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Abstract: Multiple scattering can severely affect the accuracy of optical instrumentation.
Variance reduction methods have been implemented to improve a Monte Carlo model developed
to simulate volume scattering functions measured by LISST-VSF instruments. The implemented
methods can result in more than a tenfold increase in efficiency. The simulation is used to
analyze multiple scattering errors for a range of Fournier-Forand (FF) phase functions. Our
results demonstrate significant errors in the scattering coefficient, backscattering coefficient and
phase function, where multiple scattering errors may only be considered negligible (<10%) for
scattering coefficients <1 m−1. The errors depend strongly on the scattering coefficient but also
increase when phase functions become more forward-peaked.
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1. Introduction

Scattering is a fundamental optical process which largely governs radiative transport processes
within the visible spectrum in the ocean and the atmosphere [1]. In optical oceanography,
measuring scattering properties of the water column can give valuable information about size and
composition of particles submerged in the water mass, such as phytoplankton or colloidal mineral
particles [2–9]. Both the scattering and backscattering coefficient have been found to have a
strong relationship with suspended particulate matter concentration [2–4]. These properties tell
us how much light is scattered in the backward direction (backscattering) and in total (scattering).
The ratio between the backscattering and scattering coefficient yields an estimate of the bulk
refractive index, which indicates whether inorganic or organic particles are dominating [5]. The
full angular distribution of scattering, namely the volume scattering function (VSF), has not been
widely measured due to difficulties with designing instrumentation and conducting measurements
in situ, but may tell us much more about the particulate properties [6,7]. The VSF at angles
smaller than 15◦ is now routinely used for estimating the particle size distribution between
approximately 1 and 500 µm [8,9]. The VSF is also an important property to parameterize
correctly in radiative transfer modelling of the ocean, which is critical for achieving accurate
ocean color remote sensing observations of the oceanic and coastal environments around the
globe [10,11]. Ecologically and economically important coastal environments are of considerable
interest to measure with in situ instrumentation, as these environments are still difficult to
observe accurately using satellite observations due to optical and spatio-temporal complexity
[12]. Scattering properties in coastal and estuarine environments have a large dynamic range, for
instance, the scattering coefficient can span from approximately 0.05 to 30 m−1 [2], which puts
extra demands on instrumentation.

The LISST-VSF (Sequoia Scientific) is a commercially developed instrument able to measure
the volume scattering function (VSF) from 0.1◦ to 150◦. From the VSF one can also derive other
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important inherent optical properties such as the scattering coefficient and phase function. Recent
studies [13,14] have demonstrated that, for sufficiently large optical depths, multiple scattering
results in significant errors in the VSF measured by the LISST-VSF. This error arises from the
assumption that all detected light is only scattered once. The detected signal is corrected for
light lost, either to scattering or absorption, along the path from laser to detector by multiplying
the detected intensity with the factor ecl. Here, c is the attenuation coefficient and l is the path
length from laser to detector. However, not all detected light is scattered only once. Some of
the light which is assumed to be lost due to scattering along the path, may still reach a detector.
Thus, these photons add to the single-scattering signal, resulting in elevated VSFs, scattering
coefficients b, and backscattering coefficients bb, as well as distorted phase functions.

Monte Carlo simulations have been widely used to investigate measurement errors in optical
instruments, as it is relatively easy to implement complex geometries without significant
approximations [15–21]. For instance, scattering errors in spectrophotometric absorption meters
have been assessed using Monte Carlo methods in several studies including Kirk [15], Stramski
and Piskozub [16], and McKee et al. [17]. Piskozub et al. [18] found that multiple scattering has
a negligible effect on attenuation measurements. Some recent research efforts with Monte Carlo
modelling have been directed towards backscattering sensors. Doxaran et al. [19] simulated two
backscattering sensors and found that the ECO-BB instrument (Sea-Bird Sci) is less affected by
scattering errors than HydroScat instruments (HOBI Labs), due to a shorter path length (0.02 m,
compared to 0.10 m). Vadakke-Chanat et al. [20] also conducted an assessment of the ECO-BB
instrument with Monte Carlo modelling and reproduced many of the findings in Doxaran et
al. [19], but the effective path length found for the instrument differs between both studies and
the user manual. Recently, another study combining direct modeling of light propagation and
Monte Carlo simulations of the HydroScat and ECO-BB instruments was published [21]. Here,
angular response functions were derived for both instruments, and ECO-BB was found to have an
especially large angular full width at half maximum, which can be a significant error source, while
multiple scattering due to long path lengths is the main uncertainty for the HydroScat instruments.
Monte Carlo modelling has also been applied to other aspects of marine and atmospheric optics,
including radiative transfer, underwater optical wireless communication, and LIDAR [22–24].

