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a b s t r a c t 

In many games and other processes, participants can choose to intervene in some way that does not fol- 

low the usual progress of the game (for example, cheating at cards, or spying on rivals) which may pro- 

vide benefits, but also possibly incur substantial costs. Here, repeated interventions may be more likely 

to incur negative outcomes – for example, as the chance of getting caught increases. How to optimally 

employ these risky interventions, trading off potential advantages and disadvantages, can then be chal- 

lenging to identify. Here, we study such a game, taken from the popular ‘Fighting Fantasy’ gamebook 

series. This stochastic game involves a series of rounds, each of which may be won or lost. Each round, a 

unit of limited resource (‘ luck ’) may be spent on a gamble to amplify benefits from a win or to mitigate 

deficits from a loss. However, the success of this gamble depends on the number of units of remaining 

resource, and if the gamble is unsuccessful, benefits are reduced and deficits increased. By choosing to 

expending resource, a player thus has diminishing probability of positive return, as in the cheating and 

espionage examples above. We characterise the dynamics of this system using stochastic analysis and 

dynamic programming, solve the Bellman equation for the complete system with diminishing returns, 

and identify the optimal strategy for any given state during the game. We use classification tools to distil 

general principles for this and related problems, informing resource allocation problems with diminishing 

returns in stochastic decision theory. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Many processes have the potential for a participant to inter- 

ene in an attempt to influence the outcome of a particular as- 

ect of play. In instances like cheating, such interventions come at 

 cost. The player may gain some advantages from intervening, but 

f they are discovered, disadvantages are more likely. The question 

f whether, and how often, to intervene in this way must there- 

ore trade off the potential advantages from intervening against the 

ossibility of these negative outcomes. In particular, if repeated in- 

erventions are more likely to incur a negative outcome, the opti- 

al intervention strategy may be challenging to identify. 

Here, we study a stochastic decision problem with this struc- 

ure, taken from the ‘Fighting Fantasy’ (FF) adventure gaming sys- 

em, where a single player takes part in an interactive fiction story 

 Costikyan, 2007; Green, 2014; Jackson & Livingstone, 2002 ). Here, 

he reader makes choices that influence the progress through the 
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ook, the encounters that occur, and the outcomes of combats. 

n many cases, die rolls are used to provide stochastic influence 

ver the outcomes of events in these games, particularly combat 

ynamics. These combat dynamics affect the game outcome (and 

hus the experience of millions of players worldwide) yet have 

arely been studied in detail. 

In FF, a player is assigned statistics ( skill and stamina ), dictat- 

ng combat proficiency and endurance respectively. Opponents are 

lso characterised by these combat statistics. Combat proceeds it- 

ratively through a series of ‘attack rounds’. In a given round, ac- 

ording to die rolls, the player may draw, win or lose, respectively. 

hese outcomes respectively have no effect, damage the opponent, 

nd damage the player. The player then has the option of using 

 limited resource ( luck ) to apply control to the outcome of the 

ound. This decision can be made dynamically, allowing the player 

o choose a policy based on the current state of the system. How- 

ver, each use of luck is a gamble ( Dubins & Savage, 1965; Maitra

 Sudderth, 2012 ), where the probability of success depends on 

he current level of the resource. If this gamble is successful, the 

layer experiences a positive outcome (damage to the opponent is 
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mplified; damage to the player is weakened). If the gamble is un- 

uccessful, the player experiences a negative outcome (damage to 

he opponent is weakened, damage to the player is amplified). The 

ptimal strategy for applying this control in a given state has yet 

o be found. 

The concepts of skill , stamina , and luck can be thought of 

ore generally outside the FF context. skill determines an agent’s 

rowess at the game; this may be a player’s skill at cards, or a 

rm’s propensity to develop leading products. stamina determines 

he number of losses a player can absorb without losing outright; 

he number of tricks in a card game, or the number of loss-making 

roducts that can be produced before bankruptcy. Depending on 

ontext, luck could correspond to properties of a player including 

rustworthiness or concealment; broadly, reflecting the probability 

hat an intervention will be successful. This is the resource that is 

iminished as interventions are employed. The question then be- 

omes, against an opponent of known skill and stamina , when 

nd how should a player choose to intervene using luck to in- 

rease the probability of overall victory? 

This is a stochastic decision problem on a discrete state space. 

he system is Markovian: in the absence of special rules, the statis- 

ics of the player and opponent uniquely determine a system state, 

nd this state combined with a choice of policy uniquely determine 

he transition probabilities to the next state. The problem of de- 

ermining the optimal strategy is then a Markov decision problem 

MDP) ( Bellman, 1957; Kallenberg, 2003 ). In an MDP, a decision- 

aker must choose a particular strategy for any given state of 

 system, which evolves according to Markovian dynamics. In FF 

ombat, the decision is always binary: given a state, whether or 

ot to use a unit of the diminishing resource of luck to attempt to 

nfluence the outcome of a given round. 

