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Self-explanation, a learning strategy where students explain to themselves the steps taken in a worked
example, is an effective learning strategy in early cognitive skill acquisition. However, many physics
students produce self-explanations of low quality. There is also a lack of guidelines for what students
should seek to explain when studying worked examples. Therefore, the overarching purpose of this article
is to investigate how we can improve students’ self-explanations of worked examples. We pursue the
following two general research questions: (1) What knowledge representations should students seek while
self-explaining worked examples to maximize their learning? (2) Can retrieval practice of physics
principles and their conditions of application potentiate students’ learning from self-explaining worked
examples? In two studies (n ¼ 18 and N ¼ 54), we qualitatively categorized and quantified the students’
written self-explanations. Our results indicate that to produce useful knowledge, self-explanations of the
physics model in worked examples should explain what principle is used, how the principle is set up,
and how the conditions of application are met for the principle, while explanations of the mathematical
procedures should contain action descriptions, goals, and conditions (r ¼ 0.30–0.50). Through a
quasiexperimental (N ¼ 57) and an experimental (N ¼ 54) test, we found evidence that retrieval practice
of physics principles and their conditions of application before self-explanation can have a medium-sized
effect on post-test problem-solving scores and that it can increase the quality of students’ self-explanations.
Using retrieval practice to potentiate learning from more complex learning strategies is a novel and
promising approach to improve physics students’ learning.
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I. INTRODUCTION

Learning a new cognitive skill is difficult. Basic physics
is considered particularly difficult by students required to
take it as a part of their degree [1,2]. It has been shown that
a mix of worked examples and problem solving speeds up
cognitive skill acquisition in mathematical domains and
physics [3–7] and reduces the effort required from novice
students [8]. The strong evidence for examples being
essential in learning cognitive skills has triggered much
research into how we learn from examples, how to structure
the examples and instruction, and what the learning mech-
anisms are. Self-explanation—a learning strategy where
students explain to themselves the steps taken in a worked
example—has emerged as an effective strategy from this
research [7,9–11]. However, the effects found from research
on self-explanation are still diverging [12–14], which signals

a persistent need for knowledge about how and when self-
explanation is effective.
Research has been done on what students actually self-

explain and how this affects later performance [9,15]. In a
landmark paper on self-explanation, Chi et al. [9] found
that the best self-explainers refine and expand conditions
for actions, explicate and infer additional consequences
for actions, impose goals for and purpose of actions, and
give meaning to quantitative expressions. Renkl [15]
further explored individual differences in self-explanation
of worked examples in a statistics context and found that
there were two effective styles of study: Principle-based
explainers typically explicated goals and principles in their
explanations (r ¼ 0.38 with post-test); anticipative reason-
ers engaged in anticipative calculation of solution steps
before checking the solution (r ¼ 0.49 with post-test).
Research has also been done on issues such as how the
worked examples should be structured [16–18]; whether
eliciting self-explanation is effective [12,19,20]; and how
instruction with worked examples should be structured
[3,14,21], factors students have little control over. Despite
this extensive body of work, there is still a lack in the
literature of prescriptions for what the students themselves
should do when self-explaining worked examples.
Specifically, what are the knowledge representations
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(cognitive representations of the environment, i.e., of
problem solutions) students should seek to build when
engaging in self-explanation, and how does this depend on
circumstance and type of test? The answers to these
questions can help educators facilitate effective learning.
Furthermore, improving students’ strategic knowledge for
studying worked examples can potentiate their knowledge
acquisition [22]. To achieve this, students need explicit
instruction in when, why, and how to self-explain worked
examples and ample opportunities to put the instruction
into practice [23].
This ties in with other research [24–26], which suggests

that the knowledge generated during self-explanation is
dependent on the student’s access to relevant prior knowl-
edge. Research also shows that having stronger memories
for basic knowledge improves working memory capacity
and makes it easier to acquire more complex knowledge
[27–30]. There is also research suggesting that distributed
retrieval practice of physics principles may affect exam
results [31]. These studies inspired us to investigate
whether retrieval practice—a proven learning strategy for
improving access to knowledge [32,33]—can potentiate the
learning effects from self-explanation.
The overarching purpose of this article is to investigate

how we can improve students’ self-explanations of worked
examples in physics so that students learn more and learn
deeper. We pursue two general research questions: (1) What
knowledge representations should students seek while self-
explaining worked examples to maximize their learning?
(2) Can retrieval practice of physics principles and their
conditions of application potentiate students’ learning from
self-explaining worked examples? We addressed these
questions through two studies.
Study 1 was an exploratory analysis of data from two

prior experiments—a self-explanation experiment and a
retrieval practice experiment—done one week apart
towards the end of the semester. The first research question
for study 1 was whether retrieval practice of relevant
physics principles affected post-test results; see Sec. I. C
for the theoretical background. The second research ques-
tion for study 1 was whether principles, goals, and
conditions of application—see Secs. I. B. 2 and I. B. 3
for detailed explanations—are important elements to
include in self-explanations as measured by their predic-
tiveness for post-test results.
Study 2 was done to experimentally test the effect of

retrieval practice on post-test performance (randomized
controlled trial) and see whether it affected how students
self-explained and solved problems (hypotheses 1–3 in
study 2, see Sec. III. A. 1). We also further investigated how
the different categories of self-explanations (coded and
categorized according to which self-explanation elements
were included, see Secs. II. A. 4 and III. A. 6) predicted
post-test performance. Study 2 differed from study 1 in that
it included more participants (from the subsequent year’s

cohort) doing self-explanation, involved new physics con-
cepts, and that the explanations of the physics model—
consisting of physics principles that describe the situation
or predict changes in the system—were separated from the
explanations of the mathematical procedures (hypotheses
4–5 in study 2, see Sec. III. A. 2). See Supplemental
Material [34] for examples of separating the physics model
from mathematical procedures.
This article draws on empirical results from the literature,

but we base most of our hypotheses and analysis of the
written self-explanations on Anderson’s adaptive control of
thought-rational, ACT-R [35–37]. A short description of
this theory is therefore included in Sec. I. A.

A. The ACT-R theory

ACT-R models the human cognitive architecture using
basic psychological research. It provides precise predictions
for the performance and learning of both declarative and
procedural knowledge. More recent versions of ACT-R have
a strong focus on learning cognitive skills from examples
[35,38,39]. Some researchers have already based much
of their analyses of the self-explanation effect on ACT-R,
e.g., [40]. ACT-R has also been used to investigate the effects
of retrieval practice on memory and fluency [32,41].
According to ACT-R, the two types of knowledge are

declarative knowledge and procedural knowledge [37].
The unit of declarative knowledge is the chunk (e.g.,
A × B ¼ C). The unit of procedural knowledge, and hence
cognitive skill, is the production rule (e.g., IF the goal is to
multiply A × B, and there is a fact stating that A × B ¼ C,
THEN set the answer to C). Both units are very small [37]
due to our inherent working memory limitations, but larger
declarative units can be formed through hierarchical rela-
tionships [42]. Declarative knowledge is flexible, acces-
sible, and verbalizable, but it is slow for solving problems
except when the solution is directly retrievable [39].
Procedural knowledge is specialized, efficient, and non-
verbalizable. Self-explanation of worked examples can
produce declarative knowledge of procedural actions.
However, this is not the same as procedural knowledge.
It must be retrieved and interpreted during problem solving,
slowly being turned into procedural knowledge with
problem-solving practice [37].
We want to figure out what exactly the students should

try to learn when studying worked examples, or, in other
words, what types of explanations we should teach them
[43]. Some initial ideas come from the structure of the
production rule in ACT-R. It consists of a goal, an action,
and conditions, and it usually entails retrieval of one or
more declarative knowledge chunks based on the condi-
tions [36,37]. In physics, these chunks will often be physics
principles of various forms. Hence, we tentatively propose
four basic elements for inclusion in self-explanation (SE
elements) of a solution step: Actions, goals, principles, and
conditions. The rest of this introduction elaborates on the

VEGARD GJERDE et al. PHYS. REV. PHYS. EDUC. RES. 18, 010136 (2022)

010136-2



theoretical and empirical basis for each SE element,
followed by a discussion of retrieval practice as a promising
adjunct to self-explanation.

B. Four elemental components of self-explanations

1. SE-Element 1: Actions

We define an action as some procedural step taken in a
worked example. Procedural skill is intricately tied to
actions, both cognitive (e.g., calculating) and motoric
(e.g., writing the answer). Worked examples mostly consist
of action steps, with some examples also including instruc-
tional explanations. To learn declarative knowledge of the
procedural actions, one must necessarily encode these
actions (e.g., that mass has been removed on both sides
of the equation) because further explanation of a solution
step centers around the action [9]. Descriptions (of actions)
are better for learning details, while explanations are better
for discovering broad patterns [24], potentially synergizing
during self-explanation. Mere descriptions of actions are
the shallowest explanations and lack direction and context
if not attached to goals and conditions.