The effect of multiple scattering on VSF instruments has been studied less than the error
for backscattering sensors. In a recent study [14], we presented a Monte Carlo simulation
developed to analyze and quantify multiple scattering errors in the LISST-VSF. The simulation
was compared to experimental measurements using 508 nm polystyrene beads and Arizona
test dust as the scattering agents. The simulation was found to accurately predict experimental
measurements for the samples investigated. When comparing simulation to experimental results,
the relative error did not exceed 13% for the scattering coefficient and 10% for the phase function
for optical depths < 4.9, where a considerable fraction of these errors can be attributed to errors
in the experimental measurements, e.g. detector saturation. Comparing simulated and theoretical
VSF, i.e the relative measurement error originating from multiple scattering, the error was found
to depend on the phase function of the sample volume. The relative error in the scattering
coefficient reached 100% at an optical depth of 2.8 and 2.0 for the 508 nm polystyrene beads and
Arizona test dust samples, respectively.

While the simulation is proven accurate, it suffers from long computation time due to the
fact that most phase functions in natural waters are very forward peaked. Thus, a significant
number of photons must be simulated in order to achieve low variance results in the backward
direction. In this study, we present three variance reduction methods (VRMs) that have been
implemented to increase the efficiency of the simulation. The VRMs are called mean free path
transform (MFPTR), detector directional importance sampling (DDIS) and splitting, and are
presented in section 2.2. Additionally, the simulation is used to further investigate the effects of
multiple scattering on LISST-VSF measurements, especially for realistic phase functions. By
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using a range of different Fournier-Forand (FF) phase functions [25,26], we analyze how the
errors originating from multiple scattering depend on the phase function, scattering coefficient,
and absorption coefficient of the sample volume. This is presented in section 3.2.

2. Methods

2.1. Monte Carlo simulation

The Monte Carlo simulation presented in [14] is a straight forward algorithm where the individual
photons are tracked through the sample volume until they cross the sample volume border or
reach a detector. There are two separate detectors in the LISST-VSF instrument. The geometry of
the simulation is presented in Fig. 1, and a more detailed description of the simulation geometry
is given in [14]. A set of ring detectors are located at the bottom of the sample volume chamber,
detecting light at scattering angles 0.01-15◦, while scattering angles 15-150◦ are detected by a
rotating eyeball detector. The ring detectors are simulated as a circular surface, where photons
crossing this surface are detected and sorted according to their angle of incidence. The eyeball
detector is simulated as a ring torus, where crossing the surface area corresponds to detection by
the eyeball. The path length between each scattering event is sampled from a distribution derived
from the probability density function (PDF) calculated from the beam attenuation f (l), and the
scattering angle θ is sampled from a distribution derived from a PDF calculated from the phase
function f (θ).

Fig. 1. Simulation geometry. The sample volume is limited to the cylinder. The detector
areas are colored in blue, where the disk represents the set of ring detectors, and the ring
torus represents the eyeball detector. The solid green arrow represent incident laser beam,
while the dashed green arrows represent scattered light.

2.2. Variance reduction methods

The VRMs presented here are based on manipulating the natural scattering behaviour of the
photons. Photons are given a statistical weight, initially w0 = 1, which can be adjusted in order to
reflect the alteration in the natural scattering behavior. A common example of this is to account
for absorption of the sample volume by scaling the weight at each scattering event to reflect
the probability of absorption. In this case, the weight after a scattering event is calculated as
wi+1 = wi · b/c, where wi is the weight before the scattering event. The first VRM presented in
this study is called mean free path transform (MFPTR). Usually, this method is used to stretch the
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path length in order to probe deeper into a medium (e.g. in Mainegra-Hing and Kawrakow [27]).
Here, the method is applied to limit the path length such that all photons are scattered within the
sample volume, i.e. the transmission is zero. Thus, all photons interact with the sample volume,
increasing the simulated signal at the detectors. The second VRM presented, addresses the issue
of poor statistics in the backwards direction. The method is based on the work presented in a
study by Buras and Mayer [22], and is called detector directional importance sampling (DDIS).
In essence, DDIS increases the number of photons scattered towards the detector by giving each
photon a probability of being turned directly towards the detector prior to sampling a scattering
angle. A consequence of this method is the possibility of photons accumulating weight, which
can result in spikes in the detected signal. Thus, the third method presented in this study is
implemented to avoid large photon weights and is called splitting [22,27,28]. When the photon
weight becomes larger than a threshold value, the photon is split into N identical parts which are
propagated individually from the position of splitting. Thus, the weight is distributed to more
than one detection angle, avoiding spikes in the signal.

