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Abstract

In the main body of this thesis, we study two different order theoretic problems. The first
problem, called Completion of an Ordering, asks to extend a given finite partial
order to a complete linear order while respecting some weight constraints. The second
problem is an order reconfiguration problem under width constraints.

While the Completion of an Ordering problem is NP-complete, we show that it
lies in FPT when parameterized by the interval width of ρ. This ordering problem can be
used to model several ordering problems stemming from diverse application areas, such as
graph drawing, computational social choice, and computer memory management. Each
application yields a special partial order ρ. We also relate the interval width of ρ to
parameterizations for these problems that have been studied earlier in the context of
these applications, sometimes improving on parameterized algorithms that have been
developed for these parameterizations before. This approach also gives some practical
sub-exponential time algorithms for ordering problems.

In our second main result, we combine our parameterized approach with the paradigm
of solution diversity. The idea of solution diversity is that instead of aiming at the de-
velopment of algorithms that output a single optimal solution, the goal is to investigate
algorithms that output a small set of sufficiently good solutions that are sufficiently di-
verse from one another. In this way, the user has the opportunity to choose the solution
that is most appropriate to the context at hand. It also displays the richness of the so-
lution space. There, we show that the considered diversity version of the Completion

of an Ordering problem is fixed-parameter tractable with respect to natural para-
maters that capture the notion of diversity and the notion of sufficiently good solutions.
We apply this algorithm in the study of the Kemeny Rank Aggregation class of
problems, a well-studied class of problems lying in the intersection of order theory and
social choice theory.

Up to this point, we have been looking at problems where the goal is to find an optimal
solution or a diverse set of good solutions. In the last part, we shift our focus from
finding solutions to studying the solution space of a problem. There we consider the
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following order reconfiguration problem: Given a graph G together with linear orders τ
and τ ′ of the vertices of G, can one transform τ into τ ′ by a sequence of swaps of adjacent
elements in such a way that at each time step the resulting linear order has cutwidth
(pathwidth) at most w? We show that this problem always has an affirmative answer
when the input linear orders τ and τ ′ have cutwidth (pathwidth) at most w/2. Using
this result, we establish a connection between two apparently unrelated problems: the
reachability problem for two-letter string rewriting systems and the graph isomorphism
problem for graphs of bounded cutwidth. This opens an avenue for the study of the
famous graph isomorphism problem using techniques from term rewriting theory.

In addition to the main part of this work, we present results on two unrelated problems,
namely on the Steiner Tree problem and on the Intersection Non-emptiness

problem from automata theory.
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Chapter 1

Introduction

Many computational problems can be phrased as the task of arranging a collection
of combinatorial objects into a minimum-cost linear order that satisfies certain con-
straints. Examples of natural problems that fall in this category are One-Sided Cross-

ing Minimization (OSCM), a prominent problem in the field of graph drawing and
VLSI design [Battista et al., 1999, Healy and Nikolov, 2013, Mutzel, 2009, Sechen,
2012, Stallmann et al., 2001], Grouping by Swapping (GbS), a problem with ap-
plications in computer memory management [Downey and Fellows, 2013, Garey and
Johnson, 1979, Wong and Reingold, 1991], and Kemeny Rank Aggregation (KRA),
a prominent problem in the field of computational social choice [Dwork et al., 2001, Ke-
meny, 1959]. Some graph properties can be defined by linear orders of the vertices such
as the perfect elimination linear order for chordal graphs [Fulkerson and Gross, 1965],
cutwidth [Thilikos et al., 2005] and the vertex separation number [Ellis et al., 1994].
In this introduction, we will use several notions that will be formally defined in later
chapters of this part.

Given a partial order, a fundamental question is to complete it into a linear order. A
direct application of this problem is the scheduling of tasks. Given some tasks together
with dependencies between these, to realise those tasks, one needs to first find an order
of the tasks that satisfy the dependency conditions. Without constraints, the problem
of finding a linear extension is solvable in linear time [Cormen et al., 2001, Section 22.4].
However, asking for a linear order that minimizes a cost function makes the problem
NP-complete [Fernau, 2005, Sec. 6.4]. The latter problem is called Completion of an

Ordering (CO). In this work, we first give a unified view on OSCM, GbS and OSCM

through the lens of the Completion of an Ordering problem under the framework
of parameterized complexity and the framework of diversity of solutions. Then, we look
at the reconfiguration of linear orders of vertices of a graph under width constraints.
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A central notion in the framework of parameterized complexity is the fixed-parameterized
tractability. An algorithm for a given computational problem is said to be fixed-
parameter tractable with respect to parameters k1, . . . , kr if it runs in time f(k1, . . . , kr) ·
nO(1), where n is the size of the input and f is a function that depends only on the pa-
rameters. The intuition is that if the range of the parameters is small on instances of
practical relevance, then even if the function f grows relatively fast, the algorithm can
be considered to be fast enough for practical purposes.

Linear extension as a general framework

A natural parameter that arises when studying problems such as OSCM, GbS and KRA

from the perspective of parameterized complexity theory is the cost k of a solution. In
particular, the best algorithm for OSCM, parameterized by the cost of a solution k,
is the algorithm due to Kobayashi and Tamaki [Kobayashi and Tamaki, 2015] which
runs in time1 O⋆(2

√
2k) and the best single-exponential algorithm for KRA runs in time

O⋆(1.403k) [Simjour, 2009], while sub-exponential algorithms of type O⋆(2O(
√
k)) have

been proposed in [Karpinski and Schudy, 2010], with some unclear constant hidden in
the O-notation of the exponent. Not surprisingly, they have been devised under distinct
paradigms and with substantially distinct sets of techniques.

In Chapter 6, significantly extending the ideas started out in [Fernau, 2005, Fernau
et al., 2014], we leverage the Completion of an Ordering problem (CO) to provide
a unified framework for the study of several cost-parameterized ordering problems. In
this problem, we are given a partial order ρ on a set V , and a function c : V × V → N
assigning costs to incomparable pairs, and the goal is to compute a minimum-cost linear
extension of ρ. Interestingly, a natural structural parameter that arises in this context
is the pathwidth of the cocomparability graph of the input partial order ρ. This graph
has V as its vertex-set and there is an undirected edge between vertices u and v if and
only if u and v are not related in the partial order. The main result of this chapter
states that CO, parameterized by the interval width w of the input partial order, can
be solved in time O⋆(2w). Additionally, our algorithm is optimal under the Exponential
Time Hypothesis (ETH for short). Using our result on CO, together with reductions
from OSCM, GbS and KRA to PCO, the natural restriction of CO to positive costs, we
obtain algorithms for these three problems (parameterized by width, or by the standard
parameter, or by other problem-specific structural parameters) whose running times
often match or improve on the best algorithms for the three problems.

When reducing OSCM or GbS to PCO, the partial order one obtains is an interval order,

1Recall that the O⋆-notation suppresses polynomial factors.
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meaning that the cocomparability graph of this order is an interval graph. Interval orders
play an important role in partial order theory due to the fact that their interval width
can be computed in linear time. Additionally, they find applications in many contexts of
practical relevance such as scheduling, online and packing algorithms, see [Trotter, 1997].
Inspired by this, we define the Positive Completion of an Interval Ordering

(PCIO) problem, a version of PCO where the input partial order is required to be an
interval order. In this restricted version, our main algorithm for CO parameterized by
interval width can be converted into a sub-exponential O⋆(2

√
2k)-time FPT algorithm for

PCIO, parameterized by cost k.

Building on recent advances in the theory of Ck-free graphs [Chudnovsky et al., 2020]
we establish an upper bound for the pathwidth of a cocomparability graph in terms of
the number of edges of the graph. As a by-product of this result, we obtain the first
algorithm running in time O⋆(2O(

√
k)) (Theorem 41) for the positive completion of an

ordering problem (PCO). Previous to our work, the best algorithm for this problem
parameterized by cost had asymptotic time complexity of O⋆(kO(

√
k)) = O⋆(2

√
k log k).

Therefore, we remove the log-factor in the exponent. This is optimal under ETH.

Our width-based approach also allows us to improve on a parameterized algorithm for
KRA based on the parameter maximum range (of a candidate) as introduced and dis-
cussed in [Betzler et al., 2009]. Further, it can be used to show that GbS is also fixed
parameter tractable when parameterized by a parameter called scope coincidence de-
gree, a natural parameter in the context of strings. This gives the first algorithmic use
of this structural string parameter.

Our approach for CO is built on dynamic programming on a path decomposition of
the cocomparability graph of the partial order. Notice that this path decomposition
structure has been recently exploited for counting the number of linear extensions by
Eiben et al. [Eiben et al., 2019]. Here, we use this approach to find the cheapest linear
extension.

Diversity is the key

Traditionally, in optimization theory, when given an instance of a computational prob-
lem, one is interested in computing some optimal solution for the instance in question.
For certain problems of practical relevance, this framework may not be satisfactory be-
cause it precludes the user from the possibility of choosing among optimal solutions in
case more than one exists, or even from choosing a slightly less optimal solution that
may be a better fit for the intended application, due to subjective factors.
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A recent up-coming trend of research in artificial intelligence, called diversity of so-
lutions [Petit and Trapp, 2019, Baste et al., 2020, Ingmar et al., 2020, Baste et al.,
2019, Fomin et al., 2020], has focused on the development of notions of optimality that
may be more appropriate in settings where subjectivity is essential. The idea is that
instead of aiming at the development of algorithms that output a single optimal solu-
tion, the goal is to investigate algorithms that output a small set of sufficiently good
solutions that are sufficiently diverse from one another. In this way, the user has the op-
portunity to choose the solution that is most appropriate to the context at hand. The
intuition is that the criteria employed by the user to decide what an appropriate solution
is may be subjective, and therefore, impractical or even impossible to be formalized at
the level of the problem specification. Examples of such criteria are aesthetic, economic,
political, environmental criteria. Another motivation comes from the problem of find-
ing several good committees such that each committee member is not overloaded with
these commitments, as described in [Bredereck et al., 2020]; again, some diversity could
be helpful.

The framework of diversity of solutions, under distinct notions of diversity, has found
applications in several subfields of artificial intelligence, such as information search and
retrieval [Gollapudi and Sharma, 2009, Abbassi et al., 2013], mixed integer program-
ming [Glover et al., 2000, Danna and Woodruff, 2009, Petit and Trapp, 2015], binary
integer linear programming [Greistorfer et al., 2008, Trapp and Konrad, 2015], con-
straint programming [Hebrard et al., 2005, Hebrard et al., 2007], SAT solving [Nadel,
2011], recommender systems [Adomavicius and Kwon, 2014], routing problems [Schit-
tekat and Sörensen, 2009], answer set programming [Eiter et al., 2013], decision support
systems [Løkketangen and Woodruff, 2005, Hadžić et al., 2009], genetic algorithms [Ga-
bor et al., 2018, Wineberg and Oppacher, 2003], planning [Baste et al., 2019], and in
many other fields. Recently, a general framework for addressing diversity of solutions
from the perspective of parameterized complexity theory was developed [Baste et al.,
2020]. This framework allows one to convert dynamic programming algorithms for find-
ing an optimal solution for instances of a given problem into dynamic programming
algorithms for finding a small set of sufficiently diverse solutions.

Notice that there is also the related area of enumerating all optimal solutions, or at
least encoding them all; this is known as knowledge compilation in artificial intelligence,
see, e.g., [Darwiche and Marquis, 2002, Fargier and Marquis, 2014, Marquis, 2011].
These types of questions have also been considered from a more combinatorial viewpoint;
confer [Fomin et al., 2014, Golovach et al., 2018, Kanté et al., 2014, Kanté and Nourine,
2016]. But from a practical perspective, it is not really desirable to confront a user
with an exponential number of different solutions, but she wants to know what the real
alternatives are.
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Two measures of diversity of a set S of solutions have been particularly explored in the
literature. The first one is the sum of distances between pairs of solutions in S. The
second one is the minimum distance s between any two solutions in S. This last no-
tion has been also known in the literature as scatteredness [Galle, 1989]. Both notions
have been used in the context of vertex- and edge-problems on graphs using the Ham-
ming distance of solutions as the distance measure [Baste et al., 2020, Gabor et al.,
2018, Wineberg and Oppacher, 2003, Fomin et al., 2020]. It is worth noting that when
used alone, the diversity measure defined as the sum of Hamming distances has some
weaknesses. For instance, if we take a pair {A,B} of solutions of diversity d, then the
list A1, A2, . . . , Ar, B1, B2, . . . , Br, where each Ai is a copy of A, and each Bi is a copy
of B, has high diversity (d′ > r2 · d), while this list clearly opposes the intuitive notion
of a diverse set of solutions. This weakness can be significantly mitigated by considering
diversity in conjunction with scatteredness. For instance, by setting s ≥ 1, we already
guarantee that all elements in a list of solutions will be distinct from each other.

One source of difficulty when trying to develop efficient algorithms for diverse variants of
computational problems is the fact that these problems may be computationally hard. In
particular, many interesting computational problems that are suitable for being studied
from the perspective of diversity of solutions are already NP-hard in the usual variant in
which one asks for a single solution. Additionally, it may be the case that even problems
that are polynomial-time solvable in the single-solution version become NP-hard when
considering diverse sets of solutions. One way to circumvent this difficulty is to combine
the framework of diversity of solutions with the framework of parameterized complexity
theory [Downey and Fellows, 1999].

In Chapter 7, we investigate the impact of the notions of diversity of solutions and of
fixed parameter tractability theory in the context of social choice theory. In particular,
we focus on the framework of preference list aggregation introduced by Kemeny in the
late fifties [Kemeny, 1959]. Intuitively, preference lists are a formalism used in social
choice theory to capture information about choice in applications involving the selection
of candidates, products, etc., by a group of voters. The task is then to find a ranking of
the candidates that maximizes the overall satisfaction among the voters. This problem
is commonly referred to in modern terminology as the Kemeny rank aggregation (KRA)
problem. In its most general setting, the ranking cast by each voter is a partial order
on the set of candidates. The distance measure we use to define our diverse version
for KRA is the Kendall-Tau distance which is widely used in the context of preference
aggregation.2 Its popularity is underlined by articles describing these issues for the

2To cite from the Stanford Encyclopedia of Philosophy [List, 2013]: At the heart of social choice
theory is the analysis of preference aggregation, understood as the aggregation of several individuals’
preference rankings of two or more social alternatives into a single, collective preference ranking (or
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interested public audience; see [Farkas and Timotity, 2019].

The result of this chapter is a multiparametric algorithm for Diverse KRA over par-
tially ordered votes that runs in time f(w, r, δ, s) ·d ·n · log(n2 ·m) where n is the number
of candidates, m is the number of votes, r, δ, s and d are the parameters discussed above,
and w is the unanimity width of the votes. That is to say, the pathwidth of the cocompa-
rability graph of the unanimity order of the input votes (Corollary 84). Intuitively, this
width measure is a quantification of the amount of disagreement between the votes. Note
that pathwidth and treewidth coincide for the class of cocomparability graphs [Habib
and Möhring, 1994].

Second, we note that the notion of Kendall-Tau distance between partial orders (for-
mally defined in Section 5.3), which is used to define our notion of diversity, can be
applied equally well in the more general context of the Completion of an Ordering

problem (CO), a problem of fundamental importance in order theory that unifies several
problems of relevance for artificial intelligence, such as KRA, One-Sided Crossing

Minimization (an important sub-routine used in the search for good hierarchical rep-
resentations of graphs), and Grouping by Swapping (a relevant problem in the field
of memory management) [Wong and Reingold, 1991]. For a matter of generality, we first
develop a f(w, r, δ, s) · d · n · log(n2 ·m) time algorithm for Diverse CO (Theorem 83)
and then obtain our main result for Diverse KRA as a corollary. In the more general
context of CO, the parameter w is the width of the cocomparability graph of the partial
order given at the input.

It is worth noting that in the context of KRA over totally ordered votes, the existence of
diverse sets of high-quality solutions implies that any optimal solution disagrees signifi-
cantly with some of the voters. More precisely, let kopt be the cost of an optimal solution
and suppose that there are two solutions with cost kopt + δ1 and kopt + δ2, respectively.
It is possible to show that max{kopt + δ1, kopt + δ2} is at least half the number of votes.
Therefore, if two solutions have small solution imperfection, then kopt is large. In the
other direction, if there is a strong consensus among the voters (kopt is small) then δ1 or
δ2 must be large. Intuitively, in the context of aggregation over totally-ordered votes, the
more disagreement there is between an optimal ranking and the ranking provided by the
voters, the more one can benefit from the framework of solution diversity. In the context
of aggregation over partially ordered votes, such a correlation between solution imper-
fection and optimality does not necessarily hold even for constant unanimity width. For
instance, consider a set of partially ordered votes where the unanimity order is a bucket
order with buckets of size 2 (i.e., unanimity width equal to 1). Then depending on the
instance, we can have diverse sets of solutions with solution imperfection 0 and optimal

choice) over these alternatives.
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cost 0. Therefore, in the context of partially ordered votes, the notion of diversity makes
sense even in the case where voters have small disagreement between each other.

How to reorder your library without having a mess in between

While in the last setting, we were interested in finding a set of solution where the
solutions are sufficiently far apart from each other, we are now shifting our focus to
relationships among solutions of a problem instance. Those relationships are the topic of
the field of reconfiguration [Ito et al., 2011, Nishimura, 2018, Wrochna, 2018]. Here, by
reconfiguration of one solution into another, we mean a sequence of steps where each step
transforms a feasible solution into another. Three fundamental questions in this context
are: (1) Is it the case that any two solutions can be reconfigured into each other? (2) Can
any two solutions be reconfigured into each other in a polynomial number of steps? (3)
Given two feasible solutions X and Y , can one find in polynomial time a reconfiguration
sequence from X to Y ?

In Chapter 8, we study the reconfiguration problem in the context of linear arrangements
of the vertices of a given graph G. The space of feasible solutions is the set of all linear
orders of cutwidth (pathwidth) at most w for some given w ∈ N. We say that a linear
order τ can be reconfigured into a linear order τ ′ in width w if there is a sequence
τ1, . . . , τm of linear orders of width at most w such that τ1 = τ , τm = τ ′ and for each
i ∈ {2, . . . ,m}, τi is obtained from τi−1 by swapping two adjacent vertices. The main
result of the chapter (Theorem 88) states that if τ and τ ′ are linear orders of cutwidth
at most w, then τ can be reconfigured into τ ′ in width at most 2w. Additionally,
reconfiguration in width at most 2w can be done using at most O(n2) swaps. Finally,
we show that a reconfiguration sequence can be found in polynomial time.

Our results on reconfiguration of linear arrangements can be used to establish an interest-
ing connection between two apparently unrelated computational problems: reachability
for two-letter string rewriting and graph isomorphism.

A two-letter rewriting rule over a given alphabet Σ is a rewriting rule of the form ab→ cd

for letters a, b, c, d ∈ Σ. A two-letter string rewriting system is a collection R of two-
letter string rewriting rules. The reachability problem for such a rewriting system R

is the problem of determining whether a given string x ∈ Σn can be transformed into
a given string y ∈ Σn by the application of a sequence of two-letter rewriting rules of
R. On the other hand, in the graph isomorphism problem, we are given two graphs, G
and G′, and the goal is to determine whether there exists a bijection φ from the vertex
set of G to the vertex set of G′ in such a way that an edge {u, v} belongs to G if and
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only if the edge {φ(u), φ(v)} belongs to G′.

In order to describe more precisely the connections between two-letter term rewriting
and graph isomorphism, we briefly discuss the notion of slices and unit decompositions.
A slice is a graph S where the vertices are partitioned into a center C and special in-
frontier I and out-frontier O that can be used for composition. A slice S1 can be glued
to a slice S2 if the out-frontier of S1 can be coherently matched with the in-frontier of S2.
In this case, the gluing gives rise to a bigger slice S1 ◦ S2 which is obtained by matching
the out-frontier of S1 with the in-frontier of S2. A unit slice is a slice with a unique
vertex in the center. Any slice S can be decomposed into a sequence of unit slices. More
specifically, a unit decomposition is a sequence U = S1S2 . . .Sn of unit slices with the
property that for each i ∈ [n− 1], Si can be glued to the slice Si+1. The result of gluing
the unit slices in U is a slice U

◦
with n center vertices. Conversely, any slice S with n

center vertices can be written as a unit decomposition U = S1S2 . . .Sn with the property
that U

◦
is isomorphic to S.

An important remark connecting unit decompositions and the notion of cutwidth is
that if a slice S has cutwidth w, then S can be decomposed into a unit decomposition
U = S1S2 . . .Sn where for each i ∈ [n], Si has at most w vertices in each frontier except
for the in-frontier of S1 and the out-frontier of Sn. Therefore, if we let Σ(w) denote the
set of all unit slices with frontiers of size at most w, then any graph G with n vertices of
cutwidth at most w can be written as a word (unit decomposition) of length n over the
alphabet Σ(w). In this chapter, for each w ∈ N, we introduce a suitable two-letter string
rewriting system R(w) over the alphabet Σ(w) with the following property: if U and U′

are two unit decompositions over Σ(w) and if U can be transformed into U′ using the
rewriting rules in R(w), then the graphs U

◦
and U′◦

are isomorphic. Our second main
result is a partial converse for this property. More precisely, we show that given two unit
decompositions U and U′ over Σ(w), if the graphs U

◦
and U′◦

are isomorphic, then each
of these unit decompositions can be transformed into one another by the application of
rewriting rules from the string rewriting system R(2w) (Theorem 98).

The proof of Theorem 98 is heavily based on Theorem 88. An important feature of
this proof is that, given an isomorphism from U

◦
to U′◦

, one can construct a sequence of
rewriting steps transforming U into U′. Conversely, given any such a sequence, we are
able to construct an isomorphism from U

◦
to U′◦

. This result, together with the fact that
unit decompositions of minimum cutwidth can be approximated in FPT time, implies
that the graph isomorphism problem for graphs of cutwidth at most w is FPT-equivalent
to the reachability problem for R(2w) (Theorem 100).

Another width parameter for linear orders that has been studied in the context of graph
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theory is the vertex separation number of a graph [Ellis et al., 1994]. This parameter may
be seen as an order theoretic interpretation of the notion of pathwidth. The techniques
used to prove Theorem 88 can be generalized to prove that reconfiguration of linear
orders of vertex separation number w can always be achieved in width at most 2w

(Theorem 101). While we do not provide a string-rewriting interpretation of this result,
we do state it formally in Section 8.4 since this result may be of independent interest in
the field of reconfiguration.

Structure of this Work

This work is divided into three parts. In Part I, the current part, we introduce the basic
concepts used in Part II. Chapter 2 contains the basic definitions and notations for
fundamental notions that will be used throughout this thesis such as sets, graphs and
partial orders. In Chapter 3, we highlight some basic concepts of complexity theory used
in Part II such as the notion of NP-completeness and of fixed-parameterized tractability.
We illustrate these notions using the Vertex Cover problem as an example. Related
to parameterized complexity, Chapter 4 lists the definitions and gives the background to
several width measures for graphs, partial orders and strings used in Part II. In the last
chapter of Part I, Chapter 5, we give formal definitions of the problems studied in Part II.
We also discuss related work concerning these problems. The problems we consider span
over a variety of fields of computer science such as ordering, graph drawing, social choice,
strings, reconfiguration, graph theory and rewriting systems.

Part II contains the results that we introduced above. They have been published in [Ar-
righi et al., 2020, Arrighi et al., 2021c, Arrighi et al., 2021a]. This part is organized as
follow. First, we look at OSCM, GbS and KRA using CO as the common generaliza-
tion. In Chapter 6, we design an FPT algorithm for CO parameterized by the interval
width of the input partial order and give a reduction for each problem to PCO, a restric-
tion of CO. Then, in Chapter 7, we focus on KRA and CO, and look at those problems
from the point of view of diversity. We define the diverse versions of both problems
and give a multiparametric algorithm parameterized by the interval width and several
diversity parameters. We end this part with Chapter 8. In this chapter, we look at re-
configuration problems under width constraints. Given a graph, we consider the problem
of transforming a linear order of its vertices into another linear order in such a way that
every intermediate step have bounded cutwidth or vertex separation number. Using our
result in this chapter, we draw a connection between the graph isomorphism problem
and a particular two-letter rewriting system.

Part III consists of the full versions of two published papers whose results do not fit in
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the framework of ordering problems. These papers are discussed in the next subsection.

Results of Part III

Part III consists of two research papers, [Arrighi and de Oliveira Oliveira, 2021] and
[Arrighi et al., 2021b] that do not fit in the line of research described in the first two
parts of this thesis. Here we give a short overview of the main results obtained in each
paper.

Three is Enough for Steiner Tree.
In Chapter 9, we present the work in [Arrighi and de Oliveira Oliveira, 2021]. In this
work, we study the Steiner Tree problem in graphs. To be able to define this problem,
we first introduce the notion of Steiner trees. Let G be an undirected edge-weighted graph
and let S ⊆ V (G) be a subset of vertices of G whose elements are called terminals. A
Steiner tree in G is a subgraph T of G such that T is a tree and S ⊆ V (T ). We note
that T may contain non-terminal vertices. The cost of a tree, c(T ), is the sum of the
costs of its edges.

Problem name: Steiner Tree

Given: A graph G, a set of terminals S, and an integer k ∈ N.
Output: Is there a subtree T of G such that S ⊆ V (T ) and c(T ) ≤ k?

Intuitively, in the Steiner tree problem for graphs, the goal is to find a minimum-
weight tree in G whose nodes span all terminals in S. This is a fundamental NP-hard
problem [Karp, 1972], which has been studied since the seventies [Hakimi, 1971] and
which has found applications in several fields of research such as planning [Keyder and
Geffner, 2009], social networks [Lappas et al., 2009], sensor networks [Lee and Younis,
2010], community detection [Chiang et al., 2013], VLSI circuit design [Joobbani, 2012],
as well as in numerous applications in industry [Cheng et al., 2004].

In this paper, we introduce a new simple combinatorial heuristic for the Steiner tree
problem that works by replacing sub-trees of a prospective solution with Steiner trees
on three terminals. We also note that this optimization procedure can also be used to
improve the weight of sub-optimal Steiner trees output by other solvers.

To validate our new heuristic, we implemented a solver in C++ and benchmark it against
several state of the art solvers for the Steiner tree problem on well known data sets. These
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solvers implement several paradigms, such as genetic algorithms, linear programming
algorithms, local search algorithms as well as algorithms with approximation guarantees.
The data sets were obtained from a variety of sources, such as established real-world
benchmarks for the Steiner tree problem, data sets of common use in the field of road
networks, and a synthetic data set where instances are generated at random.