The study of stochastic games and puzzles is long established in 

perational research ( Bellman, 1965; Smith, 2007 ) and has led to 

everal valuable and transferrable insights ( Little, Murty, Sweeney, 

 Karel, 1963; Smith, 2007 ). Markov analysis, dynamic program- 

ing, and simulation have been recently used to explore strate- 

ies and outcomes in a variety of games, sports, and TV challenges 

 Clarke & Norman, 2003; Johnston, 2016; Lee, 2012; Percy, 2015; 

erea & Puerto, 2007; Smith, 2007 ). Specific analyses of popular 

ecreational games with a stochastic element including Solitaire 

 Kuykendall & Mackenzie, 1999; Rabb, 1988 ), Flip ( Trick, 2001 ), 

armer Klaus and the Mouse ( Campbell, 2002 ), Tetris ( Kostreva & 

artman, 2003 ), and The Weakest Link ( Thomas, 2003 ). These ap- 

roaches typically aim to identify the optimal strategy for a given 

tate, and, in win/lose games, the overall probability of victory over 

ll possible instances of the game ( Smith, 2007 ). In stochastic dy- 

amic games, counterintuitive optimal strategies can be revealed 

hrough mathematical analysis, not least because ‘risking points 

s not the same as risking the probability of winning’ ( Neller & 

resser, 2004 ). 

The FF system has some conceptual similarities with the well- 

tudied recreational game Pig, and other so-called ‘jeopardy race 

ames’ ( Neller & Presser, 2004; Smith, 2007 ), where die rolls are 

sed to build a score then a decision is made, based on the cur- 

ent state of the system, whether to gamble further or not. Neller 

 Presser have used a value iteration approach to identify op- 

imal strategies in Pig and surveyed other similar games ( Neller 

 Presser, 2004 ). In FF combat, however, the player has poten- 

ial agency both over their effect on the opponent and the oppo- 

ent’s effect on them. Further, resource allocation in FF is a dy- 

amic choice and also a gamble ( Dubins & Savage, 1965; Maitra 

 Sudderth, 2012 ), the success probability of which diminishes as 

ore resource is allocated. The probability of a negative outcome, 

s opposed to a positive one, therefore increases as more resource 

s used, providing an important ‘diminishing returns’ consideration 

n policy decision ( Deckro & Hebert, 2003 ). In an applied context 
2 
his could correspond to engaging in, for example, espionage and 

ounterespionage ( Solan & Yariv, 2004 ), with increasing probabil- 

ty of negative outcomes with more engagement in these covert 

ctivites. 

The optimal policy for allocating resource to improve a final 

uccess probability has been well studied in the context of research 

nd development (R&D) management ( Baye & Hoppe, 2003; Can- 

olat, Golany, Mund, & Rothblum, 2012; Gerchak & Parlar, 1999; 

eidenberger & Stummer, 1999 ). While policies in this field are 

ften described as ‘static’, where an initial ‘up-front’ decision is 

ade and not updated over time, dynamic policy choices allow- 

ng updated decisions to be made based on the state of the system 

including the progress of competitors) have also been examined 

 Blanning, 1981; Hopp, 1987; Posner & Zuckerman, 1990 ). Rent- 

eeking ‘contest’ models ( Clark & Riis, 1998 ) also describe proper- 

ies of the victory probability as a function of an initial outlay from 

layers. The ‘winner takes all’ R&D model of Canbolat et al., where 

he first player to complete development receives all the available 

ayoff, and players allocate resource towards this goal ( Canbolat 

t al., 2012 ), bears some similarity to the outcomes of the FF sys- 

em. The model of Canbolat et al. did not allow dynamic allocation 

ased on the current system state, but did allow a fixed cost to 

e spread over a time horizon, and computed Nash equilibria in a 

ariety of cases under this model. 

A connected branch of the literature considers how to allocate 

carce resource to achieve an optimal defensive outcome ( Golany, 

oldberg, & Rothblum, 2015; Valenzuela, Szidarovszky, & Rozenblit, 

015 ), a pertinent question both for human ( Golany, Kaplan, Mar- 

ur, & Rothblum, 2009 ) and animal ( Clark & Harvell, 1992 ) soci-

ties. Inspection games, a non-cooperative situation where limited 

esource is used by competing parties to verify, or display, adher- 

nce to legal rules are a particular pertinent example ( Deutsch, 

021; Deutsch, Golany, & Rothblum, 2011; Dresher, 1962 ). Both op- 

imisation and Nash equilibrium approaches are used in these con- 

exts to identify solutions to the resource allocation problem under 

ifferent structures ( Golany et al., 2015; Valenzuela et al., 2015 ). 

he FF system has such a defensive component, but the same re- 

ource can also be employed offensively, and as above takes the 

ess-studied form of a gamble with a diminishing success proba- 

ility. We will attempt to analyse the dynamics of this system and 

how how its behaviour can inform the broader class of decision 

roblems where possible interventions are gambles that costs re- 

ource and decrease future success probabilities. 

.1. Game dynamics 

Within an FF game, the player has nonnegative integer statis- 

ics called skill , stamina , and luck . skill and luck are typically 

12 ; stamina is typically ≤ 24 , although these bounds are not 

equired by our analysis. Combats, the focus of this study, occur 

hroughout an FF game, as the player encounters different adver- 

aries within the unfolding interactive fiction storyline. In a given 

ombat, the opponent will also have skill and stamina statistics. 

e label the skill , stamina , and luck of the player (the ‘hero’) as

 h , s h , and l respectively, and the opponent’s skill and stamina as 

 o and s o . Broadly, combat in the FF system involves a series of 

ounds, where differences in skill between combatants influences 

ow much stamina is lost in each round; when one combatant’s 

tamina reaches zero or below, the combat is over and that com- 

atant has lost. The player may choose to use luck in any given 

ound to influence the outcome of that round. More specifically, 

ombat proceeds through Algorithm 1. 