2.2.1. Mean free path transform (MFPTR)

Depending on the scattering coefficient of the sample in question, the fraction of transmitted
photons can be large, meaning that a lot of simulation time is spent initiating photons that do not
contribute to the detected signal. Here, we have applied MFPTR to the path length distribution
before the first scattering event so that all photons are scattered within the sample volume. This
is achieved by defining the path length PDF as

fmod(l) =
1
L

⇒

∫ L

0
fmod(l)dx = 1, (1)

where L = 15 cm is the length from top to bottom of the cylindrical sample volume and the path
length l is sampled from the uniform distribution [0, L]. Now, we need to modify the weight of
the photon to reflect the change in the path length distribution. The initial weight of the photon is
w0 = 1 and the new weight w is calculated as

w = w0
f (l)

fmod(l)
= w0

ce−cl

1/L
, (2)

where f (l) = ce−cl is the PDF according to Beer’s law. Thus, the new weight is simply the initial
weight times the ratio of probabilities of sampling the path length l. After the first scattering
event, all path lengths are sampled according to Beer’s law.

2.2.2. Detector directional importance sampling (DDIS)

In general, the signal is much higher for the ring detector than for the eyeball detector. Thus,
DDIS is only applied to the eyeball detector, i.e. the probability of being scattered towards the
eyeball detector is increased and the probability of being scattered towards the ring detector is
decreased. Due to the complexity of the detector geometry in this simulation, the implementation
of DDIS is not straight forward. First, a random azimuth angle ϕ is sampled from a uniform
distribution [0, 2π]. Once an azimuth angle has been sampled, all possible scattering directions
lies in a plane defined by the sampled ϕ. By determining where this plane intersects the eyeball
detector (ring torus), we find the angles at which the photon is scattered directly towards the
eyeball detector. This is illustrated in Fig. 2(a) for a photon at scattering position P and direction
prior to scattering indicated by the red arrow. The angles between the red arrow and the two
yellow arrows in Fig. 2(a) indicate the scattering angles θrot,1 and θrot,2 giving two possible
scattering directions directly towards the detector. Now, instead of letting it follow the natural
path, the photon is given a probability ϵ of being redirected towards the eyeball detector through
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either the angle θrot,1 or θrot,2 (chosen with equal probability). Then the scattering angle θddis is
sampled according to a PDF fddis(θddis) tailored for the specific geometry in this simulation (see
discussion below). Thus, the final scattering angle becomes

θ = θrot + θddis. (3)

By contrast, with a probability of (1-ϵ), the photon is scattered naturally, i.e. according to
the phase function of the sample volume. In order to account for this alteration of the natural
scattering behaviour, the weight of the photon must be scaled according to the function

wi+1 = wi
f (θ)

(1 − ϵ)f (θ) + ϵ fddis(θddis)
, (4)

where wi and wi+1 is the weight of the photon before and after scattering, respectively. The
numerator of the fraction in Eq. (4) is the PDF corresponding to natural scattering, while the
denominator is the PDF corresponding to scattering by the use of DDIS. Thus, the new photon
weight wi+1 is simply the photon weight before scattering multiplied by the ratio of probabilities
between natural scattering and scattering with DDIS. For instance, if the probability of scattering
to a given angle θ using DDIS is twice the probability of naturally scattering to the same angle,
the weight of the photon after scattering to this angle becomes wi+1 =

1
2 wi. Now we need to find

a suitable PDF fddis(θddis) for our specific geometry. One could for instance use a PDF calculated
from a very forward peaked phase function, so that those photons that are turned towards the
detector and scattered according to this PDF would have a very high probability of being scattered
towards the detector. However, in order to simplify the VRM, we choose a PDF that is constant
within a small interval ∆θ in the forward direction and zero everywhere else. Thus, the PDF can
be expressed as

fddis(θddis) =
1
∆θ

, (5)

so that ∫ ∆θ

0
fddis(θddis)dθ =

∫ ∆θ

0

1
∆θ

dθ = 1 (6)