2. SE-Element 2: Goals

The goal is a central part of procedural skill in ACT-R.
Production rules—actions we subconsciously choose to
perform—are selected based on the current goal state [37].
Goals provide direction for problem-solving behavior by
directing attention to the components of the goal. For
example, if the goal is to calculate the net force on an
object, the given acceleration and mass of the object can be
components in the goal.
The goal hierarchy is the glue that ties together knowl-

edge components and enables coherent behavior, providing
purpose, organization, and seriality to cognition [37]. Goal
hierarchies are essential when the problem involves several
steps, and the learner must work backward from the goal
[44]. The main goal of the problem, usually finding an
unknown, gets progressively decomposed into subgoals until
the student reaches an immediately achievable goal [42].
Experts in physics tend to have a more forward working
character in their problem solving [45]. This might be
because they can use previously constructed goal hierarchies
based on their problem categorization. However, when
experts encounter difficult problems, they too have to revert
to backward working through a slow construction of hier-
archical goal structures [44].
In sum, goals seem to be essential for learning to solve

problems through SE. There is also empirical support for
including goals in self-explanations. The categories of good
explanations in Chi et al. [9] included “impose a goal
or purpose for an action.” Two of the other categories,
“explicate or infer additional consequences of an action”
and “give meaning to a set of quantitative expressions” [9],
also seem to be goal related when considering the examples

given. In Renkl [15], one of the self-explanation categories
most highly correlated with performance was goal-operator
combinations (r ¼ 0.37 with post-test). Although explicat-
ing goals seems to be most important for explaining
mathematical procedures, explicating goals is also relevant
for understanding the physics modeling part of the sol-
utions. The physics model must describe the situation
accurately and be sufficient for reaching the main goal
of the problem.

3. SE-Element 3: Principles
and SE-element 4: Conditions

We present these two SE elements together because they
are intimately connected. Many physics principles have
conditions for application (e.g., the condition for conser-
vation of momentum is that the sum of external forces on
the system is zero). It is probably not enough for the
students to recognize the physics principles used for
solving worked examples; they must also learn to recognize
when they apply.
In ACT-R, the typical sequence for a production rule is

goal match, then declarative retrieval, followed by a goal
transformation [37]. The planning stage of problem solving
is especially characterized by large amounts of retrieval
activity [46], which when solving physics problems often
means retrieving physics principles. A large part of solving
problems in physics is to model the problem by finding
physics principles that apply to the problem and are
sufficient for solving it [47]. Hence, the explication of
principles and their conditions of application during self-
explanation should improve the physics modeling capabil-
ities of our students. Since physics modeling is arguably
the most difficult part of solving a physics problem, the
explication of physics principles and their application
conditions should substantially affect our students’ prob-
lem-solving ability (hypothesis 4 in study 2). We also
believe that this should substantially affect our students’
conceptual understanding (hypothesis 5 in study 2).
Conceptual understanding is usually tested with multi-
ple-choice conceptual problems, which are often designed
to remove the need for mathematical procedures. Hence,
the students must find the solution through recognizing
which physics principles apply and then using the princi-
ples to analyze the situation qualitatively.
There are also strong empirical reasons for including

principles and conditions in self-explanations. Chi et al. [9]
found that good self-explainers tended to relate example
statements to physics principles and explicate conditions
for actions in general. Renkl [15] also found that principle-
based explanations were effective (r ¼ 0.38with post-test).
However, he did not code it as such if the student failed also
to explicate the principle’s conditions of application.
Berthold and Renkl [48] found that principle-based explan-
ations were effective for developing conceptual knowledge
(r ¼ 0.39 with post-test). We believe that students can also
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gain from explicating principles without explicating their
conditions for application, regardless of whether they are
unable to explicate them or choose not to (hypotheses 4 and
5 in study 2). In addition, we believe that students can gain
from explicating conditions for procedural actions, without
explicit reference to principles (hypothesis 4 in study 2), in
line with the results of Chi et al. [9].

C. Retrieval practice

Little research has been done on retrieval practice in
physics,with reference [49] as a rare exception apart fromour
research. However, the retrieval-based learning of lecture
content in the article by Zu, Munsell, and Rebello [49]—
where the students went through a molar treatment package
including categorizing problems, recalling definitions, and
problem solving based on the preceding lecture—is different
from our retrieval practice of physics principles and their
conditions.Gjerde,Holst, andKolstø [31] found that retrieval
practice of physics principles and their conditions of appli-
cation had a large effect on the students’ performance on a
declarative factual test and that participation in structured and
regular retrieval practice sessions correlatedwith better exam
scores. They have also investigated students’ experiences
and reflections regarding retrieval practice of a hierarchical
principle structure [50].
We suggest that retrieval practice of physics principles

and their conditions of application can facilitate perfor-
mance on problem solving and conceptual tests either
(i) indirectly through improved self-explanation quality,
(ii) indirectly through potentiating other learning strategies,
or (iii) by directly affecting problem-solving performance.

1. Retrieval practice can improve self-explanation quality

Researchers agree that self-explanations are based on
prior knowledge [24,25]. Wong et al. [26] found that the
self-explanation effect was mediated by knowledge gen-
eration, which in turn was predicted by knowledge access
and prior knowledge. In Sec. I. B. 3, we suggest that
physics principles and their conditions of application are
the critical knowledge components students must access to
produce high-quality self-explanations. However, self-
explanation is especially effective in the early phase of
skill acquisition, when many students cannot access their
memories for principles and conditions [31]. Therefore,
retrieval practice of physics principles and their conditions
of application can be a simple intervention to facilitate
high-quality self-explanations through increased access to
the relevant knowledge (hypothesis 1 and 2 in study 2). We
are not aware of any research in any educational domain
that has used retrieval practice to improve access to specific
knowledge components for self-explaining.
In ACT-R, the probability of retrieval (knowledge

access) is based on the activation of the chunk [36], which
is the sum of the chunk’s base strength and contextual cues.
To simplify: the base strength of memories is built by

practice and retrieval, while the contextual cues are built
through generative learning strategies (i.e., elaboration).
Activation from contextual cues—the summed product of
attention on the components in the goal times their
associative strength with the chunk—is weak in the early
stages of skill acquisitions. There are also strong limitations
on how much activation we can get from contextual
cues [51,52]. On the other hand, the base strength of the
chunks—a function of recency and frequency—is easier to
build. The most effective method for improving the base
strength of memories—improving access to knowledge—is
retrieval practice [53–58].
It is also possible to search for principles in the textbook

while trying to explain the equations used in worked
examples. However, it is inefficient, and some students
will probably not even try. On the other hand, the students
that retrieve principles during self-explanation get the
added memory-strengthening benefits to the generative
learning benefits from self-explaining [40,59].

2. Retrieval practice can potentiate all learning strategies

Physics principles and their conditions are also vital
knowledge componentswhenusing other learning strategies.
Therefore, retrieval practice of physics principles and their
application conditions may be an intervention that makes all
the other learning strategies students use more effective [50].
The increased base strengthmakes thememories less context
dependent [55] and may shift the students’ studying from a
shallow focus to deeper learning strategies [22,60]. The
increased base strength of memories for physics principles
may also improve students’ working memory capacity for
physics [27,28,30]. Moreover, research suggests that it is
easier to bind strongmemories (high base strength) intomore
complex knowledge structures [29].

3. Retrieval practice can directly affect
problem-solving and conceptual performance

Retrieval practice of principles and their conditions can
directly affect post-test performance in two ways. First, it
can directly benefit problem solving by improving the
planning phase [46], where students model the situation
with physics principles (hypothesis 3 in study 2).
Additionally, retrieving the principles during problem
solving further strengthens the retrieved memories [40]
for future problem solving. Second, as mentioned in the
previous section, it can reduce the pressure on working
memory, which is especially important when the problems
are complex and/or when the students have a smaller
working memory capacity [28–30].

II. STUDY 1

A. Method

Study 1 was an exploratory analysis of data from two
prior and separate experiments, both randomized controlled
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trials. These experiments were conducted one week apart
towards the end of the semester in an introductory
mechanics course. The first of these prior experiments
investigated retrieval practice of a hierarchical principle
structure, reported in Gjerde et al. [31]. The second
experiment investigated self-explanation of worked exam-
ples versus problem solving (with solutions available) or
combining the two strategies. The two experiments were
also designed so that we could connect and explore the data
from the participants who participated in both. Exploring
the data from these two experiments, we tried to answer the
following two research questions: (1) Does retrieval prac-
tice of relevant physics principles (in the first experiment)
affect post-test results (in the second experiment)? (2) Are
principles, goals, and application conditions important
elements to include in self-explanations as measured by
their predictiveness for post-test results? We used the
combined data from these two experiments to quasiexper-
imentally investigate question 1. In addition, we used the
written self-explanations of a subset of the participants in
the second experiment for answering question 2.

1. Participants

The Norwegian Centre for Research Data approved the
study. We collected no person-identifying information.
The participants provided informed anonymous consent.
The self-explanation and outcome data we explored were
from the second (self-explanation) experiment, which was
conducted during regular, voluntary lecture hours. The
number of participants was limited to how many showed
up. The participants were 57 undergraduate students from
an introductory mechanics course at a large Norwegian
university. See study 2 for descriptions of the participants in
the subsequent year’s cohort, as study 1 was completely
anonymous. The students in the course have very similar
educational backgrounds where almost everyone has com-
pleted two years of physics at the high school level before
admission. All participants had equal chances of winning
one gift certificate of 2000 NOK (∼250 USD) at the end of
the experiment.

2. Procedure and materials

Study 1 was an exploratory analysis of relevant data
from two prior experiments: A self-explanation experiment
where students provided written self-explanations and were
tested on conceptual knowledge and problem solving; and a
retrieval practice experiment, performed one week prior,
where half the students did retrieval practice of important
physics principles. Each participant generated a unique
participant code in both experiments, which enabled a
quasiexperimental test of the effects of retrieval practice on
the post-tests in the self-explanation experiment. All the
concepts in the course curriculum had been covered in
lectures before the two experiments took place.