Algorithm 1. Fighting Fantasy combat system Jackson & Liv- 

ngstone (2002) . The game takes place between a player ‘hero’ with 

kill k h , initial stamina s h , and initial luck l, and an opponent with

kill k o and initial stamina s o . 
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1. Roll two dice and add k h ; this is the player’s attack strength A h .

2. Roll two dice and add k o ; this is the opponent’s attack 

strength A o . 

3. If A h = A o , this attack round is a draw. Go to 6. 

4. If A h > A o , the player has won this attack round. Make decision 

whether to use luck . 

(a) If yes , roll two dice to obtain r. If r ≤ l, set s o = s o − 4 . If r >

l, set s o = s o − 1 . For either outcome, set l = l − 1 . Go to 6. 

(b) If no , set s o = s o − 2 . Go to 6. 

5. If A h < A o , the opponent has won this attack round. Make deci- 

sion whether to use luck . 

(a) If yes , roll two dice to obtain r. If r ≤ l, set s h = s h − 1 . If r >

l, set s h = s h − 3 . For either outcome, set l = l − 1 . Go to 6. 

(b) If no , set s h = s h − 2 . Go to 6. 

6. If s h > 0 and s o ≤ 0 , the player has won; if s o > 0 and s h ≤ 0 ,

the opponent has won. Otherwise go to 1. 

. Analysis 

In basic combat dynamics, skill does not change throughout a 

ombat. The probabilities p w 

, p d , p l of winning, drawing, an los- 

ng an attack round depend only on skill , and remain constant 

hroughout the battle. We therefore consider P t (s h , s o , l) : the prob-

bility, at round t , of being in a state where the player has stamina 

 h and luck l, and the opponent has stamina s o . 

We are concerned with the victory probability v p with which 

he player is eventually victorious, corresponding to a state where 

 h ≥ 1 and s o ≤ 0 . We thus consider the ‘getting to a set’ outcome

lass of this stochastic game ( Maitra & Sudderth, 2012 ), corre- 

ponding to a ‘winner takes all’ race ( Canbolat et al., 2012 ). We

tart with the probability of winning, drawing, or losing a given 

ound. First, let k h be the player’s skill and k o be the opponent’s 

kill . The important associated quantity in determining the sys- 

em’s behaviour is the difference in skill �k = k h − k o . 

The outcome of each round of the game is determined by a 

omparison between k h + X 1 and k o + X 2 , where X 1 , X 2 are random

ariates describing the sum of two dice (steps 3–5 in Algorithm 

). Specifically, if k h + X 1 > k o + X 2 the player wins the round, if

 h + X 1 < k o + X 2 the player loses the round, and if the two are

qual the round is drawn. Rearranging, we obtain the inequali- 

ies X 1 − X 2 + �k > 0 , X 1 − X 2 + �k < 0 , and X 1 + X 2 + �k = 0 for

in, loss, and draw respectively. If we define the new random 

ariable X = X 1 − X 2 (hence, the difference between the sums of 

wo sets of two dice), the probabilities of win, draw, and loss 

vents correspond respectively to p w 

= P (X + �k > 0) , p d = P (X +
k = 0) , p l = P (X + �k < 0) . 

For our dice-based system, X follows a discrete distribu- 

ion on [ −10 , 10] . The point density P (X = i ) is 1 
1296 { 1 , 4 , 10 , 20 ,

5 , 56 , 80 , 104 , 125 , 140 , 146 , 140 , 125 , 104 , 80 , 56 , 35 , 20 , 10 , 4 , 1 } ; 
OEIS sequence A063260 ( OEIS, 2019 )). Hence the probabilities of 

 round being won, lost, or drawn can be computed by summing 

robabilities over the values of X that are compatible with each 

utcome: 

p w 

(�k ) = 

10 ∑ 

j= −�k +1 

P (X = j) (1) 

p d (�k ) = P (X = −�k ) (2) 

p l (�k ) = 

−�k −1 ∑ 

j= −10 

P (X = j) (3) 

or FF (although our analysis can be applied to any p w 

, p d , p l to

uit other model situations). 
3 
.1. Dynamics without interventions 

We first consider the straightforward case where the player em- 

loys no strategy, never electing to use luck . This case corresponds 

o the ‘default’ dynamics of the game, without any interventions 

rom the player – following the broader examples above, this cor- 

esponds to no use of cheating or espionage. We can then ignore l

nd consider steps through the (s h , s o ) stamina space, which form 

 discrete-time Markov chain. The probability of a given state in 

he next timestep is then 

 

t+1 (s h , s o , l) = p w 

P t (s h , s o + 2 , l) + p l P 
t (s h + 2 , s o , l) + p d P 

t (s h , s o , l)
(4) 

We can consider a combinatorial approach based on ‘game his- 

ories’ describing steps moving through this space ( Maitra & Sud- 

erth, 2012 ). Here a game history is a string from the alphabet 

 W, D, L } , with the character at a given position i corresponding to

espectively to a win, draw, loss in round i . We aim to enumerate 

he number of possible game histories that correspond to a given 

utcome, and assign each a probability. 