Our experimental results have shown that our algorithm fits well the category of a
general purpose Steiner tree heuristic since it was able to obtain good solutions in all
benchmarked datasets when compared with other solvers. We note that the best solver in
some datasets was built upon a state-of-the-art mixed-integer programming package. In
some other datasets, the best solver was based on genetic algorithms. On the other hand,
our algorithm essentially consists in the application of a single simple replacement routine
that is applied multiple times until the time limit is reached. Still, the solutions obtained
by our solvers were very competitive, often being the second best in the benchmarks and
with a very small ratio (v − b)/b where v is the weight of our solution and b a known
lower bound or the weight of the best solver. It is also worth noting that our algorithm
was able to handle graphs with millions of vertices, while most of the other solvers failed
in all these big instances. Finally, it is worth noting that one possible application of our
Steiner tree improvement sub-routine is as a black-box that can be used to improve the
solution output by other solvers.

Intersection Non-emptiness for Star-Free Language Classes.
In Chapter 10, we present the work in [Arrighi et al., 2021b]. Here, we study the complex-
ity of the Intersection Non-emptiness problem, one of the most fundamental and
well studied problems in the interplay between algorithms, complexity theory, and au-
tomata theory [Kozen, 1977, Kasai and Iwata, 1985, Lange and Rossmanith, 1992, Ware-
ham, 2000, Karakostas et al., 2003, Wehar, 2014, Fernau and Krebs, 2017, Wehar, 2016].

Problem name: Intersection Non-emptiness

Given: Finite automata Ai = (Qi,Σ, δi, q(0,i), Fi), for 1 ≤ i ≤ m.
Output: Is there a word w that is accepted by all Ai, i.e., is

⋂m
i=1 L(Ai) ̸= ∅?

In this paper, we analyze the complexity of the Intersection Non-emptiness prob-
lem when the input automata belong to some specific classes of languages belonging
to two infinite hierarchies of languages, namely the Straubing-Thérien hierarchy [Place
and Zeitoun, 2019, Straubing, 1981, Straubing, 1985, Thérien, 1981] and the Cohen-
Brzozowski dot-depth hierarchy [Brzozowski, 1976, Cohen and Brzozowski, 1971, Place
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Figure 1.1: Complexity landscape of the Intersection Non-emptiness problem for
NFAs for the lower levels of the Straubing-Thérien and dot-depth hierarchies.

and Zeitoun, 2019]. Those two hierarchies define very restricted classes of language in the
sense that both hierarchies are included in the class of star-free languages. We show the
complexity ranges from containment in AC0 for the lowest level to PSPACE-completeness
already in low levels of either hierarchies as depicted in Figure 1.1.

In more detail, we show that the Intersection Non-emptiness for NFAs and DFAs
accepting languages from the level 1/2 of the Straubing-Thérien hierarchy are NL-
complete and L-complete, respectively, under AC0 reductions. Additionally, this com-
pleteness result holds even in the case of unary languages. This result is optimal in the
sense that the problem becomes NP-hard even if we allow only a single DFA to accept a
language from L1, and require all the others to accept languages from L1/2.

Subsequently, we analyze the complexity of Intersection Non-emptiness when all
input automata are assumed to accept languages from one of the levels of B0 or B1/2

of the dot-depth hierarchy, or from the levels L1 or L3/2 of the Straubing-Thérien hi-
erarchy. It is worth noting that NP-hardness follows straightforwardly from the fact
that Intersection Non-emptiness for DFAs accepting finite languages is already
NP-hard [Rampersad and Shallit, 2010]. Containment in NP, on the other hand, is a
more delicate issue, and here the representation of the input automaton plays an im-
portant role. A characterization of languages in L3/2 in terms of languages accepted by
partially ordered NFAs [Schwentick et al., 2001] is crucial for us. We show that the In-

tersection Non-emptiness is in NP for DFAs and partially ordered NFAs accepting
languages from one of the levels of B0 or B1/2 of the dot-depth hierarchy, or from the
levels L1 or L3/2 of the Straubing-Thérien hierarchy. For general NFAs, we show that
the Intersection Non-emptiness problem is contained in NP for languages from
the level B0 of the dot-depth hierarchy. The exact complexity for the level B1/2 of the
dot-depth hierarchy or for the levels L1 or L3/2 of the Straubing-Thérien hierarchy is
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open.

Interestingly, we show that the proof technique used to prove this last result does not
generalize to the context of NFAs. To prove this, we carefully design a sequence (Ln)n∈N≥1

of languages over a binary alphabet such that for every n ∈ N≥1, the language Ln can be
accepted by an NFA of size n, but any partially ordered NFA accepting Ln has size 2Ω(

√
n).

To the best of our knowledge, this is the first exponential separation between the state
complexity of general NFAs and that of partially ordered NFAs. While this result does
not exclude the possibility that Intersection Non-emptiness for languages in L3/2

represented by general NFAs is in NP, it gives some indication that proving such a
containment requires substantially new techniques.

Finally, we show that Intersection Non-emptiness for both DFAs and for NFAs is
already PSPACE-complete if all accepting languages are from the level B1 of the dot-depth
hierarchy or from the level L2 of the Straubing-Thérien hierarchy.
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Chapter 2

Fundamentals

In this chapter, we collect some basic notions, definitions and notation that we will use
throughout this thesis.

2.1 Miscellaneous

We let N denote the set of natural numbers, including 0, and N>0 denote the set of
positive natural numbers. For each n ∈ N>0, we let [n] = {1, . . . , n} denote the discrete
interval of the first n positive integers. As a degenerate case, we let [0] = ∅. For each
n ∈ N, we let [n]0 = {0} ∪ [n].

Given a finite set S, the size of S is the number of elements contained in S. We let |S|
denote the size of S. We let P(S) denote the set of all subsets of S. For each k ∈ N, we
let P(S, k) and P(S,≤ k) denote the sets of subsets of S of size exactly k and at most k,
respectively.

Given two sets A and B, we let A ∪ B = {x | x ∈ A ∨ x ∈ B} be the union of A and
B, A ∩ B = {x | x ∈ A ∧ x ∈ B} be the intersection of A and B, and A \ B = {x | x ∈
A ∧ x /∈ B} be the set of elements of A not in B. We write A ⊆ B for the set inclusion
and A ⊂ B for the strict set inclusion.

2.2 Graphs

Throughout this thesis, we work with undirected graphs without loops. Unless otherwise
stated, graphs are simple. A (simple) graph G is a pair (V,E), where V is a finite set
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and E ⊆ P(V, 2) is a finite set, consisting of two-elementary sets of elements from V .
Elements of V are called vertices and elements of E are called edges. Given an edge
e = {u, v} ∈ E, we call u and v the endpoints of e. Given a vertex v, let N(v) =̇ {u |
u ∈ V, {v, u} ∈ E} be the neighbourhood of v. In the case of a simple graph, E can be
seen as a binary relation over the vertices. In contrast, a multigraph is a graph in which
there can be more than one edge between two vertices. In this case, E is a multiset.
Given a graph G, we let V (G) denote the set of vertices of G and E(G) denote the set
of edges of G.

An isomorphism from a graph G to a graph G′ is a bijection φ : V (G) → V (G′) such
that for each v, u ∈ V (G), {v, u} ∈ E(G) if and only if {φ(v), φ(u)} ∈ E(G′). If such an
isomorphism exists, we call G isomorphic to G′.

Given a subset S ⊆ V (G), we let G[S] be the subgraph of G induced by S. More precisely,
V (G[S]) = S and E(G[S]) = E(G)∩P(S, 2). Let H be a graph, we say that G contains
H as an induced subgraph if there exist a subset of vertices S ⊆ V of G such that H
is isomorphic to G[S]. We say that G is H-free or that G excludes H, if G does not
contain H as an induced subgraph.

Interval graphs. Let I =̇ {Ii | i ∈ [n]} be a finite set of intervals over the reals. The
intersection graph associated with I is the graph GI with vertex set V (GI) = I and
edge set E(GI) = {{Ii, Ij} ∈ P(I, 2) | Ii ∩ Ij ̸= ∅}.

Definition 1 (Interval graph). A graph G = (V,E) is an interval graph if there exists
a set of interval I = {Iu | u ∈ V } such that G is isomorphic to the intersection graph
GI of I.

Figure 2.1 shows an example of interval graph with an interval representation.

2.3 Partial Orders

Let V be a set and ρ be a binary relation over V . We say that ρ is reflexive if for each
x ∈ V , (x, x) ∈ ρ, antisymmetric if for each x, y ∈ V , (x, y) ∈ ρ and (y, x) ∈ ρ imply
x = y and transitive if for each x, y, z ∈ V , (x, y) ∈ ρ and (y, z) ∈ ρ imply (x, z) ∈ ρ.
We call a relation σ irreflexive if for each x ∈ V , (x, x) /∈ σ.

A partial order on V is a reflexive, anti-symmetric and transitive binary relation ρ ⊆
V × V . We call a partial order ρ a linear order if additionally, for each (x, y) ∈ V × V ,
either (x, y) ∈ ρ or (y, x) ∈ ρ holds. Linear orders are sometimes called total orders. A



2.3 Partial Orders 19

Iv0 Iv1

Iv2

Iv3Iv4

Iv5 Iv6Iv7

Iv8

Iv9

Iv10

Iv11

Iv12

Iv13

v0

v1

v2

v3v4 v5

v6
v7

v8 v9

v10
v11

v12

v13

Figure 2.1: Example of an interval graph with an interval representation.

strict partial order on V is an irreflexive, antisymmetric and transitive binary relation
σ ⊆ V × V . By adding the identity relation IV , ρ =̇ σ ∪ IV becomes a partial order,
and conversely, from a partial order ρ on V , we can define σ =̇ ρ \ IV as a strict partial
order. If ρ ⊆ V × V is a partial order, then <ρ denotes the corresponding strict order.
Hence, we will occasionally use the term linear order also for the corresponding strict
order, often denoted as <ρ for reasons of clarity. Note that for a finite base set V , we
can specify a linear order ≤f by a bijection f : [|V |] → V , with the understanding that
f(i) ≤f f(j) if and only if i ≤ j, i.e., if the number i is smaller than the number j. Such
a bijection f is also called a ranking in the following. Conversely, any linear order τ on
Σ defines a bijection fτ : [|V |] → V .

Let ρ ⊂ V ×V be a partial order (respectively a strict partial order). For each (x, y) ∈ ρ,
we say that x is smaller (respectively strictly smaller) than y, and denote this fact by
x ≤ρ y (resp. x <ρ y).

Given two partial orders ρ and τ on the same set V , we say that τ is an extension of ρ
or that ρ is a suborder of τ if for each two elements x and y in V , x ≤ρ y implies that
x ≤τ y. We denote this by ρ ⊆ τ . If τ is also a linear order on V , then we say that τ is a
linear extension of ρ. Given a set V , a (strict) partial order ρ on V and a subset S ⊆ V ,
we let minρ(S) be the set of minimal elements of S with respect to ρ and maxρ(S) be
the set of maximal elements of S with respect to ρ. For a linear order τ on V , the set
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minτ (S) (respectively maxτ (S)) contains only one element, the minimum (respectively
maximum) element in S with respect to τ . In this case, we identify, the sets minτ (S) and
maxτ (S) with their unique element. In other words, for a linear order τ , minτ (S) (resp.
maxτ (S)) denotes the minimum (respectively maximum) element in S with respect to τ .

Given a set V , a subset T ⊆ V and a (strict) partial order ρ ⊆ V×V , we let ρ|T =̇ ρ∩T×T
be the restriction of ρ to T . Let τ be a linear order of T . We say that τ is a linear
extension of ρ on T if τ is a linear extension of ρ|T . We define Lin(ρ, T ) to be the set of
linear extensions of ρ on T .

Given a binary relation α, we denote by tc(α) the transitive closure of α.

Interval Orders. We recall the notions of an interval order as defined, e.g., in [Habib
and Möhring, 1994].

Definition 2 (Interval order). An interval order is a strict partial order ι ⊆ V ×V over
a set V whose elements v ∈ V can be represented by half-open intervals Iv = [lv, rv) on
the reals with (u, v) ∈ ι ⇐⇒ ru ≤ lv. We call {Iv | v ∈ V } an interval representation
of ι.

For more information on interval orders, we refer to textbooks and survey articles such
as [Fishburn, 1985, Trotter, 1997].

2.4 Graphs and Partial Orders

Next, we study partial orders through the lens of graph theory by using the concept of
a cocomparability graph.

Definition 3 (Cocomparability graph). Given a (strict) partial order ρ ⊆ V ×V , we call
the undirected graph Gρ =̇ (V,E) with E =̇ {{u, v} ∈ P(V, 2) | u ̸= v, (u, v) /∈ ρ, (v, u) /∈
ρ} the cocomparability graph of ρ.

Figure 2.2 shows an example of partial order with its cocomparability graph.

Let ι be an interval order on V and {Iv | v ∈ V } be an interval representation of
this order. The cocomparability graph Gι of an interval order is an interval graph.
Furthermore, Gι is the intersection graph of {Iv | v ∈ V }. It was shown in [Gilmore and
Hoffman, 1964a] that interval graphs are exactly the cocomparability graphs that do not
contain an induced cycle of length four.
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(b) Cocomparability graph of ρ

Figure 2.2: Example of an partial order and its cocomparability graph. For clarity, in
the partial order, transitive edges are not shown.

Remark 4. Habib and Möhring [Habib and Möhring, 1994] define cocomparability graphs
for strict partial orders σ on V , i.e., for transitive irreflexive relations. By the known
tight connections between partial orders and strict partial orders, one sees that the
cocomparability graph defined in [Habib and Möhring, 1994] is the same object as the
one according to our definition. In particular, we also use the notation Gσ to denote the
cocomparability graph of a strict partial order σ.
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Chapter 3

Computational Complexity

Computational complexity theory classifies problems according to the resources needed
by an algorithm to solve them. Formally, the classification is made using a model of
computation called Turing machine. As we do not need the concept of Turing machine
in the rest of the thesis, we will just talk about algorithms.

In this section, we give some notations and definitions of the complexity classes that are
used in this thesis. We assume familiarities with the computational complexity theory
and the big O notation, we refer the reader to [Arora and Barak, 2009, Sipser, 1997] for a
more detailed introductions on computational complexity theory and to [Papadimitriou,
2007, Garey and Johnson, 1979, Page 6] for an introduction to the big O notation.

3.1 Classical Time Complexity Classes: P and NP

In this section we recall the useful definitions of classical complexity theory for this
thesis. First, we start with the notion of decision problems. A decision problem is a
problem with two possible answers, yes or no. For example, the question, “Does the
input graph have a vertex cover of size at most k?” is a decision problem. Given a fixed
finite alphabet Σ, a decision problem is formally defined as a language L ⊆ Σ∗. An
instance or input of a problem L is a word x ∈ Σ∗. Intuitively, L is the set of positive
instances of the problem. An algorithm that solves L is a procedure that given an input
x ∈ Σ∗ determines if x ∈ L or not.

Definition 5 (Time Bounds). Given an algorithm A and a function f : N → N. If
∀n ∈ N, ∀x ∈ Σn, A terminates in less than f(n) steps on input x, we say that A is time
bounded by f . Or similarly, that the running time of A is bounded by f .
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We express time bounds using the big O notation. In addition to the classical big
O notation, we will also use O⋆-notation. O⋆ suppresses the polynomial factor. For
example, O(nn · nO(1)) ⊆ O⋆(nn) or O(k · 2k · nO(1)) ⊆ O⋆(2k). This notation is used
to highlight the dependency in the parameter for FPT algorithms. The class FPT and
parameterized complexity is introduced in Section 3.2. We now recall the definition of
the class P of problems solvable in (deterministic) polynomial time and the class NP of
problems solvable in non-deterministic polynomial time.

Definition 6 (P: Deterministic Polynomial-Time). The class P is the class of compu-
tational problems L ⊆ Σ∗ for which there exist an algorithm A solving L, which running
time is bounded by a polynomial function f .

Definition 7 (NP: Non-deterministic Polynomial-Time). The class NP is the class of
computational problems L ⊆ Σ∗ for which there exist a non-deterministic algorithm A
solving L, which running time is bounded by a polynomial function f .

Next, we recall the notion of hardness with respect to a complexity class. In our case,
we are interested in NP-hardness. This notion is based on the concept of a reduction.
Intuitively, a reduction expresses that if we can solve a computational problem L1 using
an algorithm for a computational problem L2, then L1 is easier than L2.

Definition 8 (Polynomial-Time Many-One Reduction). Let L1 ⊆ Σ∗ and L2 ⊆ Γ∗ be
two computational problems. A polynomial-time many-one reduction from L1 to L2, is
a function f : Σ∗ → Γ∗ that can be computed in polynomial time such that

∀x ∈ Σ∗, x ∈ L1 ⇔ f(x) ∈ L2.

The polynomial-time many-one reduction is not the only notion of reduction used in
complexity theory, but it is a useful definition for working with problems in NP. Using
reductions, we can order problems. We note L1 ≤ L2 if L1 reduces to L2. Given a
problem L if, for every Li ∈ NP, Li ≤ L, this means that every problem in NP reduces
to L, then we call L NP-hard. If in addition L ∈ NP, then L is called NP-complete.

Example 9 (Vertex Cover). To illustrate the introduced concepts, we use the Vertex

Cover problem (VC for short) as an example throughout this chapter.

Problem name: Vertex Cover (VC)

Given: A graph G and a non-negative integer k.
Output: Does there exist a set S ⊆ V (G), such that G[V (G) \ S] is edgeless?
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The Vertex Cover problem is a well known and well-studied problem in the field of
parameterized complexity. First, VC is an example of an NP-complete problem [Karp,
1972]. The hardness can be shown by a reduction from the 3-SAT problem or from
the Clique problem as in [Karp, 1972]. Note that the SAT problem, asking for the
satisfiability of a Boolean formula, was the first problem to be shown NP-complete by a
direct reduction form the halting problem for polynomial-time bounded Turing machines,
performed by Cook [Cook, 1971]. An algorithm to show membership in NP works as
follow, it first non-deterministically guesses a set of k vertices that cover all edges and
then verifies that this set indeed covers all the edges. We will have a deeper look in
the complexity of VC in the following when we introducing the other concepts of this
chapter.

3.2 Parameterized Complexity

Many problems with practical applications are NP-complete. Unless P = NP, those
problems cannot be solved by an algorithm running in polynomial time. This means
that we cannot have exact and efficient algorithms to solve them. Once we have proven
that a problem is hard, there are several approaches to go beyond this hardness. One
can use heuristics which are algorithms that work well in practice but without any
formal guarantee on the solution found, or approximation algorithms that have a formal
guarantee how far is the solution given from the optimal one, or one can look at variations
of the problem that may be easier to solve. The method we are interested in here is
to consider the parameterized complexity of a problem. The theory of parameterized
complexity was introduced by Downey and Fellows [Downey and Fellows, 1999]. It
extends the framework of complexity theory to go beyond NP-hardness results. The
key idea is to remark that classical complexity theory looks at the worse case scenario.
In some sense classical complexity theory tries to answer the following question: if an
adversary gives us the worse possible instance of a problem, how much time or memory
do we need to solve it? From a practical point of view, we want to solve some specific
instances of the problem, not the worse possible ones. The idea of Downey and Fellows
is to consider additional parameters in addition to the size of the input. Therefore,
parameterized algorithms can be used to solve problems on instances for which the value
of the parameter is small. For a more broad introduction to the field of parameterized
complexity, we refer the reader to [Downey and Fellows, 2013, Cygan et al., 2015, Flum
and Grohe, 2006]

In this thesis, we will only use the parameterized class called fixed-parameter tractable,
FPT for short. To be able to define it, we first need to generalize the notion of compu-
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tational problems, to parameterized computational problems.

Definition 10 (Parameterized computational problem). Given a fixed finite alphabet Σ,
a parameterized computational problem is a language L ⊆ Σ∗ × Np for some p ∈ N>0.
For an instance (x, (k1, k2, . . . , kp)) ∈ L, (k1, k2, . . . , kp) are called the parameters of the
instance.

Traditionally, parameterized computational problems are defined with only one pa-
rameter, p = 1 in our definition. Both definitions are equivalent, from an instance
(x, (k1, k2, . . . , kp)) ∈ Σ∗ × Np, one construct an instance with only one parameter by
taking (x,

∑p
i=1 ki). In this thesis, some problems will naturally have several parameters,

therefore we choose to explicitly state the definition with several parameters.

Example 11 (Parametrizations of the Vertex Cover problem). A computational
problem can have several parameterizations. In the case of Verter Cover, for an
instance (G, k), a parameter could be k, the maximum size of the vertex cover. Other
parameters can come from structural properties of the input. For example, in the case
of VC, parameters can be defined by a property of the input graph G. Examples of such
parameters for graph problems are maximum degree of the input graph, treewidth or
pathwidth of the input graph, or the length of the longest cycle in the input graph. For
instance, the treewidth can be used as a parameter for VC. In this case, let L be the
language defining graphs that have a vertex cover of size at most k, with parameter the
treewidth. An instance ((G, k), w), with (G, k) being an instance of the Vertex Cover

problem, and w being the parameter, belongs to the language L if G has treewidth at
most w and G has a vertex cover of size at most k.

Now, we are ready to define the class of fixed-parameter tractable problems called FPT.

Definition 12 (FPT: Fixed-Parameter Tractable). The class FPT is the class of param-
eterized computational problems L ⊆ Σ∗×Np for which there exist an algorithm A, called
a fixed-parameter algorithm, such that, ∀n ∈ N on input (x, (k1, k2, . . . , kp)) ∈ Σn ×Np,
A is time bounded by f(k1, k2, . . . , kp) · nc, where f is any function and c a constant.

We say that a fixed-parameter algorithm runs in FPT-time. We can also generalize the
notion of reductions to parameterized computational problems.

Definition 13 (FPT Many-One Reduction). Let L1 ⊆ Σ∗×Np and L2 ⊆ Γ∗×Nq be two
parameterized computational problems. A FPT many-one reduction from L1 to L2, is a
function R : Σ∗ × Np → Γ∗ × Nq such that

• R(x, (k1, k2, . . . , kp)) can be computed in time f(k1, k2, . . . , kp) · |x|O(1) for some
function f .
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• ∀(x, k) ∈ Σ∗ × Np, (x, (k1, k2, . . . , kp)) ∈ L1 ⇔ R(x, (k1, k2, . . . , kp)) ∈ L2,

• ∀(x, (k1, k2, . . . , kp)) ∈ Σ∗×Np, if R(x, (k1, k2, . . . , kp)) = (x′, (k′1, k
′
2, . . . , k

′
q)), then

∀i ∈ [q] , k′i ≤ g(k1, k2, . . . , kp) for some computable function g.

Example 14 (FPT results for the Vertex Cover problem). Parameterized results
need to be specified for a particular parameter. In the case of Vertex Cover, we have
seen in Example 11 several possible parameters. Here, we give results for some of them.
We start with the parameter k, the size of the vertex cover. A simple branching algorithm
can solve VC in time 2k · nO(1), where k is the size of the vertex cover. Therefore, the
Vertex Cover problem parameterized by the size of the solution is in FPT. In the
case of treewidth or pathwidth, a dynamic programming algorithm can solve VC in time
2w ·nO(1), where w is the treewidth (respectively pathwidth) of the input graph. We give
a more detailed description of the algorithm in the case of pathwidth in Example 18.

In classical complexity theory, conditional hardness results are often obtained under
the assumption that P ̸= NP. In parameterized complexity theory, there exist several
hypotheses commonly used to give conditional lower bounds. The one used in this
thesis is called the Exponential Time Hypothesis, ETH for short, and was introduced
by Impagliazzo and Paturi [Impagliazzo and Paturi, 2001]. It is based on an assumption
concerning the 3-SAT problem. We refer the reader to [Lokshtanov et al., 2011] for more
information.

Definition 15 (ETH: Exponential Time Hypothesis). There is an ϵ > 0 such that
3-SAT on n variables cannot be solved in time O⋆(2ϵn).

Example 16 (ETH lower bound for VC). We can use the Exponential Time Hypothesis
assumption to obtain a conditional lower bound for VC stating that one of the FPT-
results we gave in Example 14 is optimal under ETH. Namely, under ETH, there is no
algorithm running in time 2o(k) · nO(1) for VC parameterized by the size of the solution.
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Chapter 4

Decompositions and Width Measures

Structural parameters are fundamental in the design of parameterized algorithms. Also
the algorithms presented in this thesis will rely on structural parameters. Therefore, we
present in this chapter different structural parameters based on width of decompositions.
Those width measures will span from graphs over partial orders to strings.

4.1 Width Measures for Graphs

4.1.1 Treewidth and Pathwidth

We start our tour of width measures for undirected graphs by introducing the notions of
treewidth and pathwidth. Treewidth is arguably one of the most studied and used width
measures on undirected graphs. It also plays a crucial role in parameterized complexity
theory [Cygan et al., 2015, Downey and Fellows, 2013]. Intuitively, the treewidth of a
graph measures how far it is from being a tree. The pathwidth is the analogous notion
from paths instead of trees. For an overview on the treewidth and pathwidth, we refer
the reader to the survey by Bodlaender [Bodlaender, 2012].

The definition of treewidth is based on the notion of tree decomposition.

Definition 17 (Tree decomposition). A tree decomposition of a graph G = (V,E) is a
pair (T ,B) where T is a tree and B = {Bt ⊆ V | t ∈ V (T )} is a set of subsets of V
called bags, such that the following conditions are satisfied.

•
⋃

t∈V (T )Bt = V .

• For each edge {u, v} ∈ E, there is an t ∈ V (T ) such that u, v ∈ Bt.
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(b) A path decomposition of G of with 2.

Figure 4.1: Example of a graph (4.1a) and its path decomposition of width 2 (4.1b)

• For each v ∈ V , the subtree T [{t ∈ V (T ) | v ∈ Bt}] is connected.

The width of a tree decomposition (T ,B) is defined as w((T ,B)) = maxt∈V (T ) |Bt| − 1.
The treewidth, tw(G), of G is the minimum width of a tree decomposition of G.

A path decomposition is a tree decomposition (T ,B) where T is a path. For simplicity,
we write a path decomposition as a sequence of bags D = (B1, B2, . . . , Bl). The width
of a path decomposition D is defined as w(D) = maxp∈[l] |Bp| − 1. Analogously, the
pathwidth, pw(G), of G is the minimum width of a path decomposition of G.