Next, we want to choose ∆θ so that we maximize the number of photons being scattered
towards the detector, without compromising the total intensity (weight) detected. Since we know
the distance D from the photon position P to the eyeball detector, we can calculate the maximum
angle at which the photon can scatter away from the center of the detector and still be within the
detector area, see Fig. 2(b),

θmax = tan−1 d
2D

, (7)

where d is the diameter of the eyeball detector. Thus, choosing ∆θ = 2θmax, ensures that the
photon is scattered towards the detector (see Eq. (3)), where the scattering angle θddis is sampled
from the uniform distribution [−θmax, θmax]. This is also the smallest ∆θ we can choose. While a
smaller ∆θ also ensures that the photon is scattered towards the detector, the weight becomes
smaller, see Eq. (4). Thus, you get the same number of photons scattered towards the detector,
but with a smaller average weight. Choosing a larger ∆θ will give the correct result, as the
increase in average weight is balanced by the decreased probability of being scattered towards
the detector. However, this results in less detected photons and poorer statistics. There is also
a chance that the sampled azimuth angle ϕ, results in a scattering plane that does not intersect
with the ring detector, i.e. there are no scattering angles θ resulting in scattering towards the
eyeball detector. In this case, we simply choose ∆θ = π and sample the scattering angle from the
uniform distribution [0, π]. Choosing a probability ϵ = 0.2 of being turned towards the eyeball
detector prior to scattering, has proven to work well for all samples investigated in this study.
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This results in a considerable increase in photons sent towards the detector, while maintaining a
large enough portion to explore the sample volume, providing good statistics for the multiple
scattered photons.

Fig. 2. Illustration of the geometry applied to find (a) the scattering direction resulting in
the photon being sent directly towards the eyeball detector (blue ring torus), and (b) the
maximum angle the photon can scatter away from the center of the detector while still being
detected.

2.2.3. Splitting

As mentioned, applying DDIS may result in photons accumulating weight, causing spikes in the
detected signal. In order to avoid this, a photon is split into N identical parts when the photon
reaches a weight larger than a threshold value. When the photon is split, the weight of each part
can be calculated as

wsplit = w/N. (8)

The N parts are then propagated individually from the position where the original photon was
split and in the same scattering direction. For the results presented in Fig. 3, the threshold weight
was chosen to be wmax = 1, and N was chosen to be 2 times the floor of w (N = 2⌊w⌋), so that the
photon is split into a minimum of two parts. The threshold value can be set to wmax = 1 because
the MFPTR results in reduced weight before the first scattering event. However, this assumption
may fail when the optical depth becomes very large.

2.3. Analysing simulated VSFs

Using the improved MC simulation described in section 2.2, a range of different sample volumes
were simulated using FF phase functions with scattering coefficients b ranging from 0.05 to
20 m−1. The wide range of different phase functions used enables the investigation of the
multiple-scattering errors dependency on the phase function. The FF phase function is an
approximate analytic expression of the phase function for an ensemble of spherical particles
[25,26]. It has been extensively used for modeling the VSF of natural waters, usually providing a
better fit than the simple one-term Henyey-Greenstein phase function. The function takes two
parameters n and m, where n is the refractive index of the particles and m defines the particle
size distribution according to the inverse power-law f (D) ∝ D−m, where D is particle diameter.
The quantitative investigation of the multiple-scattering errors is performed by calculating the
relative error for the scattering coefficient b, backscattering coefficient bb and phase function
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p(θ). The relative error in the scattering coefficient is calculated as

eb =
|bsim − btrue |

btrue
, (9)

where bsim and btrue are calculated from the simulated VSF and the single-scattering calculated
VSF, respectively. In order to better compare simulated and true scattering coefficient, they are
both calculated for the angular measurement range of the LISST-VSF, so that

b = 2π
∫ 150◦

0.1◦
β(θ) sin θdθ. (10)

Thus, btrue is in fact slightly smaller than the true scattering coefficient, but equal to the
scattering coefficient one would measure given a perfect measurement, i.e. no multiple scattering.
The relative error ebb in the backscattering coefficient is calculated similarly to the error in the
scattering coefficient, where the backscattering coefficient bb is calculated according to Eq. (10),
but over the range 90-150◦.

The relative error of the phase function p(θ) = β(θ)/b is calculated as the mean relative error
across the range 0.1-150◦,

ep =
1
K

K∑︂
i

|psim(θi) − ptrue(θi)|

ptrue(θi)
. (11)

The simulated phase functions are measured at log-spaced angles for θi<15◦, similar to
LISST-VSF measurements. To avoid bias in the forward scattering direction, the data was
interpolated to evenly spaced angles with a step size of 1◦, so that K = 150.