We write w, d, l for the character counts of W, D, L in a given

ame history. A victorious game must always end in W . Consider 

he string describing a game history omitting this final W . First 

eaving out D s, we have (w − 1) W s and l L s that can be arranged

n any order. We therefore have n (w, l) = 

(
w −1+ l 

l 

)
possible strings, 

ach of length w − 1 + l. For completeness, we can then place any 

umber d of D s within these strings, obtaining 

 (w, l, d) = 

(
w − 1 + l 

l 

)(
w − 1 + l + d 

d 

)
. (5) 

Write σh = � s h / 2 � and σo = � s o / 2 � , describing the number of

ounds each character can lose before dying. Then, for a player 

ictory, w = σo and l ≤ σh − 1 . d can take any nonnegative integer 

alue. The appearance of each character in a game string is accom- 

anied by a multiplicative factor of the corresponding probability, 

o we obtain 

 p = p σo 
w 

σh −1 ∑ 

l=0 

∞ ∑ 

d=0 

p l l p 
d 
d 

(
w − 1 + l 

l 

)(
w − 1 + l + d 

d 

)
, (6) 

here the probability associated with the final W character has 

ow also been included. Using hypergeometric functions, a closed 

orm for this expression can be written down (see Supplementary 

nformation), but as p d is small, the sum over d converges after a 

mall number of terms and Eq. (6) can readily be computed nu- 

erically. 

Equation (6) is compared with the result of stochastic simu- 

ation in Fig. 1 , and shown for various skill differences �k and 

s h , s o ) initial conditions. Here, the stochastic simulation simply in- 

olves 10 3 simulations of Algorithm 1, with the given initial con- 

itions, and with uniform random variates used for die rolls (code 

or this simulation and other analyses throughout are available at 

ttps://github.com/StochasticBiology/fighting-fantasy-analysis ). In- 

uitively, more favourable �k > 0 increase v p and less favourable 

k < 0 decrease v p for any given state, and discrepancies be- 

ween starting s h and s o also influence eventual v p . A pronounced 

 ( mod 2) structure is observed, as in the absence of luck , s = 2 n

s functionally equivalent to s = 2 n − 1 for integer n . For lower ini-

ial stamina s, v p distributions become more sharply peaked with 

 values, as fewer events are required for an eventual outcome. 

he general interpretation of these ‘default’ dynamics is, intuitively, 

hat victory probability in the absence of interventions is higher for 

he combatant with the higher probability of winning individual 

ounds, and the ability to absorb more round losses. One of these 

actors may compensate for the other; for example, if the player 

as a skill disadvantage of �k = −2 but has three times their op- 

onents’ stamina , victory is still likely. Different player styles –

https://github.com/StochasticBiology/fighting-fantasy-analysis
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Fig. 1. Victory probability in the absence of LUCK -based strategy. (i) Comparison of predicted victory probability v p from Eq. (6) with stochastic simulation. 

(ii) v p behaviour as skill difference �k changes. 

s

t

2

r

t

S

c  

W

c

w

e

m

c

u

r

t

u

T  

c

o

l

T  

L  

k

p

killful but susceptible to damage, or loss-prone but robust – may 

hus be equally successful. 

.2. Analytic dynamics with interventions but no diminishing 

esource 

We next consider a simplified case where the player can in- 

ervene in an attempt to alter the ‘default’ dynamics of the game. 

pecifically, to increase the probability of victory beyond the basic 

ase in Eq. (6) , the player can elect to use luck in any given round.

e will first demonstrate that the above history-counting analysis 

an obtain analytic results when applied to a simplified situation 

hen luck is not depleted by use, so that the only limit on its 

mployment is its initial level ( Blanning, 1981 ). This corresponds 

ore broadly to the case where the probability of an adverse out- 
4 
ome does not change with the number of interventions that are 

sed – so, for example, the probability of getting caught cheating 

emains the same no matter how many times the player cheats. 

First consider the case where luck is only used to amplify posi- 

ive outcomes of individual rounds (step 4a in Algorithm 1), and is 

sed in every successful round. For now, ignore losses and draws. 

hen every game history consists of A s and B s, where A is a suc-

essful offensive use of luck and B is an unsuccessful offensive use 

f luck . Consider the game histories that lead to the opponent 

osing exactly n stamina points before the final victorious round. 

here are � n/ 4 � + 1 string lengths that can achieve this, which are

 = n − 3 k , where k runs from 0 to � n/ 3 � . The strings with a given

 involve n − 4 k failures and k successes. 

If we make the simplifying assumption that luck is not de- 

leted with use, every outcome of a luck test has the same success 
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robability q (l) = q . Then the problem is simplified to finding the 

umber of ways of arranging k A s and (n − 4 k ) B s for each possible

tring: 

(k ) = 

(n − 3 k )! 

k !( n − 4 k )! 
(7) 

Now, for every string with a given k , with corresponding string 

ength n − 3 k , we can place l L s and d D s as before, giving 

(k ; n, l, d) = 

(n − 3 k )! 

k !(n − 4 k )! 