In this thesis, we will focus on pathwidth and path decomposition for two reasons. First
in Chapter 6 and Chapter 7, we are interested in cocomparability graphs associated to
some partial order. For this class of graphs, Habib and Möhring [Habib and Möhring,
1994] showed that the notions of pathwidth and treewidth are equivalent. In Chapter 8,
despite the fact that we do not use path decompositions to devise algorithms, we give give
a structural result about pathwidth using an equivalent definition from Subsection 4.1.2
based on a linear order on the set of vertices. Figure 4.1 shows an example of a graph
with its path decomposition.

Path Decompositions. Let D = (B1, B2, . . . , Bl) be a path decomposition of a graph
G. We say that [l] is the set of positions of D and that l is the length of D. For each
position p ∈ [l], we say that Bp is the p-th bag of D. For each position p ∈ {2, . . . , l}, and
for each vertex v ∈ Bp \Bp−1, we say that Bp introduces v (or that v is introduced by Bp)
and for each vertex v ∈ Bp−1 \Bp, we say that Bp forgets v (or that v is forgotten by Bp).
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For a position p ∈ [l], we write intro(p) (respectively forg(p)) for the set of all vertices
introduced (respectively forgotten) by Bp, and we let Lp =

⋃
1≤i≤p forg(p) be the set of

vertices that have been forgotten up to position p. For each p ∈ [l], p > 1, we say that
Bp is an introduce bag if Bp = Bp−1 ∪{v} and that Bp is a forget bag if Bp = Bp−1 \ {v}.
We say that the path decomposition D = (B1, B2, . . . , Bl) is nice if for each p ∈ [l],
Bp is either an introduce bag or a forget bag, |B1| = 1 and Br = ∅. In a nice path
decomposition, we say that B1 = {v} introduces v, and therefore B1 is an introduce bag.
It can be shown that, given any path decomposition D = (B1, B2, . . . , Br) of width w

of a graph G, one can construct in time O(l · w(D)) a nice path decomposition of G of
width at most w. In a nice path decomposition, for every vertex of V , there is a bag
that introduces it and a bag that forgets it, so the length of a nice path decomposition
is 2 · |V |. For each position p ∈ [l], we let Lp =

⋃
1≤i≤p−1Bi \ Bp be the set of vertices

that have been forgotten (lost) up to position p.

Some complexity results. We give a few words on the complexity of deciding if
a graph has pathwidth at most w. We call this problem the Pathwidth problem.
Deciding if a graph has pathwidth at most w is NP-complete [Lengauer, 1981]. From the
parameterized complexity point of view, the Pathwidth problem can be solved in time
2O(w2) · nO(1) where w is the pathwidth of the input graph [Downey and Fellows, 1999].

We now demonstrate, how a nice path decomposition can be used to design FPT algo-
rithms.

Example 18 (VC parameterized by pathwidth). We continue our series of examples
using the Vertex Cover problem. Here, we give an algorithm that, given a graph G

and a nice path decomposition D = (B1, B2, . . . , Bl) of width w, solves VC in time
2w · |V (G)|O(1). Intuitively, the algorithm processes the path decomposition one bag at a
time. For each bag Bp, the algorithm builds a set of minimal solutions for G[∪i≤pBi] and
stores enough information to process the next bag. Formally, for each position p ∈ [l],
the algorithm constructs a table Tp. For each S ⊆ Bp, Tp(S) contains the size of a
minimum vertex cover X of G[∪i≤pBi] such that X ∩ Bp = S. We use the convention
that Tp(S) = +∞, if S is not a vertex cover of G[Bp]. Note that, for each bag Bp,
there are at most 2w subsets S of Bp. Then, the smallest entry in Tl, gives the size of a
minimum vertex cover of G.

As D is a nice path decomposition, to describe the algorithm, we need to specify its
behaviour on the first bag, for an introduce bag and for a forget bag.

• For B1 = {v}, there are two cases T1(∅) = 0 and T1(B1) = 1.

• For a position p > 1, given the table Tp−1, we explain how to build Tp.
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– If Bp forgets v, then, for each S ⊆ Bp, Tp(S) = min(Tp−1(S), Tp−1(S ∪ {v})).

– If Bp introduces v, then, for each S ⊆ Bp, if v /∈ S and S is a vertex cover
of Bp, then we set Tp(S) = Tp−1(S), otherwise, if S is not a vertex cover,
we set Tp(S) = +∞. If, on the other hand, v ∈ S, then we set Tp(S) =

Tp−1(S \ {v}) + 1.

For each bag Bp and subset S ⊆ Bp, the algorithm computes Tp(S) in time |V (G)|O(1).
As D is a nice path decomposition, it follows that l ∈ O(|V (G)|). So the total running
time of the algorithm is 2w · |V (G)|O(1).

One can easily check that the algorithm will build a minimum vertex cover after pro-
cessing the last bag Bl.

4.1.2 Vertex Separation Number

Here, we define the vertex separation number of a graph, a notion that is equivalent
to pathwidth [Kinnersley, 1992]. The vertex separation number is a width measure for
graphs based on a specific linear order of the vertices of the graph.

Let G be an n-vertex graph with vertex set V (G) and edge set E(G). Given sets S, S ′ ⊆
V (G), we let V (G,S, S ′) = {u ∈ S : ∃v ∈ S ′ : {u, v} ∈ E(G)} be the set of vertices
in S that are adjacent to some vertex in S ′. As a special case, we define V (G,S) =

V (G,S, V (G) \ S).

Definition 19 (Vertex Separation Number). Let G be an n-vertex undirected graph with
vertex set V (G) and edge set E(G). Let τ : [n] → V (G) be a linear order on the vertices
of G. For each p ∈ [n], we let

vsn(G, τ, p) = |V (G, τ([p− 1]))| = |{l ∈ [p− 1] | ∃r ≥ p such that {τ(l), τ(r)} ∈ E(G)}|.

The vertex separation number of the linear order τ is defined as vsn(G, τ) =

maxp∈[n] vsn(G, τ, p). Finally, the vertex separation number of G is defined as vsn(G) =

minτ vsn(G, τ), where τ ranges over all linear orders on the vertex set V .

4.1.3 Cutwidth

One of the classical layout parameters for graphs is the so called cutwidth of a graph.
Intuitively, the cutwidth of a graph describes the maximum number of edges connecting



4.1 Width Measures for Graphs 33

1 2 3 4 5

3 4 2 2

Figure 4.2: Visual representation of the cutwidth of a graph. For simplicity, τ is the
identity function. In this example, the cutwidth is 4.

vertices of any prefix to the complement suffix of a linear order on the vertices of the
graph. Cutwidth turned out to be a useful parameter in parameterized algorithms and
is used among other things in circuit layout [Adolphson and Hu, 1973, Makedon and
Sudborough, 1989], network reliability [Karger, 2001], graph drawing [Mutzel, 1995] and
information retrieval [Botafogo, 1993]. For more detailed information, we refer the reader
to [Díaz et al., 2002, Petit, 2011].

Let G be an n-vertex graph. Given sets S, S ′ ⊆ V (G), we let E(G,S, S ′) = {{u, v} ∈
E(G) : u ∈ S, v ∈ S ′} be the set of edges with one endpoint in S and the other
endpoint in S ′. As a special case, we define E(G,S) = E(G,S, V (G) \S). The following
two properties will be of importance in Chapter 8.

• Monotonicity property: If T ⊆ S and T ′ ⊆ S ′, then E(G, T, T ′) ⊆ E(G,S, S ′).

• Linearity property: If {S1, S2} is a partition of S, then {E(G,S1, S
′), E(G,S2, S

′)}
is a partition of E(G,S, S ′).

Let τ : [n] → V (G) be a linear order on the vertices of G. For each p ∈ [n], we let
cw(G, τ, p) = |E(G, τ([p − 1]))| be the number of edges that have one endpoint in the
first p− 1 vertices of the linear order τ and the other endpoint in the remaining vertices.
E(G, τ([p − 1])) is called the cut at position p and cw(G, τ, p) is the size of the cut at
position p.

Definition 20 (Cutwidth). The cutwidth of the linear order τ is defined as cw(G, τ) =

maxp∈[n] cw(G, τ, p). The cutwidth of the graph G is defined as cw(G) = minτ cw(G, τ),
where τ ranges over all linear orders on the vertex set V (G).

Given a graph G, the cutwidth of a given linear order τ can be intuitively understood
by drawing G in a specific way on the plane. First, the vertices of G are placed on a
horizontal line following the order given by τ . Then, edges are drawn as curves between
the point representing their endpoints. Now, if we draw a vertical line between the
(p− 1)-th and p-th vertices in τ , then the number of edges that intersect this vertical line



34 Decompositions and Width Measures

corresponds to cw(G, τ, p). Figure 4.2 gives an example of such a visual representation
of the cutwidth.

We give a few words on the complexity of deciding if a graph has cutwidth at most w.
We call this problem the Cutwidth problem, it is also known as the Minimum Cut

Linear Arrangement problem in the literature. Deciding if a graph has cutwidth at
most k is NP-complete [Garey and Johnson, 1979]. From the parameterized complexity
point of view, the Cutwidth problem can be solved in time 2O(w2 logw) ·n where w is the
cutwidth of the input graph [Giannopoulou et al., 2019]. Recently, Casel et al. [Casel
et al., 2019] relate the cutwidth of a graph to it pathwidths. The relation can be used
to give a better approximation algorithm for cutwidth.

4.2 Width Measures for Partial Orders

Next, we look at a width measure for partial orders called interval width, introduced by
Habib and Möhring [Habib and Möhring, 1994]. Intuitively, this parameter measures
how far a partial order is from a linear order. Even if this width measure can be defined
purely in terms of partial orders, we will see that this notion is related to a width measure
on graph.

Definition 21 (Interval width). The interval width of a partial order ρ ⊆ V × V is
defined as iw(ρ) =̇ min {w(ι)|ι interval order, ι ⊆ ρ}, where w(ι) is the maximum size of
an antichain of ι.

The definition of the interval width of a partial order is similar to the definition of
pathwidth using the size of the biggest clique of interval graphs. And the resemblance
does not stop here, Habib and Möhring [Habib and Möhring, 1994] show that the interval
width of a partial order ρ is equal to the pathwidth of the cocomparability graph Gρ of
ρ plus 1.

Lemma 22 (Theorem 1.2 in [Habib and Möhring, 1994]). Let ρ be a partial order. Then,
pw(Gρ) = iw(ρ).

Hence, similar to the interval width, the pathwidth of the cocomparability graph of a
partial order may be regarded as a measure of how close the order is from being a linear
order. The cocomparability graph of a linear order τ on n elements is the graph with
n vertices and no edges. This graph has pathwidth 0. On the other hand, if τ is a
partial order where all n elements are unrelated, then the cocomparability graph of τ is
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Scope(f)

Figure 4.3: w = cabbaacebdfdef has scope coincidence degree 3. The intervals show the
scope of each letter. The set of intervals can be interpreted as the interval representation
of some interval graph Gw. The pathwidth of Gw is equal to SCD(w)− 1 = 2.

the n-clique, which has pathwidth n− 1 (the highest possible pathwidth in an n-vertex
graph).

Remark 23. In [Habib and Möhring, 1994], interval width of strict partial orders was
defined. However, as interval orders are strict partial orders and hence are irreflexive, a
partial order ρ extends an interval order ι if and only if the corresponding strict partial
order σ = ρ \ IV extends ι. Hence, the interval width of ρ equals the interval width of σ.

4.3 Width Measures for Strings

Finally, we turn our attention to width measures for strings by adapting a parameter
called scope coincidence degree. The concept of scope coincidence degree (SCD for short)
was introduced in [Reidenbach and Schmid, 2013] for patterns, which are strings over
two disjoint alphabets, where only the alphabet of variables was used to measure the
SCD of patterns. We adapt the definition from [Reidenbach and Schmid, 2014] in the
following to strings over a single alphabet.

Definition 24 (Scope Coincidence Degree). Given a string w ∈ Σ∗, and a letter a ∈
Σ, the scope of a, denoted Scope(a) is the set of positions in {1, . . . , |w|} between the
minimum position and the maximum position in which a occurs. For each position i,
we let the incidence set of i to be Inc(i) = {a ∈ Σ : i ∈ Scope(a)}. Now, the scope
coincidence degree is the number of overlapping scopes for all letters. In other words, we
have that SCD(w) = maxi |Inc(i)|.

Given a string w ∈ Σ∗, we can define an interval graph Gw where V (Gw) = Σ and the
representation of V (Gw) with intervals is given by the scope of the letters in w. The
pathwidth of Gw is one less than the scope coincidence degree of w. This connection
with pathwidth will be used in a reduction later in Section 6.6. Figure 4.3 illustrates
this connection for the word w = cabbaacebdfdef .
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The connection between the scope coincidence degree of a string w and the pathwidth of
a interval graph, implies that the scope coincide degree can be computed in linear times.

Despite the fact that we will be only interested in the scope coincidence degree as a
width measure for strings in the following, we quickly want to mention that there exist
also other interesting width measures for strings such as the locality number. Recently,
Casel et al. [Casel et al., 2019] related the locality number to some width measure for
graphs, namely cutwidth and the pathwidth.



Chapter 5

Problem Definitions

In this chapter, we define the main problems of interest for this thesis which will be
studied in detail in Chapter 6, Chapter 7 and Chapter 8. The problems span over a
variety of different fields of computer science, such as ordering, graph drawing, social
choice, strings, reconfiguration, graph theory and rewriting systems. All these problems
may seem very different, but they all have a direct or indirect link to linear orders which
is the topic of this thesis.

5.1 Completion of an Ordering (CO) and its Vari-

ations

In this section, we introduce the Completion of an Ordering problem and two
variations of this problem. The Completion of an Ordering problem is a general-
ization of the Positive Completion of an Ordering (PCO) problem which was
originally introduced in [Dujmovic et al., 2003, Sec. 8] and in more details in [Fernau,
2005, Sec. 6.4].

Problem name: Completion of an Ordering (CO)

Given: A partial order ρ ⊆ V × V over a set V , a cost function c : V × V → N, and
a non-negative integer k ∈ N.
Output: Is there a linear order τ ⊇ ρ with c(τ \ ρ) = ∑

(x,y)∈τ\ρ c(x, y) ≤ k?

Intuitively, given a partial order ρ and a cost function c, the goal is to find a linear
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extension of ρ incurring a cost of at most k. The only difference between CO and
the original PCO problem introduced in [Dujmovic et al., 2003, Fernau, 2005] is that,
in the latter, the cost function needs to satisfy the following condition: for every pair
(x, y) ∈ C × C such that x and y are incomparable in ρ, the cost of (x, y) is strictly
positive (c(x, y) > 0). In CO, for such a pair, the cost can be zero (c(x, y) ≥ 0). Formally,
the Positive Completion of an Ordering problem is defined as follow.

Problem name: Positive Completion of an Ordering (PCO)

Given: A partial order ρ ⊆ V × V over a set V , a cost function c : V × V → N
satisfying ∀x, y ∈ V : ((x, y) /∈ ρ ∧ (y, x) /∈ ρ) =⇒ c(x, y) > 0, and a non-negative
integer k ∈ N.
Output: Is there a linear order τ ⊇ ι with c(τ \ ι) ≤ k?

Let us shortly discuss the cost parameter k. By the result of Dujmovic, Fernau and
Kaufmann [Dujmovic et al., 2003] (for details, see [Fernau, 2005]), PCO can be solved
in time O⋆(1.52k) and admits a linear-size kernel. The best-known algorithm for PCO,
whose running time is O⋆(2O(

√
k log(k))), was obtained in [Fernau et al., 2014] by relating

PCO to the Feedback Arc Set in Tournaments problem, or FAST for short, that
allows for subexponential algorithms due to [Alon et al., 2009]. In Subsection 6.3.2, we
are going to improve on these algorithms by presenting an algorithm that runs in time
O⋆(2O(

√
k)) and that is relatively straightforward to implement. As branching algorithms

are sometimes better in practice, we also present in Subsection 6.3.4 a branching algo-
rithm that runs in time O⋆(1.42k), improving on the one explained in [Fernau, 2005].
Our algorithms are based on the interval width of ρ.

When we later reduce the introduced problems to each other, PCO on interval orders
appears naturally, and we can use the extra structure to improve the running time of
our algorithm.

Problem name: Positive Completion of an Interval Ordering (PCIO)

Given: An interval order ι ⊆ V × V over a set V , a cost function c : V × V → N
satisfying ∀x, y ∈ V : ((x, y) /∈ ι ∧ (y, x) /∈ ι) =⇒ c(x, y) > 0, and a non-negative
integer k ∈ N.
Output: Is there a linear order τ ⊇ ι with c(τ \ ι) ≤ k?

This variation has two more restrictions compared to CO: the cost between two incom-
parable elements must not be zero and the partial order is an interval order. Those two
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restrictions will enable us to have a finer analysis of the complexity of our algorithm.

5.2 One-Sided Crossing Minimization (OSCM)

Next, we define and discuss the One-Sided Crossing Minimization problem from the
field of graph drawing. Given a bipartite graph G with bipartition (V1, V2), a two-layer
drawing of G is a drawing such that vertices of V1 and V2 are placed on two parallel lines
and edges are represented as straight lines between the vertices. A two-layer drawing can
be specified by two linear orders τ1 of V1 and τ2 of V2. A crossing in a two-layer drawing
is a pair of edges that intersect each other in a point that is not a vertex. The number of
crossings is defined by the order of V1 and V2 on the lines. The One-Sided Crossing

Minimization problem consists of ordering vertices of one part of the bipartite graph,
for instance V2, given a linear order of the other part, for instance V1, that minimizes
the number of crossings. This problem is a key sub-problem for drawing hierarchical
graphs [Bastert and Matuszewski, 1999, Battista et al., 1999, Healy and Nikolov, 2013,
Mutzel, 2009] or producing row-based VLSI layouts [Sechen, 2012, Stallmann et al.,
2001].

Problem name: One-Sided Crossing Minimization (OSCM)

Given: A bipartite graph G = (V1, V2, E), a linear order τ1 on V1 and k ∈ N
Output: Is there a linear order τ2 on V2 such that, in the two-layer drawing specified
by (τ1, τ2), at most k edge crossings occur?

The problem is known to be NP-complete [Eades and Wormald, 1994] even in sparse
graphs [Muñoz et al., 2001] and FPT in the number of edge crossings k [Dujmovic et al.,
2008, Dujmovic and Whitesides, 2004, Fernau et al., 2014], including sub-exponential
algorithms. In [Fernau et al., 2014], a sub-exponential algorithm that runs in time
O⋆(2O(

√
k log k)) is presented which has been improved to O(2

√
2k + n) in [Kobayashi and

Tamaki, 2015]. The two-sided variant of the problem (where the permutation of both
sides is variable) is also FPT in the number of crossings [Kobayashi et al., 2014]. A similar
problem of deleting up to k edges in order to get a graph that can be drawn without
crossings is NP-complete (in both variants: where the order on one or both layers is free to
choose) and FPT in k (in both variants) [Dujmovic et al., 2006]. For a broader overview,
we refer to some survey papers on graph crossing numbers [Schaefer, 2012, Vrt’o, 2008].
Note that OSCM is a cornerstone of algorithms dealing with the so-called Sugiyama
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approach to hierarchical graph drawing, see [Healy and Nikolov, 2013, Sugiyama et al.,
1981].

5.3 Kemeny Rank Aggregation (KRA)

We are now shifting our focus to the field of social choice. There, preference lists are
extensively used in social science surveys and voting systems to capture information
about choice. The problem of combining several preference lists into a single one, called
the aggregation, was initially discussed by Kemeny in [Kemeny, 1959]. This approach
aims at minimizing the total disagreement (formalized below) between the several input
rankings and their aggregation. The idea itself has not only applications in (the theory
of) elections in the context of social sciences, say, on a committee, but has also been
suggested as a means of designing meta-search engines [Dwork et al., 2001]. It has been
also shown by Young and Levenglick [Young and Levenglick, 1978] that the aggregation
method proposed by Kemeny is in fact the only one satisfying a number of natural
requirements on such aggregations.

More precisely, in Kemeny Rank Aggregation we are given a set Π of rankings (also
called votes) over a set of alternatives C (also called candidates), and a positive integer k,
and are asked for a ranking π of C, such that the sum of the Kendall-Tau distances (or,
KT-distances for short) of π to all the votes, called its Kemeny score, is at most k.
A ranking π that gives the smallest Kemeny score is called a Kemeny consensus. The
KT-distance between two rankings π1 and π2 is the number of pairs of candidates that
are ordered differently in the two rankings and is denoted by KT-dist(π1, π2). Hence, if
π1, π2 : [|C|] → C, KT-dist(π1, π2) = |{(c, c′) ∈ C×C | c <π1 c

′∧c′ <π2 c}|. Observe that
the Kendall-Tau distance can be seen as the ‘bubble sort’ distance, i.e., the number of
pairwise adjacent transpositions needed to transform one ranking into the other. More
formally, this leads to the following problem.

Problem name: Kemeny Rank Aggregation (KRA)

Given: A list of votes Π over a set of candidates C and a non-negative integer k
Output: Is there a ranking π on C such that the sum of the KT-distances of π to all
the votes is at most k.

Hence, given rankings π1, . . . , πm of C and a non-negative integer k, the question is if
there exists a ranking π : [|C|] → C such that

∑m
i=1 KT-dist(π, πi) ≤ k.
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Parameterizations of KRA The problem Kemeny Rank Aggregation is known
to be NP-complete [Bartholdi et al., 1989], even if the input contains only four
votes [Dwork et al., 2001].1 For this reason, KRA has been studied from the perspec-
tive of parameterized complexity theory under a variety of parameterizations. Below, we
consider two prominent parameterizations for this problem.

The first parameter we consider is the cost of a solution. Simjour [Simjour, 2009] obtained
an algorithm for the problem that runs in time O⋆(1.403k), where k upper-bounds the
sum of the KT-distances of the solution π from all the votes. There are also sub-
exponential algorithms for Kemeny Rank Aggregation under this parameterization:
Karpinski and Schudy [Karpinski and Schudy, 2010] obtained an algorithm for Kemeny

Rank Aggregation that runs in O⋆(2O(
√
k)) time, while the algorithm of Fernau et

al. [Fernau et al., 2014], based on a different methodology, runs in O⋆(kO(
√
k)) time. Both

algorithms hide some constant factor in the O-notation in the exponent that is not that
clear from the expositions, but clearly worse than what we obtain in Chapter 6. Our
considerations are also valid for the weighted Kemeny score, a modification suggested
in [Betzler et al., 2009] that assigns positive weights to the voters. We can add some
comments on conditional lower bounds of KRA by bringing together facts from different
parts of the literature.

Theorem 25. KRA on instances with only m = 4 votes on some candidate set C and
some integer k bounding the sum of the Kendall-Tau distances to a solution can be solved
neither in time O⋆

(
2o(|C|)) nor in time O⋆

(
2o(

√
k)
)

unless ETH fails.

Proof. The reduction of Dwork et al., see footnote 1, starts out with an instance G =

(V,E) of Feedback Arc Set and produces an instance (C,Π) of Kemeny Rank

Aggregation such that |C| = |V | + |E| and |Π| = 4. Combined with the analysis
by Kobayashi and Tamaki [Kobayashi and Tamaki, 2015] of the standard reduction
chain from 3-SAT to Feedback Arc Set, we can note that the number of candidates
of the KRA instance obtained from 3-SAT grows linearly in the number of variables
and clauses. Hence, an algorithm solving KRA in time O⋆

(
2o(|C|)) would break ETH.

Moreover, as k ≤ |Π| · |C|2 = 4 · |C|2 by observing the connection to bubble-sort, an
algorithm running in time O⋆

(
2o(

√
k)
)

would also break ETH.

This proves, in particular, the conditional optimality of the mentioned algorithm of
Karpinski and Schudy. Recall that Simjour [Simjour, 2009] obtained an algorithm for
Kemeny Rank Aggregation that runs in time O⋆(1.403k). For moderate values of k,
this might be better than the subexponential-time algorithm of Karpinski and Schudy.

1The proof of this fact is not contained in the conference paper [Dwork et al., 2001] but only appears
in Appendix B of http://www.wisdom.weizmann.ac.il/~naor/PAPERS/rank_www10.html.
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The second parameter we consider is the unanimity width of the set of votes, which is
based on the notion of unanimity order of a set of votes [Charon and Hudry, 2007]. This
parameter is defined in Section 6.5

5.4 Grouping by Swapping (GbS)

From the field of string problems, we discuss the problem of Grouping by Swapping

(GbS for short). This problem asks whether a given string can be transformed by at
most k interchanges of neighboring letters into a block format where all occurrences of
a letter are adjacent to form one single block each. This problem has been mentioned in
the famous list of NP-complete problems by Garey and Johnson in [Garey and Johnson,
1979]. Further algorithmic aspects are discussed in [Downey and Fellows, 2013, Wong and
Reingold, 1991]. We show that GbS can be reduced to OSCM in a parameter-preserving
way and hence inherits FPT-results shown above. We first discuss the problem GbS itself
and then continue with the reductions.

Problem name: Grouping by Swapping (GbS)

Given: A finite alphabet Σ, a string w ∈ Σ∗, and a non-negative integer k ∈ N.
Output: Is there a sequence of at most k adjacent swaps such that w is transformed
into a string w′ where all occurrences of each symbol are in a single block each?

