
Towards a Spreadsheet-Based Language Workbench
Mikhail Barash

Bergen Language Design Laboratory, University of Bergen, N-5020, Bergen, Norway
mikhail.barash@uib.no

Abstract—Spreadsheets are widely used across industries for
various purposes, including for storing and manipulating data
in a structured form. Such structured forms—expressed using
tabular notation—have found their way in language work-
benches, which are tools to define (domain-specific modeling)
languages and Integrated Development Environments (IDE) for
them. There, a tabular notation is oftentimes used as a secondary
way to represent concrete syntax of certain language constructs;
however, it is not a primary means for (meta)model definition.
We present early results on implementing a language workbench
where metamodels, models, and editor services are defined only
using a tabular notation. We give an overview of the desired
functionality of spreadsheet-based language workbenches.

Index Terms—Spreadsheets, Microsoft Excel, language work-
bench, tool support, domain-specific modeling.

I. INTRODUCTION

One of the use cases for a spreadsheet is to structure
the data—using a tabular notation—and then to store and
manipulate it in that structured form. Addressing this are
approaches that support model-driven development within
spreadsheets (e.g., [3]–[5], [9], [10]). More traditional textual
and graphical modeling languages are oftentimes implemented
using language workbenches [7], which are tools to define—
using one ore more metalanguages—languages’ syntax, se-
mantics, and tool behaviour. A language workbench outputs a
tailored IDE with editor services, such as syntax-aware editing,
syntax highlighting, code formatting, completion, navigation,
corrections [7]. This facilitates adoption of a language [7].

Although both spreadsheets and language workbenches can
be used for metamodeling, there is a gap between them
stemming from their different primary focus: namely, tabular
notation and tool support. Indeed, in language workbenches,
can all the (meta)languages only use tabular notation? And
in the context of spreadsheet-based metamodeling, can the
behaviour of a spreadsheet tool be specified first-class? The
goal of this paper is to address this two-fold gap. We intro-
duce a spreadsheet-based language workbench MetaTabular,
currently being implemented as an add-in for Microsoft Excel.

II. EXCEL AS A LANGUAGE WORKBENCH

The language definition in MetaTabular is inspired by that
of MPS [2]. A language is a set of concepts (language
constructs), and for each concept, one can define its abstract
syntax, concrete syntax, validation logic, and tool behaviour,
using corresponding metalanguages. In MetaTabular, these
metalanguages only use a tabular notation. Definition of
abstract syntax—structure—includes the name of a concept
and a list of its members: values owned by the concept and

Functionality Motivation
the workbench is implemented
within a spreadsheet rather than as
a stand-alone tool

shallow learning curve; users ben-
efit from spreadsheet’s rich format-
ting and visualization functionality

metamodels, models, editor ser-
vices are defined explicitly in a
tabular notation

familiar notation; “reuse by copy-
paste”; no implicit definitions

editor services defined in a tabular
notation

users can extensively customize the
spreadsheet tool behaviour

metamodels, models, editor ser-
vices definitions are synchronized

changed definitions are automati-
cally “propagated” and re-validated

modular definitions using a tabular
notation

enabling language composition [6],
language migration [2]

model transformations specified in
a tabular notation

enabling code generation; refactor-
ing [8]

interoperability with other lan-
guage workbenches

import, export; also: editing Excel-
based models in EMF tools [11]

bootstrapped workbench users can create their own metalan-
guages and modify existing ones

TABLE I
DESIRED FUNCTIONALITY OF SPREADSHEET-BASED WORKBENCHES.

aggregation relationships with other concepts, as shown in
Fig. 1(a,b). A concept can inherit another concept’s members
(see cells A2 and B15 in Fig. 1(b)). Definition of a concrete
syntax—presentation—is a template for cell layout of concept
instances, as shown in Fig. 1(a,b). Templates can specify cells
that have fixed values (e.g., cell I10 in Fig. 1(b)), refer to
concept’s members (J10), etc. Each presentation has a handle
(I9, I15)—a textual representation of a concept instance,
which appears, e.g., in autocomplete menus (see cell D18 in
Fig. 1(c)). A presentation can also specify editor actions for
concept instances. Fig. 1(a) shows a definition of an action that
converts member name of concept Person to upper case.
The action definition includes its name (H11), target member
(I11), a formula executing the action (“=TOUPPER(I11)” in
J11), and a description (K11). Cells K6:M6 specify a button
that will appear at model-time (cf. cells F6:H6 in Fig. 1(c)).
One can also define custom command panes with macros
written in Excel’s JavaScript, as shown in Fig. 1(f).