The retrieval practice experiment.—A week before the
self-explanation experiment, a retrieval practice experiment
(N ¼ 80) was conducted where half of the participants
did retrieval practice of important mechanics principles
(Newton’s laws, conservation of energy, and conservation
of linear and angular momentum) and other physics
equations (e.g., the definitions of centripetal acceleration
and gravitational potential energy) for 70 min, while the
other half studied solutions to physics problems for 70 min.
The students were randomized into the two conditions.
Of the 80 students in the retrieval practice experiment,
24 retrievers and 20 nonretrievers also participated in the
self-explanation study one week later. In addition, 13 more
students participated in the self-explanation experiment and
were added to the group of nonretrievers for the quasiex-
perimental analysis. Hence, there were 24 retrievers and
33 nonretrievers in the (self-explanation) experiment. The
13 extra students were from the same course, and we expect
that the main systematic difference between them and the
other participants was that they did not participate in the
retrieval practice experiment. We discuss the possibility of
other systematic differences in the discussion in Sec. II. C. 1.
The data from students who only participated in the retrieval
practice experiment were discarded.
The self-explanation experiment.—The overall design of

the self-explanation experiment was as follows: 30 min of
practice→ a 45-min intervening task→ a 20-min problem-
solving test. The 57 students were randomly assigned to
three groups in a one-factorial between-subject design.
21 students were in the problem-solving group (PS),
18 were in the self-explanation group (SE), and 18 were
in the combined self-explanation and problem-solving
group (SEþ PS). During the 30-min practice phase of
the self-explanation experiment, the PS group solved
problems, the SE group self-explained problems, and the
SEþ PS group alternated between explaining and solving
problems. We did not analyze the differences between these
three factors in the current exploratory study because it was
not relevant to our research questions. Then followed a
45-min intervening task phase, which consisted of the full
mechanics baseline test (MBT) [61]. The final step was a
20-min post-test phase, which consisted of two physics
problems. The structure of the experiment was constrained
by the need to fit it into a normal double lecture of 90 min.
The practice worksheets contained the same six physics

problems for all the participants. Solving the first three
problems required using Newton’s second law with cen-
tripetal acceleration and conservation of mechanical
energy. The last three problems required either Newton’s
second law with centripetal acceleration or conservation of
mechanical energy. The first two and last three problems
were identical to the practice problems used in Badeau
et al. [7]. The third problem was identical in solution
structure to the first two problems but differed in surface
details; see Supplemental Material [34] for the practice
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problems. The problems were presented with their solu-
tions and a box at the bottom of the page for either self-
explaining the solution or solving the problem. The
solutions had no instructional explanations because
instructional explanations can potentially suppress con-
structive self-explanation activity [62], especially when
self-explanations are prompted [63]. The worksheet for the
SE group had one problem on each page, with general
prompts for self-explanations (“Explain the solution as
well as you can. Use the box under each problem. Try to
include: 1. Which steps in the solution have the same goal.
What is the goal? 2. Which physics principles underlie the
solution. 3. How the problem statement indicates that these
physics principles can be used.”).

3. Measures

To enable exploration of the effects on conceptual
knowledge from different types of self-explanations and
retrieval practice, MBT items 5, 8, and 10 were selected
after the fact as a post-test measure of conceptual under-
standing. The four authors, whom all have completed more
than five years of physics education and have substantial
experience with instruction in mechanics, agreed that these
three items targeted the relevant concepts for the current
study. Since the items were selected after the fact, we also
asked three other physics instructors to rate the relevance
(from 0: no relevance to 3: very relevant) of these three
items together with ten randomly chosen items from the
mechanics baseline test. Of the 13 items, items 5, 8, and 10
received the top three relevance ratings, only receiving
“2: relevant” and “3: very relevant.” Cronbach’s alpha for
these three items was 0.74. Cronbach’s alpha is a measure
of the interrelatedness or internal consistency of test items,
giving something like a lower bound on the reliability of a
measure [64]. Many science education researchers cite
values of Cronbach’s alpha above 0.70 as acceptable [65].
However, others argue that there is no objective value at
which it suddenly becomes acceptable. Measures with
lower alpha can be useful [66] and interpretable [67],
although a high value is usually preferable. Moreover,
Cronbach’s alpha is likely to underestimate the reliability of
measures that fail to meet the assumption of unidimension-
ality [67], and measures of conceptual knowledge are
probably seldom unidimensional.
The post-test consisted of two problems with the same

solution structure as the practice problems. The first problem
was identical to the post-test problem used in Badeau et al.
[7] and had similar surface features to most of the practice
problems. The second problem had substantially different
surface features but identical solution structure; see
Supplemental Material [34] for the post-test problems.
The post-test was scored according to the same rubric used
by Badeau et al. [7] for both problems, with þ1 point for
each of the nine observable actions in Table I. B. H.
(the lecturer) and V. G. scored all the problem-solving

post-tests. Interrater agreement was 90% on the individual
scoring points. Cohen’s unweighted kappa was 0.76, a
substantial interrater reliability [68], especially given that
there were only two codes and they were not equiprob-
able [69]. Differences were discussed until agreement.
Cronbach’s alpha for the problem-solving post-test was
0.96. Therewas a ceiling effect on the post-test, which tends
to attenuate correlational relationships [70].

4. Coding self-explanation categories

The coding of the written self-explanations was organ-
ized around the solution step(s) the students were referring
to. Each of the explanations was categorized by which of
the four SE-elements they included (actions, goals, prin-
ciples, and conditions of application) and were mutually
exclusive. All the self-explanations explained an action or a
set of actions, which means that the action element was
included by default. Conditions were scored for both con-
ditions of application for principles and situational condi-
tions (referring to physical conditions in the problem or
equations as justification) for actions. This resulted in eight
categories. See Table II for operationalization and examples
of the different self-explanation categories. Half the written
self-explanations were coded by the first and last authors.
Interrater agreement was 89% with Cohen’s unweighted
kappa ¼ 0.85, an almost perfect interrater agreement [68].
Differences were discussed until agreement. The first author
coded the remaining self-explanations.
We did not distinguish between correct and incorrect

explanations in the coding scheme for several reasons. How
students self-explain is more important than the explan-
ation’s present correctness for their long-term learning
outcomes [9,71,72]. The students may facilitate later
learning by formulating abstract rules (declarative) that
are incorrect because they objectify the knowledge [20].
Further, for procedural skills, missing knowledge seems to
be the main reason behind students’ mistakes, not incorrect
knowledge [73]. Finally, incorrect rules will usually not
gather enough strength to affect behavior in the long term
[74], but there will probably be a positive effect from
potentiating the relevant concepts that enter into the
incorrect rule [42] for later—correct—rule construction.

TABLE I. Scoring rubric for the problem-solving post-test [7].

Observable actions in post-test

þ1 Energy conservation recognition
þ1 Centripetal acceleration recognition
þ1 Correct application of Newton’s second law
þ1 Identifying that normal force equal zero
þ1 Correct initial potential energy
þ1 Correct final potential energy
þ1 Include final kinetic energy
þ1 Substitute correct final velocity
þ1 Correct final answer
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A potential drawback is lower correlations with post-test
results.
Students in our study sometimes rewrote parts of the

problem statement, which could be coded as paraphrases [9].

We excluded these paraphrases from our coding and analysis.
Further, theyoftenwrote descriptivelyofwhatwasdone in the
solution steps, which we coded as action. These propositions
could conceivably be viewed as paraphrases because they did
not go beyond the information in the worked example as
emphasized in Chi et al. [9]. However, we still view these as
self-explanations because the studentswere arguably trying to
learn from the examples. They were explicitly told to explain
the solutions to problems, which still resulted in action being
the largest category. Clearly, the students feel that they are
explaining when merely describing actions. Based on the
quantification of the qualitative analysis, each student was
assigned a total number of self-explanations for each cat-
egory. The overall averages can be seen in Table III.

B. Results study 1

The following sections cover results from our explor-
atory analysis. As this study is of an exploratory character,

TABLE II. Examples of students’ self-explanations of worked example solutions.

SE categories Operationalization Examples of explanations

Action (A) These explanations only described
actions taken in solution steps
without relating it to the three
other elements.

“Then, we must divide the answer by the radius.”

Action goal (AG) These explanations assigned
goals to actions taken in solution
steps, tying together solution steps.

“Use this expression to find the velocity
at the bottom of the hill.”

Action principle (AP) These explanations named
solution steps by physics principle.

“Use Newton’s second law with the forces
that act on the block.”

Action condition (AC) These explanations explicated
conditions for actions in solution steps.

“The normal force is zero in the limit
where the block loses contact
with the loop.”

Action-goal condition (AGC) These explanations assigned goals to,
and conditions for, actions taken
in solution steps.

“We know that the block can’t lose
contact with the surface. Then
the normal force has
a limit at FN ¼ 0. Use this to
find the minimum velocity.”

Action-goal principle (AGP) These explanations assigned goals
to actions taken in solution steps
and named them by the physics principles.

“Find the velocity at the top of the
hill by using conservation of
mechanical energy.”

Action-principle
condition (APC)

These explanations named solution
steps by physics principles and
explicated conditions of application
for the principle or other conditions
for action.

“We assume no friction. We have a
difference in height. Mechanical energy
is conserved, can use Emek;0¼ Emek.”

Action-goal principle
condition (AGPC)

These explanations assigned goals to
actions taken in solution steps,
named them by the physics principle,
and explicated conditions of application
for the principle or other conditions
for actions.

“This [expression] can be used together
with the principle of conservation of
mechanical energy to calculate the speed
at the bottom. Conservation of mechanical
energy can be used because friction is negligible.”