Let us formalize this problem a bit more. If w,w′ ∈ Σ∗ both have length n, we call w′

a permutation of w if there exists a bijection π : [n] → [n] such that, for any i ∈ [n],
w′[i] = w[π(i)]. Slightly abusing notation, we will also write w′ = π(w). Special bijec-
tions are adjacent swaps σi : [n] → [n] (with i ∈ [n − 1]) that act as the identity with
two exceptions: σi(i) = i + 1 and σi(i + 1) = i. Swaps are a special case of transposi-
tions and hence they are involutions. Interpreted as acting on words, swaps exchange
neighboring letters. Every bijection π : [n] → [n] can be written as a composition of
swaps (property (∗)). Hence, given a permutation w′ of w, we can ask to compute the
swap distance, written sd(w,w′), which is the smallest number k of swaps σi1 , σi2 , . . . ,
σik such that w′ = (σi1 ◦ σi2 ◦ · · · ◦ σik)(w). Observe that sd can be viewed, for each
mapping g : Σ → N, as a metric on the space of all words w ∈ Σ∗ with g(a) occurrences
of a for each letter a ∈ Σ. In particular, sd(w,w′) = sd(w′, w) for all permutations w′

of w. The swap distance between two words can be expressed as a special case of the
Kendall-Tau distance [Kendall, 1938] (also called the bubble-sort distance or the num-
ber of inversions) between two linear orders. Let w ∈ Σ∗ be a word of length n and
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w′ be a permutation of w. Now, we will show how to transform the swap distance be-
tween w and w′ into a Kendall-Tau distance between two linear orders. First, consider
the function gw : Σ → N that counts the number of occurrences of each letter a ∈ Σ in
w. Clearly, gw = gw′ . Consider the new alphabet Σw = {(a, i) | a ∈ Σ, i ∈ [gw(a)]}. In-
terpret w and w′ as words over Σw by replacing the first occurrence of a in w by (a, 1),
the second occurrence by (a, 2), etc. This way, w,w′ have the property that each let-
ter of Σw occurs exactly once in w,w′. Hence, w and w′ defines two linear order <w

and <w′ on Σw. Note that, in the original instance of GbS, to transform w into w′

with a minimum number of swaps, a swap must not exchange two identical letters. This
means that the relative order of the occurrences of a letter in w will never change when
applying a sequence of swaps to get w′. Therefore, the Kendall-Tau distance between
<w and <w′ is equal to the swap distance between w and w′. Now, we can adapt algo-
rithms that compute the Kendall-Tau distance between two linear orders, to compute
the swap distance of two words. Lowrance and Wagner give in [Lowrance and Wagner,
1975] a dynamic programming algorithm that runs in quadratic time. The idea is to run
the bubble-sort algorithm to sort w according to <w′ and keep track of the number s
of swaps performed by bubble-sort. Then, we have s = sd(w,w′). A classical textbook
problem is to improve this quadratic algorithm to run in time O(n · log n) by adapt-
ing the algorithm to use merge-sort instead of bubble-sort. A more complex algorithm
by Chan and Patrascu [Chan and Patrascu, 2010] compute the Kendall-Tau distance in
time O(n · √log n) (property (+)).

The picture changes if we add one more degrees of freedom by not defining the target
permutation. Let us call w′ ∈ Σ∗ to be in block format if there is a bijection f : [|Σ|] → Σ

such that w′ ∈ f(1)∗f(2)∗ · · · f(|Σ|)∗. Alternatively, we can view f as defining a linear
order <f on Σ, and then the block format of w corresponding to f is the <f -lexicographic
smallest permutation of w. Conversely, any linear order τ on Σ defines a bijection
f : [|Σ|] → Σ. GbS now asks, given w ∈ Σ∗ and k ≥ 0, if there is some permutation w′ of
w that is in block format and has swap distance at most k from w. As claimed in [Garey
and Johnson, 1979], this variant is NP-complete. Unfortunately, the proof referenced
by [Garey and Johnson, 1979] is hidden in private communication. We remedy this
below by proving that GbS is NP-complete even for strings w where each letter occurs
exactly four times. Let us start with two rather straightforward observations.

Lemma 26. Any string w can be grouped into blocks using at most |w|2 many swaps.

Proof. We number the letters in w, such that for each a ∈ Σ, the subsequence of numbers
induced by a in w forms a contiguous sequence of numbers. Applying the bubble-sort
algorithm to sort this sequence of number obtained gives a sequence of swaps. Applying
this sequence of swap to w gives a block string. Therefore the bubble-sort algorithm
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gives a solution to the GbS problem, and this solution does at most |w|2 swaps.

In fact, any permutation of w can be obtained by using at most |w|2 many swaps, as can
be seen by bubble-sort. This reasoning also shows (∗). We can use this observation to
obtain our first (easy) FPT-result, to be improved on later.

Lemma 27. GbS on strings w ∈ Σn parameterized by |Σ| can be solved in time O⋆(|Σ|!).

Proof. Let (Σ, w, k) be an instance of GbS with w ∈ Σn. Let gw : Σ → [n] be the function
that maps each letter a ∈ Σ to the number of occurrences of a in w. As the swap distance
of two strings can be computed in less than quadratic time, we can test for all |Σ|!
bijections f : [|Σ|] → Σ whether sd(w, f(1)gw(f(1))f(2)gw(f(2)) . . . f(|Σ|)gw(f(|Σ|))) ≤ k.

We are now going to show that computing the swap distance can be done by considering
the distance for pairs of letters, summing up the corresponding results. Note that the
expression of the swap distance in Equation 5.1 in Lemma 28 have the same form as
the expression of the cost of a solution for the PCO problem or as in Equation 6.1. To
make this more precise, let Σ′ ⊆ Σ and consider the projection pΣ,Σ′ : Σ → Σ′ that maps
a 7→ a for a ∈ Σ′ and a 7→ ε, the empty word, if a /∈ Σ′, as a morphism Σ∗ → (Σ′)∗.

Lemma 28. Let w,w′ ∈ Σ∗ such that w′ is a permutation of w. Let w′ be in block format
following the linear order τ on Σ. Then,

sd(w,w′) =
∑

a,b∈Σ,a<τ b

sd(pΣ,{a,b}(w), pΣ,{a,b}(w
′)) . (5.1)

Moreover, pΣ,{a,b}(w′) = a|w|ab|w|b if a <τ b.

Proof. If w,w′ ∈ Σ∗ such that w′ is a permutation of w, i.e., w′ = π(w), then π can be
written as the composition of sd(w,w′) many transpositions σi, leading to a sequence
w0 = w, w1 = σ1(w0), . . . , wi = σi(wi−1), . . . , w′ = wsd(w,w′). We can associate to
σi a unique pair of letters ℓi = {a, b} that is actually swapped by this transposition.
We can characterize ℓi by the property pΣ,ℓi(wi−1) ̸= pΣ,ℓi(wi). Hence, sd(w,w′) =∑

a,b∈Σ,a<τ b
|{i | ℓi = {a, b}}|. Moreover, if a <τ b, none of the transpositions will ever

swap a factor ab, as otherwise the sequence of transpositions would not be minimal.
Hence, |{i | ℓi = {a, b}}| = sd(pΣ,{a,b}(w), pΣ,{a,b}(w′)).

Discussing NP-completeness. Next, we prove NP-completeness of GbS, even for
quite restricted instances, by making use of a somewhat similar result for OSCM, based
on [Muñoz et al., 2001].
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V1

V2

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

v0 v1 v2

Figure 5.1: Reduction from OSCM to GbS when all vertices in V1 of the OSCM instance
have degree one. In this example, the reduction gives the following instance of GbS:
Σ = {v0, v1, v2} and w = v0v2v1v1v0v2v0v2v2v1v0v1

Theorem 29. GbS is NP-complete, even if each letter has exactly 4 occurrences.

Proof. We can guess and check a solution in polynomial time, hence membership in NP

is clear. In order to show NP-hardness, we give a reduction from OSCM which is also
NP-complete if each node in V2 has degree four and each vertex in V1 has degree one,
i.e., if the graph is a forest of 4-stars [Muñoz et al., 2001]. Let G = (V1, V2, E) be an
instance of OSCM with order τ1 on V1, and integer k, such that all vertices in V1 are of
degree one and all vertices in V2 are of degree four. We set Σ = V2 = {v1, v2, . . . , vn}.
Clearly, |V1| = 4n. We construct w ∈ Σ4n (starting from the empty word) by going
through the vertices in V1, following the order τ1. If the current vertex is adjacent to
vi, we concatenate vi to w (See Figure 5.1). As the vertices in V1 are of degree one,
this assignment is unambiguous. Following [Eades and Wormald, 1994], for vertices
vi, vj ∈ V2, let cvivj be the number of crossings between edges incident to vi and edges
incident to vj when vi is placed at the left of vj. Lemma 3 in [Eades and Wormald, 1994]
states (also confer Equation 6.1), referring to [Eades and Kelly, 1986], that for a linear
order τ2 on V2, the number of crossings cross(G, τ1, τ2) of the edges between V1 in order
τ1 and V2 in order τ2 is cross(G, τ1, τ2) =

∑
vi,vj∈V2,vi<τ2vj

cvivj . Clearly, for vi, vj ∈ V2

the number of crossings cvivj is equal to sd(pΣ,{vi,vj}(w), pΣ,{vi,vj}(wτ2)), where wτ2 is the
τ2-lexicographic smallest permutation of w. Combining this observation with Lemma 28,
we obtain that for every linear order τ2, sd(w,wτ2) = cross(G, τ1, τ2).

In Section 6.6, we will show that, in a sense, the reduction presented in our NP-hardness
result for GbS can be reversed. This also shows the following:

Remark 30. GbS is polynomial-time solvable when each letter occurs at most twice.

To summarize, GbS is NP-complete if each letter appears at most four times and solvable
in polynomial time if each letter appears at most two times leaving open the natural
question Can GbS instances be solved in polynomial time if each letter occurs at most
thrice? Note that it is also open whether subcubic OSCM graph instances can be solved
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in polynomial time. Furthermore, within KRA, it is open if instances with three voters
can be solved in polynomial time.

5.5 Reconfiguration Problems

In the field of reconfiguration, one is interested in studying relationships among solutions
of a problem instance [Ito et al., 2011, Nishimura, 2018, Wrochna, 2018]. Here, by
reconfiguration of one solution into another, we mean a sequence of steps where each
step transforms a feasible solution into another. Three fundamental questions in this
context are: (1) Is it the case that any two solutions can be reconfigured into each other?
(2) Can any two solutions be reconfigured into each other in a polynomial number of
steps? (3) Given two feasible solutions X and Y , can one find in polynomial time a
reconfiguration sequence from X to Y ?

In Chapter 8, we study two reconfiguration problems. In those two problems, we are
given a graph G and two linear orders on the vertices of G of bounded width (cutwidth
and vertex separation number) and we want to know if we can reconfigure one into the
other respecting some width constraints. In this context, we use the following definition
of linear orders. A linear order on a set V is a bijection τ : [|V |] → V . For each i ∈ [|V |],
τ(i) is the i-th elements in τ . This means that if i < j then τ(i) <τ τ(j). To formally
define those two problems, we first need to define the reconfiguration rule.

Swap Operation. Given a set V of size n and a number i ∈ [n−1], a swap at position
i is an operation on linear orders that consist of exchanging the element at position i with
the element at position i+1. More, precisely, given two linear orders τ, τ ′ : [n] → V , τ ′ is
obtained by applying a swap at position i to τ if and only if for every j ∈ [n] \ {i, i+1},
τ ′(i) = τ(i + 1), and τ ′(i + 1) = τ(i). Given linear orders τ, τ ′ : [n] → V of V and a
number i ∈ [n− 1], we write τ i−→ τ ′ to indicate that τ ′ is obtained from τ by swapping
the order of the elements at positions i and i+ 1.

Linear Order Reconfiguration. We say that τ can be reconfigured into τ ′ in one
swap, and denote this fact by τ → τ ′, if there exists some i ∈ [n] such that τ i−→ τ ′.
We say that τ can be reconfigured into τ ′ in at most r swaps, and denote this fact by
τ →r τ

′, if there are numbers r′ ∈ [r], i1, . . . ir′ ∈ [n], and linear orders τ0, . . . , τr′ such
that

τ = τ0
i1−→ τ1

i2−→ · · · ir′−→ τr′ = τ ′.
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We call this sequence a reconfiguration sequence from τ to τ ′. The mere existence of a
(possibly empty) reconfiguration sequence from τ to τ ′ is also written as τ →∗ τ ′.

Given two linear orders τ and τ ′ of the vertices of an n-vertex graph, τ can always be
reconfigured into τ ′. To see that, notice that the bubble-sort algorithm performs only
swaps. Therefore running the bubble-sort algorithm to sort τ according to τ ′ gives a valid
reconfiguration sequence from τ to τ ′. This connection allows us to be more precise.

Lemma 31. A linear order τ can always be reconfigured into another ordering τ ′ using
a reconfiguration sequence of length at most n2.

An interesting question is to ask if τ can be reconfigured into τ ′ in such a way that every
linear order appearing in the reconfiguration sequence has bounded width. We will look
at this problem for cutwidth and vertex separation number.

5.5.1 Bounded Cutwidth Order Reconfiguration

For each w ∈ N, and each n-vertex graph G, we let CW(G,w) = {τ : [n] → V (G) :

cw(G, τ) ≤ w} be the set of linear orders of V (G) of cutwidth at most w. We say that
τ can be reconfigured into τ ′ in cutwidth at most w if there is a reconfiguration sequence
τ = τ0

i1−→ τ1
i2−→ · · · ir−→ τr = τ ′ such that for each j ∈ {0, . . . , r}, τj ∈ CW(G,w).

Problem name: Bounded Cutwidth Order Reconfiguration (BCOR)

Given: An n-vertex graphG, two linear orders of the vertex set of G τ, τ ′ : [n] → V (G),
and a non-negative integer w ∈ N.
Output: Is it true that τ can be reconfigured into τ ′ in cutwidth at most w?

5.5.2 Bounded Vertex Separation Number Order Recon-

figuration

For each w ∈ N and each n-vertex graph G, let VSN(G,w) = {τ : [n] → V (G) :

vsn(G, τ) ≤ w} be the set of linear orders of V (G) of vertex separation number at
most w. We say that τ can be reconfigured into τ ′ in vertex separation number at
most w if there is a reconfiguration sequence τ = τ0

i1−→ τ1
i2−→ · · · ir−→ τr = τ ′ such that for

each j ∈ [r], τj ∈ VSN(G,w).
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Problem name: Bounded Vertex Separation Number Order Reconfigu-

ration

Given: An n-vertex graph G, two linear order τ, τ ′ : [n] → V (G) on the vertex set
of G, and a non-negative integer w ∈ N.
Output: Is it true that τ can be reconfigured into τ ′ in vertex separation number at
most w?

5.6 Graph Isomorphism (GI)

Given two graphs G1 and G2, a morphism ϕ from G1 to G2 is mapping from V (G1) to
V (G2) that preserve adjacency. In other words, for all edges {u, v} ∈ E(G1) , we have
{ϕ(u), ϕ(v)} ∈ E(G2). An isomorphism ϕ between G1 and G2 is a bijection between
V (G1) and V (G2) such that ϕ and its inverse are morphism. We say that G1 and G2 are
isomorphic if there exists an isomorphism between them. Intuitively, G1 is isomorphic to
G2, if we can rename the vertices of G1 to obtainG2. The Graph Isomorphism problem
asks if two given graphs are isomorphic or not. It is a famous problem in theoretical
computer science because its exact complexity is a major open problem. More precisely,
GI is not known either to be in P or to be NP-complete. It has applications in many
fields such as computer vision [Conte et al., 2003, Gori et al., 2004, Abdulrahim and
Misra, 1998, Messmer and Bunke, 1999], information retrieval [Berztiss, 1973], data
mining [Washio and Motoda, 2003], VLSI layout validation [Ohlrich et al., 1993, Abadir
and Ferguson, 1990, Pelz and Roettcher, 1991] or chemistry [Faulon, 1998]. For a recent
overview on the Graph Isomorphism problem, we refer the reader to [Grohe and
Neuen, 2021, Grohe and Schweitzer, 2020].

Problem name: Graph Isomorphism (GI)

Given: Two graphs G and G′.
Output: Is there an isomorphism from G to G′?

The Graph Isomorphism problem has been shown to be solvable in time f(k) · nO(1)

(that is, FPT time) whenever the parameter k stands for eigenvalue multiplicity [Babai
et al., 1982], treewidth [Lokshtanov et al., 2014], feedback vertex-set number [Kratsch
and Schweitzer, 2010], or size of the largest color class [Furst et al., 1980] of the in-
volved graphs. On the other hand, GI can be solved in time f1(k) · nf2(k) (that is, in XP
time), whenever the parameter k stands for genus [Miller, 1980], rankwidth [Grohe and
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Schweitzer, 2015], maximum degree [Luks, 1982], size of an excluded topological sub-
graph [Grohe and Marx, 2015], or size of an excluded minor [Grohe, 2012]. We note
that, in particular, Babai’s algorithm and techniques have been recently used to improve
the fastest FPT algorithm for graphs of treewidth at most k from 2O(k5·log k) ·nO(1) [Loksh-
tanov et al., 2014] to 2O(k·polylog(k)) ·nO(1) [Grohe et al., 2018b], and for graphs of maximum
degree d, the fastest XP-algorithm has been improved from nO(d/ log d) [Babai et al., 1983]
to npolylog(d) [Grohe et al., 2018a]. Showing that isomorphism for graphs of cutwidth w

can be solved in time 2O(k) · nO(1) is still an open problem.

5.7 String Rewriting System

A string rewriting system is a pair (Σ, R) where Σ is a finite, non-empty set of symbols
(an alphabet), and R ⊆ Σ∗ × Σ∗ is a binary relation over Σ∗. Elements of R are called
rewriting rules. Given a rewriting rule (u, v) ∈ R, we say that u can be rewritten to
v, and write u → v. Given two strings x, y ∈ Σ∗, we say that x can be transformed
into y using a rewriting rule u → v ∈ R at position i ∈ N>0 if there exists p ∈ Σi−1

and s ∈ Σ∗ such that x = pus and y = pvs. We write x i−→ y to denote that x can
be transformed into y by the application of some rewriting rule at position i. We write
x → y to denote that x can be transformed into y by the application of some rewriting
rule at some position i ∈ N>0. We say that y is reachable from x if there is a sequence
of strings x = x0, x1, . . . , xm = y such that xi−1 → xi for each i ∈ [m]. We write x→∗ y

to denote that y is reachable from x. We say that x and y are R-equivalent if x →∗ y

and y →∗ x.

Two-Letter String Rewriting System. A two-letter string rewriting system is a
string rewriting system (Σ, R) where R ⊆ Σ2 × Σ2 is a set of rewriting rules of the
form ab → cd. Let x and y be strings in Σn and i ∈ [n − 1]. In this special case of
two-letter string rewriting systems, x can be transformed into y by applying a rewriting
rule ab→ cd at position i if xixi+1 = ab, yiyi+1 = cd and xj = yj for j /∈ {i, i+ 1}.

Problem name: Reachability

Given: A finite alphabet Σ, a string rewriting system R, two string x, y ∈ Σ∗

Output: Is there a sequence of rewriting rules that transforms x into y?

Reachability is a central problem in the field of string rewriting [Book and Otto,
1993] and can also be studied under the light of term rewriting theory [Klop, 1990,
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Barendsen, 2003, Baader and Nipkow, 1999, Book and Otto, 1993]. The complexity of
the reachability problem is highly dependent on the rewriting system R. For general
rewriting systems, the problem becomes undecidable [Book and Otto, 1993]. In the
case of two-letter rewriting, reachability can be solved in PSPACE since in this case,
strings never grow in size. It is also not difficult to design two-letter rewriting systems
for which the reachability problem is PSPACE-complete. Nevertheless, our results imply
that for each w ∈ N, the R(2w)-reachability problem for unit decompositions of length
n and width at most w is reducible to the graph isomorphism problem. Therefore,
it can be solved in time npolylog(n), independently of k, using Babai’s quasi-polynomial
time algorithm for graph isomorphism [Babai, 2016]. An interesting question we leave
unsolved is the complexity of R(α · w)-reachability for unit decompositions of width at
most w when α is a rational number with 1 ≤ α < 2. In particular, we do not know if
there is such an α for which the reachability problem becomes PSPACE-hard.
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Chapter 6

Solving KRA, GbS, OSCM and PCO

Using a DP Algorithm for CO

In this chapter, we use the Completion of an Ordering problem as a general frame-
work to solve different problems such as Kemeny Rank Aggregation, Grouping by

Swapping and One-Sided Crossing Minimization. The main result of this chapter
is a dynamic programming algorithm to solve CO in single-exponential time parameter-
ized by the pathwidth of the cocomparability graph of the input order (Theorem 37).
To develop this algorithm, we introduce a new parameter based on path decomposition
called consistent pathwidth. For this new parameter, we show that it coincides with
pathwidth for cocomparability graphs (Lemma 35). We also give an algorithm to con-
struct a consistent path decomposition of width O(w) in time O⋆(2O(w)) (Lemma 36).
The algorithm for CO then uses dynamic programming over a consistent path decom-
position to solve CO.

Building on recent advances in the theory of Ck-free graphs [Chudnovsky et al., 2020],
we establish an upper bound for the pathwidth of a cocomparability graph in terms of
the number of edges of the graph. As a by-product of this result, we obtain the first al-
gorithm running in time O⋆(2O(

√
k)) for PCO and PCIO (Theorem 41 and Theorem 50).

Previously, the best algorithm for this problem parameterized by cost had asymptotic
time complexity of O⋆(kO(

√
k)) = O⋆(2

√
k log k). Therefore, we remove the log-factor in

the exponent. Using the connection to KRA, we show that this is optimal under the
Exponential Time Hypothesis (ETH) (Corollary 63).

Finally, we give the reductions from KRA to PCO and from OSCM and GbS to PCIO.
Together with our result on PCO and PCIO, we match or improve the current best-
known running times. For KRA, OSCM and GbS, we discuss the meaning of the path-
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width parameter in PCO when applied to instances given by the reductions. There, we
show some connections to parameters specific to each problem and we are able to improve
the running time with respect to those parameters (Corollary 65 and Corollary 69).

6.1 Consistent path decomposition

For the need of our main algorithm described in the next section (Section 6.2), we start
by defining a suitable notion of consistency between a path decomposition and a given
partial order. A path decomposition that respects the consistency property for a partial
order ρ is called a ρ-consistent path decomposition. The same way the pathwidth of
a graph is defined based on path decompositions, we define the notion of ρ-consistent
pathwidth1. Even if the ρ-consistent pathwidth parameter is more restrictive than the
classical pathwidth, we show that given a partial order ρ, the notions coincide for Gρ, the
cocomparability graph of ρ (Lemma 35). From an algorithmic point of view, we show
that constructing a ρ-consistent path decomposition of the cocomparability graph Gρ can
be done in linear time for interval orders (Lemma 32), and, for general partial orders, it
is fixed-parameter tractable parameterized by the pathwidth of Gρ (Lemma 36).

Let G = (V,E) be a graph, ρ ⊆ V × V be a (strict) partial order on the vertices of G
and D = (B1, . . . , Bl) be a path decomposition of G. We say that D is consistent with
ρ or, similarly, ρ-consistent if there is no pair of vertices (x, y) ∈ ρ such that

max({i ∈ [l] | y ∈ Bi}) < min({i ∈ [l] | x ∈ Bi}).

In other words, if x is smaller than y in ρ, then y cannot be forgotten in D before x is
introduced in D. The width of a ρ-consistent path decomposition D is the maximum size
of a bag in D minus 1, w(D) = maxi{|Bi|−1}. The ρ-consistent pathwidth of G, denoted
by cpw(G, ρ), is the minimum width of a ρ-consistent path decomposition of G. We will
be interested in particular in the consistent pathwidth cpw(Gρ, ρ) of the cocomparability
graph Gρ consistent with ρ.

Let us explain why our pathwidth measure can be seen as a distance to triviality pa-
rameterization in the context of CO. A trivial instance of CO is a linear order, as it
has cost zero. Then, the cocomparability graph is an independent set and has consistent
pathwidth 0.2 In the opposite case, if the input partial order is empty, then the cocom-
parability graph is a clique and has consistent pathwidth |V |−1. It is also worth noticing

1The notion of ρ-consistent pathwidth was first introduced in [Arrighi et al., 2020] but the problem
of computing a ρ-consistent path decomposition was left open and solved in [Arrighi et al., 2021c].

2In Lemma 35, we show that consistent pathwidth is equal to pathwidth.
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that it is NP-hard to determine the pathwidth of a cocomparability graph, together with
an optimal path decomposition, as observed in by Habib and Möhring in [Habib and
Möhring, 1994].

Our first lemma gives a way to build an ι-consistent path decomposition given an interval
representation of an interval order ι. This construction is similar to the construction of
a path decomposition given an interval representation of an interval graph.

Lemma 32. Let ι be an interval order on V . One can construct a minimum width path
decomposition of Gι consistent with ι of width w(ι)− 1 in time O(|V |).

Proof. First, we build an interval representation {Iv | v ∈ V } of ι which can be done in
linear time. How to obtain interval representations for interval orders was first shown
by Booth and Lueker in [Booth and Lueker, 1976]. Improved variants of finding interval
representations are given in [Hsu and Ma, 1999, Corneil et al., 2009], also see [Corneil
et al., 2013]. For space and further complexity considerations, confer [Köbler et al.,
2015, Köbler et al., 2011].

From {Iv | v ∈ V }, we derive an ι-consistent path decomposition of minimum width
as follow. For each element v in V , we let lv and rv be the left and right endpoints
of Iv. For every point x on the real line R that corresponds to an endpoint of one
or more intervals, we associate a bag Bx = {v | x ∈ Iv}. Then, we order the bags
following the order of lv and rv on the real line (See Figure 6.1). For each element
v ∈ V , v ∈ Blv . Given three bags Bx, By, Bz such that x ≤ y ≤ z, we have that
Bx ∩ Bz = {v | x ∈ Iv} ∩ {v | z ∈ Iv} = {v | lv ≤ x ≤ z < rv} ⊆ {v | lv ≤ y < rv} = By.
For each edge (u, v) ∈ E(Gι), Iu and Iv intersect, therefore, we have either lv ∈ Iu

or lu ∈ Iv. If lv ∈ Iu then u, v ∈ Blv , similarly if lu ∈ Iv then u, v ∈ Blu . So this
construction builds a path decomposition. We call this path decomposition D. As each
bag corresponds to the set of vertices that intersect at a certain point on the real line,
each bag is a clique, therefore, D is a minimum path decomposition. Now, we will show
that D is consistent with ι. More precisely, we will show that for each pair (u, v) ∈ ι,
max{x ∈ R | u ∈ Bx} < min{x ∈ R | v ∈ Bx}. For each (u, v) ∈ ι, we have lu < ru ≤ lv,
max{x ∈ R | u ∈ Bx} < ru ≤ lv ≤ min{x ∈ R | v ∈ Bx}. Therefore, D is consistent
with ι. Note that each bag is a clique, therefore, this is a path decomposition of minimum
width. A clique in Gι is an antichain of ι and each antichain of ι forms a clique in Gι.
Therefore, we have that D has width w(ι)− 1.