The errors are analyzed in terms of the optical depth τ = cL and asymmetry parameter g. Here,
L = 15 cm is the length of the cylindrical sample volume. As all samples are simulated with
absorption a = 0 m−1, we have τ = cL = bL. The asymmetry parameter g is a measure of how
forward peaked the phase function is, and is calculated as the mean cosine of the phase function
[29]

g = ⟨cos θ⟩ = 2π
∫ π

0
p(θ) cos θ sin θdθ. (12)

The asymmetry parameter ranges from g = 0 for isotropic scattering and approaches g = 1 for
very forward scattering phase functions.

3. Results and discussion

3.1. Efficiency of VRMs

The efficiency of the VRMs is tested by running the simulation for 1000 s, both with and without
the VRMs. A FF phase function with parameters n = 1.05 and m = 3.5 was used for this purpose,
simulated with scattering coefficients b = 0.05, 0.17, 0.55, 1.8, 6, and 20 m−1. This phase
function is used due to its large asymmetry parameter (low scattering in the backward direction),
so that the increase in efficiency is expected to be large. In order to evaluate the efficiency of the
different VRMs, the VSF obtained with the different VRMs are compared to a reference VSF,
which is obtained using no VRMs and a very long simulation time (t>24 hours). The resulting
simulated VSFs from the efficiency test are presented in Fig. 3. The parameters used for the
simulations with VRMs are ϵ = 0.2 and wmax = 1.

It becomes immediately clear from looking at the plots that the applied VRMs result in major
noise reduction. This is especially evident in the backward direction and for low scattering
coefficients. Also, the new algorithm (with VRMs) reproduces the results obtained with the old
algorithm (without VRMs). As the old algorithm has been validated in a previous study (see
[14]), the new algorithm is indirectly validated. The discontinuity in the simulated VSFs seen at
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Fig. 3. Simulated VSF for a total simulation time of 1000s (black) compared to a reference
VSF which is simulated without any VRMs for a very long time (t>24 hours). The VSF is
plotted for six scattering coefficients b, increasing from 0.05 (bottom) to 20 (top). The insets
show the volume scattering function plotted from 0 − 20◦ where both the x- and y-axis are
in log scale. (a) Simulation without VRMs. (b) simulation with VRMs.

θ = 15◦ and large scattering coefficients is due to the abrupt decrease in single-scattering path
length going from the ring detector (l = 15 cm) to eyeball detector (l = 10.3 cm), where a longer
path length results in more multiple scattered photons and larger errors [14].

In order to quantify the improvement, we calculate the average relative error in the VSFs over
the entire measurement range as

eβ =
1
K

K∑︂
i

|βsim(θi) − βref(θi)|

βref(θi)
, (13)

where K is the number of measurement points (same as LISST-VSF), and βsim and βref are
simulated and reference VSF, respectively. The VRMs are compared by running the simulation
with the different methods applied. The results are plotted in Fig. 4, where eβ is plotted against
the optical depth τ = cL. In addition to the 1000s simulations, VSFs simulated with no VRMs
and for 10000s (10x the time) are included to better quantify the improvement.

From Fig. 4(a), one can see that the DDIS is by far the most important method for reducing the
variance in the simulated VSFs. In fact, comparing the simulation with DDIS to the simulation
without any VRMs and a computation time of 10000s, we see that applying DDIS results in
over 10x increased efficiency for the five smallest optical depths. At the smallest optical depths,
applying DDIS results in much more than 10x efficiency, while it is similar to 10x efficiency at
an optical depth of 3. When no VRMs are applied, the relative error decreases with increasing
optical depth. This is due to the increased number of photons interacting with the sample
volume, and the increased number of multiple scattered photons which increases the probability
of scattering to larger angles, resulting in better statistics in the backward direction. Applying
only MFPTR, the relative error is significantly decreased at small optical depths compared to the
VSF with no VRMs. This is due to the large portion of photons that would pass straight through
the sample volume without interaction. As the optical depth increases, this VRM becomes less
efficient.