TABLE III. The mean number (SD) of different self-explanation
categories. Note that n ¼ 18.

Self-explanations

Number of problems self-explained 4.4 (1.7)
Number of total self-explanations 14.9 (7.0)
Number of action only 6.6 (5.3)
Number of action goal 1.9 (1.8)
Number of action principle 1.2 (1.4)
Number of action condition 1.6 (1.9)
Number of action-goal condition 0.3 (0.7)
Number of action-goal principle 1.1 (1.2)
Number of action-principle condition 0.9 (1.3)
Number of action-goal-principle condition 1.3 (2.4)
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we do not correct for type I error inflation to avoid
overlooking potentially effective (and novel) treatments
and relationships because of overly conservative statistics
[70]. When considering p values, the effect size estimates
and theoretical plausibility should also be considered [70].
For reference, Cohen’s d effect sizes of about 0.20, 0.50,
and 0.80 are usually treated as small, medium, and large,
respectively [75]. Hemphill [76] showed that roughly a
third of psychological meta-studies has r < 0.20, the
middle third has r of 0.20 to 0.30, and the upper third
has r > 0.30, giving empirical guidelines for small
(<0.20), medium (0.20 to 0.30), and large (>0.30)
correlations.

1. Retrieval practice

A two-tailed t-test showed a significant effect of doing
retrieval practice theweek before (retrievers) on the post-test
problem-solving score (M ¼ 14.5,SD ¼ 4.7) compared to
no retrieval practice the week before (nonretrievers)
(M¼11.3,SD ¼ 5.5), tð53.26Þ¼ 2.32,p¼0.024,d ¼ 0.61.
We explored the effect of retrieval practice on conceptual

understanding through score on MBT-items 5, 8, and 10
[61]. On average, the retrievers scored higher (M ¼ 2.17,
SD ¼ 1.03) than the nonretrievers (M ¼ 1.59, SD ¼ 0.98),
on the aggregate measure of these three items, tð47.21Þ ¼
2.06, p ¼ 0.045, d ¼ 0.56.
There was no significant difference between the retrievers

(M ¼ 13.5, SD ¼ 5.5) and the nonretrievers (M ¼ 13.6,
SD ¼ 4.4) on the full MBT, tð42.89Þ ¼ 0:025, p ¼ 0.98.
To check whether the results were due to systematic

differences between the 20 nonretrievers that participated in
the retrieval experiment and the 13 nonretrievers that did
not, we repeated the analysis without the 13 added non-
retrievers. Without the 13 added nonretrievers, the effect
size was slightly smaller and nearly significant for doing
retrieval practice the week before on the post-test problem-
solving score (M ¼ 14.5,SD ¼ 4.7) compared to no
retrieval practice the week before (M ¼ 12.0,SD ¼ 5.4),
tð38.26Þ ¼ 1:62, p ¼ 0.11, d ¼ 0.50. The effect size on
the three conceptual items for doing retrieval practice the
week before (M ¼ 2.17, SD ¼ 1.03) was still significant—
with a lower p value—compared to no retrieval practice
the week before (M ¼ 1.40,SD ¼ 0.88), tð41.99Þ ¼ 2:63,
p ¼ 0.01, d ¼ 0.79.

2. The quality and quantity of self-explanations

In the following section, we explore the correlations
between the different categories of written self-
explanations and the post-test scores. Only the 18 self-
explainers (SE group) were included in the analysis of the
effect of self-explanation categories. The students in the
SEþ PS group also solved problems, which may distort
associations. They also seemed to put very low effort into
explaining the problems and rather concentrated their
efforts on solving the problems. Hence, all correlations
are for the SE group only.
Because of the low number of subjects and the low

number of self-explanations in some categories, we aggre-
gated the different self-explanation categories into those
containing principle and condition (“Principle-and-
condition SEs”: APC and AGPC), those containing
principle without condition (“Principle-no-condition SEs”:
AP, and AGP), and those not containing a principle (“No-
principle SEs”: AG, AC, and AGC). The action-only
explanations (action-only SEs) were kept separate due to
their being conceptually different (only descriptive) and
their prevalence. See Table IV for the aggregated self-
explanation categories, their constituent self-explanation
categories, and their correlations with scores.
A multiple linear regression was calculated to predict

post-test problem-solving scores based on action-only
SEs, the three aggregated SE categories, and whether
participants engaged in retrieval practice the week before.
A significant regression equation was found [Fð5; 12Þ ¼
3:16, p ¼ 0.005], with an R2 ¼ 0.57 (step 2) and adjusted
R2 ¼ 0.39. The model was significant, but only principle-
and-condition SEs and principle-no-condition SEs were
significant as predictors. A multiple linear regression was
therefore calculated where only these predictors were
included. A significant regression equation was found
[Fð2; 15Þ ¼ 9:06, p ¼ 0.003], with an R2 ¼ 0.55 (step 1)
and adjusted R2 ¼ 0.49. Regression coefficients, their stan-
dard errors, the standardized coefficients, and the p values
can be found in Table V.
A multiple linear regression was calculated to predict

conceptual score based on action-only SEs, the three
aggregated SE categories, and whether participants engaged
in retrieval practice theweek before. A significant regression
equation was found [Fð5; 12Þ ¼ 5:67, p ¼ 0.007], with an
R2 ¼ 0.70 (step 2) and adjustedR2 ¼ 0.58. Action-only SEs

TABLE IV. Correlations between the aggregated self-explanation measures, post-test problem-solving score, and
score on MBT items 5, 8, and 10. Note that n ¼ 18 for all correlations.

Aggregated SE categories Individual SE categories Post-test MBT (5, 8, 10)

Number of action-only SEs A −0.19 −0.12
Number of No-principle SEs AG, AC, AGC 0.06 −0.02
Number of principle-no-condition SEs AP, AGP 0.55* 0.56*

Number of principle-and-condition SEs APC, AGPC 0.52* 0.49*

*p < .05.
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and No-principle SEs were not significant predictors.
A multiple linear regression was therefore calculated where
these measures were excluded. A significant regression
equation was found [Fð3; 14Þ ¼ 10:17, p < 0.001], with
an R2 ¼ 0.69 (step 1) and adjusted R2 ¼ 0.62. Regression
coefficients, their standard errors, the standardized coeffi-
cients, and the p values can be found in Table VI.

C. Discussion—Study 1

1. How did retrieval practice affect performance?

The retrievers scored better than the nonretrievers on both
problem solving and conceptual knowledge. However, the
design does not enable us to distinguish how retrieval
practice affected post-test performances. It could have
(i) indirectly affected performance through potentiated
learning when studying the worked examples, (ii) indirectly
affected performance through potentiating all their
studying in the intervening week between the retrieval
practice experiment and the self-explanation experiment,

or (iii) directly affected performance in one of the ways
discussed in Sec. I. C. 3.
This study was a quasiexperimental test of retrieval

practice, and the experiments were not designed explicitly
for this purpose. Therefore, there are some validity threats
that one should keep in mind when interpreting the results.
Although it is hard to implement without substantial
attrition, a randomized controlled trial would have reduced
the potential threats to the statistical conclusion validity and
internal validity [70]. The main threat is that the 13 new
students may have been fundamentally different from the
other participants, and all were added to the nonretriever
group. However, there are no apparent reasons to believe
that they were systematically different beyond not partici-
pating in the retrieval practice experiment. The students
were all from the same course, and their backgrounds were
relatively homogenous. Moreover, the experiments were
conducted during regular lecture hours, and we expect
random fluctuations of this size for attendance. The follow-
up analysis in Sec. II. B. 1, excluding the 13 additional

TABLE V. Hierarchical regression of aggregated SE categories and retrieval practice as predictors of post-test
problem-solving score. Note that n ¼ 18.

ΔR2 B SE B β p

Step 1 0.55
Constant 3.83 2.03 0.08
Principle-no-condition SEs 2.05 0.67 0.53 0.008
Principle-and-condition SEs 1.08 0.38 0.50 0.01

Step 2 0.02
Constant 2.78 3.26 0.41
Action-only SEs 0.03 0.27 0.02 0.92
No-principle SEs 0.11 0.46 0.05 0.82
Principle-no-condition SEs 1.98 0.75 0.51 0.02
Principle-and-condition SEs 1.05 0.45 0.48 0.03
Retrieval practice 1.98 2.65 NA 0.47

TABLE VI. Hierarchical regression of aggregated SE categories and retrieval practice as predictors of score on
MBT items 5, 8, and 10. Note that n ¼ 18.