We will refer to the decomposition built from an interval representation {Iv | v ∈ V } as
the path decomposition derived from the interval representation of ι.
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D =

lu0 lu1 ru0 , lu2
ru1 lu3

ru2 ru3

Iu0

Iu1

Iu2

Iu3

{u0} {u0, u1} {u1, u2} {u2} {u2, u3} {u3} {}

Figure 6.1: Consistent path decomposition of the cocomparability graph of an interval
order given an interval representation. Given an interval order ι with its interval repre-
sentation I = {Iu0 , Iu1 , Iu2 , Iu3}, D is the path decomposition obtained in the proof of
Lemma 32.

Nice path decompositions are convenient to describe and prove algorithms on path de-
compositions. To be able to use nice path decompositions in our setting we need to prove
that we can build a nice path decomposition from a path decomposition while keeping
the property of being consistent with some partial order.

Lemma 33. Let G = (V,E) be a graph. Given a partial order ρ on V and a path
decomposition D of G of width w and length l that is consistent with ρ, one can construct
in time O(w · l) a nice path decomposition of width w that is consistent with ρ.

Intuitively, the construction works as follow. Given a path decomposition D, one can
get a nice path decomposition by introducing before each bag B several new bags that
will forget one by one each vertex forgotten by B and introduce each new vertex in B

one by one. If D is consistent with ρ, then the new path decomposition is also consistent
with ρ.

Proof of Lemma 33. Let l be the length of D. First, for each i ∈ [l − 1], if Bi = Bi+1,
Bi+1 is removed from D. After removing all the duplicated bags D is still a valid path
decomposition and consistent with ρ. For the rest of the proof, we assume that for each
i ∈ [l−1] Bi ̸= Bi+1. For each bag Bi, let Fi = Bi\Bi+1 be the set of vertices that will be
forgotten (Fl = Bl) and Ii = Bi\Bi−1 be the set of vertices that are introduced (I1 = B1).
For each bag Bi, |Ii| − 1 bags are added just before Bi in the path decomposition to
introduce the vertices in Ii one by one, and |Fi| bags are added after Bi to forget the
vertices in Fi one by one. This can be done in time O(w · l). Let D′ denote this new path
decomposition, with bags (B′

1, B
′
2, . . . , B

′
2|V |), i.e., D′ has length 2|V |, as each vertex is

introduced and forgotten exactly once. By construction, D′ is a nice path decomposition.
As we only add new bags in the path decomposition, there is a mapping f : [l] → [2|V |]
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that embeds D into D′, i.e., B′
f(i) = Bi for all i ∈ [l]. Moreover, f is strictly monotone,

i.e., for i < j we have f(i) < f(j), and conversely, if f(i) < f(j), then i < j. For
k ∈ [2|V |], let f1(k) =̇ max{i ∈ [l] | f(i) ≤ k} and f2(k) =̇ min{i ∈ [l] | f(i) ≥ k}.
Observe that f1(k) ≤ f2(k), with equality only if k = f(i) for some i ∈ [l]. In general,
we find (∗) that f(f1(k)) ≤ k ≤ f(f2(k)) for all k ∈ [2|V |].

Now, assume that D′ is not consistent with ρ. Then, there is some (x, y) ∈ ρ with

max(D′, y) =̇ max{i ∈ [2|V |] | y ∈ B′
i} < min(D′, x) =̇ min{i ∈ [2|V |] | x ∈ B′

i} .

Hence, B′
max(D′,y) is the last bag in the path decomposition D′ before y is forgotten.

Therefore, Bf1(max(D′,y)) is the last bag in the path decomposition D before y is forgotten.
In line with our notations, let max(D, y) =̇ max{i ∈ [l] | y ∈ Bi}. We just showed that
max(D, y) = f1(max(D′, y)). Similarly, B′

min(D′,x) is the bag in the path decompositionD′

where x is introduced. Therefore, Bf2(min(D′,x)) is the bag in the path decomposition D in
which x is introduced. In line with our notations, let min(D, x) =̇ min{i ∈ [l] | x ∈ Bi}.
We just showed that min(D, x) = f2(min(D′, x)). By max(D′, y) < min(D′, x) and by
(∗), we infer that max(D, y) = f1(max(D′, y)) < f2(min(D′, x)) = min(D, x), which
means that ρ is not consistent with D, contradicting our assumptions.

For the cocomparability graphs, we can further show the following three lemmas. First,
given a partial order ρ, the notion of consistency behave well with respect to an extension
of ρ in the case of the cocomparability graph Gρ.

Lemma 34. Let ρ be a partial order on a set V , Gρ be the cocomparability graph of ρ
and D be a path decomposition of Gρ consistent with ρ, then D is consistent with any
extension of ρ.

Proof. Let τ be an extension of ρ. For every pair (x, y) ∈ τ with x ̸= y, if (x, y) ∈ ρ then
max{i ∈ [l] | y ∈ Bi} ≥ min{i ∈ [l] | x ∈ Bi}; otherwise, (x, y) /∈ ρ, as x ̸= y and (x, y) ∈
τ , (y, x) /∈ ρ because τ extends ρ; hence, x and y are not comparable with respect to ρ;
therefore, there is an edge xy in the cocomparability graph Gρ; so there exists a bag Bi

such that x, y ∈ Bi and therefore max{i ∈ [l] | y ∈ Bi} ≥ min{i ∈ [l] | x ∈ Bi}.

Next, we show that the notions of consistent pathwidth and (ordinary) pathwidth coincde
when restricted to the class of cocomparability graph associated with one of its partial
orders. This justifies that we can use consistent path decomposition to build an algorithm
on partial order parameterized by the pathwidth of the cocomparability graph.

Lemma 35. Let Gρ = (V,E) be the cocomparability graph of a partial order ρ ⊆ V ×V .
Then, pw(Gρ) = cpw(Gρ, ρ).
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Proof. By definition we have pw(Gρ) ≤ cpw(Gρ, ρ). We will show that cpw(Gρ, ρ) ≤
iw(ρ) − 1 and use the fact that pw(Gρ) = iw(ρ) − 1 (Theorem 2.1 from [Habib and
Möhring, 1994]). By definition of iw(ρ), we can find an interval order ι such that iw(ρ) =
w(ι) and ι ⊆ ρ. Let {Iv | v ∈ V } be an interval representation of ι. Then, Gι is the
intersection graph of {Iv | v ∈ V }. Then, by Lemma 32, the path decomposition D

of Gι derived from {Iv | v ∈ V } is consistent with ι and has width w(ι) − 1. From
Lemma 34, we know that D is also consistent with the extension ρ of ι. We conclude
cpw(Gρ, ρ) ≤ cpw(Gι, ι) = w(ι)− 1 = iw(ρ)− 1 = pw(Gρ).

To have a complete FPT algorithm parameterized by pathwidth, we show that for any
partial order ρ, one can construct a ρ-consistent path decomposition of the cocompara-
bility graph Gρ in fixed-parameter tractable time parameterized by the pathwidth of the
graph Gρ.

Lemma 36. Let ρ ⊆ V × V be a partial order and Gρ be the cocomparability graph
of ρ. Then one can construct a nice ρ-consistent path decomposition D of Gρ of width
O(pw(Gρ)) in time 2O(pw(Gρ)) · |V |.

Proof. Let ρ be a partial order on a set V and Gρ be the cocomparability graph of ρ.
It has been shown in Theorem 2.1 of [Habib and Möhring, 1994] that any minimal
triangulation H of Gρ is not only a cocomparability graph, but also an interval graph.
This result allows us to compute a ρ-consistent path decomposition of Gρ as follows.

We start by computing a tree decomposition T of Gρ of width at most 5 · pw(G) + 4

in time 2O(pw(G)) · |V | using the algorithm from [Bodlaender et al., 2016]. Subsequently,
we construct a triangulation HT of Gρ by transforming each bag of the decomposition
T into a clique. More precisely, we add an edge to vertices u and v in Gρ if and only
if u and v occur together in some bag. This operation clearly preserves treewidth, since
the size of the bags does not increase. Therefore, the graph HT is a triangulation of Gρ

of treewidth at most 5 · pw(G) + 4. Now, we successively delete edges from HT until
we get a minimal triangulation H of Gρ. In other words, by removing any additional
edge from H, we either get a graph that is not triangulated or that is not a supergraph
of Gρ. We have E(Gρ) ⊆ E(H) ⊆ E(HT ) and E(H) is minimal with respect to inclusion.
Therefore, tw(H) ≤ tw(HT ) = w. By [Habib and Möhring, 1994], we know that H is an
interval graph.

Now, adding an edge {u, v} to Gρ is equivalent to removing the edge constructing the
DAG ρ\{(u, v)}. What is shown in [Habib and Möhring, 1994] is that the DAG ρ\{(u, v) |
{u, v} ∈ E(H)\E(Gρ)} is actually a partial order ι. Note that when deleting edges from
a partial order, the only axiom that can be broken is transitivity. So what this result
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is really saying is that by deleting the pairs corresponding to edges that are in H but
not in G, we can indeed preserve transitivity. The crucial fact about this construction
is that the partial order ι is actually an interval order, and therefore H is an interval
supergraph of Gρ.

Now, from the interval graph H, we derive a ρ-consistent path decomposition D of Gρ.
This construction is as follows. Given two maximal cliques X and Y of H, we say that
X is smaller than Y if there exist vertices x ∈ X and y ∈ Y such that (x, y) ∈ ι. This
relation defines a linear order on the maximal cliques [Habib et al., 2000]. It follows
from [Habib et al., 2000] that the sequence of maximal cliques obtained by ordering the
maximal cliques of H according to the order above is a path decomposition of H. As
the bags of the path decomposition follow the order above, this path decomposition is
consistent with ι. Now, since any path decomposition of H is also a path decomposition
of Gρ, and as ι ⊆ ρ, this path decomposition is also ρ-consistent.

We note that the process of finding all maximal cliques of an interval graph H can be
realized in time linear in the size of H [Habib et al., 2000]. Note that since H has
pathwidth O(pw(Gρ)), the number of edges of H is bounded by O(pw(Gρ)

2 · |V |). So
the process of finding the maximal cliques in H takes time O(pw(Gρ)

2 · |V |). Finally,
since the most time-expensive part of the process described above is the construction of
the tree decomposition T , we have that the whole process takes time 2O(pw(Gρ)) · |V |.

6.2 DP Algorithm for CO

Now, we use the newly introduced notion of consistent path decomposition and the fact
that on cocomparability graphs, consistent pathwidth and pathwidth coincide to de-
velop an algorithm for CO parameterized by pathwidth. This algorithm is based on a
dynamic programming algorithm over a consistent path decomposition of the cocompa-
rability graph. Using the additional restriction of PCO and PCIO, in Section 6.3, we
will push the analysis of the complexity of our algorithm further and we will derive a
subexponential algorithm parameterized by the cost of the solution and improve the run-
ning time of the currently best branching algorithm. We will extend our algorithm to
solve KRA, GbS and OSCM using reductions from those problems to PCO or PCIO.

Theorem 37. Given a partial order ρ over a set V and a cost function c : V ×V → N one
can solve an instance (ρ, c, k) of the CO problem in time O(|V |·w·2w ·log(k)+|V |2·log(k))
where w is the pathwidth of the cocomparability graph of ρ.

Given a partial order ρ, one can construct a ρ-consistent path decomposition of width
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O(pw(Gρ)) in time 2O(pw(Gρ)) · |V | using Lemma 36. The rest of the proof of Theorem 37
follows from the next lemma.

Lemma 38. Given a partial order ρ over a set V , a cost function c : V × V → N and a
ρ-consistent path decomposition D of the cocomparability graph Gρ of width w, one can
solve an instance (ρ, c, k) of the CO problem in time O(|V | ·w ·2w · log(k)+ |V |2 · log(k)).

The remainder of this subsection is dedicated to the proof of Lemma 38.

Dynamic Programming Algorithm. Let ρ ⊆ V × V be a partial order on a set
V , c : V × V → N be a cost function and S and T be two subsets of V such that for
each pair (s, t) ∈ S × T , (t, s) /∈ ρ, in other words, no element in S is bigger than any
element in T with respect to ρ. We define c(S, T ) =

∑
(s,t)∈(S×T )\ρ c(s, t), this is the

cost of having the elements of S before (or smaller than) the elements of T . For every
linear extension τ of ρ on T , we let c(τ) =

∑
(a,b)∈τ\ρ c(a, b) be the cost of τ . We define

opt(T ) = min{c(τ) | τ ∈ Lin(ρ, T )}. Our goal is to find opt(V ).

Let D be a ρ-consistent path decomposition of width w of the cocomparability graph Gρ

of ρ. By Lemma 33, we can assume without loss of generality that D is nice.

For each position 1 ≤ i ≤ 2 · |V | in the path decomposition, we compute and store
c(Li, {v}) in table T c

i , for every vertex v ∈ Bi such that for each u ∈ Li, (v, u) /∈ ρ

and we also compute and store opt(Li ∪ T ) in table T opt
i for each T ⊆ Bi. For every

vertex v ∈ Bi such that for each u ∈ Li, (v, u) /∈ ρ, c(Li, {v}) is the cost of having
v after the forgotten vertices at position i if this is compatible with ρ and for each
T ⊆ Bi, opt(Li ∪ T ) is the minimum cost of a linear extension of ρ on Li ∪ T . We
have L2·|V | ∪ B2·|V | = V . Therefore, to find the minimum cost of a linear extension of
ρ, it is enough to inductively construct these two tables. The induction basis is trivial.
For the first bag of the path decomposition, we have L1 = ∅ and |B1| = 1, so we have
c(L1, {v}) = 0 for the only vertex v ∈ B1 in table T c

1 and opt(Li∪T ) = 0 for both T = ∅
and T = B1 in table T opt

1 . The following two lemmas explain the induction step of the
algorithm.

Lemma 39. Let i ∈ [2, . . . , 2 · |V |]. Given the table T c
i−1 that lists the values of

c(Li−1, {v}) for every v ∈ Bi−1, one can compute c(Li, {v}) for every v ∈ Bi in time
w · log(k) in order to build the table T c

i .

Proof. We consider two cases. If Bi introduces a vertex v, then Li = Li−1 and Bi =

Bi−1 ∪ {v}. So for u ∈ Bi \ {v}, c(Li, {u}) = c(Li−1, {u}), and, by the consistency
of D with ρ, we have that ∀x ∈ Li : (x, v) ∈ ρ, so c(Li, {v}) = 0. If Bi forgets a
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vertex v, then Li = Li−1 ∪ {v} and Bi = Bi−1 \ {v}, so for u ∈ Bi such that for each
u′ ∈ Li, (u, u

′) /∈ ρ, if (v, u) ∈ ρ, then c(Li, {u}) = c(Li−1 ∪ {v}, {u}) = c(Li−1, {u})
otherwise, c(Li, {u}) = c(Li−1 ∪ {v}, {u}) = c(Li−1, {u}) + c(v, u). As the cost can be
arbitrarily large, we need O(log(k)) time to perform the addition of two costs.

Lemma 40. Let i ∈ [2, . . . , 2 · |V |]. Given a table T c
i that lists the values of c(Li, {v}) for

every v ∈ Bi such that for each u ∈ Li (v, u) /∈ ρ and a table T opt
i−1 that lists the values of

opt(Li−1 ∪ T ) for every T ⊆ Bi−1, one can compute in O(w · 2w · log(k)) time the value
of opt(Li ∪ T ) for all T ⊆ Bi in order to build the table T opt

i .

Proof. The cost can be arbitrarily large, therefore, the addition of two costs is done in
time O(log(k)). First, we compute c(T, {v′}) for v′ ∈ Bi and for T ⊆ Bi \{v′}, and store
the values in an auxiliary table T aux. This computation can be done in O(w · 2w · log(k))
time. Now there are two cases:

• If Bi forgets a vertex v, then Li = Li−1∪{v}; for each subset T ⊆ Bi, opt(Li∪T ) =
opt(Li−1 ∪ T ∪ {v}) and this value is in the table T opt

i−1, as T ∪ {v} ⊆ Bi−1.

• If Bi introduces a vertex v, then Li = Li−1 and Bi = Bi−1 ∪ {v}. Given a subset
T of Bi, if v /∈ T , then opt(Li ∪ T ) is already in the table T opt

i−1. Suppose v ∈ T .
For all u ∈ Li, there is no edge between u and v in Gρ, and as D is consistent
with ρ, we have (u, v) ∈ ρ. So in any linear extension of ρ on Li∪T , the maximum
element is a maximal element of T (with respect to ρ). Then we have, by testing
all possible maximum elements v′:

opt(Li ∪ T ) = min
v′∈maxρ(T )

{opt(Li ∪ T \ {v′}) + c(Li ∪ T \ {v′}, {v′})}

= min
v′∈maxρ(T )

{opt(Li ∪ T \ {v′}) + c(Li, {v′}) + c(T \ {v′}, {v′})}

where maxρ(T ) = {v ∈ T | ∀u ∈ T, (v, u) /∈ ρ} is the set of maximal elements of
T with respect to ρ. The second and third terms are in the tables T c

i and T aux,
respectively. If v′ = v, then the first term can be looked up in table T opt

i−1. By
walking through all T ⊆ Bi with increasing cardinality (recall that always v ∈ T ),
we can inductively compute opt(Li ∪ T ), as this provides the first term. As the
inductive basis, consider T = {v}, in which case opt(Li ∪ T ) = opt(Li ∪ {v}) =

opt(Li). The first term is already in the table T opt
i−1. The computation of T opt

i can
be done in time O(w · 2w · log(k)).

This explains how to build the table T opt
i .
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Since L2·|V | ∪ B2·|V | = V , the dynamic programming algorithm can provide an optimal
solution and runs in time O(|V | · w · 2w · log(k)). The size of the cost function given
as input is |V |2 · log(k). Reading the cost function gives the second part of the running
time. This proves Lemma 38.

6.3 Further Algorithmic Consequences

Next, we give some additional algorithmic results around CO. First, we show that CO

and PCO stay NP-hard even if we restrict the cost of the missing relation in the partial
order to {0, 1} for CO and to {1, 2} for PCO. Next, we analyse the algorithm for CO

given in Section 6.2 when applied to PCO and PCIO and give a subexponential running
time when the parameter is the cost of the solution (Theorem 41 and Theorem 50).
Last, we give a kernel and a better branching algorithm for PCO (Theorem 52 and
Theorem 55).

6.3.1 Tighter NP-hardness

The Feedback Arc Set on Tournaments problem, FAST for short, is a well-
known NP-complete problem [Charbit et al., 2007]. A connection between FAST and
PCO was exploited in [Fernau et al., 2014] to solve PCO using FAST. The relation
between variants of FAST and CO range in both directions. We are now explaining
a reverse reduction. We can even reduce from Constrained FAST, a generalization
of FAST, introduced by van Zuylen and Williamson [Zuylen and Williamson, 2009]
and Brandenburg et al. [Brandenburg et al., 2013]. It is defined as follows: The arc
set of a given tournament graph is split into fixed arcs Afix and free arcs Afree. The
task is to remove at most k free arcs such that the resulting graph becomes acyclic.
Constrained FAST can model FAST by assigning all the arcs of tournament to Afree.
We know that every arc in Afree that contradicts the transitivity of Afix needs to be
removed. Therefore, we assume that Afix gives a transitive relation on the set of vertices
and that it is acyclic, so that it defines a partial order ρ on the vertex set V . By defining
the following cost function, we can solve Constrained FAST with any CO algorithm:
For arcs (x, y) ∈ Afree, we set c(x, y) = 0. For arcs (x, y) such that (y, x) ∈ Afree, we set
c(x, y) = 1. By the tournament condition, for each edge {x, y} of Gρ, c(x, y) ∈ {0, 1}
and c(y, x) ∈ {0, 1} are defined, with c(x, y) + c(y, x) = 1. As FAST is an NP-complete
problem, this also shows NP-completeness for CO (even when the cost are restricted to
0 and 1) and similarly, by adding one to all arc costs, we obtain NP-completeness for
PCO, even when the costs are restricted to 1 and 2.
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6.3.2 Sub-exponential Algorithm for PCO

For special cases of PCO, such as those arising from KRA or from the graph-drawing
problem OSCM, sub-exponential time algorithms have been known, i.e., algorithms
with running times of the form O⋆(2O(

√
k)). In contrast, for the more general problem

of PCO, only algorithms with running time O⋆(k
√
k) were known before, where k is the

cost parameter [Fernau et al., 2014]. Here, we prove that PCO also admits algorithms
of the form O⋆(2O(

√
k)), by making use of several structural insights for cocomparability

graphs. More precisely, we prove the following theorem.

Theorem 41. Given a partial order ρ ⊆ V ×V and a cost function c : V ×V → N, one
can solve a PCO instance (ρ, c, k) in time |V | · 2O(

√
k) +O(|V |2 · log(k)).

The remainder of this subsection is dedicated to the proof of Theorem 41.

In general graphs, treewidth is more expressive than pathwidth in the sense that any
graph of pathwidth k has also treewidth at most k, but there exist graphs of treewidth
k whose pathwidth is unbounded. Nevertheless, in the class of cocomparability graphs,
treewidth and pathwidth coincide.

Lemma 42 (Theorem 1.2 in [Habib and Möhring, 1994]). Let G be a cocomparability
graph. Then, pw(G) = tw(G).

Let t ≥ 3 be an integer, we write Ct for the cycle on t vertices and C≥t = {Ck | k ≥ t}.
We say that G is C≥t-free if G excludes all Ck as an induced subgraph for any k ≥ t.

Lemma 43. Cocomparability graphs are C≥5-free.

This fact is known but not that easy to track down in the literature. We refer to [Ghouila-
Houri, 1964, Gilmore and Hoffman, 1964b, Gallai, 1967], which contain corresponding
results on comparability graphs. We also refer to the textbook of Trotter [Trotter, 1992].
To keep the thesis self-contained, we present a short self-contained proof of the fact that
cocomparability graphs are Ck free for k ≥ 5. As a key notion, we consider bad triples in
cocomparability orders. A cocomparability order of a cocomparability graph G = (V,E)

is a bijection σ : V → {1, . . . , |V |} that linearly extends a transitive orientation ρ of G,
meaning that (x, y) ∈ ρ implies σ(x) < σ(y). Given a graph G and a linear order σ of its
vertices, a bad triple is three vertices x, y, z so that σ(x) < σ(y) < σ(z), xy /∈ E, yz /∈ E,
and xz ∈ E. Notice that if G is a cocomparability graph and σ a cocomparability order
then (G, σ) has no bad triple. Namely, if x, y and y, z are comparable in some partial
order ρ with σ(x) < σ(y) < σ(z), then (as σ extends ρ) whenever x <ρ y and y <ρ z

then x <ρ z is enforced by transitivity, ruling out a bad triple.
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Lemma 44. A cycle Ck on k ≥ 5 vertices is not a cocomparability graph.

Proof. Suppose for contradiction that σ : V (Ck) → {1, . . . , k} is a cocomparability order
of Ck with edge set Ek. Define σ−1(i) to be the vertex x in Ck so that σ(x) = i. Let
u = σ−1(1) and v = σ−1(k). If uv ∈ Ek, let x be any vertex non-adjacent to both
u and v (such a vertex exists since k ≥ 5), we have that u, x, v is a bad triple. We
conclude that uv /∈ Ek. Let P and Q be the two paths that connect u and v in Ck,
excluding u, v. Without loss of generality, |V (P )| ≥ |V (Q)|. Since k ≥ 5, we have that
the path P contains an edge {p, q} so that {p, q}∩{u, v} = ∅. Without loss of generality,
σ(p) < σ(q).

First, suppose that there is a vertex ℓ ∈ V (Q) so that σ(p) < σ(ℓ) < σ(q). Then, p, ℓ, q
is a bad triple. Hence, such a vertex cannot exist. It follows that some edge {a, b} of
E(Ck[V (Q)∪{u, v}]) is such that σ(a) < σ(p) and σ(q) < σ(b). Since the path Q has at
least one internal vertex, we have that |{a, b} ∩ {u, v}| ≤ 1, and therefore (since each of
u and v has at most one neighbor in {p, q}) we have |N({a, b}) ∩ {p, q}| ≤ 1. However,
if p /∈ N({a, b}), then a, p, b is a bad triple. If q /∈ N({a, b}), then a, q, b is a bad triple.
But |N({a, b})∩{p, q}| ≤ 1 implies that one of the two former cases must hold, yielding
the desired contradiction.

Finally, as the proof is based on the notion of bad triples and as bad triples in induced
subgraphs are also bad triples in the whole graph, this proves Lemma 43.

The following statement is put forward in [Chudnovsky et al., 2020, Theorem 1.5].

Lemma 45 (Theorem 1.5 in [Chudnovsky et al., 2020]). A C≥t-free graph with maximum
degree ∆ has treewidth bounded by O(t · ∆). Furthermore, a tree decomposition of this
width can be computed in polynomial time.

From Lemma 45, we can prove the following lemma.

Lemma 46. Let G be a C≥5-free graph, let m be the number of edges of G. Then, we
have m = Ω(tw(G)2).

Proof. A graph on m edges has at most 2
√
m vertices of degree at least

√
m. Let G′

be the graph obtained from G by removing all vertices of degree at least
√
m. Since G

is C≥5-free, so is G′. Therefore, by applying Lemma 45, we get that tw(G′) = O(
√
m).

The removal of a vertex reduces the treewidth by at most 1. Hence, we have tw(G) −
2
√
m ≤ tw(G′) = O(

√
m). This implies that tw(G) = O(

√
m), or conversely, that

m = Ω(tw(G)2).
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By combining Lemma 46 with Lemma 42, we get:

Lemma 47. Let G be a cocomparability graph and let m be the number of edges of G.
Then, m = Ω(pw(G)2).

Now, in a PCO instance, each edge contributes at least 1 to the cost of any solution.
Therefore, if a solution has cost at most k, then the cocomparability graph of the in-
put partial order can have at most k edges. Therefore, this observation, together with
Lemma 47 yields the following lemma.

Lemma 48. Let (ρ, c, k) be an YES-instance of PCO. Then, pw(Gρ) = O(
√
k).

To get the running time of Theorem 41, we need to either compute a ρ-consistent path
decomposition of width at most O(

√
k), or to trigger an early rejection. For this, we will

use the following lemma which is based on Lemma 36.

Lemma 49. There is an algorithm running in time 2O(
√
k) · |V | that takes an instance

(ρ, c, k) of PCO as input, and either constructs a ρ-consistent path decomposition of the
graph Gρ of width O(

√
k), or determines that this instance is a NO-instance.