A cropped version of Fig. 4(a) is presented in Fig. 4(b), making it easier to visually differentiate
the plots where DDIS is applied. Comparing splitting to MFPTR (combined with DDIS), one
can see that MFPTR is more efficient at small optical depths, approximately halving the relative
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Fig. 4. Average relative error between simulated VSFs with a running time of 1000s and
a low-variance simulation used as reference. (a) Comparison of VSFs simulated with no
VRMs (blue), MFPTR (yellow), DDIS (purple), DDIS and splitting (green), DDIS and
MFPTR (orange), and with all VRMs (black). (b) Zoomed in on the lowest error plots.

error for the smallest optical depth compared to when only DDIS is applied. As the optical
depth increases, the splitting method becomes more important for the overall efficiency. This is
an expected result, as larger optical depths lead to increasing number of scattering events per
photon, hence more weight accumulation. Applying all VRMs results in the overall best results,
having the lowest or close to lowest relative error for all optical depths. The same values for the
parameters ϵ and wmax are used for all optical depths shown in Fig. 4. Thus, the VRMs are not
optimized and the efficiency of the different methods is expected to improve by tailoring these
parameters to the different optical depths. The phase function is also expected to influence the
efficiency of the different VRMs and optimal values of the VRM parameters. For instance, the
efficiency improvement is expected to be smaller for phase functions with more scattering in the
backward direction, as the simulation without VRMs would perform better.

3.2. Multiple scattering errors

Two examples of simulated phase functions are presented in Fig. 5, representing opposite ends
of the spectrum of g for the simulations performed in this study. In both examples, it can be
seen that the deviation between simulated and true VSFs increases with increasing scattering
coefficient (from bottom spectrum to top spectrum), where the deviation is solely due to multiple
scattering.

3.2.1. Phase function dependency

In order to analyze how the multiple scattering error depends on the optical depth and phase
function, the errors eb and ebb and ep are plotted as a function of τ and g. A contour plot for eb
is presented in Fig. 6, where all FF phase functions investigated are included. A second x-axis
is added to the top of the graph, displaying the x-values in terms of the scattering coefficient b.
The phase functions simulated have parameters m ranging from 3.5 to 4.5 in steps of 0.5, and
parameters n ranging from 1.05 to 1.35 in steps of 0.05, resulting in a total of 21 phase functions.
The phase functions are simulated with the same scattering coefficients as for the VRMs test.

From Fig. 6, one can see how the relative error increases diagonally from small τ and g to
large τ and g. As expected, the multiple scattering error increases with increasing τ, but there is
also a considerable increase with g as well. For the largest g, corresponding to n = 1.05 and
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Fig. 5. VSF plotted for simulation with all VRMs applied (black) and true values (green).
The VSF is plotted for six scattering coefficients b, increasing from 0.05 (bottom) to 20
(top). (a) FF phase function with parameters n = 1.05, m = 3.5 (b) FF phase function with
parameters n = 1.30 and m = 4.5. The insets show the volume scattering function plotted
from 0 − 20◦ where both the x- and y-axis are in log scale.

Fig. 6. Contour plot of the relative error eb in the scattering coefficient. The error is plotted
as a function of optical depth τ (or scattering coefficient b) and asymmetry parameter g. The
x- and z-axis (color-axis) are plotted in log scale, while the y-axis is linear. The simulation
data is marked as white dots. The black lines indicate a 1%, 10% and 100% relative error,
respectively, going from left to right.
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m = 3.5, the relative error in b increases from 1.4% at τ = 0.0075 (b = 0.05) to 494% at τ = 3
(b = 20). An error of 10% is observed at approximately τ = 0.15 (b = 1) while the error is above
100% for τ>1 (b>7). Looking at the dependency on g we can see that, for τ = 3, the relative
error increases from 55% at g = 0.34 to 494% at g = 0.96. The dependency on g can largely be
explained by the LISST-VSF geometry [14]. Because the radius of the cylindrical sample volume
is only 2 cm, photons scattered at large angles may exit the sample volume with relative short
path lengths. On the other hand, photons scattered at small angles may travel along the z-axis,
which has a length of 15 cm. Thus, very forward peaked phase functions will have more photons
traveling a longer path length within the sample volume, resulting in more multiple scattered
photons and larger errors.

Some distortions can be observed in the top-left corner, caused by a sudden increase in the
relative error for some of the phase functions. This is especially apparent at g = 0.83 and
g = 0.91, where sharp horizontal lines can be seen. Here, there are two different phase functions
but with a similar g, such that they cannot be visually separated in the plot. It is not clear why
this abrupt change in relative error only occurs for small optical depths. However, on closer
inspection we find that all the phase functions with increased relative error have the smallest
parameter m = 3.5, where a small m is related to a large VSF in the extreme forward direction.
This suggests that extremely forward peaked phase functions are more sensitive to multiple
scattering errors at small optical depths. Similarly to Fig. 6, contour plots are plotted in Fig. 7
and 8 for ebb and ep, respectively.