ΔR2 B SE B β p

Step 1 0.69
Constant −0.12 0.35 0.73
Principle-no-condition SEs 0.38 0.11 0.50 0.005
Principle-and-condition SEs 0.17 0.06 0.40 0.02
Retrieval practice 1.04 0.39 NA 0.02

Step 2 0.01
Constant −0.39 0.52 0.47
Action-only SEs 0.03 0.04 0.15 0.44
No-principle SEs −0.01 0.07 −0.02 0.93
Principle-no-condition SEs 0.38 0.12 0.51 0.007
Principle-and-condition SEs 0.19 0.07 0.45 0.02
Retrieval practice 1.07 0.42 0.42 0.03
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students, gave much the same results with a slightly smaller
effect size on problem solving (d ¼ 0.50 vs 0.61) and
larger effect size for conceptual test score (d ¼ 0.79 vs
0.56). These results add to our confidence that the effects
were not due to systematic differences between treatment
conditions.
A second potential threat is that the 13 students who did

not participate in the retrieval practice experiment lost two
hours of studying compared to the other students. However,
the analysis where we excluded the 13 students suggests
that this effect alone cannot account for the majority of the
observed differences.
A third potential threat is that the students were unevenly

distributed into groups in the self-explanation experiment
and received different treatments. However, the students in
the self-explanation experiment—whether they participated
in the retrieval practice experiment or not—were random-
ized into the three conditions in the self-explanation
experiment. For the retrievers, 33% were allocated into
the PS group, 36% into the SE group, and 30% into the
PSþ SE group. For nonretrievers, the distribution between
the three groups where 42%, 26%, and 35%, respectively.
Moreover, the three conditions were not significantly
different on the full mechanics baseline test. Hence, the
allocation into the (uninvestigated) experimental conditions
cannot explain the effects of the retrieval practice.
Overall, it seems plausible that students can benefit from

engaging in retrieval practice of essential physics concepts
before studying worked examples. Retrieval creates the
initial, strong encoding of the relevant concepts and is an
easy intervention to implement in the early stages of
learning new topics. Self-explanation then becomes a
way to expand conceptual understanding in a manner
directly relevant to problem solving. If the students cannot
retrieve the name of the equation, or even the equation
itself, they will be unable to name the action by principle
during self-explanation. This problem was exemplified
when one of the participants remarked, “I don’t walk
around remembering equations six weeks before the exam,”
referring to Newton’s second law (the most fundamental
law or equation in mechanics). In addition to building the
base strength of chunks, retrieval practice builds associative
links between the names of physics concepts (e.g., mass
and conservation of mechanical energy), their symbols or
equations (e.g., m and K1 þU1 ¼ K2 þU2), and the
principles’ conditions of application (e.g., only conserva-
tive forces acting on the system). Through worked exam-
ples and problem solving, the student practices with the
many special cases of these principles and conditions.
Presumably, they now become more able to connect these
special cases hierarchically to the main principle and its
abstract condition (e.g., friction and air resistance under the
category of nonconservative forces; gravitation and springs
as conservative forces). This type of categorization reduces
the fan effect [77]. It also reduces the needed number of

stored chunks because special cases of equations can be
constructed from the principles. Finally, the increased
fluency of recalling relevant facts enables the student to
use spare capacity on other subprocesses of problem
solving [74,78,79].
In the second study, wewanted to do an experimental test

of the effects of retrieval practice on post-test performance
(hypothesis 1), see whether and how retrieval practice
affects the quality of self-explanations (hypothesis 2), and
see whether and how it changes their problem solving
(hypothesis 3).

2. How did the quality of self-explanations
affect performance?

The correlations in Table IV, as well as the regression
models in Tables V and VI, indicate that explicating
principles is the most crucial self-explanation activity. It is
also important to note the high regressionweights inTablesV
and VI, and the large amount of variance explained (R2),
which indicates that there may be considerable benefits to be
gained per self-explanation. Explanations without principles
(action-only SEs and no-principle SEs) were neutral or even
tending towards negative correlations. However, the quali-
tative analysis of the self-explanations suggested that physics
principles and their conditions are relatively more important
for self-explaining the physics modeling part of problems,
while actions with goals and situational conditions are
relatively more important for self-explaining the procedural
part. Unfortunately, the data from study 1 cannot provide a
definite answer to this as we had too few participants, andwe
did not separate explanations of thephysicsmodel from those
of the mathematical procedures. Therefore, we wanted to
explore this further in the second study (hypotheses 4 and 5).
As this was a correlational analysis, we cannot tell

whether the students’ self-explanations were already
acquired knowledge representations or whether they were
constructed (learned) during the experiment, or both.
However, the correlations suggest that it is essential to
learn—somehow—more complex knowledge representa-
tions in terms of the four SE elements. See Sec. IV for a
discussion on causality.

III. STUDY 2

A. Method

The first study indicated that retrieval practice may
improve problem solving and conceptual scores. We exper-
imentally tested this hypothesis in study 2.We alsowanted to
seewhether and how retrieval practice changes the quality of
the students’ self-explanation and problem solving. Further,
we wanted to reproduce the analysis of self-explanation
categories with more participants and investigate some
hypotheses generated from the first study and further reading
of the literature, see Secs. III. A. 1 and III. A. 2.
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1. Hypotheses for retrieval practice

Hypothesis 1: Retrieval practice of principles and their
conditions of application, before self-explaining solutions,
improves post-test performance.
Hypothesis 2: Retrieval practice of principles and their

conditions of application improves the quality of self-
explanations through increased explication of principles
and their conditions.
Hypothesis 3: Retrieval practice of principles and their

conditions of application increases the probability that
students recognize the correct principles and explicate their
conditions while solving problems.

2. Hypotheses for self-explanations

Hypothesis 4: Model explanations with principles and
conditions are the best predictors of problem-solving
performance, but both model explanations with principles
(but no conditions) and procedure explanations without
principles additionally predict performance.
Hypothesis 5: Only principle-based explanations of the

physics model positively predict scores on a conceptual
knowledge test.

3. Participants

The study was approved by the Norwegian Centre for
Research Data. The participants provided informed con-
sent. The experiment was conducted during regular lecture
hours, which meant that the number of participants was
limited to how many showed up. The participants were 54
undergraduate students [65% males, modal age 20, median
age 21, mean age 21.3 yr (SD ¼ 2.8), mostly ethnic
Norwegians] from the cohort in the subsequent year of
the same introductory mechanics course as in the previous
study. The course participants came from a mixture of study
programs (approximately 21% nanotechnology, 18% ocean
technology, 13% physics, 13% energy, 9% teacher educa-
tion, 7% petroleum technology, and 9% other). The
students in the course have very similar educational back-
grounds where almost everyone has completed two years
of physics at the high-school level before admission, so
there were small differences between study programs. All
participants had equal chances of winning one of three gift
certificates of 1000 NOK (∼110 usd) at the end of the
experiment. They were randomly assigned to one of
two groups in a one-factorial between-subject design. 29
students were in the treatment group and 25 were in the
control group. All the concepts in the experiment had been
covered in lectures before the experiment took place.

4. Procedure and materials

Study 2 was a randomized controlled trial on the effects
of retrieval practice and a follow-up correlational analysis
of self-explanations with more participants than in study 1.

To enable randomization and to minimize attrition, the
whole experiment was conducted within the same session.
The overall design of the experiment was as follows: A

20-min experimental phase→ a 40-min practice phase→ a
30-min post-test phase. The first step was a 20-min
experimental phase. In this phase, the treatment group
did retrieval practice of relevant physics principles and their
conditions while the control group wrote self-explanations
of solutions to work-energy problems. Then followed a
40-min practice phase where everyone self-explained sol-
utions to six problems. Two problems required the use of
conservation of momentum, two problems required the use
of conservation of mechanical energy, and two problems
required the use of both principles; see Supplemental
Material [34] for the practice problems. Both groups per-
formed written work, which was checked for whether
participants followed instructions. The final step was a
30-min post-test phase, which consisted of a 15-min prob-
lem-solving test and a 15-min conceptual multiple-choice
test. The structure of the experiment was constrained by the
need to fit it into a normal double lecture of 90 min.
The practice material was similar to those in the first

study. The solution structure was changed to separate the
physics model and mathematical procedures more clearly.
The prompts were also changed to accommodate the
changes to the solution structure and to try to ensure that
students generated a broad array of self-explanation cat-
egories (“Try to include principles, conditions and goals in
your explanations: Principles: Which physics principles
describe the problem (physics model) and how the equation
is set up. Conditions of application for principle: How we
know that these physics principles apply in this situation.
Actions and goals: Which mathematical actions are taken
and the goals of these actions.”). It was considered
unimportant to get students to finish studying all the
problems as the deep structure of the problems was
repeated. We included enough problems to be certain that
all students would have enough material to study for much
longer than the allotted practice time. The post-test in study
2 was too large to be finished by most students, thus ceiling
effects were avoided. None of the students finished the
post-test or got a full score.

5. Measures

The preselected conceptual multiple-choice test con-
sisted of items 2, 4, 5, 10, 15, 21, and 22 from the
Energy and Momentum Conceptual Survey (EMCS)
[80]. All of us, who all have completed more than five
years of physics education and substantial experience with
instruction in mechanics, agreed that these seven items
targeted relevant concepts for the current study. Cronbach’s
alpha for these seven items was 0.62. Because higher alpha
values are generally preferable, mainly because low reli-
abilities lead to underestimation of relationships [66], and
because a principal component analysis revealed that two
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of the items were unrelated to the rest, we removed items
5 and 21. This improvedCronbach’s alpha from 0.62 to 0.69.
It was pointed out that deleting these two items in the current
study may lead to an overestimation of the true reliability.
Although it is a normal practice to remove items to improve
alpha [81], it is a controversial practice [82]. A better solution
would have been to do a pilot study on the conceptual items
and remove these two poorly performing items beforehand.
The problem-solving test consisted of five physics

problems, where two problems required the use of con-
servation of momentum, two problems required the use
of conservation of mechanical energy, and one problem
required the use of both principles; see Supplemental
Material [34] for the post-test problems. We agreed that
the practice and post-test problems covered the same
concepts, with highly similar solution structures. The
post-test was scored according to the rubric in
Table VII, withþ1 point for each of the observable actions,
for a total of 22 possible points. V. G. and V. H. P. scored
10% of the problem-solving post-tests, with an interrater
agreement of 97% and Cohen’s unweighted kappa ¼ 0.93,

an almost perfect interrater agreement [68]. Differences
were discussed until agreement. V. G. scored the remaining
tests. Cronbach’s alpha for the post-test measure was 0.87.