Now we are ready to prove the statement of Theorem 41. Given an instance (ρ, c, k) of
PCO, we apply the algorithm given by Lemma 49. This algorithm either determines
that the instance is a NO-instance, or constructs a ρ-consistent path decomposition D

of Gρ of width O(
√
k). In the first case, we are done and simply answer NO. Otherwise,

we give both the instance (ρ, c, k) and the decomposition D to the algorithm stated in
Lemma 38 to determine in time |V | · 2O(

√
k)+O(|V |2 · log(k)) whether (ρ, c, k) is a YES-

or a NO-instance of PCO. It is worth noting that in case this is a YES-instance, the
algorithm also constructs a linear extension of ρ of cost at most k. This concludes the
proof of Theorem 41.

6.3.3 Completing an interval order is easier

Recall that PCIO has one more restriction compared to PCO, the input partial order
is an interval order. As such, Theorem 41, given in the previous subsection, gives a
sub-exponential algorithm for PCIO parameterized by the cost of the linear extension.
Working with an interval order instead of a partial order allows us a better analysis of
the complexity of the algorithm. Therefore, we get an explicit and better bound for our
dynamic programming algorithm.

Theorem 50. An instance (ι, c, k) of the PCIO problem is solvable in time O(k · 2
√
2k ·

log(k) + |V |2 · log(k)).



66 Solving KRA, GbS, OSCM and PCO Using a DP Algorithm for CO

The following is an outline of our algorithm, called DP-PCIO.

1. Construct Gι, if Gι has more than k edges then stop with “NO”. This can be done in
time |V |2. This is justified, because c(x, y) > 0 for each incomparable pair {x, y}.

2. Construct a nice path decomposition D consistent with ι. If the width of D is
more than

√
2k, then stop with “NO”, as a large clique was detected.

3. Compute opt(V ) by a dynamic programming algorithm based on the path decom-
position D. If the current optimum solution is bigger than k, then stop with “NO”.
If the computation is successful and opt(V ) ≤ k, then answer “YES”. Otherwise,
answer “NO”.

To apply our dynamic programming algorithm of Lemma 38, we need a consistent path
decomposition. Let D = (B1, . . . , B2|V |) be the nice path decomposition of Gι consistent
with ι that we got by applying Lemma 33 on the path decomposition of Lemma 32. By
construction, each bag in D is a clique.

We are now proving Theorem 50 with the help of the following technical lemma.

Lemma 51. Assume that Gι has at most k edges. Let H = ⌈
√
2k⌉ + 1 and, for each

2 ≤ h ≤ H, let ch =̇ |{i | h = |Bi|}|. Then, we have ch ≤ k/(h− 1)− h/2 + 1.

Proof. Let h ∈ {2, . . . , H}. Let i1 < i2 < . . . < ich be the elements of {i | h = |Bi|}. To
prove the claim, we will associate some edges of Gι to each bag Bij . Each edge will be
associated to at most one bag but will not necessarily belong to that bag. As Bi1 is a
clique, we associate the h(h − 1)/2 edges of the clique to it. Now, we will associate at
least h−1 edges to each of the remaining bags. If Bij ̸= Bij−1

, then there is a vertex v in
Bij \Bij−1

, because both Bij−1
and Bij are (different) cliques. Then, we associate the h−1

edges incident to v in Bij to Bij . If Bij = Bij−1
, then Bij−1+1 cannot forget any vertices

from Bij−1
, so Bij−1+1 introduces a vertex v and we associate the h edges adjacent to v

in Bij−1+1 to Bij . So Gι contains at least h(h− 1)/2 + (h− 1)(ch − 1) many edges. The
costs for incomparable pairs are non-zero, so each edge contributes at least one in the
final cost of any linear order. Therefore, we have h(h− 1)/2 + (h− 1)(ch − 1) ≤ k.

Proof of Theorem 50. The first step of our algorithm (constructing the cocomparability
graph Gι = (V,E)) takes O(|V |2) time. Now, we know that |E| ≤ k, if not we abort
with NO. The second step takes O(|V | + |ι|) ⊆ O(|V |2) time by Lemma 32. We have a
nice path decomposition D thereafter that is consistent with ι. As bags induce cliques,
having at least

√
2k+1 many vertices in a bag means having at least (

√
2k+1)

√
2k/2 > k
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many edges. As soon as we detect such a situation, the computation is aborted with
NO. Finally, upon doing the dynamic programming, we can check that the current costs
are not bigger than k.

Let H, h ∈ {2, . . . , H} and ch be as defined in Lemma 51. For each bag of size h,
the running time of the algorithm based on Lemma 39 and Lemma 40 is h2h log(k).
Therefore, the total running time of the dynamic programming part of the algorithm is
O(

∑H
h=2 chh2

h log(k) + |V |) By Lemma 51, we have

H∑

h=2

chh2
h ≤

H∑

h=2

(
k

h− 1
− h

2
+ 1)h2h

≤ k ·
H∑

h=2

h

h− 1
· 2h +

H∑

h=2

(1− h

2
) · h · 2h

≤ k ·
H∑

h=2

h

h− 1
· 2h (1− h

2
) ≤ 0

≤ 2k ·
H∑

h=2

2h
h

h− 1
≤ 2

≤ 2k2H+1

= O(k2
√
2k)

Reading the interval order ι in the input takes time O(|V |2 · log(k)). This gives the
second part of the running time.

6.3.4 Some other FPT results for Positive Completion of an

Ordering

We collect here two FPT results for Positive Completion of an Ordering.

1. We provide a small kernel for PCO of size 1.5k (Theorem 52).

2. We give a better search tree algorithm for PCO running in time O⋆(
√
2
k
) (Theo-

rem 55).

Kernel for PCO

In the following, let ρ be a partial order that should be extended to a linear order. Let
Gρ be the corresponding cocomparability graph. We also consider k as the standard
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parameter, upper-bounding the linearization cost.

We observe a kernelization scheme for Positive Completion of an Ordering,
called RRPCOq in the following. For any fixed q > 1 do: For each connected component
C of Gρ with |C| ≤ q vertices, solve PCO optimally on the induced graph Gρ[C]. The
reduced instance will see the orders between all pairs of vertices from C settled, and the
parameter will be reduced accordingly.

We also (clearly) have the following rule RRPCOcleanup: If v ∈ V such that for all
u ∈ V , either (u, v) ∈ ρ or (v, u) ∈ ρ have been settled, in other words, v is an isolated
vertex in Gρ, then we can remove v from V , ρ, and Gρ. Notice that if rule RRPCOq
was used to resolve some vertex set C, then RRPCOcleanup will delete all vertices of C
from the instance. Namely, as C was a connected component of Gρ, each vertex v ∈ C

and each vertex u /∈ C were comparable.

After exhaustively applying these rules, every connected component C of Gρ has at least
q + 1 many vertices and thus at least q edges. This means that at least q arcs with a
weight of at least one per arc have to be added per component, therefore there are at most
k/q many components. The more vertices (and hence edges) there are per component
in Gρ, the fewer components there are. The worst case is indeed when all components
have q + 1 many vertices, so that overall we have at most k q+1

q
many vertices in the

instance, an expression approaching k for growing q. Considering q as a fixed constant,
the running time of this kernelization is still linear in the number of vertices of the graph
respectively the size of the base set.

Theorem 52. Fix some 1 < α ≤ 1.5. Then, each instance of Positive Completion

of an Ordering admits a problem kernel of size αk.

Remark 53. Notice that the two rules RRPCOq and RRPCOcleanup do not destroy
special structures on the orders, so that we obtain in particular linear-size kernels for
Positive Completion of an Interval Ordering.

Branching algorithm

Finally, we show how our considerations also help to improve the running time of a
simple branching algorithm. The algorithm works as follows: it picks an edge in the co-
comparability graph and considers orienting it both ways. As long as there are profitable
edges that cause at least a cost of two in each branch, we keep on branching. Costs can
also be implicitly caused, as we modify the partial order ρ and hence transitivity must
be maintained. We can use Theorem 50 when there are no more profitable edges because
of the following lemma.
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Lemma 54. After exhaustively branching at all profitable edges, Gρ is an interval graph.

This is the key to the following improvement on the branching algorithm described
in [Fernau, 2005]. Notice that in practice, branching algorithms tend to be faster
at least for small parameter values, due to the smaller constants in the basis of the
(sub-)exponential functions that upper-bound the running times.

Theorem 55. PCO can be solved in time O⋆(
√
2
k
) by a branching algorithm.

No, we will formally describe and explain this branching algorithm. See Algorithm 1
for a detailed description of the algorithm. It is a blend of the branching algorithm
explained in [Fernau, 2005] and our findings on interval graphs. In order to understand
it, we will need the following definitions.

• If R ⊆ V × V is a relation, then R∗ denotes is reflexive transitive closure.

• We are growing a partial order ρ ⊆ V × V by adding further pairs (a, b). When
adding a pair, not only the cost c(a, b) has to be considered, as often |(ρ∪{(a, b)})∗\
ρ| > 1 by transitivity. We therefore set c∗ρ(a, b) =̇ c((ρ ∪ {(a, b)})∗ \ ρ).

• We call (a branching at) a pair of elements {a, b} where {(a, b), (b, a)} ∩ ρ = ∅
(i.e., a, b are incomparable) a profitable edge (in the cocomparability graph) if
c∗ρ(a, b) ≥ 2 and c∗ρ(b, a) ≥ 2.

We are now going to show that Positive Completion of an Ordering can be solved
in time O⋆(

√
2
k
).

Proof of Theorem 55. By definition, a profitable edge yields a branching vector of at
worst (2, 2) and hence the claimed running time for the pure branching part of the
algorithm. Furthermore, in case that Gρ is an interval graph, our problem can be solved
in time O⋆(2

√
2k) ⊆ O⋆(

√
2
k
) due to Theorem 50. This explains the running time.

To prove the correctness, we have to prove Lemma 54.

Proof of Lemma 54. For the sake of contradiction, assume Gρ is not an interval graph.
Then, it contains an induced C4. Recall that interval graphs are exactly the cocompara-
bility graphs that do not contain an induced C4 [Gilmore and Hoffman, 1964a]. Without
loss of generality, this means that there are four elements a, b, c, d with {(a, c), (b, d)} ⊆ ρ,
and these are the only pairs from {a, b, c, d} related by ρ. Now, consider branching on the
pair {a, b}. If (a, b) is fixed, then transitivity will enforce (a, d). Hence, c∗ρ(a, b) ≥ 2. By
symmetry, fixing (b, a) also fixes (b, c), so that c∗ρ(b, a) ≥ 2. Hence, {a, b} is a profitable
edge that cannot exist after the assumed exhaustive branching.
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Algorithm 1 A branching algorithm for Positive Completion of an Ordering,
called PCO
Input(s): A partial order ρ ⊆ V × V over a set V , a cost function c : V × V → N>0,

and an integer k
Output(s): YES iff the given PCO instance has a solution of size at most k

repeat
Exhaustively apply the reduction rules, RRPCOq and RRPCOcleanup, adjusting
ρ, c, and k accordingly.
Determine the elements whose order is settled by transitivity and adjust accord-
ingly.

until there are no more changes
5: if k < 0 then

return NO.
else if there is a profitable edge {a, b} then

if PCO((ρ ∪ {(a, b)})∗, k − c∗ρ(a, b), c) then
return YES

10: else
return PCO((ρ ∪ {(b, a)})∗, k − c∗ρ(b, a), c)

end if
else

Compute an optimum path decomposition for the resulting cocomparability graph
which is an interval graph

15: Solve the rest of the instance using Theorem 50
return YES or NO accordingly.

end if
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6.4 Reduction from OSCM to PCIO

Now, we show that OSCM can be reduced to PCIO, starting with a simple remark.

Remark 56. Isolated vertices in V2, do not interact with the drawing and can be placed
anywhere in an optimal linear order of V2.

From here, we assume that V2 does not contain any isolated vertices. Similar to [Fernau,
2005, Fernau et al., 2014], we can model OSCM instances as PCIO instances.

Lemma 57. Given an instance (G, τ1, k) of OSCM, one can construct in polynomial
time an equivalent instance (ι, c, k) of PCIO.

Proof. Let a bipartite graph G = (V1, V2, E), a linear order τ1 on V1, and an integer k
be an instance of the OSCM problem. From this instance, we construct an equivalent
instance (ι, c, k) of the PCIO problem. This reduction is similar to an algorithm from
Kobayashi and Tamaki in [Kobayashi and Tamaki, 2015]; also confer [Fernau, 2005,
Fernau et al., 2014] for such type of reductions.

First, we set V = V2. Given a linear order τ2 on V2, we define the cost of τ2, c(τ2), as
the number of edge crossing in the two-layer drawing of G following τ1 and τ2. For every
u and v from V2, we define the cost of (u, v), c(u, v), as the number of edge crossing
between edges incident to u and edges incident to v when u is placed before v in a
two-layer drawing of G. We remark that, similarly to the defining equation for PCO,

c(τ2) =
∑

u<τ2v

c(u, v) . (6.1)

Let u and v be two distinct vertices in V2. c(u, v) = 0 and c(v, u) = 0 if and only if
N(u) = {x} = N(v), as V2 contains no isolated vertices.

Now we define a partial order ι on V2 as follows: if c(u, v) = 0 and c(v, u) > 0, then
(u, v) ∈ ι and if c(u, v) = 0 and c(v, u) = 0, then we choose either (u, v) ∈ ι or (v, u) ∈ ι

arbitrarily. Given a linear extension τ2 of ι, by [Dujmovic and Whitesides, 2004, Lemma
1], [Kobayashi and Tamaki, 2015, Lemma 2] and [Kobayashi and Tamaki, 2015, Corollary
1], we have that the number of edge crossing in the drawing defined by τ1 and τ2 is equal
to the cost of τ .

Now, we will show that ι is an interval order by giving an interval representation of
it. To do that, we will define a set X of points and a linear order τX on X. Then,
using those points on the real line, we will define an interval for each vertex in V2.
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X

V1

V2

u0 u1 u2 u3 u4< < < <

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

u0,0 u1,0 u2,0 u2,1 u2,2 u3,0 u3,1 u4,0

Iv0 Iv1

Iv2

Iv3Iv4 Iv5

Iv6

Iv7

Iv8

Iv9

Figure 6.2: Reduction from OSCM to PCO: Example of the construction of the interval
representation of the partial order associated with an OSCM instance.

Figure 6.2 illustrates this construction on an example. For each vertex u in V1, let
Vu =̇ {v1, . . . , vr} ⊆ N(u) be the set of vertices in the neighborhood of u of degree 1 such
that v1 <ι v2 <ι · · · <ι vr. We say that vi is the i-th neighbor of u of degree 1. We define
Xu =̇ {u0, . . . , ur}, a set of points associated to u. Note that there is one more point than
neighbors of degree 1. The points in Xu are ordered as follows: u0 <τX u1 <τX · · · <τX ur.
Then, we set X =

⋃
u∈V1

Xu. The order in τX between points in sets Xu and Xv follows
τ1, as u, v ∈ V1. Given a vertex v in V2, we will define the half-open interval Iv associated
to v. If v has degree 1, then let u be its neighbor and let i be its position in Vu: we define
Iv =̇ [ui−1, ui). If v ∈ V2 has degree at least 2, then let l = minτ1{u ∈ V1 | (u, v) ∈ E}
and r = maxτ1{u ∈ V1 | (u, v) ∈ E}, then we define Iv =̇ [l|Vl|, r0). Note that in that case
r ̸= l. One can verify that {Iv | v ∈ V2} is an interval representation of ι.

As PCIO has not been formally studied in the literature, (basically apart from results
in [Fernau, 2005, Fernau et al., 2014]), let us draw an important consequence from the
previous lemma (also see the discussion in the beginning of Subsection 6.3.1). Note
that the following corollary leaves some room for improvement with respect to the set of
allowed weights.

Corollary 58. Positive Completion of an Interval Ordering is NP-complete,
even when restricted to instances (ι, c, k) where the arc weights are within the set
{1, 2, . . . , 16}.

Proof. PCIO is a special case of CO, therefore it is contained in NP. We use the
reduction from OSCM as described in the previous lemma to prove the claim. Due to
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[Muñoz et al., 2001], we know that OSCM-instances are NP-hard even if all vertices
in V2 have at most four neighbors. Therefore, considering there is at most four edges
incident to u ∈ V2 and there is at most four edges incident to v ∈ V2, they cannot incur
more than 16 edge crossings, which naturally upper-bounds the cost c(u, v).

Remark 59. We can use Theorem 50 to immediately deduce an algorithm for OSCM

matching the running time O⋆(2
√
2k) of the best published algorithm for OSCM, which

is due to Kobayashi and Tamaki [Kobayashi and Tamaki, 2015]. We could also use the
PCO-kernelization as a kernelization procedure for OSCM.

Remark 60. Çakiroglu et al. [Çakiroglu et al., 2009] studied the variation where edges
(if existing) have positive weights, and the cost of an edge crossing is obtained by the
product of the weights of the crossing edges. This modification (with applications in
automatic graph drawing) can also be modeled by PCIO so that we inherit an O⋆(2

√
2k)

algorithm for the standard parameter k.

6.5 Reduction from KRA to PCO

Now we will show that KRA can be encoded into PCO. Let (Π, C) be an instance of
Kemeny Rank Aggregation with m votes Π = (π1, . . . , πm) over n candidates C.
From this instance, we construct an equivalent instance of the PCO problem (ρ, c) with
base set V = C. For every pair of candidates c1 and c2, we define the cost of (c1, c2),
c(c1, c2), as the number of votes that do not order c1 before c2. More formally, c(c1, c2) =
|{i ∈ [m] | c2 <πi

c1}|.

Lemma 61. Given two candidates c1 and c2, if, for every vote πi ∈ Π, we have c1 <πi
c2

then for every Kemeny consensus π, c1 <π c2.

Using different terminology, a proof of this lemma can be found in [Monjardet, 1973,
Théorème 3]. To make the thesis self-contained, we provide a short proof below.

Proof. Let (Π, C) be an instance of KRA such that for each vote πi ∈ Π, we have
c1 <πi

c2 for some candidates c1, c2 ∈ C. Let π be a consensus such that c2 <π c1.
We will show that modifying π by moving c1 just before c2 or c2 just after c1 we can
strictly reduce the cost of π. We split the impact of this modification on the cost in
two. First changing the order of c1 and c2 in π will reduce the cost by m. Then we will
look at candidates between c1 and c2 in π. Let K1 =

∑
c2<πck<πc1

|{i ∈ [m] | ck <πi
c1}|

be the increase of the cost for moving c1 before every candidates between c1 and c2.
As c1 <πi

c2 for all i, we have K1 =
∑

c2<πck<πc1
|{i ∈ [m] | ck <πi

c2}| which is the
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decrease of the cost for moving c2 after every candidates between c1 and c2. Similarly,
let K2 =

∑
c2<πck<πc1

|{i ∈ [m] | c2 <πi
ck}| =

∑
c2<πc1<πck

|{i ∈ [m] | ck <πi
c1}| be the

increase of the cost for moving c2 after every candidates between c1 and c2 and also the
decrease of the cost for moving c1 before c2. Exchanging the order of c1 and c2 decrease
the cost by m. Therefore, if K1 ≤ K2, then moving c1 before c2 strictly reduces the cost
of π, otherwise moving c2 after c1 strictly reduces the cost of π.

Now, we define the partial order ρ as follows: (c1, c2) ∈ ρ if and only if c(c1, c2) = 0.
Hence, <ρ =

⋂m
i=1 <πi

is the unanimity order [Charon and Hudry, 2007]. The unanimity
width of a set of votes Π is defined as the pathwidth of the cocomparability graph of the
unanimity order ρ.

By Lemma 61, a ranking π, which is a linear order of the candidates, is a Kemeny
consensus if and only if π is a linear extension of ρ of minimum cost. The Kemeny score
of π is3

m∑

i=1

KT-dist(π, πi) =
m∑

i=1

n∑

j=1

n∑

k=1

[cj <πi
ck ∧ ck <π cj] =

n∑

j=1

n∑

k=1

c(ck, cj)[ck <π cj] (6.2)

and is equal to the cost of the linear extension given by π according to its definition.
These considerations prove that we can translate our algorithmic results for PCO to
KRA.

Remark 62. Our reduction works even if votes are reflexive and antisymmetric relations
instead of linear orders.

Using the reduction from KRA to PCO and Theorem 25, we can conclude that our
subexponential time algorithm parameterized by the cost of a solution for PCO in The-
orem 41 is optimal under ETH.

Corollary 63. PCO on instances with cost only in {1, 2, 3} and some integer k bounding
the cost of a linear extension can be solved neither in time O⋆

(
2o(|V |)) nor in time

O⋆
(
2o(

√
k)
)

unless ETH fails.

Pathwidth in Kemeny Rank Aggregation. Now we will discuss the mean-
ing of the pathwidth measure from the PCO problem applied to KRA. For KRA,
several measures have been studied in the context of parameterized complexity, Bet-
zler et al. [Betzler et al., 2009] introduced the notion of maximum range of candi-
date positions. For an election (Π, C), the range r(c) of a candidate c is defined as

3Recall the bracket notation: if p is a logical proposition, then [p] yields 1 if p is true and else, [p]
yields 0 if p is false.
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r(c) =̇ maxi,j∈[m] |π−1
i (c) − π−1

j (c)| + 1. If Π(c) =̇ {i ∈ [|C|] : ∃π ∈ Π : π(i) = c}
denotes the set of positions the candidate c received in election (Π, C), then r(c) =

max(Π(c)) − min(Π(c)) + 1. The maximum range rmax of an election is given by
rmax =̇ maxc∈C r(c). Betzler et al. [Betzler et al., 2009] proved that KRA can be solved
in time O(32rmax · (r2max · |C|+ rmax · |C|2 log |C| ·m) +m2 · |C| log |C|) = O⋆(25rmax).

We can relate the pathwidth measure from the PCO problem applied to KRA with the
maximum range of candidate positions.

Lemma 64. Given an election (Π, C), let w be the consistent pathwidth associated to
the election and rmax be the maximum range of the election. We have w ≤ 2 · rmax − 2.

Proof. Let ρ be the partial order defined by the election. To prove this statement, we
will construct an interval order ι such that ι ⊆ ρ, and w(ι) ≤ 2 · rmax. To each candidate
c ∈ C, we associate the interval Ic =̇ [min(Π(c))− 1,max(Π(c)) ). (We subtract one
from the left border to avoid empty intervals.) We let ι be the interval order associated
with the interval representation {Ic | c ∈ C}. By Lemma 61, we have that ρ is an
extension of the interval order ι. Each interval Ic has length at most rmax. Thus, there
are at most 2 ·rmax−2 intervals that intersect at one point in the interval representation.
Hence, w(ι) ≤ 2 · rmax − 2.

In this proof, {Ic | c ∈ C} is an interval representation of an interval order ι such
that ι is a suborder of ρ and w(ι) ≤ 2 · rmax − 2. By Lemma 32, one can use this
construction to build a ρ-consistent path decomposition of width at most 2 · rmax − 2

given an election (Π, C). Hence, Lemma 38 yields the following noticeable improvement
to the mentioned result of Betzler et al. [Betzler et al., 2009]:

Corollary 65. KRA can be solved in time O(|C| · rmax · 22rmax +m · |C|2) = O⋆(22rmax).

6.6 Reduction from GbS to OSCM

In this section, we will show that GbS can be encoded into OSCM. With the same idea
as in the proof of Theorem 29, we can also reduce GbS to OSCM by representing the
string w as the ordered vertex set V1 and Σ as the vertex set V2 (see Figure 6.3). More
precisely, let n be the length of w and interpret w as a mapping from [n] into Σ. Moreover,
set V1 = [n] with the usual linear order <τ1 =̇ < on [n]. Let V2 = Σ and connect a ∈ V2

to i ∈ [n] if and only if w(i) = a. This defines the bipartite graph G = (V1, V2, E) with
linear order τ1 on V1. Now, the GbS instance (w, k) is a YES-instance if and only if
the constructed OSCM instance (G, τ1, k) is a YES-instance. As OSCM is solvable in
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V1 = w
c a d d a a b c c d d

V2 = Σ
a b c d

Figure 6.3: Reduction from GbS to OSCM: Given an alphabet Σ = {a, b, c, d} and
w = caddaabccdd, this bipartite graph is the OSCM instance obtained by the reduction.
V1 correspond to the set of position in w, V2 correspond to Σ and there is an edge between
the position i and a letter a if and only if w[i] = a. The number of crossings between
edges adjacent to a and edges adjacent to c corresponds to the number of swaps needed
between the letter a and c in w to put all the occurrences a before all the occurrences
of c.

polynomial time if the vertices in V2 have degrees at most two, this implies that GbS is
solvable in polynomial time if each letter has at most two appearances, see Remark 30
and the following comments.

Together with the reduction proving Theorem 29, we see that GbS can be viewed as
exactly the special case of OSCM where all vertices of V1 are of degree one, so that
the instance becomes a forest of stars with centers in V2. We make the algorithmic
consequences of this connection explicit, each time giving references to the literature
on OSCM. Both for the parameterized complexity as for the approximation version
(MinGbS), we exhibit two types of algorithms, as in each case, it could be that in
practice the seemingly worse (but simpler) algorithm outperforms the more advanced
and theoretically better algorithm.

Corollary 66. GbS on strings of length n over the alphabet Σ, parameterized by the
number k of swaps, can be solved (in polynomial space) in time O⋆(1.4656k) by [Dujmovic
et al., 2008] or (in exponential space) in time O⋆(2

√
2k) by [Kobayashi and Tamaki, 2015]

or Remark 59.

Fernau et al. [Fernau et al., 2014] and Kobayashi and Tamaki [Kobayashi and Tamaki,
2015] also obtained OSCM lower bound results, based on [Muñoz et al., 2001], assuming
ETH. By the proof of Theorem 29, we can strengthen them in the following way:

Corollary 67. GbS on strings of length n over the alphabet Σ, parameterized by the
number k of swaps, can be solved neither in time O⋆(2o(n)) nor in time O⋆(2o(|Σ|)) nor in
time O⋆(2o(

√
k)), unless ETH fails, even if each letter has exactly 4 occurrences.