Fig. 7. Contour plot of the relative error ebb in the backscattering coefficient. The error is
plotted as a function of optical depth τ (or scattering coefficient b) and asymmetry parameter
g. The x- and z-axis (color-axis) are plotted in log scale, while the y-axis is linear. The
simulation data is marked as white dots. The black lines indicate a 1%, 10% and 100%
relative error, respectively, going from left to right.

The plot of ebb displays the same trend seen for eb in Fig. 6, with ebb increasing diagonally
from small τ and g to large τ and g. For the largest g, the relative error increases from 0.6% to
828%, while for the largest optical depth, the error increases from 74% to 828%. Generally, the
error ebb is larger than eb, which can be explained by the large difference in phase function in
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Fig. 8. Contour plot of the relative error ep in the phase function. The error is plotted as a
function of optical depth τ (or scattering coefficient b) and asymmetry parameter g. The x-
and z-axis (color-axis) are plotted in log scale, while the y-axis is linear. The simulation data
is marked as white dots. The black lines indicate a 1% and 10% relative error, respectively,
going from left to right.

the forward and backward direction. As more photons are scattered multiple times, the angular
distribution becomes more random. Thus, multiple scattered photons are more evenly distributed
over the angular spectrum than the single scattered photons. Adding a photon to an angle where
the single-scattering signal is low results in a larger relative increase in signal than adding a
photon to an angle where the single-scattering signal is high. Thus, the relative increase in
detected photons is larger in the backwards direction, resulting in larger backscattering errors.
The distortions seen in Fig. 6 are not observed for the backscattering coefficient, indicating that
the distortions are indeed related to forward scattering.

The same diagonal trend is observed for the error ep(θ), as for eb and ebb . In general, the
error ep is much smaller than the errors in eb and ebb . This is because the phase functions is
normalized, such that the error is only related to the shape of the VSF and not the magnitude. For
the largest g, the relative error increases from 1% to 45%, while for the largest optical depth, the
error increases from 9% to 45%. For τ<0.1, the relative error ep does not increase much, which
is due to noise being the dominating source of error when the difference between simulated and
true VSF becomes small. This is not the case for eb and ebb , as both b and bb are calculated as
integrals over an angular range. Thus, fluctuations in the signal are evened out. The plot in Fig. 8
also displays the same distortions seen in Fig. 6, most notably at g = 0.91.

In order to better demonstrate the effect of the phase function on the multiple scattering error,
the relative error eb is plotted in Fig. 9 as a function of only g at the largest optical depth τ = 3.
Here, we have also included a set of Henyey-Greenstein phase functions, which are much less
peaked in the extreme forward direction [29].

From the plot, we can see that the different FF phase functions follow slightly different trend
lines, depending on the parameter m. For the phase functions investigated here, the phase
functions with m = 4.0 have the smallest error for similar asymmetry parameters g, while phase
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Fig. 9. Relative error eb in the scattering coefficient plotted as a function of asymmetry
parameter g. The error is plotted for a variety of FF phase functions with parameter m = 3.5
(blue), m = 4.0 (red) and m = 4.5 (yellow), in addition to a set of Henyey-Greenstein
functions (purple).

functions with m = 3.5 and m = 4.5 seem to have similar errors. However, this cannot be
concluded due to the small overlap in g for the m = 3.5 and m = 4.5 phase functions. Comparing
the FF to the Henyey-Greenstein phase functions, we see that the errors are significantly smaller
for the latter. This is due to the very forward peaked nature of the FF phase functions, compared
to Henyey-Greenstein phase functions. The difference in error between Henyey-Greenstein and
FF phase functions is largest for small g, and decreases with increasing g. The results presented
here demonstrates that, while the asymmetry parameter g is a good indicator for the size of the
error, details in the phase function may influence the error significantly.

3.2.2. Absorption dependency

The results presented in the previous section were all obtained with an absorption coefficient
of a = 0 m−1. In Fig. 10, the error eb is plotted for a phase function simulated with a = 0c,
a = 0.2c and a = 0.4c, in order to investigate the effect of absorption. The same set of attenuation
coefficients, i.e. optical depths, is used for each absorption coefficient. Thus, the only difference
between each simulation set is the ratio of scattering to absorption.