Validation rules are specified in concept’s structure and
presentation. In Fig. 1(b), cell E10 specifies that member id
of concept Book must conform to a regular expression. Cell
E13 enlists measurement units for member price. Cell E12
specifies that author is a reference to an instance of concept
Author. A metamodeler can define custom validation rules,
as shown in Fig. 1(a): cell J6 specifies an error message that
appears when name of Author is an empty string.

MetaTabular provides a contextual support for language
definitions, e.g., outline views for (meta)models, as shown



A B

C

D E

F

Fig. 1. (a,b) metamodel definitions; (c) a model definition; (d,e) (meta)model navigation via outline view; (f) a user-defined command pane.

in Fig. 1(d,e). (Meta)models could be imported from and
exported to a number of formats (e.g., Ecore, XML, JSON).

III. RELATED WORK

There is an extensive body of literature on enabling mod-
eling within spreadsheets: metamodels can be defined both
outside [5] and within [4] a spreadsheet software, or are
inferred from spreadsheet data [3], [10]. These approaches
are not however centered around editor services, which in
MetaTabular are defined first-class using a tabular notation.

Currently, MetaTabular follows a naı̈ve parsing strategy for
(meta)languages’ cell layout; we may benefit from results on
parsing domain-specific notations [1] and a formalization of
template layouts [5].

IV. DISCUSSION

MetaTabular is an initial step in understanding the limi-
tations of bare tabular notations for defining (meta)models
and editor services; we see an apparent connection with
projectional language workbenches [2], [7], where concrete
syntax of (meta)languages is defined as a collection of cells,
although with a traditional text editor’s editing experience.

Of the desired functionality of spreadsheet-based language
workbenches given in Table I, the most important is perhaps
bootstrapping [7]. Its successful implementation will substan-
tially facilitate creation of spreadsheet-based workbenches.

REFERENCES

[1] S. Adam, U. P. Schultz, Towards tool support for spreadsheet-based
domain-specific languages. GPCE 2015. 95–98.

[2] F. Campagne, The MPS Language Workbench, Vol. 1. 2014.
[3] J. Cunha, M. Erwig, J. Mendes, J. Saraiva, Model inference for spread-

sheets. Autom. Softw. Eng. 23(3). 361–392. 2016.
[4] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, J. Saraiva, MDSheet –

Model-Driven Spreadsheets. CEUR Workshop Proceedings 1209. 2014.
[5] G. Engels, M. Erwig, ClassSheets: automatic generation of spreadsheet

applications from object-oriented specifications. ASE 2005. 124–133.
[6] S. Erdweg et al., Language composition untangled. LDTA 2012. 7.
[7] S. Erdweg et al., Evaluating and comparing language workbenches:

Existing results and benchmarks for the future. Comput. Lang. Syst.
Struct. 44. 24–47. 2015.

[8] F. Hermans, D. Dig, BumbleBee: a refactoring environment for spread-
sheet formulas. SIGSOFT FSE 2014. 747–750.

[9] F. Hermans, R. F. Paige, P. Sestoft (Eds.), Software Engineering Methods
in Spreadsheets. CEUR Workshop Proceedings 1209. 2014.

[10] F. Hermans, M. Pinzger, A. van Deursen, Automatically Extracting Class
Diagrams from Spreadsheets. ECOOP 2010. 52–75.

[11] I. Ráth, EMFxcel: Having Fun with Excel and Eclipse Modeling Tools.
Available at: http://viatra.inf.mit.bme.hu/incquery/examples/emfxcel.