Proof. As analyzed by Kobayashi and Tamaki [Kobayashi and Tamaki, 2015], the stan-
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dard chain of reductions, starting from a 3-SAT instance and ending by the reduction
in [Muñoz et al., 2001], produces a collection of 4-stars and can hence be interpreted
as a GbS instance where each letter occurs four times. As shown in [Kobayashi and
Tamaki, 2015] by a closer look at the construction from [Muñoz et al., 2001], the num-
ber of vertices and edges of the OSCM instance obtained from 3-SAT grows linearly in
the number of variables and clauses. Hence, an algorithm solving GbS in time O⋆(2o(n))

or in time O⋆(2o(|Σ|)) would break ETH. Moreover, as k ≤ n2 by Lemma 26, also a GbS

algorithm running in time O⋆(2o(
√
k)) breaks ETH.

Pathwidth in Grouping by Swapping. Our reduction from GbS to OSCM first
turns w ∈ Σ∗ into a bipartite graph G = (V1, V2, E) with V1 = [|w|] and V2 = Σ.
Lemma 57 then produces an equivalent PCIO-instance with an associated partial order
ιw on V2 that is an interval order. For two letters a, b ∈ Σ, (a, b) ∈ ιw means that the last
occurrence of a in w comes before the first occurrence of b in w. The cocomparability
graph Gιw is isomorphic to the graph Gw defined in Section 4.3. Obviously, SCD(w)

is the maximum size of an anti-chain in ιw. Hence, the previously mentioned results of
Habib and Möhring imply, together with Lemma 35:

Lemma 68. SCD(w) = pw(Gρw) + 1 = cpw(Gρw , ρw) + 1.

Lemma 38 has therefore the following algorithmic consequences for the string parame-
ter SCD . To the best of our knowledge, this is the first algorithmic exploit of this string
parameter.

Corollary 69. GbS can be solved in time O⋆(SCD(w)2SCD(w)).

As the scope coincidence degree of a word w ∈ Σ∗ is upper-bounded by |Σ|, we also
obtain the following result for the parameter |Σ| that improves on Lemma 27.

Corollary 70. GbS can be solved in time O⋆(|Σ|2|Σ|).

There is another graph-theoretic interpretation of the scope coincidence degree presented
by Reidenbach and Schmid in [Reidenbach and Schmid, 2014] for patterns. It relates
to our setting as follows. To a string w ∈ Σn, we associate its Gaifman graph Γw

with vertex set [n] and edges (i, i + 1) for i ∈ [n − 1], as well as the edge sets Ea =

{(min(Scope(a)), j) | j ∈ Scope(a)} (disregarding loops) for each a ∈ Σ. According
to [Reidenbach and Schmid, 2014, Lemma 15], pw(Γw) ≤ SCD(w) + 1. It might be
interesting to further link the pathwidths of Γw and of Gρw . Do they differ by exactly
two?
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We could also try to link the notions developed for GbS in the context of OSCM. For
instance, the Gaifman graph Γ of an OSCM instance (G, τ1, k) with G = (V1, V2, E)

could be, assuming V1 = [n] and <τ1=< , a graph with vertex set V1 and edges (i, i+ 1)

for i ∈ [n − 1], as well as edge sets Ex = {(min<N(x), y) | (x, y) ∈ E} for all x ∈ V2.
Possibly, pw(G) = pw(Γ), at least up to a small constant. This could also mean that
the pathwidth of G and of Gρ, where ρ is the partial order associated to (G, τ1), are the
same up to a constant. This would mean that the pathwidth of G is upper-bounded by
a term in O(

√
k) if (G, τ1, k) is a Yes-instance. This in itself would be an interesting

observation.

Inspired by the considerations on the range of a candidate in KRA, the maximum
scope smax =̇ maxa∈Σ |Scope(a)| could be another parameterization for GbS. Similar
to Lemma 64, one can show that GbS, parameterized by smax, is in FPT. It would also
be meaningful to interpret this parameter in the context of OSCM for graph visualiza-
tion reasons, as long distances between neighbors of a vertex make graphs hard to read,
because the edges of a graph should not be drawn with very long lines, and also the
angles might become too small to be distinguished.

6.7 Discussions

Finally, we explain some further connections and future lines of research.

Different types of partial orders. It would be interesting to have a closer look to
different types of partial orders in the context of PCO. For instance, the papers of Bran-
denburg and Gleißer [Brandenburg and Gleißner, 2016] or Hudry [Hudry, 2008] list quite
a lot of different types of partial orders (in the context of rank aggregation problems).
We can also view this research as a starting point to systematically look at decision prob-
lems related to partial orders from the viewpoint of parameterized complexity. Then,
[Bouchitté and Habib, 1987] might be a good starting point.

Related problems, popular within Operations Research. In the Operations Re-
search community, there has also been lots of studies of the linear ordering polytope.
Regarding the problems studied in this chapter, [Buchheim et al., 2010] might be a good
starting point. Likewise, the so-called Optimal Linear Extension Problem has
been considered in the literature [Liu et al., 2011]. However, only the costs of the im-
mediate neighborhood in the target linear order are considered, similar to the famous
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Travelling Salesperson Problem,4 while we sum up all costs associated to pairs
(x, y) with x < y in the final linear order <.

Putting additional constraints: a theme arising in Graph Drawing and in Or-
der Theory. Forster [Forster, 2004] argues that the Constrained OSCM problem,
where a partial order on V2 is given in addition, that should be extended to a linear or-
der (as before), has quite some applications. This can be clearly modeled as an instance
of CO, but some further research is needed to conclude the same type of results as we
did for OSCM with the interval order approach. This might relate to earlier (system-
atic) research on the realizability of constraints on interval orders, see [Pe’er and Shamir,
1997a, Pe’er and Shamir, 1997b]. In particular the distance constraints might be indeed
interesting for graph drawing purposes, as the neighbor vertices should not stretch out
too much.

Remarks on Approximation. For the minimization problem related to PCO, a
PTAS is known according to [Fernau et al., 2014]. Our reasoning immediately implies
the existence of PTAS for OSCM, KRA and GbS. In view of the tedious factor-1.4664
approximation for OSCM presented in [Nagamochi, 2005], this shows again the strength
of looking at these specific problems from a wider perspective. We also refer to earlier
PTAS publications such as [Karpinski and Schudy, 2010, Kenyon-Mathieu and Schudy,
2007, Kobayashi and Tamaki, 2015].

Comments on Approximation and Heuristics. We suggest that the tight connec-
tions that we found between GbS and OSCM should also be interesting in the devel-
opment and analysis of (heuristic) algorithms for both problems. In this context, it is
interesting to observe that Wong and Reingold [Wong and Reingold, 1991] proposed a
median heuristic for computing a solution to a given GbS instance. They proved that
on random instances, this heuristic is at most 10% off from the optimum (in expec-
tation). Moreover, the larger random instances are picked, the smaller is the relative
error of the median heuristic (in expectation). Incidentally, the same (median) heuristic
was suggested by Eades and Wormalds [Eades and Wormald, 1994] some years later for
OSCM. They proved that this heuristic is a factor-3 approximation, but did not go into
a randomized analysis. Our translation of GbS into OSCM proves the following.

Corollary 71. The median heuristic gives a factor-3 approximation for GbS.

4The difference between cycles (tours) and paths do not matter for the involved algorithms that
much.
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Proof. Given an instance of GbS, we can translate it to an instance of OSCM, yielding
a forest of stars. Now, the effect of the median heuristic for this OSCM instance is the
same as the effect on the original GbS instance. We know that the obtained linear order
is a factor-3 approximation for OSCM, which means that the median heuristic linear
order of vertices of the OSCM instance creates not more than three times as many
crossings as the optimum linear order. As this optimum linear order also corresponds to
an optimum grouping of the original GbS instance, the claimed factor-3 approximation
for GbS follows.

The computational experiments undertaken by Martí and Laguna [Martí and Laguna,
2003] seem to indicate that many heuristics for OSCM work rather poorly on sparse
graphs, but are quite good on dense graphs. From a practical point of view, sparse
graphs are far more interesting, as one would not draw dense graphs with many crossing
anyway for visualization purposes. Also, the OSCM-instances that one obtains from
GbS-instances by our reductions are relatively sparse, as they have many vertices of
degree one. It would be interesting to revisit experimental OSCM-settings for the forest
instances obtained by our reductions.



Chapter 7

Diversity of Solutions for CO and
KRA

In this chapter, we investigate the impact of the notions of diversity of solutions and
fixed parameter tractability theory in the context of social choice and order theory. In
particular, we focus on the Kemeny Partial Rank Aggregation (KPRA) problem.

When studying a given computational problem from the point of view of solution diver-
sity, it is crucial to have in hand a notion of distance between solutions for that problem.
The diversity of a set of solutions S is then defined as the sum of distances between pairs
of solutions in S. We denote this measure by d. Intuitively, diversity is a global measure
for how representative a set of solutions is among the space of solutions. Three natural
parameters can be used to quantify how good a diverse set of solutions is: the number
r of solutions in the set, the maximum distance δ between the cost of a solution in the
set and the cost of an optimal solution (we call this parameter the solution imperfec-
tion of the set), and the minimum required distance s between any two solutions in the
set. This last parameter is also known in the literature as the scatteredness of S [Galle,
1989]. Intuitively, the parameter r is expected to be small because in practical applica-
tions we do not want to overwhelm the user with an excessive number of choices. The
parameter δ is expected to be small because while we do want S to be diverse, we do
not want to allow solutions of bad quality. Finally, in the context of our work, solution
diversity is formalized by the parameter d, and we only use the scatteredness parame-
ter s to enforce that one cannot achieve high diversity by copying a given solution an
arbitrary number of times. For this, it is enough to require s = 1. It is worth noting
that it is possible to have s very small (say s = 1), but d very large, since some pairs of
solutions in the set may be very far apart from one another.
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The main result of this chapter is a multiparametric algorithm for Diverse KRA over
partially ordered votes that runs in time f(w, r, δ, s) · d · n · log(n2 · m) where n is the
number of candidates, m is the number of votes, r, δ, s and d are the parameters discussed
above, and w is the unanimity width of the votes. That is to say, the pathwidth of
the cocomparability graph of the unanimity order of the input votes (Corollary 84).
Intuitively, this width measure is a quantification of the amount of disagreement between
the votes.

As in Chapter 6, we use Completion of an Ordering as a framework to solve the
diverse version of KPRA. For this, we define the diverse version of CO and develop an
FPT algorithm to solve it. Even if we focus on KPRA, our algorithm can be directly
applied to OSCM, and GbS using the reduction defined in Chapter 6.

7.1 A Notion of Diversity for KRA

The notion of diversity of solutions for computationally hard problems has been consid-
ered under a variety of frameworks. In this section, we define the Kemeny Partial

Rank Aggregation problem which is a generalization of KRA to work on partial or-
der for the votes instead of linear orders. Similar generalizations have been studied in
the literature for votes with ties, also called bucket order [Hemaspaandra et al., 2005].
Then, we define a notion of diversity for the Kemeny Partial Rank Aggregation

problem which is analogous to the notion of diversity of vertex sets used by [Baste et al.,
2020]. We give a series of examples to illustrate the generalization to partial order and
the use of diversity. To be able to use the Completion of an Ordering problem
to solve Diverse-KPRA, we extend the reduction from KRA to PCO and discuss
different reduction schemes depending the type of solutions we want.

7.1.1 Generalization of KRA

Let C be a finite set, which in this section will denote a set of candidates, or alternatives.
A partial vote1 on C is a partial order on C. The KT-distance between two partial votes
π1 and π2, denoted by KT-dist(π1, π2), is the number of pairs of candidates that are

1The literature is not clear about these notions. In [Hemaspaandra et al., 2005], Hemaspaandra et
al. call partial votes that allow ties in linear orders preference rankings and explain that this originally
goes back to Kemeny. Allowing partial orders (as we do it here) is even more general. The authors
of [Hemaspaandra et al., 2005] also consider a different Kendall-Tau distance for preference rankings
compared to our setting.
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ordered differently in the two partial votes.

KT-dist(π1, π2) = |{(c, c′) ∈ C × C | c <π1 c
′ ∧ c′ <π2 c}|

Note that, if in a vote πi, a pair of candidates (c1, c2) is unordered then this pair will
never induce a cost in the KT-distance. In other words, πi agree with any order of c1
and c2. Observe that the definition of the KT-distance is the same as in Section 5.3 but
now extended for partial orders. Given a linear order π over a set of candidates C and a
set Π of votes over C, we recall that the Kemeny score of π with respect to Π is defined
as the sum of the Kendall-Tau distances between π and each vote in Π. In this chapter,
we consider the following generalization of KRA.

Problem name: Kemeny Partial Rank Aggregation (KPRA)

Given: A list of partial votes Π over a set of candidates C, a non-negative integer k.
Output: Is there a linear order π on C such that the sum of the KT-distances to π
from all the partial votes is at most k?

Hence, given partial votes π1, . . . , πm of C and a non-negative integer k, the question is
if there exists a linear order π ⊆ C × C such that

∑m
i=1 KT-dist(π, πi) ≤ k .

Definition 72. Given a set Π of partial votes, the unanimity order of Π is simply the
partial order ρ obtained as the intersection of all partial orders in Π. In other words, a
candidate c1 has higher precedence than a candidate c2 in ρ if and only if c1 precedes c2
in each vote in Π.

As a consequence, the more disagreements there are among the voters with respect to
the relative orders of pairs of candidates, the denser the cocomparability graph of ρ
will be and therefore the greater its pathwidth will be. Therefore, the pathwidth of the
cocomparability graph of the unanimity order of Π may be seen as a quantification of
the amount of disagreement among the votes in Π.

7.1.2 Diverse Kemeny Partial Rank Aggregation

Next, we define a notion of diversity for the Kemeny Partial Rank Aggregation

problem which is analogous to the notion of diversity of vertex sets used by [Baste et al.,
2020]. More precisely, if R is a set of linear orders, then we define the Kendall-Tau
diversity of R as the sum of Kendall-Tau distances between votes in the set R.
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KT-Div(R) =
∑

π1,π2∈R
KT-dist(π1, π2)

We note that in the restricted case of the KRA problem where all votes are linear
orders, the requirements that a set of solutions is at the same time diverse and only
contains rankings with small Kemeny scores are clashing. The problem is that the very
existence of two distinct rankings with small Kemeny scores is an impossible task. If
two candidates c1 and c2 occur with the order (c1, c2) in one of the solutions and with
the order (c2, c1) in the other solution, then at least one of these solutions will have a
Kemeny score of at least half the number of votes. However, this opposition between
diversity and small Kemeny score is not present in the setting where votes are allowed
to be partial. The generalization to partial votes is one possible way to circumvent this
conflict of desiderata. Another way we will be looking at is not to consider the cost of
the solutions directly but the difference between the cost of solutions and the cost of an
optimal solution. In this case, we can have diversity and a small difference between the
cost and the cost of an optimal solution.

Problem name: Diverse Kemeny Partial Rank Aggregation (Diverse-

KRA)

Given: A list of partial votes Π over a set of candidates C, and k, r, d ∈ N.
Output: Is there a set R = {π1, . . . , πr} of linear orders on C such that the Kemeny
score for each order πi is at most k and KT-Div(R) ≥ d?

The mentioned NP-hardness of KRA immediately translates to NP-hardness results of
KPRA and Diverse-KPRA, in the latter case by setting r = 1 and d = 0.

7.1.3 Some Discussion on K(P)RA

In this subsection, we briefly describe some toy applications where the notion of diversity
can be naturally combined with the notion of Kemeny Rank Aggregation, both in the
totally ordered setting and in the partially ordered setting.

A Natural Class of Partial Orders of Low Width. A k-bucket order [Fagin et al.,
2004] is a partial order ρ where the set of vertices can be partitioned into a sequence of
clusters C1, . . . , Cm, each of size at most k, where for each i ∈ [m − 1], all elements in
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Ci precede all elements in Ci+1. In the context of democratic scheduling, an unanimity
order that is a k-cluster order corresponds to the situation where the tasks to be executed
are split into work-packages (the clusters), each containing at most k tasks, where the
order of execution of the work-packages is agreed on, but the order inside each cluster is
not. It is easy to see that the cocomparability graph of a k-cluster order has pathwidth
at most k. Additionally, for each r and k, there are sets of votes whose unanimity order
ρ is a k-cluster order such that there is a set S containing r linear extensions of ρ, each
of which has optimal Kemeny score, and such that S has maximum diversity.

A Concrete Application of Bucket Orderings. Consider an election with 5 can-
didates A,B,C,D,E for 3 positions and 100 voters. If voters are forced to put (strict)
linear orders, then it could be that there might be 50 votes like A < B < C < D < E

and 50 votes like A < B < D < C < E. There are two optimum Kemeny solutions, each
of them coinciding with the two types of votes that were cast. But even if these two so-
lutions are put into a diverse set of solutions, then the distance between these to votes
is one. However, the sum of the Kemeny-Tau distances of any of the two optimal solu-
tions to all given votes is 50. Hence, although the votes do agree to quite some extent,
the resulting numbers are relatively big. But are these strict linear orders really express-
ing the opinions of the voters? This has been discussed in the social choice literature,
and there is some evidence that many people do not have a strict preference among all
candidates, but ranking them in groups is more realistic. This is our main motivation
to introduce the KPRA model.

For instance, it could be that 20 voters do not care about the ranking of A versus B,
but they would rank them all above C,D,E, without caring too much about their se-
quence, either. Another 10 voters might not care about the exact sequence of A and B,
nor about the sequence of C and E, but they clearly put A and B before D which is in
turn ahead of C and E. In shorter notation, we get A = B < D < C = E. There might
be more different votes, as altogether summarized in the following table:

type I 20 voters A = B < C = D = E

type II 10 voters A = B < D < C = E

type III 10 voters A = B = C < D = E

type IV 40 voters A = B = C = D < E

type V 20 voters A < B < C = D = E

This election could be turned into the first example if all voters would have been forced
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to commit themselves to linear orders. Obviously, the 50 type II and type IV voters are
compatible with A < B < D < C < E, while all but the type II voters are compatible
with A < B < C < D < E.

Hence, when viewing this as an instance of KPRA, the ranking A < B < C < D < E

would clearly win, as its Kemeny score is just 10. (Hemaspaandra et al. [Hemaspaandra
et al., 2005] would attribute a much higher value here.) However, the diversity between
A < B < D < C < E and A < B < C < D < E stays one. It might be also possible
to consider the solution B < A < C < D < E now, or even A < B < C < E < D.
While in the model where we required all votes to be linear orders, only the mentioned
two solutions would make sense in a diverse solution that should not be too expensive in
terms of costs, here it might be possible to look for three or four solutions in the diverse
set. This is another aspect that makes our model interesting for election problems.

Diversity in Search Rankings. Search engines are part of our everyday live. But
who is really following the links presented by the search engine beyond the first few
pages that are displayed on the user’s screen? Therefore, it is crucial that important and
interesting information is put on the very first pages. Usually, search engines consider
some sort of relevance measure to rank the answers. Clearly, the search engine knows a
bit more. For instance, is it important to display different hits from the same domain?
Rather, it would be better for the user to see “really different” hits on the first page.
Our concept of diversity could be implemented on two levels here: Either, we build a
meta-search engine that collects the rankings of answers from different search engines
(on the same question) and tries to come up with a diverse set of rankings that could
help build the first couple of pages. Or, we consider different ranking functions within
a search engine itself; in this second scenario, there could be also ties, so that our more
general framework would apply.

Diversity in Team Formation. An organization wants to form a team/committee
to perform some tasks and there are several candidates. But the committee will have
only a few members (say three). To choose the committee, the organization will pick a
rank with a sufficiently good score and select the first three candidates of that particular
rank. The intuition is that candidates that appear in the first three positions of some
rank with a good score have enough legitimacy to take the role. On the other hand, it
may be important for the organization to have some liberty to choose which rank they
will be using due to external factors, such as political, social, or affinity factors. For
instance, if in one of the sufficiently good rankings the first three candidates are male,
and in another sufficiently good ranking we have two females and one male, then it may
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be better to pick the latter one for gender equality reasons.

7.1.4 Reducing KPRA to CO

The reduction from KPRA to CO is similar to the one we gave in Section 6.5. We will
first describe the reduction and then discuss the difference. Given an instance (Π, C)

of KPRA with partial votes Π = (π1, . . . , πm) and candidates C = {c1, . . . , cn}, we
construct an instance (ρ, c) of CO by defining the cost function c : C × C → N as
follows. For every pair of candidates (c, c′), we define its cost, c(c, c′), as the number of
votes that order c′ before c. More formally, c(c, c′) = |{i ∈ [m] | c′ <πi

c}|. With this
reduction, it is straightforward to check that a given linear order π of the candidates has
Kemeny score

m∑

i=1

KT-dist(π, πi) =
m∑

i=1

n∑

j=1

n∑

k=1

[cj <πi
ck ∧ ck <π cj]

=
n∑

j=1

n∑

k=1

c(ck, cj)[ck <π cj].

Here, for a logical proposition p, we use the bracket notation [p] to denote the integer 1

if p is true or the integer 0 if p is false.

The main difference between this reduction and the reduction from KRA to PCO given
in Section 6.5 is the definition of the partial order. In Section 6.5, as we are just looking
for an optimal solution, the goal for the partial order ρ is to be as complete as possible
such that ρ is provably a suborder of an optimal solution. Here, we are no longer looking
for an optimal solution, but for a diverse set of good solutions. Therefore, ρ can be
chosen with respect to what kind of diversity we want. Any partial order that is the
suborder of an optimal solution can be chosen for ρ for our algorithm to work. We give
two examples of partial orders and their implications with respect to the possible set of
solutions.

As a first example we can use the same construction as in Section 6.5, given two candi-
dates c1 and c2, (c1, c2) ∈ ρ if and only if c(c1, c2) = 0. In the case of partial orders, if in
every vote c1 and c2 are incomparable, then c(c1, c2) = 0 and c(c2, c1) = 0. In this case,
we need to break the tie or we do not fix the order of c1 and c2 in ρ. Intuitively, this
partial order corresponds to the following rule, the order between every two candidates
must be the choice of a vote. In other words, the algorithm cannot output a ranking
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such that c1 < c2 if no one wants it and some vote want the opposite.

Another option is to use the unanimity order of the votes as the partial order ρ. In this
case, if each vote contains (c1, c2) for some candidates c1 and c2, then (c1, c2) ∈ ρ. In
other words, if everyone agrees then the algorithm cannot go against this choice. In the
case of partial orders, if some votes do not order c1 and c2 and the rest choose c1 < c2

, then c(c1, c2) = 0 but (c1, c2) /∈ ρ. This order is a suborder of the previous one, which
means that there are more possibilities for diverse solutions but the cocomparability may
have a bigger pathwidth.

Note that both choices are equivalent in the case of linear orders for the votes.

If we choose a partial order that does not include the unanimity order, then the algorithm
can output a ranking that disagrees with every vote on a pair of candidates. Therefore,
in the following, we assume that the partial order contains at least the unanimity order.

We also note that since our reduction is solution preserving, it is also immediate that it is
diversity preserving. In other words, R is a set of solutions of diversity d for an instance
of KPRA if and only if it is also a set of solutions of diversity d for the corresponding
instance of CO.

7.2 DP Algorithms for Diverse CO

To solve the generalization of KRA for partial orders and in the context of diversity, we
will use the reduction from KPRA to the Completion of an Ordering problem.
First, we define the Diverse Completion of an Ordering problem, Diverse-CO

for short. Then, we give an FPT algorithm for Diverse-CO (Theorem 83). Then, we
apply this algorithm to solve the Diverse Kemeny Partial Rank Aggregation

problem (Corollary 84).

7.2.1 A Diversity Measure for CO.

We note that the notion of Kendall-Tau diversity introduced in Section 7.1 can also be
used as a notion of diversity for CO, i.e., given a set R of (not necessarily optimal)
solutions for a given instance (ρ, c) of CO, we let KT-Div(R) be the diversity of this set.
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Problem name: Diverse Completion of an Ordering (Diverse-CO)

Given: A partial order ρ ⊆ V × V over a set V , a cost function c : V × V → N, and
non-negative integers k, r, d ∈ N.
Output: Is there a set R = {τ1, . . . , τr} of linear extensions of ρ such that c(τi \ρ) ≤ k

for each i ∈ [r], and KT-Div(R) ≥ d?

In this chapter, we devise a fixed parameter tractable algorithm for Diverse CO pa-
rameterized by solution imperfection δ, number of solutions r, scatteredness s, and path-
width w of the cocomparability graph of the input instance. Given our reduction that
preserves solution and parameters from KPRA to CO introduced in Subsection 7.1.4,
this algorithm immediately implies that Diverse KRA is fixed parameter tractable
when parameterized by solution imperfection, number of solutions, scatteredness, and
unanimity width.

7.2.2 Dynamic Programming Algorithm

Next, we develop an algorithm to solve Diverse-CO. To ease the description and proof
of the algorithm, we split the description into two parts. First, we give an algorithm
to find one optimal solution (Theorem 78). Then, we extend this algorithm to solve
Diverse-CO (Theorem 83). The algorithm for one solution is quite similar to the one
described in Section 6.2. It is also based on a dynamic programming algorithm over a
consistent path decomposition. But the running time is worse. The dependency in the
parameter is factorial instead of single exponential. The main reason is that we need to
keep more information in each bag in order to extend it for Diverse-CO.

Let ρ be a partial order and D = (B1, B2, . . . , Bl) be a nice ρ-consistent path decompo-
sition of Gρ of width w. For each p ∈ [l], let Pp be the set of pairs of the form (S, τ)

where S is a subset of Bp that contains vertices introduced by Bp (intro(p) ⊆ S ⊆ Bp),
τ ⊇ ρ|S is a linear extension of the restriction ρ|S =̇ S × S ∩ ρ of ρ to S.

Definition 73. Let p ∈ [l], δ ∈ N, and f : Pp → N. Then, we let Tp(f, δ) be the set of
all triples of the form (S, τ, γ), where (S, τ) ∈ Pp and f(S, τ) ≤ γ ≤ f(S, τ) + δ.

Intuitively, the function f will be used by our dynamic programming algorithm to record
the optimal values of partial solutions at each bag Bp when processing the path decom-
position from left to right (see Theorem 78 and Theorem 83) and δ will be the allowed
solution imperfection. In the case of a unique solution, this value will be 0 but this pa-
rameter will be useful in the diverse case as we allow sub-optimal linear extensions. The
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idea of the algorithm is to process each bag of the path decomposition one by one and
for each bag, to incrementally construct a set of partial solutions. A partial solution up
to the p-th bag is a linear order σ of

⋃
j≤pBj. To extend σ, we need to insert vertices

introduced by future bags in the current linear order. Note that newly introduced ver-
tices have to be inserted in σ only after the already forgotten vertices in the p-th bag. If
u will be introduced in a future bag and v is in some Bj with j < p but not in Bp, then
by the consistency of the path decomposition with respect to ρ, we have v <ρ u. There-
fore, in Bp, for each partial solution σ, we only need to remember the “last” part of σ,
which are the vertices that are in Bp and after all forgotten vertices in σ. This means
that for each bag Bp, we will construct and store a subset of Tp(f, δ).