(
n − 3 k + l 

l 

)(
n − 3 k + l + d 

d 

)
. (8) 

The complete history involves a final victorious round. For now 

e will write the probability of this event as p f , then the proba-

ility associated with this set of histories is 

 (k ; n, l, d, p f ) = 

p f 
(n − 3 k )! 

k !(n − 4 k )! 
q k (1 − q ) n −4 k p l l 

(
n −3 k + l 

l 

)
p d d 

(
n −3 k + l+ d 

d 

)
(9) 

ith 

 (k ; n, p f ) = 

σh −1 ∑ 

l=0 

∞ ∑ 

d=0 

P (k ; n, l, d, p f ) (10)

Again, a closed-form solution for this expression exists using 

ypergeometric functions (see Supplementary Information) but the 

ums converge quickly and so can readily be computed numeri- 

ally. Finally 

 n (n, p f ) = 

n/ 3 ∑ 

k =0 

P (k ; n, p f ) . (11) 

Now consider the different forms that the final victorious round 

an take. The opponent’s stamina can be reduced to 4 followed by 

n A , 3 followed by A , 2 followed by A , or 1 followed by A or B .

f we write P (m ; X ) for the probability of reducing the opponent’s 

tamina to m then finishing with event X , 

 p = P (4 ; A ) + P (3 ; A ) + P (2 ; A ) + P (1 ; A ) + P (1 ; B ) (12)

ence 

 p = P n (s o − 4 , q ) + P n (s o − 3 , q ) + P n (s o − 2 , q ) + P n (s o − 1 , q ) 

+ P n (s o − 1 , (1 − q )) . (13) 

Similar expressions can be derived for the defensive case, where 

uck is solely used when a round is lost, and with some relax- 

tions on the structure of the sums involved the case where luck 

s not used in every round can also be considered. Fig. 2 (i) com-

ares Eq. (13) and stochastic simulation, and shows that use of 

uck can dramatically increase victory probability in a range of cir- 

umstances. For example ( Fig. 2 (ii)), high luck used judiciously can 

lmost compensate for a �k = −2 skill disadvantage, and make 

ictory highly likely if player and opponent have the same skill 

the only exception being when opponent stamina greatly exceeds 

layer stamina ). Notably, even when the success of an intervention 

s far from certain ( l = 7 ), substantial shifts in victory probabil-

ty are possible. Phrased more generally, this simpler case demon- 

trates the dramatic positive shifts in game outcome possible from 

nterventions, albeit when the diminishing nature of the interven- 

ion resource is not accounted for. 

.3. Stochastic optimal control with dynamic programming for full 

ystem with limited and diminishing resource 

We now consider the complete system, where electing to inter- 

ene diminishes the resource that determines the success of inter- 

entions. Each decision to use luck now diminishes luck by one. 

e can no longer use the simple counting argument in Eq. (9) to 
5 
ompute the probabilities of each history, because each probabil- 

ty now depends on the specific structure of the history. It will be 

ossible to enumerate these histories exhaustively but the analy- 

is rapidly expands beyond the point of useful interpretation, so 

e turn to dynamic programming to investigate the system’s be- 

aviour. 

In a game with a given �k , we characterise every state of the 

ystem with a tuple S = { s h , s o , l, O } where O is the outcome (win

r loss) of the current attack round. The question is, given a state, 

hould the player elect to intervene (use luck ) or not? 

A common approach to identify the optimal strategy for a 

arkov decision problem in a discrete state space is to use the 

ellman equation ( Bellman, 1957; Kirk, 2012 ), which in our case is 

imply 

 p (S) = max 
a 

( ∑ 

S ′ 
P a (S , S ′ ) v p (S ′ ) 

) 

(14) 

 p (S) = 0 , for all S with s h ≤ 0 and s o > 0 (15) 

 p (S) = 1 , for all S with s h > 0 and s o ≤ 0 (16) 

Here, a is a strategy dictating what action to take in state S , 

 a (S , S ′ ) is the probability under strategy a of the transition from

tate S to state S ′ , and v p (S) is the probability-to-victory of state 

. The joint problem is to compute the optimal v p , and the strat- 

gy a that maximises it, for all states. To do so, we employ a 

ynamic programming approach of backward induction ( Bellman, 

957 ), starting from states where v p is known and computing back- 

ards through potential precursor states. 

The dynamic programming approach first assigns a probability- 

o-victory v p for those states of the system where the outcome is 

mmediately defined (Supplementary Fig. S1(i)). Hence, for all ‘de- 

eat’ states with s h ≤ 0 , s o > 0 , we set v p = 0 ; for all ‘victory’ states

ith s o ≤ 0 , s h > 0 , we set v p = 1 . States where both s h ≤ 0 and

 o ≤ 0 are inaccessible under the dynamics of the system and are 

hus ignored. We then iteratively consider all states in the system 

here an outcome leads to a state where v p is fully determined. 

or example, after defining v p = 0 for all ‘defeat’ states, we can 

ompute v p for all states where a loss outcome leads to a ‘defeat’ 

tate (Supplementary Fig. S1(ii)). Then we can compute v p for all 

tates that lead to those states, and so on. We can proceed sim- 

larly for states where a win outcome leads to a ‘victory’ states 

Supplementary Fig. S1(iii)), then states leading to those states, and 

o on. 