In Fig. 10(a), the error in the scattering coefficient eb is plotted against the attenuation coefficient
c. Here, we see that eb decreases with increasing absorption, which is expected as the scattering
decreases, hence the number of multiple scattered photons decreases. The difference in error
between the different values of a increase with increasing optical depths. At the smallest optical
depth, the errors at a = 0c and a = 0.4c are 1.43% and 1.28%, respectively, while at the largest
optical depth, the errors are 494% and 180%. In Fig. 10, eb is plotted against the scattering
coefficient b. Here, it is clearly demonstrated that the multiple scattering error is only dependent
on b. Thus, when evaluating the multiple scattering error in a measurement, it is better to use the
scattering coefficient, or the size bL, rather than the attenuation coefficient or the optical depth
τ = cL.
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Fig. 10. The relative error eb in the scattering coefficient plotted as function of (a) attenuation
coefficient c, and (b) scattering coefficient b. The error is plotted for an absorption of a = 0c
(blue), a = 0.2c (orange) and a = 0.4c (yellow).

4. Summary and conclusion

We have performed an extensive investigation into the errors originating from multiple scattering
for the LISST-VSF instrument. Several different Henyey-Greenstein and FF phase functions
have been simulated, with scattering coefficients b ranging from 0.05 to 20 m−1, and with
asymmetry parameters g ranging from 0.34 to 0.96. The results show that errors in the scattering
coefficient b, backscattering coefficient bb, and phase function p(θ), depend heavily on both the
scattering coefficient and asymmetry parameter. We find that multiple scattering errors may only
be considered negligible (<10%) when the scattering coefficient is smaller than 1 m−1. The
largest error is observed for the backscattering coefficient, where the error ranges from 74% to
828% for the different phase functions at an optical depth of τ = 3. For the scattering coefficient,
the error ranges from 55% to 494%, and the phase function from 9% to 45%. The results also
show significant differences between Henyey-Greenstein and FF phase functions, where the error
is considerable larger for the FF phase functions for similar asymmetry parameters. We conclude
that this is due to the extremely forward peaked shape of the FF functions compared to the
Henyey-Greenstein functions, resulting in a longer average distance traveled within the sample
volume and more multiple scattered photons. This observation demonstrates the importance
of the shape of the phase function when measuring the VSF with the LISST-VSF instrument.
The effect of absorption was also investigated. We found, when the error is plotted against
optical depth, the error decreases with increasing absorption. However, when plotted against the
scattering coefficient, the error was independent of absorption, i.e. the error is only dependent on
the scattering coefficient for a given phase function.

The LISST-VSF has an angle-dependent path length varying between 10.3 and 17.5 cm, which
accentuates multiple scattering effects on the measured VSF in turbid waters, in particular after
applying the absolute calibration [13]. This does not mean other VSF meters are not affected
by multiple scattering. The MASCOT and MVSM instrument, two VSF meters that have been
widely used for modern era VSF measurements, have reported constant path lengths of 20.0 cm
[30,31]. The longer path lengths imply that the multiple scattering errors can be significant for
b>1 m−1. This can have implications for historical data sets in waters with moderate-to-high
turbidity. However, we should note that the results in this study are instrument-specific to the
LISST-VSF.
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A set of variance reduction methods has been applied to the previously developed Monte
Carlo simulation, resulting in drastically reduced computation time. This enables a fast method
for analysing errors in the measured VSFs. The most important of these methods is detector
directional importance sampling (DDIS), where the photons have an increased probability of
being scattered towards the eyeball detector. The applied methods result in over 10 times
increased efficiency for optical depths below 0.9, and similar to 10 times increased efficiency up
to an optical depth of τ = 3. The efficiency is expected to be further enhanced by optimizing
the parameters used for the variance reduction methods. The efficiency is also expected to
depend on the phase function, where the improvement in efficiency is expected to increase with
increasing asymmetry parameter. This is because the simulation without variance reduction
methods achieves a very low signal in the backward direction when the asymmetry parameter is
large. For small asymmetry parameters, many photons are naturally scattered in the backward
direction, reducing the need for DDIS. The implementation of the detector directional importance
sampling in this simulation is geometry specific, however, the method of implementation might
be relevant for other cases.

For our future work we aim to correct the errors arising from multiple scattering in the
LISST-VSF instrument. The main goal is to correct the VSF over the entire LISST-VSF measuring
range, thus correcting both the scattering coefficient, backscattering coefficient, and phase
function at the same time.
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