6. Coding self-explanation categories

Because of the low number of explanations in some of the
categories, and the insufficient number of participants to
differentiate between them in multiple regression models,
we aggregated the self-explanation categories as we did in
study 1. Sincewe hadmore participants in this study, we also
codedwhether the explanations referred to the physicsmodel
or the mathematical procedures, whichwere differentiated in
the solutions the students explained.We included action-only
SEs (A) in no-principle SEs since we differentiated between
explanations of the model and the procedures. We differ-
entiate between explanations of the physics model from
explanations of the mathematical procedures by writing
“Model” and “Procedure” in front of the self-explanation
categories (e.g., Model: No-principle SEs and Procedure:
No-principle SEs). See Table VIII for the aggregated
categories in study 2. Hence, there were six different
categories of explanations in this study. Ten percent of the
written self-explanations were coded by V. G. and V. H. P.
Interrater agreement was 91% with Cohen’s unweighted
kappa ¼ 0.85, an almost perfect interrater agreement [68].
Differences were discussed until agreement. The first author
coded the remaining self-explanations. Based on the quanti-
fication of the qualitative analysis, each student was assigned
a total number of self-explanations for each category. The
overall average can be seen in Table IX.

B. Results and discussion for study 2

We do not correct for type I error inflation to avoid
overlooking potentially effective (and novel) treatments
and relationships because of overly conservative statistics
[70]. When considering p values, the effect size estimates
and theoretical considerations of plausibility should also
be taken into account [70]. The results and discussion are
presented together for ease of presentation.

1. Retrieval practice

Hypothesis 1: Retrieval practice of principles and
their conditions of application—before self-explaining
solutions—improves post-test performance.

TABLE VII. Scoring rubric for the problem-solving post-test.

Observable actions in post-test

þ1 Recognizing conservation of mechanical energy

þ1 Recognizing conservation of momentum

þ1 Explicating condition for conservation of mechanical energy

þ1 Explicating condition for conservation of momentum

þ1 Correct setup of conservation of mechanical energy

þ1 Correct setup of conservation of momentum

þ1 Correct final answer

TABLE VIII. The aggregated self-explanation categories and
their constituents.

Aggregated SE categories Individual SE categories

No-principle SEs A, AG, AC, AGC

Principle-no-condition SEs AP, AGP

Principle-and-condition SEs APC, AGPC

TABLE IX. The mean number (SD) of self-explanation categories for the physics model and mathematical
procedures for the retrieval group and the control group. Note that N ¼ 54.

Retrieval group (n ¼ 29)
[model—procedures]

Control group (n ¼ 25)
[model—procedures]

No-principle SEs 3.1 (2.2) 6.7 (5.9) 3.6 (2.6) 5.6 (5.2)
Principle-no-condition SEs 1.7 (1.6) 0.1 (0.3) 2.0 (1.3) 0
Principle-and-condition SEs 2.2 (1.9)* 0 1.4 (2.1)* 0

*p < 0.05 for difference in simple Poisson regression.
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Results: There was no significant effect of doing 20 min
of retrieval practice on the post-test problem-solving score
(M ¼ 7.6, SD ¼ 4.7) compared to self-explaining work-
related problems (M ¼ 5.9,SD ¼ 3.7), tð51.54Þ ¼ 1:48,
p ¼ 0.14 (two-tailed). There was also no significant differ-
ence between the retrievers (M ¼ 2.2, SD ¼ 1.5) and the
control group (M ¼ 2.6, SD ¼ 1.4) on the conceptual post-
test, tð49.8Þ ¼ 0:88, p ¼ 0.39, d ¼ −0.2.
Nonsignificant replication attempts may still provide

additional evidence for an effect [83,84]. Therefore, we
performed a continuously cumulating meta-analysis
(CCMA) on both results for both studies, using a spread-
sheet from Ref. [85]. The CCMA showed a significant
effect of doing retrieval practice on problem-solving
performance, d ¼ 0.51, 95% C.I. [0.13, 0.88],
p ¼ 0.008. The CCMA revealed no significant effect of
doing retrieval practice on conceptual test performance,
d ¼ 0.16, 95% C.I. ½ − 0.22; 0.53�, p ¼ 0.41.
Discussion: In study 2, we tested the combination of the

short-term indirect effect of improved learning through self-
explanation and the direct effect on post-test performance. In
study 1, the long-term indirect effect of enhanced learning in
the intervening week was also part of the treatment package.
The most straightforward interpretation of the results from
study 2 is that retrieval practice, compared to self-explanation
of problems with related concepts, does not affect post-test
performances. However, the continuously cumulating meta-
analysis showed that the overall effect of retrieval practice
was significant for problem-solving performance—with
study 2 providing additional evidence in the form of a
decreasing p value—and nonsignificant for conceptual test
scores. The difference in patterns of effect sizes in the two
studies for problem solving and conceptual test performance
suggests some unexplained moderators of the effect, espe-
cially for conceptual test performance.
We suspect that time (subsequent study) is an important

moderator of the effect of retrieval practice of physics
principles and their application conditions. The effect sizes
indicate that the direct effect and the short-term indirect
effect, through self-explanation, are larger for problem-
solving performance than conceptual test performance.
We may need a longer time gap between retrieval practice
and the post-test—i.e., more intervening study with an
increased focus on and access to principles—to affect
conceptual understanding. Studying for 40 min after
20 min of retrieval practice of physics principles might
not be enough to affect the construction of conceptual
knowledge significantly. Importantly, all three pathways
(see Sec. I. C) would affect learning if retrieval practice was
an integrated part of the students’ study habits throughout
the semester.
A second potential moderator is the degree of prior

elaborative encoding of the principles. There are reasons to
believe that students need to encode the principles elabo-
ratively—construct meaningful associative connections

within and between principles—before doing retrieval
practice to get maximum benefits [50,86]. For example,
study 1 was done at the end of the semester when the
students had already formed many meaningful associative
connections for the relevant principles, while study 2 was
done when the relevant concepts were first being intro-
duced in lectures. The lack of prior elaborative encoding
may have reduced the effect of retrieval practice.
A third potential moderator is skill in self-explanation.

Training students to construct self-explanations might
potentiate the effect of retrieval practice because they
become more aware of the importance of physics principles
and their conditions of application. We believe that, if it is
to be used, retrieval practice should be part of an integrated
instructional approach where physics principles and their
conditions of application are the central concepts [50].
There are also several reasons why this was a

conservative test of the effect of retrieval practice. The
control group self-explained work-energy problems for
20 min. This might have transferred to improved post-test
performance, either through enhanced understanding of
energy-related concepts or through practice with self-
explanations and potential internalization of prompts. All
the relevant physics principles were also available to both
groups on a sheet of paper during self-explanation in the
practice phase, which reduced the need for being able to
retrieve the principles and their conditions. Further, while
the practice and post-test problems were essentially iso-
morphic in study 1, their surface features were substantially
different and the solution structures were slightly different
in study 2. Hence, one could argue that the problem solving
and conceptual post-test in study 1 was near and medium
transfer, while the problem solving and conceptual post-test
in study 2 were medium and far-transfer, respectively [87].
This difference could have reduced the effect of the
intervention, reflected in the lower amount of variance
(R2) explained in study 2, see Tables XI and XIII. Finally,
we believe the treatment level was below optimal with the
20 min of retrieval practice.
Hypothesis 2: Retrieval practice of principles and their

conditions of application improves the quality of self-
explanations through increased explication of principles
and their conditions.
Results: The mean number of self-explanation catego-

ries by group can be found in Table IX. We performed
simple Poisson regression models for the count of the
aggregate self-explanation categories. The retrieval group
had significantly more Model: Principle-and-condition
self-explanations than the control group, (p ¼ 0.02), see
Table IX. None of the other comparisons were significant.
Discussion: We found that the retrieval group had

significantly more Model: Principle-and-condition self-
explanations. This is evidence that retrieval practice can
improve the quality of self-explanations, the first link in
the mediating pathway from retrieval practice through
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self-explanation to improved post-test performance. This is
an important and promising result, as we believe explan-
ations containing both principles and conditions to be the
most important for explaining the physics model and the
most important type of self-explanation overall for learning
to solve physics problems. However, the improved quality of
the self-explanations, together with the direct effect on post-
test performance,was not sufficient tomake the experimental
effect on post-test performance significant, see Sec. IV for
further discussion.
Hypothesis 3: Retrieval practice of principles and their

conditions of application increases the probability that
students recognize the correct principles and explicate their
conditions while solving problems.
Results: We used binomial regression to test whether

retrieval practice affected the proportion of required princi-
ples recognized or the proportion of conditions for use of
principles explicated during the problem-solving post-test.
The model was not significant for recognizing principles,
χ2ð1Þ ¼ 0.24,p ¼ 0.63. However, themodelwas significant
for explicating conditions of application, χ2ð1Þ ¼ 11.0,
p < 0.001. Retrieval was a significant predictor, with
b ¼ 1.75, z ¼ 2.78, p ¼ 0.005, Hosmer-Lemeshow
R2 ¼ 0.16, Cox and Snell R2 ¼ 0.18, Nagelkerke
R2 ¼ 0.26. The odds ratiowas 5.75, with 95%CI [1.9, 24.7].
Discussion: We found no difference in the proportion of

correct principles recognized during problem solving.
However, the retrieval group explicated a significantly
higher proportion of conditions for using principles during
the problem-solving post-test (OR ¼ 5.76). This is evi-
dence that retrieval practice can positively affect what
students attend to during problem solving. Recognizing
principles and conditions of application is part of the
potential direct effect on problem solving from retrieval
practice. However, the same two physics principles were
repeated in all the practice and post-test problems.
Therefore, the need to recognize application conditions—
for becoming able to solve the problem—was probably
reduced relative to regular studying. The repetition of
physics principles can also explain why there was no
significant difference between the two groups in recogniz-
ing the correct principles, as there were only two from
which to choose. This may have attenuated the direct effect
of retrieval practice on problem solving compared to a more
ecologically valid situation with more uncertainty in which
principles to apply. We still expect that there was an effect
on working memory during problem solving but that
this was not sufficient to make the experimental effect
significant.
Considering conditions of application for principles

during problem solving is presumably very important for
becoming able to transfer their declarative knowledge and
procedural skills to new problems later, when it is less
obvious which principles apply. Therefore, we believe that
this is an important result.