For states involving a loss outcome, we compute two proba- 

ility propagators. The first corresponds to the strategy where the 

layer elects to use luck , and is of magnitude 

p y = 

∑ 

S ′ 
P y (S , S ′ ) v p (S ′ ) 

= q (l) p l v p ({ s h − 1 , s o , l − 1 , 0 } ) 
+ (1 − q (l)) p l v p ({ s h − 3 , s o , l − 1 , 0 } ) 
+ q (l) p w 

v p ({ s h − 1 , s o , l − 1 , 1 } ) 
+ (1 − q (l)) p w 

v p ({ s h − 3 , s o , l − 1 , 1 } ) (17) 

he second corresponds to the strategy where the player does not 

se luck , and is 

p n = 

∑ 

S ′ 
P n (S , S ′ ) v p (S ′ ) 

= p l v p ({ s h − 2 , s o , l, 0 } ) + p w 

v p ({ s h − 2 , s o , l, 1 } ) . (18) 

When considering the probability-to-victory for a given state, 

e hence consider both the next (s , s o , l) combination that a 
h 
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Fig. 2. Victory probability with constant LUCK employed offensively. (i) Eq. (13) compared to stochastic simulation. (ii) Constant luck outcomes for intermediate and low 

luck , and for high luck mitigating low �k values. 
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iven event will lead to, and also both possible outcomes (win 

r loss) from this state. For a given state, if p y > p n , we record

he optimal strategy as using luck and record v p = p y ; otherwise 

e record the optimal strategy as not to use luck and record 

 p = p n . In practise we replace p y > p n with the condition p y >

1 + 10 −10 ) p n to avoid numerical artefacts, thus requiring that the 

se of luck has a relative advantage to v p above 10 −10 . 

We do the same for states involving a win outcome from this 

ound, where the two probability propagators are now 

p y = q (l) p l v p ({ s h , s o − 4 , l − 1 , 0 } ) 
+ (1 − q (l)) p l v p ({ s h , s o − 1 , l − 1 , 0 } ) 
+ q (l) p w 

v p ({ s h , s o − 4 , l − 1 , 1 } ) 
+ (1 − q (l)) p w 

v p ({ s h , s o − 1 , l − 1 , 1 } ) ; (19) 
s  

6 
nd 

p n = p l v p ({ s h , s o − 2 , l, 0 } ) + p w 

v p ({ s h , s o − 2 , l, 1 } ) . (20) 

Each new pair of states for which the optimal v p is calculated 

pens up the opportunity to compute v p for new pairs of states 

Supplementary Fig. S1(iv)). Eventually a v p and optimal strategy 

s computed for each outcome, providing a full ‘roadmap’ of the 

ptimal decision to make under any circumstance. This full map is 

hown in Supplementary Fig. S2, with a subset of states shown in 

ig. 3 . 

We find that a high luck score and judicious use of luck 

an dramatically enhance victory probability against some oppo- 

ents. As an extreme example, with a skill detriment of �k = 

9 , s h = 2 , s o = 23 , l = 12 , use of luck increased victory probabil-

ty by a factor of 10 18 , albeit to a mere 2 . 3 × 10 −19 . On more rea-

onable scales, with a skill detriment of � = −4 , s = 22 , s o =
k h 
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Fig. 3. Optimal strategies and victory probabilities throughout state space. The optimal strategy at each state is given by the numerical code at each corresponding point 

in the figure: (1 – use luck regardless of the outcome of this round; 2 – use luck if this round is lost; 3 – use luck if this round is won). No number means that the optimal 

strategy is not to employ luck regardless of outcome. Colour gives victory probability v p . 
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9 , l = 12 , use of luck increased victory probability 1159-fold, from 

 . 8 × 10 −6 to 0.011 (the highest fold increase with the final prob-

bility greater than 0.01). With a skill detriment of �k = −2 , 

 h = 22 , s o = 21 , l = 12 , use of luck increased victory probability

1-fold, from 0.010 to 0.22 (the highest fold increase with the ini- 

ial probability greater than 0.01). Using encounters that appear 

n the FF universe ( Gascoigne, 1985 ), for a player with maximum 

tatistics k h = 12 , s h = 24 , l = 12 , optimal use of luck makes victory

gainst an adult White Dragon ( k o = 15 , s o = 22 ) merely quite un-

ikely ( v p = 0 . 046 ) rather than implausible ( v p = 4 . 4 × 10 −4 ), and

ictory against a Hell Demon ( k o = 14 , s o = 12 ) fairly straightfor-
 s

7 
ard ( v p = 0 . 78 ) rather than unlikely ( v p = 0 . 28 ). Outside of the

pecific bounds of FF, it is clear that judicious choice of interven- 

ion strategy, even with limited and diminishing resource, can sub- 

tantially improve game outcomes, supporting fold changes and 

ven order-of-magnitude increases in victory probability. 

