjZ : B(t,X) → B(t,X\Z) be the map that sends each interpreted t-concrete bag
(B, b, I) ∈ B(t,X) to the interpreted t-concrete bag (B, b, I −Z) ∈ B(t,X\Z). Subsequently,
we extend ProjZ homomorphically to terms by setting ProjZ(T)[p] = ProjZ(T[p]) for each
position p in Pos(T). Finally, we extend ProjZ to tree languages over B(t,X) by applying
this map to each term of the language. Then we set

A(∃Zψ(Z), t) = ProjZ(A(ψ(Z), t)).

We note that if ψ is a sentence, i.e., a formula without free variables, then by the end of
this inductive process all variables occurring in ψ will have been eliminated. In this way, the
language L(A(ψ, t)) will consist precisely of the interpreted decompositions Tε ∈ Ter(B(t, ∅))
where ε is the empty interpretation, that assigns ε(p) = ∅ for each p ∈ Pos(T), and T |= ψ.
Now consider the map that m : B(t, ∅)→ B(t) that sends each triple (B, b, ∅) ∈ B(t, ∅) to the
t-concrete bag (B, b). Then, by setting A(ψ, t)← m(A(ψ, t)), we have that A(ψ, t) accepts
a term T ∈ B(t) if and only if T is a t-concrete tree decomposition such that T |= ϕ.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	1.1. Main Result
	1.2. Planar Diameter Improvement
	1.3. k-Outerplanar Diameter Improvement
	1.4. Contraction-Closed Parameters
	1.5. Related Work
	1.6. Proof Sketch And Organization of the Paper

	2. Preliminaries
	3. Concrete Tree Decompositions
	4. Sub-Decompositions
	5. Representing All Tree Decompositions of a Given Graph
	6. (,t)-Supergraphs
	7. Contraction Closed Graph Parameters
	7.1. Diameter Improvement Problems
	7.2. Contraction Bidimensional Parameters

	Acknowledgements
	References
	Appendix A. Proof of Theorem 3.3