2. Self-explanations

Hypothesis 4: Model explanations with principles
and conditions are the best predictors of problem-solving
performance, but both model explanations with principles
(but no conditions) and procedure explanations without
principles additionally predict performance.
Results: We calculated Pearson’s correlation coefficients

for the aggregated self-explanation categories with the post-
test problem-solving score, for explanations referring to
the physics model and for explanations referring to the
mathematical procedures. The correlations can be seen in
Table X. Explanations of procedures with principles
(Procedure: Principle-and-condition-SEs and Procedure:
Principle-no-condition SEs) were nearly nonexistent and,
therefore, correlations would be meaningless.
A multiple linear regression was calculated to predict the

post-test problem-solving score based on the aggregated SE
categories we hypothesized to be most important, Model:
Principle-and-condition, Model: Principle-no-condition
SEs, and Procedure: No-principle SEs. We did not include
retrieval practicevs control as a predictor, as the experimental
results were insignificant. A significant regression equation
was found [Fð3; 50Þ ¼ 10.9,p < 0.001], with anR2 ¼ 0.40
and adjusted R2 ¼ 0.36 (step 2). The model was significant,
but Model: Principle-no-condition SEs was not a significant
predictor. A multiple linear regression was therefore calcu-
lated where we excluded this predictor. A significant regres-
sion equationwas found [Fð2; 51Þ ¼ 14:4,p < 0.001], with
an R2 ¼ 0.36 and adjusted R2 ¼ 0.34 (step 1). Both pre-
dictors were significant. Regression coefficients, their stan-
dard errors, the standardized coefficients, and the p values
can be found in Table XI.
Discussion: The correlations in Table X support our

hypothesis that explanations of the physics model contain-
ing principles and conditions are the best predictors of
problem-solving performance, and that both model explan-
ations with principles (but no conditions) and procedure
explanations without principles additionally predict per-
formance. It seems that more complex explanations, con-
taining principles, conditions, and potentially also goals,
are suitable for explanations of physics models, while

TABLE X. Correlations between the aggregated SE measures
and the post-test problem-solving score. Note that N ¼ 54 for all
correlations.

Aggregated SE categories Model SEs Procedural SEs

No-principle SEs 0.10 0.34*

Principle-no-condition SEs 0.30* NA
Principle-and-condition SEs 0.50*** NA

ap < 0.10
*p < 0.05
**p < 0.01
***p < 0.001.
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simpler explanations, without principles, are suitable for
mathematical procedures.
In the multiple regression model in Table XI, the only

significant predictors of problem-solving performance were
Model: Principle-and-condition SEs and Procedural: No-
principle SEs. However, the nominal trend was in the
hypothesized direction for model explanations with prin-
ciples and no conditions. One may note the very high
correlation and standardized regression coefficient of
Model: Principle-and-condition SEs. This may indicate

that this is where our efforts should be directed in teaching
students how to self-explain.
Procedure-explanations with principles were basically

nonexistent. It is possible to construct these types of
explanations, but one would have to backtrack to where
the equations in the procedures originated. The fact that
almost none of the students constructed these types of
explanations for procedures is evidence that they at least do
not come naturally.
Hypothesis 5: Only principle-based explanations of the

physics model positively predict scores on a conceptual
knowledge test.
Results: We calculated Pearson’s correlation coefficients

for the aggregated self-explanation categories with the
score on the conceptual test for explanations referring to
the physics model and for explanations referring to the
mathematical procedures. The correlations can be seen in
Table XII. Explanations of procedures with principles
(Procedure: Principle-and-condition SEs and Procedure:
Principle-no-condition SEs) were nearly nonexistent and,
therefore, correlations would be meaningless.
A multiple linear regression was calculated to predict

conceptual test scores based on the SE categories we
hypothesized to be most important Model: Principle-
and-condition, Model: Principle-no-condition SEs, and

TABLE XI. Hierarchical regression of aggregated SE categories as predictors of post-test problem-solving score.
Note thatN ¼ 54.

ΔR2 B SE B β p

Step 1 0.36
Constant 3.25 0.85 <0.001
Procedural: no-principle SEs 0.26 0.09 0.33 0.004
Model: principle-and-condition SEs 1.06 0.24 0.49 <0.001

Step 2 0.04
Constant 2.58 0.94 0.009
Procedural: no-principle SEs 0.20 0.09 0.26 0.031
Model: principle-no-condition SEs 0.59 0.35 0.20 0.099
Model: principle-and-condition SEs 1.06 0.24 0.49 <0.001

TABLE XII. Correlations between the aggregated SE measures
and score on the conceptual test. Note that N ¼ 54 for all
correlations.

Aggregated SE categories Model SEs Procedural SEs

No-principle SEs −0.18 0.05
Principle-no-condition SEs 0.39** NA
Principle-and-condition SEs 0.25a NA

ap < 0.10
*p < 0.05
**p < 0.01
***p < 0.001.

TABLE XIII. Hierarchical regression of aggregated SE categories as predictors of conceptual test score. Note that
N ¼ 54.

ΔR2 B SE B β p

Step 1 0.22
Constant 1.23 0.36 0.001
Model: principle-no-condition SEs 0.42 0.13 0.40 0.003
Model: principle-and-condition SEs 0.20 0.10 0.25 0.048

Step 2 0.01
Constant 1.34 0.39 � � � 0.001
Procedural: no-principle SEs −0.03 0.04 −0.10 0.47
Model: principle-no-condition SEs 0.46 0.14 0.43 0.002
Model: principle-and-condition SEs 0.19 0.10 0.25 0.049
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Procedure: No-principle SEs. We did not include retrieval
practice vs control as a predictor, as the experimental results
were insignificant. A significant regression equation was
found [Fð3; 49Þ ¼ 4:81,p ¼ 0.005], with anR2 ¼ 0.23 and
adjusted R2 ¼ 0.18 (step 2). The model was significant, but
Procedural: No-principle SEs did not reach significance as a
predictor. A multiple linear regression was therefore calcu-
lated where we excluded Procedural: No-principle SEs. A
significant regression equation was found [Fð2; 50Þ ¼ 7:02,
p ¼ 0.002], with an R2 ¼ 0.22 and adjusted R2 ¼ 0.19
(step 1). Regression coefficients, their standard errors, the
standardized coefficients, and the p values can be found
in Table XIII.
Discussion: We can see from Table XII that only Model:

Principle-no-condition SEs were significantly related to
scores on the conceptual test, while Model: Principle-and-
condition SEs did not quite reach significance. However,
both predictors were significant in the multiple linear
regression model in Table XIII. Unlike for problem-solving
score, Procedural: No-principle SEs did not significantly
predict conceptual test score. These results support our
hypothesis that explanations of physics models that contain
a reference to physics principles are important for devel-
oping conceptual knowledge. Indeed, conceptual multiple-
choice tests often remove the need for mathematical
procedures while increasing the need for an understanding
of the relevant physics principles and when they apply.

IV. GENERAL DISCUSSION

Much educational research has been done on retrieval
practice and self-explanations separately. However, there is
little to no research on the interplay between retrieval
practice and self-explanation. To our knowledge, no one
has tried to manipulate levels of relevant prior knowledge
for self-explanation using retrieval practice. One of the
most critical jobs for physics education researchers is
taking general research and theory on learning and finding
ways to adapt it to our domain-specific context. Physics is a
unique domain because it is highly structured and centered
around principles and application conditions. This makes
the combination of methods in this paper especially suited
for physics.
In this article, we set out to investigate how we can

improve students’ self-explanations of worked examples in
physics by asking two general research questions: (1) What
knowledge representations should students seek while self-
explaining worked examples to maximize their learning?
(2) Can retrieval practice of physics principles and their
conditions of application potentiate students’ learning from
self-explaining worked examples?
Research question 1: We defined four elements of self-

explanation (actions, goals, principles, and conditions of
application) based on the ACT-R theory and empirical
results from the literature. We based our coding categories

of written self-explanations on these four elements. In two
studies, we explored the correlations between categories of
self-explanation and learning outcomes. The results indi-
cate that different combinations of SE elements are useful
for different parts of the problem. For example, when
explaining the modeling part of solutions—where princi-
ples are used to describe the problem—explanations should
center around the principles used and their application
conditions and descriptions of how the principle is set up in
the specific situation. In addition, one might speculate that
including the goal of the entire model would help students
link the physics model to the mathematical procedures.
When explaining the procedural process from the physics
model to the final answer, goals and action descriptions
should be the main components of the explanations.
Different types of explanations can have additive effects
[88], but they are only useful to the extent that they support
generalization to new and different problems [89,90]. The
presented category system clarifies what elements must be
included to make self-explanations generalizable. These
results also lead us to ask whether it would be wise to more
clearly separate the structural elements of worked examples
and solutions in physics textbooks, i.e., clearly separating
models from procedures. Indeed, Lee et al. [91] found that
students got an improved final understanding and increased
transfer when they studied examples that emphasized the
underlying structure.
We have contributed to the literature with a category