.4. Structure of optimal policy space 

We first report some specific features of the optimal policy 

pace characterised in Supplementary Fig. S2, before describing 

ome more general principles of this (and other) systems. There 
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s substantial similarity in optimal policy choice between sev- 

ral regions of state space. For large skill deficiencies �k ≤ −6 

low probability of victory) the distribution of optimal strategies 

n stamina space is the same for a given l for all �k . For higher

, this similarity continues to higher �k ; for l = 12 , only 5 points

n stamina space have different optimal strategies for �k = −9 

nd �k = −4 . At more reasonable victory probabilities, a moderate 

ransition is apparent between l = 6 and l = 5 , where the number

f points in stamina space where the optimal strategy involves us- 

ng luck decreases noticeably (reflecting the lower expected ad- 

antage for l = 5 ). 

The interplay of several general strategies is observed in the 

ptimal structures. First note that � s/ 4 � gives the number of hits

equired for defeat if a hit takes 4 stamina points (a success- 

ul offensive luck test) and � s/ 2 � gives the number of hits re-

uired for defeat in the absence of strategy. These scales partition 

tamina space by the number of rounds required for a given out- 

ome and hence dictate several of the ‘banded’ structures observ- 

ble in strategy structure. For example, at s h = 2 , it is very advan-

ageous for the player to attempt to mitigate the effect of losing 

nother round. Almost all circumstances display a band of defen- 

ive optimal strategy at s h = 2 . 

At s o = 3 , a successful offensive luck test is very advantageous 

immediate victory). An unsuccessful offensive test, leading to s o = 

 , is not disadvantageous to the same extent: we still need ex- 

ctly one successful attack round without luck , as we would if we 

ad not used luck and achieved s o = 1 instead. A strip of offensive

trategy (or joint offensive-def ensive strategy) at s o = 3 is thus the 

ext most robustly observed feature, disappearing only when vic- 

ory probability is already overwhelmingly high. Many other struc- 

ural features result from a tradeoff between conserving luck and 

ncreasing the probability of encountering this advantageous re- 

ion. An illustration of the broad layout of optimal strategies is 

hown in Supplementary Fig. S3; a more fine-grained analysis is 

rovided in the Supplementary Information. 

While the dynamic programming approach above gives the op- 

imal strategy for any circumstance, the detailed information in- 

olved does not lend itself to easy memorisation. As in Smith’s 

iscussion of solitaire, ‘the curse of dimensionality applies for the 

tate description, and most wise players use heuristics’ ( Smith, 

007 ). We therefore consider, in addition to the semi-quantitative 

ummary in Supplementary Fig. S3, coarse-grained quantitative 

strategies’ that, rather than specifying an action for each branch 

f the possible tree of circumstances, use heuristic rules that can 

e applied in all circumstances. To this end, we computed a clas- 

ification tree for the optimal strategy given current state variables 

k , l, s h , s o ( Fig. 4 ), using the rpart library in R Team (2018) . This

ecision tree bases an outcome on various inequalities describing 

he current state of the system, and determines 58% of the opti- 

al policy structure correctly, while dramatically coarse-graining 

he ‘strategy map’. The tree functions as a dynamic decision guide, 

o be consulted in each round of the game, not just at the initial

tate. 

Several general insights can also be determined from the struc- 

ure of Fig. 4 (i). In determining whether or not to intervene, the 

rst-level questions are about the amount of resource ( luck l) 

vailable to do so. If l < 6 . 5 , a negative intervention outcome is

ore likely than a positive one, and interventions are classified 

s reserved for unusual circumstances. If l > 6 . 5 , a positive out-

ome is more likely, and intervention is more broadly favoured. In 

oth cases, the next-level question is about the propensity to win 

 given round ( �k ). This determines the final levels of questions, 

hich are to do with the specific amount of losses and wins pos- 

ible before victory or defeat ( s h and s o ). 

Specifically, when negative outcomes are more likely, there is 

n ‘emergency’ pathway where resource is used defensively to 
8 
vert the final loss leading to defeat and an ‘overwhelmed’ path- 

ay where resource is used offensively when the opponent can 

bsorb many loss events. When positive outcomes are likely, the 

efensive use of resource is favoured unless the player can absorb 

any losses, and offensive use generally favoured to improve vic- 

ory probability. 

The specific inequalities involved in this coarse-grained decision 

tructure depend on the FF system, but the principles they em- 

ody can be generalised to systems that quantitatively differ. To 

erify this, we adapted the system to reflect a quantitatively differ- 

nt case, where a successful intervention after a won round (step 

a in Algorithm 1) causes 3 damage to the opponent (not the usual 

). This adaptation changes the structure of optimal policy space 

Supplementary Fig. S4)) but the resulting classification tree (now 

dentifying 45% of the optimal choices in the spaces) displays the 

ame coarse-grained strategies (Supplementary Fig. S5; Fig. 4 (ii)). 

. Discussion 

We have examined the probability of victory in an iterated, 

robabilistic decision problem that plays a central role in a well- 

nown and widespread interactive fiction series. The game can be 

layed with or without ‘strategy’, here manifest by the consump- 

ion of a limited resource to probabilistically influence the outcome 

f each round. 