system that clarifies what high-quality self-explanation
means in physics, even distinguishing between the different
structural elements in worked examples. We did not
investigate whether (high-quality) self-explanations cause
better problem-solving or conceptual test scores. However,
it is well established that self-explanations cause declara-
tive knowledge representations of procedural problem-
solving steps, considering learning theory [37,39] and
prior empirical research [12,20]. Indeed, trying to under-
stand an example—self-explanation—is the fundamental
way we learn this type of knowledge [37]. Therefore, it
seems certain that the knowledge representations described
by the categories of self-explanations—whether learned
during or before the self-explanation practice phase—are
important for post-test performance, also evidenced by the
large correlations. Further research is still warranted to
increase confidence in the causality of these categories of
self-explanations.
Teaching students how to explain might ultimately be

more important than directly teaching them specific domain
knowledge through lectures, demonstrations, and examples
[72]. However, we cannot make any firm suggestions for
instructing students in self-explanation. There is a lack of
effective instructional methods for teaching self-explanation
in the literature [50]. Even though they were prompted, the
students in this study tended to generate a low amount of
high-quality explanations, something others have also
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experienced [15]. However, some research indicates that it is
possible to affect what types of explanations students
construct [88] and that training might improve their self-
explanation skills [92]. The category system from this paper
may further spark innovative methods and interventions.
We suspect that new instructional methods should center
around the physics model and principle-and-condition SEs
and be implemented through active learning and group
discussions.We also suspect that making the relevant knowl-
edge components for self-explanation more accessible must
be part of an effective instructional strategy. Retrieval
practice is a prime candidate because it is the best learning
strategy for improving memory access.
Research question 2: We quasiexperimentally (study 1)

and experimentally (study 2) tested the effects retrieval
practice of physics principles and their conditions of
application had on problem solving and conceptual knowl-
edge. The results from the two studies, together with the
continuously cumulating meta-analysis in Sec. III. B. 1,
indicate that retrieval practice has a medium-sized positive
effect on problem-solving performance while there is no
significant effect on conceptual test performance. However,
in Secs. I. C, II. C. 1, and III. B. 1, we discussed the three
potential pathways of learning from retrieval practice to
improved post-test performances, (i) indirectly through
improved self-explanation quality, (ii) indirectly through
potentiating all learning strategies, or (iii) by directly
affecting performance. The pattern of results can provide
some insights into these pathways; see the following three
paragraphs.
The results from the two studies suggest that the indirect

pathway through improved quality of self-explanations
leads to an effect that is smaller than 0.4 standard deviations
for problem solving and has negligible effects for con-
ceptual knowledge. Notably, the results from the second
study (hypothesis 2) established that retrieval practice does
improve the quality of self-explanations, even though the
intervention only entailed 20 min of retrieval practice and
with a conservative control treatment (self-explanation of
similar content). One may wonder why the improvements
in self-explanation quality did not translate into signifi-
cantly improved post-test performance. There are some
potential interpretations of this finding: First, the improve-
ments in self-explanation quality may have been super-
ficial. Many of the students were unaware of or could not
access the relevant physics principles before the 20 min of
retrieval practice. We cannot expect these students to
suddenly construct deep and insightful self-explanations
merely because they can now access the principle.
However, it is an essential first step for novice students
to connect physics principles and their conditions to their
understanding of problem-solving steps. Second, it may
mean that preexisting knowledge is behind both self-
explanation quality and post-test performance and that
the self-explanation practice phase had no effect on the

post-tests. However, we find it more likely that both prior
knowledge and new knowledge gained through self-
explanation affected the student’s post-test performances.
Indeed, learning theory makes it clear that when you
construct high-quality self-explanations of a worked exam-
ple, you will learn from the experience [36,37,46,93].
Finally, high-quality self-explanation may lead to improved
conceptual knowledge, but perhaps not noticeably on such
a short time scale. Section III. B. 1 also discusses the two
potential moderators of prior elaborative encoding and self-
explanation skills.
The results from the two studies suggest that the indirect

(long-term) pathway through improved learning from all
other learning strategies is important, especially for con-
ceptual test performance. Retrieval practice may be more of
a long-term potentiator of all study strategies than a means
to specifically and immediately potentiate self-explanation,
see Sec. I. C. 2. When the long-term pathway was removed
(in study 2), the effects were no longer significant, although
the problem-solving post-test performance provided addi-
tional evidence in the continuously cumulatingmeta-analysis
(lower overall p value, see Sec. III. B. 1). The finding that
retrieval practice affected both the self-explanation quality
and the tendency to explicate application conditions during
problem solving is indirect evidence that it can improve long-
term learning. Lending further support to this hypothesis,
Gjerde, Holst, and Kolstø [50] found that students in a
mechanics course noticed (long-term) benefits from having
engaged in retrieval practice of physics principles and their
conditions. Finally, we must consider the possibility that the
positive effects in study 1 were due to systematic differences
between the groups rather than the effect of retrieval practice,
but see the discussion of validity in Sec. II. C. 1.
We experimentally tested one part of the potential direct

pathway from retrieval practice to improved post-test
problem-solving performance, namely, whether the stu-
dents were more likely to recognize relevant physics
principles and explicate application conditions during
problem solving. There was no effect on the proportion
of correct principles recognized, perhaps because the same
two principles were repeated in all the practice and post-test
problems. Retrieval practice may have a larger effect on
problem solving during regular studying when it is less
obvious which principles to apply. However, the students
were much more likely to explicate the application con-
ditions for the principles during problem solving. This has
important implications for long-term learning. Considering
conditions of application during problem solving is impor-
tant for becoming able to transfer knowledge to new
problems, especially when it is less obvious which prin-
ciples apply. As discussed in Sec. I. C, we also expect the
stronger memories of principles to lead to less pressure on
working memory resources and that it becomes easier to
embed the principles into more complex knowledge rep-
resentations. These effects are more relevant for problem
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solving than conceptual knowledge because of the math-
ematical complexity. The direct effects on problem solving
may have contributed to the effect size of 0.4, but it was not
enough to reach statistical significance in study 2.
It is premature to suggest retrieval practice as an

intervention with the sole purpose of improving learning
from self-explanation. However, retrieval practice of phys-
ics principles and their application conditions is intended to
potentiate all other learning strategies [31]. Considering
(i) the large research literature on how retrieval practice is
an effective learning strategy and a promising method for
education [54,94,95], (ii) our prior publications on retrieval
practice in physics education [31,50], and (iii) that the
results in this paper suggest that the potential benefits are
quite large and that the potential harm is small or non-
existent, we are comfortable with making a soft suggestion
for including retrieval practice of principles and their
conditions of application in an overall instructional strat-
egy. A method for doing this in introductory mechanics can
be found in Refs. [31,50].
Learning is the result of what the students do and attend

to. Moreover, it is a known problem that physics students
tend to focus on “formulas” and “getting the right answer.”
Hence, that we were able to shift the students’ focus more
towards principles and their conditions of application in
their study—during self-explanation and problem solving
in this paper—is an exciting result, especially considering
how quick and easily implementable the intervention is.
We discuss weaknesses in the two studies in Secs. II. C. 1

and III. B. 1. We also discuss potential moderators of the
effect of retrieval practice in Sec. III. B. 1. Further, we
cannot say whether our self-explanation results generalize
to oral self-explanations. Oral explanations seem to stimu-
late more conceptual elaboration than written explanations
[96]. More research is needed on retrieval practice, self-
explanations, and the interplay between the two learning
strategies in physics.

V. CONCLUSIONS

In this study, we have begun answering questions about
the knowledge representations students should seek from
self-explaining worked examples and whether retrieval
practice can potentiate self-explanation. For example, it
seems that when explaining the physics modeling part of
worked examples, students should try to explain how the
model is set up, explicate physics principles and their

conditions of application, and potentially also how the
physics model leads to the goal. Further, when explaining
the mathematical procedures in the worked examples,
students should try to explain the action, the goal of the
action, and the conditions of its application. Our results
indicate that retrieval practice improves problem-solving
performance, enhances the quality of self-explanations, and
increases the tendency to consider application conditions
during problem solving. However, we note some potential
weaknesses in the paper—primarily related to the design in
study 1—that warrant further research before solid recom-
mendations can be given.
For self-explanations, finer-grained research could be

done on how the individual SE categories affect different
outcomes. Experimental testing of the different self-
explanation categories may reveal whether and how they
cause learning. There may also be important insights to
gain from a similar qualitative analysis of students who
explain out loud instead of writing self-explanations. It is
also important to explore why some students construct
effective explanations while others do not [22] and how
educators can affect it. Research should be done to make
retrieval practice of physics principles and their conditions
maximally effective for potentiating other learning strate-
gies. This may involve researching the hypothesized
moderators in Sec. III. B. 1: Intervening time from retrieval
practice to test, prior elaboration, and self-explanation skill.
The treatment levels of retrieval practice and self-explan-
ation should also be varied. Research should be done to
isolate the potential mediating pathways from retrieval
practice to post-test performance, discussed in Sec. I. C.
Further research should also be done to investigate whether
and when retrieval practice can potentiate the learning
of conceptual knowledge versus problem-solving skill.
Finally, as much current physics education research
involves student dialogues, research should be done to
investigate how retrieval practice of principles and their
conditions can affect the content of student dialogues and
other generative learning activities.
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