Several interesting features of the FF combat system make it 

otentially noteworthy with respect to similar systems ( Canbolat 

t al., 2012; Neller & Presser, 20 04; Smith, 20 07 ). The allocation of

esource is dynamic and depends on system state ( Blanning, 1981; 

opp, 1987; Posner & Zuckerman, 1990 ). The use of resource can 

oth increase the probability of a positive outcome for the player, 

r a negative outcome for the opponent. Use of this resource does 

ot guarantee a positive outcome: its use is a gamble ( Dubins & 

avage, 1965; Maitra & Sudderth, 2012 ) that may negatively affect 

he player. The probability of this negative effect increases as more 

esource is used, providing an important consideration in the de- 

ision of whether to invoke this policy in the face of ‘diminishing 

eturns’ ( Deckro & Hebert, 2003 ). 

This analysis reveals several structural properties of the sys- 

em that are not specific to the FF context of this study. The case 

f a limited resource being gambled against to both amplify suc- 

esses and mitigate failures (with the probability of a positive out- 

ome diminishing as resource is used) bears some resemblance to, 

or example, a conceptual picture of espionage and counterespi- 

nage ( Solan & Yariv, 2004 ). For example, resource could be al- 

ocated to covert operations with some probability of amplifying 

hefts and mitigating losses of information, with increased prob- 

bility of negative outcomes due to discovery as these covert ac- 

ivites are employed more. Our analysis then reveals the strate- 

ies to be employed in different scenarios of information security 

 skill ) and robustness to information loss ( stamina ). Another pic- 

ure is one of cheating in games. Here, skill reflects the propensity 

o win a given round of the game without cheating, stamina re- 

ects the number of losses before overall defeat, and luck a degree 

f covertness allows cheating without detection, but is diminished 

ith repeated use. 

In both of these scenarios, the coarse-grained optimal policy 

ecision in Fig. 4 is informative. The decision whether or not to 

ntervene (employ espionage, cheat, or so on) is based first on the 

robability of being detected – if high, interventions should be re- 

tricted to emergency situations where defeat is imminent. If low, 

he decision is next informed by the probability of winning in- 

ividual rounds. If this is high, resource can be stored to hedge 

gainst future emergency situations. If not, the specific state of 

lay informs how best to intervene – to amplify successes, miti- 

ate defeats, or both. 
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Fig. 4. Decision tree approximating optimal strategy choice. (i) Classification tree outputting a numerical code for an intervention strategy based on the current state of 

the system { �k , l, s h , s o } . 0 – do not use luck regardless of the outcome of this round; 2 – use luck if this round is lost (defensively); 3 – use luck if this round is won 

(offensively). For each inequality, go left for a positive response and right for a negative response. Top-level questions query amount of intervention resource ( l), followed by 

individual victory propensity ( �k ) and then specific state details. (ii) The more general phrasing of the decision strategy in (i) and in an alternative parameterisation of the 

game (see text), illustrating the coarse-grained general principles for approximating optimal policy. 
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In the absence of strategy, we find a closed-form expression for 

ictory probability that takes an intuitive form. When strategy is 

ncluded, dramatic increases in victory probability are found. The 

trong advantages provided by successful use of resource towards 

he ‘endgame’, where a successful gamble will produce instant vic- 

ory or avoid instant defeat, shapes the structure of the optimal 

olicy landscape. When little resource is available, complex struc- 

ures emerge in the optimal landscape that depend on the tradeoff

etween using resource in the current state or ‘saving’ it in case 

f a more beneficial state later (‘risking points is not the same as 

isking the probability of winning’ Neller & Presser (2004) ). When 

efault victory is unlikely, using resource to reinforce rare success 

robabilities is a favoured strategy; when default victory is likely, 

sing resource to mitigate rare loss probabilities is favoured. The 

pecific optimal policy in a given state is solved and can be rea- 

onably approximated by more heuristic strategies ( Smith, 2007 ). 

A route for expansion involves optimising victory probability 

hile preserving some statistics, for example enforcing that s h > s ∗

r l > l ∗ at victory, so that some resource is retained for subse- 

uent tasks (for example, the rest of the adventure after this com- 

at). Such constraints could readily be incorporated through an ini- 

ial reallocating v p over system states in the dynamic programming 

pproach (Supplementary Fig. S1(i)), or by expanding the definition 

f the score being optimised to include some measure of desired 

etention in addition to v p . 
In an era of artificial intelligence approaches providing ef- 

ective but essentially uninterpretable strategies for complex 

ames ( Campbell, Hoane, & Hsu, 2002; Gibney, 2016; Lee et al., 

016 ), more targetted analyses still have the potential to inform 

ore deeply about the mechanisms involved in these strategies. 

urther, mechanistic understanding makes successful strategies 

eadily available and simple to implement in the absence of 

omputational resource. We believe that this analysis has demon- 

trated both some FF-specific and more general principles to the 

nteresting case where a stochastic game can be influenced by 

ambling diminishing resource on interventions. In particular, 

e hope that the computation of optimal policy space and its 

ubsequent coarse-grained representation may highlight general 

ecision approaches for such systems. We hope that this increased 

nterpretability and accessibility both contribute to the demon- 

tration of the general power of these approaches, and also help 
9 
mprove the experience of some of the millions of FF players 

orldwide. 
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