Remark 74. For each p ∈ [l], f : Pp → N and δ ∈ N, the size of Tp(f, δ) is bounded by
e · (δ + 1) · (w + 1)!.

Proof. Given a bag Bp at position p, the size of Tp(f, δ) is bounded by:

(δ + 1) ·
∑

0≤i≤|Bp|

(|Bp|
i

)
· i! ≤ e · (δ + 1) · |Bp|! ≤ e · (δ + 1) · (w + 1)!

where
(|Bp|

i

)
is the number of subsets of Bp of size i and i! is the number of possible linear

order on a set of size i.

For each p ∈ [l − 1], f : Pp → N and δ ∈ N, we say that a triple (S, τ, γ) ∈ Tp(f, δ) is
compatible with a triple (S ′, τ ′, γ′) ∈ Tp+1(f, δ) if the following conditions are satisfied.

C1 If Bp+1 forgets a vertex v then we have S ′ = {u ∈ S | v <τ u}. This means that
S ′ is obtained from S by removing v and every vertex that is smaller than v in τ .
Otherwise, Bp+1 introduces a vertex v and we have S ′ = S ∪ {v}, which means we
add the new vertex v to S.

C2 τ |S∩S′ = τ ′|S∩S′ , i.e., τ and τ ′ agree on S ∩ S ′.

C3 If Bp+1 forgets v then we have γ′ = γ. Otherwise, Bp+1 introduces v and we have
γ′ = γ +

∑
u∈S,u<τ ′v

c(u, v) +
∑

u∈S,v<τ ′u
c(v, u) +

∑
u∈Bp+1\S′ c(u, v). To compute

γ′, we add to γ the cost of adding v. The first two terms compute the cost of v in
τ ′ and the last one computes the cost of placing v after the vertices in Bp \ S.

A compatible sequence forD is a sequence of triples µ = (S1, τ1, γ1) · · · (Sl, τl, γl) such that
S1 = B1, γ1 = c(τ1) and for each p ∈ [l], (Sp, τp, γp) is compatible with (Sp−1, τp−1, γp−1).

Our interest in compatible sequences stems from the two following lemmas.
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Lemma 75. Let ρ ⊆ V × V be a partial order on V , c : V × V → N be a cost function,
and D be a nice ρ-consistent path decomposition of the graph Gρ. Let

µ = t1 . . . tl = (S1, τ1, γ1) . . . (Sl, τl, γl)

be a compatible sequence for D. Then, the linear order π = tc(ρ∪ τ1∪· · ·∪ τl) is a linear
extension of ρ of cost γl.

Proof. Lemma 75 follows straightforwardly by the following claim, which can be proved
by induction on p.

▷ Claim 76. For each position p ∈ [l], πp = tc(ρ|Lp∪Bp ∪τ1∪· · ·∪τp) is a linear extension
of ρ|Lp∪Bp of cost γp.

In the base case, S1 = B1 and by definition τ1 = π1 is a linear extension of ρ|B1 and
γ1 = c(τ1).

Now, let p ∈ [l − 1] be a position in D, and suppose that the claim holds for p. We show
that it also holds for p+ 1.

If Bp+1 is a forget bag, then by Item C1 and Item C2, we have that τp+1 = τp|Sp+1 and
γp = γp+1. Therefore, the result follows directly by the induction hypothesis.

If Bp+1 introduces a vertex vp+1. We need to check that the transitive closure of ρ|Lp∪Bp∪
τ1 ∪ · · · ∪ τp+1 defines a linear extension of ρ|Lp+1∪Bp+1 . This means that πp+1 does not
contain loops and each pair u, v ∈ Lp+1 ∪Bp+1 is ordered by πp+1. By Item C2, we have
that tc(ρ∪ τ1∪· · ·∪ τp)|Sp∩Sp+1 = τp|Sp∩Sp+1 = τp+1|Sp∩Sp+1 . Therefore tc(ρ∪ τ1∪· · ·∪ τp)
is compatible with τp+1 and so there is no loop in πp+1. Let u, v ∈ Lp+1 ∪ Bp+1. If
u, v ∈ Lp∪Bp, then, by the induction hypothesis, u and v are ordered by πp and thus by
πp+1. Otherwise, let v be the vertex introduced by Bp+1. If u, v ∈ Sp+1, then u and v are
ordered by τp+1 and thus by πp+1. If u ∈ Lp+1, by ρ-consistency of D, we have u <ρ v

and thus u <πp+1 v. If u ∈ Bp+1 \ Sp+1, then, by Item C1, we have u ≤πp maxπp(Lp+1)

and by ρ-consistency of D, we have v >ρ maxπp(Lp+1). Therefore, by transitivity we
have v <πp+1 u. By Item C3, we have γp+1 = c(πp+1).

Lemma 77. Let ρ ⊆ V × V be a partial order on V , c : V × V → N be a cost function,
and D be a nice ρ-consistent path decomposition of the graph Gρ. Let π be a linear
extension of ρ, and µ = (S1, τ1, γ1) . . . (Sl, τl, γl) be a sequence such that for each position
p ∈ [l], Sp = {v ∈ Bp | v >π maxπ(Lp)}, τp = π|Sp, and γp = c(π|Lp∪Bp). Then, µ is a
compatible sequence for D.
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Proof. One can see that this construction satisfies conditions C1, C2 and C3 for each
position in the path decomposition.

Lemma 75 and Lemma 77 immediately yield an FPT dynamic programming algorithm for
computing a linear extension of ρ. To define the algorithm more precisely, we first need
to define the set of functions fp that we will use to define a set of triples with Tp. For each
p ∈ [l], we define fp : Pp → N as follows. For each (S, τ) ∈ Pp, we let γ be the minimum
cost of a partial solution π up to bag Bp such that S = {v ∈ Bp | v >π maxπ(Lp)} and
τ = π|Sp ; then we let fp(S, τ) = γ. Intuitively, fp associates to each linear order τ the
cost of an optimal partial solution “ending” by τ . Now, we will describe the algorithm.
We process the path decomposition from left to right in l time steps, where at each time
step p, we construct the value of fp that we need and a subset Qp ⊆ Tp(fp, 0) of promising
triples, which are, intuitively, triples that have a potential to lead to an optimal solution.
At time step 1, B1 = {v}, we let Q1 = {(B1, ∅, 0)}. At each time step p ≥ 2, Qp is
the set of all triples in Tp(fp, 0) that are compatible with some triple in Qp−1. At the
end of the process, assuming that Qp is non-empty for each p ∈ [l], we can reconstruct
a compatible sequence by backtracking. First, by selecting an arbitrary triple tl in Ql,
then by selecting an arbitrary triple tl−1 in Ql−1 compatible with tl, and so on. Once
we have constructed a compatible sequence t1 . . . tl, we can extract a linear extension π

of cost γl by setting π = tc(ρ ∪ τ1 ∪ . . . τl). This description gives rise to the following
theorem.

Theorem 78. Let ρ ⊆ V × V , let w be the pathwidth of the cocomparability graph of ρ,
and c : V × V → [m]0 be a cost function. Then, one can compute an optimal solution in
time O

(
w!O(1) · |V | · log(|V | ·m)

)
.

Proof. By Lemma 36, one can construct a nice ρ-consistent path decomposition D of Gρ

of width O(w) in time 2O(w) · |V |.

Lemma 77 shows that, if a solution π exists, then there exists a compatible sequence
associated with it. Now we will show that this sequence is actually built by the algorithm.
Let µ be the sequence define in Lemma 77. We recall that the sequence is defined as
follow µ = (S1, τ1, γ1) . . . (Sl, τl, γl), where for each position p ∈ [l], Sp = {v ∈ Bp | v >π

maxπ(Lp)}, τp = π|Sp and γp = c(π|Lp∪Bp). First, because π is optimal, one can easily
check that for each p ∈ [l], (Sp, τp, γp) ∈ Tp(fp, 0). We will prove that this sequence is
built by the algorithm by recurrence on the bags. By definition, S1 = B1 and γ1 = c(τ1),
therefore the first triple is built by the algorithm. As (Sp+1, τp+1, γp+1) is compatible
with (Sp, τp, γp), then, by definition of compatibility and how the algorithm proceeds,
if the algorithm builds (Sp, τp, γp) it will build (Sp+1, τp+1, γp+1) in the next step. This
proves the correctness of the algorithm.
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Now we will prove the running time. In a nice path decomposition, there are 2|V | bags.
For each position p ∈ [2|V |], if Bp forgets a vertex v, then Qp can be computed by
removing v in each triple in Qp−1 and keeping triples with minimum cost for each fixed
pair (S, τ). This can be done in time O(|Qp−1|2). If Bp introduces a vertex v, then Qp

can be computed from Qp−1 by taking each triple (S, τ, c) and adding v in τ at every
possible position. Computing the new cost can be done in time O(w · log(n2 ·m)) and
there are |Qp+1| triples to compute. The log factor log(n2 ·m) is the time of performing
an addition on the costs, as the cost of a solution can be at most n2 ·m. By Remark 74,
we can bound the size of each Qp.

Now, leveraging on Lemma 75 and Lemma 77, we will devise a fixed-parameter tractable
algorithm for Diverse-CO parameterized by solution imperfection, number of solutions,
scatteredness, and pathwidth of the cocomparability graph of the input partial order. Let
ρ be a partial order and D = (B1, B2, . . . , Bl) be a nice ρ-consistent path decomposition
of Gρ of width w.

Definition 79. Let p ∈ [l], r ∈ N>0, d ∈ N, s ∈ N and f : Pp → N. Then, we let
Ir,d,s
p (f, δ) be the set of all tuples of the form

((S1, τ 1, γ1), . . . , (Sr, τ r, γr), ∂, (ξ{i,j})1≤i<j≤r
)

where ∂ ∈ [d]0, for each 1 ≤ i < j ≤ r, ξ{i,j} ∈ [s]0, and for each i ∈ [r], (Si, τ i, γi) is a
triple in Tp(f, δ).

Intuitively, ((Si, τ i, γi))i∈[r] are r partial linear extensions, ∂ will be the diversity of the
r partial linear extensions and ξ will be the distance between all pairs of the r partial
linear extensions.

Remark 80. For each p ∈ [l], r ∈ N>0, d ∈ N, s ∈ N, f : Pp → N and δ ∈ N, the size of
Ir,d,s
p (f, δ) is bounded by (e · (δ + 1) · (w + 1)!)r · sr2 · d.

For each p ∈ [l − 1], each tuple

up = ((S1
p , τ

1
p , γ

1
p), . . . , (S

r
p , τ

r
p , γ

r
p), ∂p, (ξ

p
{i,j})1≤i<j≤r

)

in Ir,d,s
p and each tuple

up+1 = ((S1
p+1, τ

1
p+1, γ

1
p+1), . . . , (S

r
p+1, τ

r
p+1, γ

r
p+1), ∂p+1, (ξ

p+1
{i,j})1≤i<j≤r

)

in Ir,d,s
p+1 , we define the scatteredness increase table of the pair (up, up+1), denoted by

∆ξ(up, up+1), as the table holding the distance increase between each pair of partial
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linear extensions due to the potential newly introduced element in Bp+1. If Bp+1 is a
forget bag, then the scatteredness does not increase. Otherwise, if Bp+1 introduces a
vertex v, for each pair {i, j} such that 1 ≤ i < j ≤ r, we have

∆ξ{i,j}(up, up+1) = |{u ∈ Bp | (u /∈ Si
p+1 ∨ u <τ ip+1

v) ∧ v <τ jp+1
u}|+

|{u ∈ Bp | (u /∈ Sj
p+1 ∨ u <τ jp+1

v) ∧ v <τ ip+1
u}|

(7.1)

where (u /∈ Si
p+1∨u <τ ip+1

v) means that u is smaller than v in the i-th tuple, (v <τ jp+1
u)

means that u is bigger than v in the j-th tuple, (u /∈ Sj
p+1 ∨ u <τ jp+1

v) means that u is
smaller than v in the j-th tuple and (v <τ ip+1

u) means that u is bigger than v in the i-th
tuple. Intuitively, this measures the increase of the distance between each pair of the r
partial solutions from the bag Bp to the bag Bp+1.

We define, in a similar way, the diversity increase of the pair (up, up+1), denoted by
∆∂(up, up+1), as the amount of diversity due to a potential newly introduced element in
Bp+1. As the diversity is the sum of all pairwise distances between the r partial solutions,
we will use the scatteredness increase table (up, up+1) to compute the diversity increase.
We define the increase between two bags as

∆∂(up, up+1) =
∑

1≤i<j≤r

∆ξ{i,j}(up, up+1). (7.2)

Intuitively, this measures the increase of the diversity between the r partial solutions up
to the bag Bp and the r partial solutions up to the bag Bp+1.

We say that up is compatible with up+1 if for all pair {i, j}, ξp+1
{i,j} = min(ξp{i,j} +

∆ξ{i,j}(up, up+1), s), ∂p+1 = min(∂p + ∆∂(up, up+1), d), and for each i ∈ [r], the triple
(Si

p, τ
i
p, γ

i
p) is compatible with the triple (Si

p+1, τ
i
p+1, γ

i
p+1).

A diversity-compatible sequence is a sequence of the form

{((S1
p , τ

1
p , γ

1
p), . . . , (S

r
p , τ

r
p , γ

r
p), ∂p, (ξ

p
{i,j})1≤i<j≤r

)}
p∈[l]

,

where for each p ∈ [l − 1], the tuples at positions p and p + 1 are compatible and for
each i ∈ [r], Si

1 = B1, γi = 0, ∂1 = 0 and ξ1{i,j} = 0.

The next lemma is an analogue of Lemma 75 in the context of solution diversity.

Lemma 81. Let ρ ⊆ V × V be a partial order on V , c : V × V → N be a cost function,
and D be a nice ρ-consistent path decomposition of the graph Gρ. Let

µ̂ = {((S1
p , τ

1
p , γ

1
p), . . . , (S

r
p , τ

r
p , γ

r
p, ∂p), (ξ

p
{i,j})1≤i<j≤r

)}
p∈[l]
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be a diversity-compatible sequence for D. Then, the following properties can be verified.

1. For each i ∈ [r], the order πi = tc(ρ ∪ τ i1 ∪ · · · ∪ τ il ) is a linear extension of ρ of
cost γil .

2. For each i, j with 1 ≤ i < j ≤ r, ξl{i,j} = min(KT-dist(πi, πj), s).

3. ∂l = min(KT-Div({π1, . . . , πr}), d).

We note that Item 1 of Lemma 81 follows from Lemma 75, Item 2 follows from Equa-
tion 7.2, and Item 3 from Equation 7.1.

The next lemma is an analogue of Lemma 82 in the context of solution diversity.

Lemma 82. Let ρ ⊆ V × V be a partial order on V , c : V × V → N be a cost function,
and D be a nice ρ-consistent path decomposition of the graph Gρ. Let π1, . . . , πr be r
linear extensions of ρ, and

µ̂ = {((S1
p , τ

1
p , γ

1
p), . . . , (S

r
p , τ

r
p , γ

r
p), ∂p, (ξ

p
{i,j})1≤i<j≤r

)}
p∈[l]

be a sequence satisfying the following conditions.

1. For each position p ∈ [l], and each i ∈ [r], Si
p = {v ∈ Bp | v >πi

maxπi
(Lp)},

τ ip = πi|Sp, γip = c(πi|Lp∪Bp).

2. For each i, j with 1 ≤ i < j ≤ r, ξp{i,j} = min(KT-dist(πi|Lp , πj|Lp), s).

3. ∂p = min(KT-Div({π1|Lp∪Bp , . . . , πr|Lp∪Bp}), d).

Then, µ̂ is a diversity-compatible sequence for D.

Intuitively, what those lemmas say is that in order to construct a set of r solutions for an
instance (ρ, c, r, δ, d, s) of Diverse-CO, all one needs to do is to construct r compatible
sequences in parallel, by processing the given path decomposition from left to right,
while using an additional register to keep track of the overall diversity at each time step
and all the pairwise distances. In the same way that Lemma 75 and Lemma 77 yield
an FPT dynamic programming algorithm parameterized by pathwidth for computing a
single solution of an instance of CO (Theorem 78), Lemma 81 and Lemma 82 yield
an FPT dynamic programming algorithm to compute a diverse set of solutions, in case
it exists, parameterized by the cost of a solution, number of solutions and pathwidth
(Theorem 83).
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Theorem 83. Let ρ ⊆ V ×V , w be the pathwidth of the cocomparability graph of ρ, and
c : V ×V → [m]0 be a cost function. Then, one can determine whether ρ admits r linear
extensions π1, . . . , πr at distance at most δ from the optimum, of diversity at least d, and
scatteredness at least s in time O

(
(w! · δ)O(r) · sr2 · d · |V | · log(|V |2 ·m)

)
.

Proof. This theorem is similar to Theorem 78. Here we build r linear extensions in
parallel and we incrementally compute the diversity between the r solutions. The main
difference is the computation of the diversity. Using Equation 7.1 and Equation 7.2, one
can compute the increase of the pairwise distances and diversity in time O(r2 ·w · log(n2 ·
m)) for each tuple. The log factor log(n2 ·m) again comes from performing an addition
of costs, as the cost of a solution can be at most n2 ·m.

7.2.3 Applications to KPRA

By combining Theorem 78 with our reduction from KPRA to CO, we have an FPT al-
gorithm for KPRA, parameterized by solution imperfection, number of solutions, scat-
teredness, and unanimity width (Corollary 84).

Corollary 84. Let Π be a list of m partial votes over a set of n candidates C. Let w
be the unanimity width of Π. Given Π and non-negative integers δ, r, s and d, one can
determine in time

O
(
(w! · δ)O(r) · sr2 · d · n · log(n2 ·m)

)

whether there is a set R = {π1, . . . , πr} of r linear orders on C such that the Kemeny score
for each order πi is at distance at most δ of the optimum, and we find that KT-Div(R) ≥ d

and the scatteredness is at least s.

Corollary 84 is our most general result that combines all the parameters, but not all
applications need all parameters. Therefore, we will now derive some special cases.

Corollary 85. Let Π be a list of m partial votes over a set of n candidates C. Let w
be the unanimity width of Π. Given Π and non-negative integers δ, r and d, one can
determine in time

O
(
(w! · δ)O(r) · d · n · log(n2 ·m)

)

whether there is a set R = {π1, . . . , πr} of r linear orders on C such that the Ke-
meny score for each order πi is at distance at most δ of the optimum, and we find
that KT-Div(R) ≥ d.

Namely, by our formulation of R as a set, we implicitly have the requirement s ≥ 1.
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With our algorithm, it is possible to check if there exist r different optimal solutions.
We can do this by setting δ = 0, s = 1 and d = 0 and we get the following corollary.

Corollary 86. Let Π be a list of m partial votes over a set of n candidates C. Let
w be the unanimity width of Π. Given Π and non-negative integers r and d, one can
determine in time

O
(
(w!)O(r) · 2r2 · n · log(n2 ·m)

)

whether there is a set R = {π1, . . . , πr} of r different optimal linear orders on C.

To get some insights of the structure of the solution space, one can ask for a set of r
solutions of cost at most δ from the minimum cost with maximum diversity. This is not
strictly a consequence of Corollary 84 but the same algorithm can be used to answer
this question. In our algorithm, the value ∂ is used to compute the diversity of a partial
solution up to d, but if the diversity is bigger than d, we just remember d. Then, if we set
d = r ·n2, which is an upper bound of the maximum diversity of r solutions, at the end of
the algorithm, we will have a set of possible solutions with their exact diversities. From
this, we can select the one with the biggest diversity. Therefore, we have the following
result.

Corollary 87. Let Π be a list of m partial votes over a set of n candidates C. Let w be
the unanimity width of Π. Given Π and non-negative integers δ and r, one can compute
in time

O
(
(w! · δ)O(r) · r · n3 · log(n2 ·m)

)

a set R = {π1, . . . , πr} of r linear orders on C such that the Kemeny score for each order
πi is at distance at most δ of the optimum and such that KT-Div(R) is maximal.

7.3 Discussions

In this chapter, we have addressed the Kemeny Partial Rank Aggregation prob-
lem, one of the most central problems in the theory of social choice, from the perspective
of diversity of solutions and parameterized complexity theory. We have devised a fixed
parameter tractable algorithm for the diverse version of KPRA with partially ordered
votes where parameters are the solution imperfection, the number of solutions, the scat-
teredness and the unanimity width of the set of votes. As a by-product of our work,
we have introduced new parameterized algorithms for problems in order theory that are
of independent interest. In particular, we developed parameterized algorithms for the
diverse version of the Completion of an Ordering problem (CO). The reduction
given in Section 6.4 is solution preserving, therefore, our algorithm for Diverse CO
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directly gives an FPT algorithm for the diverse version of the One-Sided Crossing

Minimization problem. The OSCM problem is a key building block for several heuris-
tics such as heuristics to solve the Two-Sided Crossing Minimization problem and
the Sugiyama approach [Sugiyama et al., 1981] for hierarchical graph drawing. In this
context, diversity of solutions for OSCM could be used to improve current heuristics
or design new ones. We believe that our algorithm for finding diverse solutions for CO

has a very positive impact on the study of these and related computational problems in
neighboring fields.



Chapter 8

Order Reconfiguration under Width
Constraints

In this chapter, we look at reconfiguration problems. In a reconfiguration problem,
instead of finding a solution for a computational problem, we want to study the connec-
tivity of the solution space of the problem. Given some operations to modify solutions
of a computational problem and two solutions S1 and S2, we want to know if there ex-
ists a sequence of modifications that reconfigure S1 into S2 where each step transforms
a feasible solution into another. Reconfiguration problems can model real world appli-
cations and also give insight on the structure of solution spaces. Many problems have
been studied under the reconfiguration framework such as Vertex Coloring [Johnson
et al., 2016], List Edge-Coloring [Ito et al., 2012], Vertex Cover [Mouawad et al.,
2014], Independent Set [Ito et al., 2014]. In this chapter, we consider the reconfigu-
ration of linear orders of vertices of a graph under width constraints. The question is to
know if under such constraints it is possible to reconfigure a solution into another. Our
main result (Theorem 88) states that if τ and τ ′ are linear orders of cutwidth at most w,
then τ can be reconfigured into τ ′ in width at most 2w. Additionally, reconfiguration
in width at most 2w can be done using at most O(n2) swaps. Finally, a reconfiguration
sequence can be found in polynomial time. In the same way, these results hold for the
vertex separation number instead of the cutwidth (Theorem 101).

Using our results on the reconfiguration of linear orders, we establish an interesting con-
nection between two apparently unrelated computational problems, the reachability for
two-letter string rewriting and graph isomorphism, a famous and well-studied problem
in graph theory (Theorem 100). Even if this connection does not lead to any direct ad-
vance on the graph isomorphism problem, it opens the way to study graph isomorphism
from the rewriting and reconfiguration point of view. To do so, we introduce a notion
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of graph decomposition based on cutwidth named unit decompositions and a rewriting
system, R(2w), of unit decompositions. We show that one can rewrite a unit decompo-
sition into another if and only if the two graphs associated with them are isomorphic
(Theorem 98). This result, together with the fact that unit decompositions of minimum
cutwidth can be approximated in FPT time, implies that the graph isomorphism prob-
lem for graphs of cutwidth at most w is FPT-equivalent to the reachability problem for
R(2w) (Theorem 100).

8.1 Linear Order Reconfiguration

We start by recalling some notations on linear order that we use in this chapter. Let V
be a finite set with n elements. Even if a linear order is a special case of a partial order,
in this chapter we use the definition and notation of linear orders as bijections between
[n] and V instead of the set based notation we used for partial orders in the previous
chapters. More formally, we will use the following definition. A linear order τ on V is a
bijection τ : [n] → V . Intuitively, for each j ∈ [n] and v ∈ V , τ(j) = v indicates that v
is the j-th element of τ . If S ⊆ [n], then we let τ(S) = {τ(j) : j ∈ S} be the image of
S under τ .

Next, we define two operations on linear orders, namely to induce linear orders and the
composition of two linear orders, that are useful to build the intermediate linear orders
of a reconfiguration sequence.

Induce Linear Order. Let τ : [n] → V be a linear order on a set V . Let S ⊆ V be a
subset of V . We let τS : [|S|] → S be the linear order induced by τ on S. More precisely,
if we write the elements of S in increasing order according to τ , then for each i ∈ [|S|],
τS(i) is the i-th element in this sequence.

Composition of Linear Orders. Let i ∈ {0, . . . , n}, and τ, τ ′ : [n] → V . We let
τ ⊕i τ

′ : [n] → V be the linear order that orders the vertices in the subset τ([i]) ⊆ V

according to τ , followed by the vertices in the subset V \ τ([i]), ordered according to τ ′.
More precisely, τ ⊕i τ

′ is defined as follows for each j ∈ [n].

τ ⊕i τ
′(j) =

{
τ(j) if j ≤ i,

τ ′V \τ([i])(j − i) if j > i.
(8.1)

We note that in particular, τ ⊕0 τ
′ = τ ′ and τ ⊕n τ

′ = τ .



8.2 Bounded Cutwidth Order Reconfiguration (BCOR) 101

8.2 Bounded Cutwidth Order Reconfiguration

(BCOR)

We are now ready to focus on the main problem of this chapter, namely the Bounded

Cutwidth Order Reconfiguration problem. We recall the statement of the prob-
lem.

Problem name: Bounded Cutwidth Order Reconfiguration

Given: An n-vertex graphG, two linear orders of the vertex set of G τ, τ ′ : [n] → V (G),
and a non-negative integer w ∈ N.
Output: Is it true that τ can be reconfigured into τ ′ in cutwidth at most w?

Given an instance of the Bounded Cutwidth Order Reconfiguration problem
(G, τ, τ ′, w), it should be clear that if w is smaller than the cutwidth of the graph G, then
the answer for BCOR is trivially no since in this case neither τ nor τ ′ are in CW(G,w).
Recall that CW(G,w) is the set of linear orders of v(G) of cutwidth at most w. On the
other hand, we will show in Theorem 88 below that the answer is always yes if w is at
least twice the cutwidth of the thickest input linear order.

Theorem 88. Let G be an n-vertex graph and τ, τ ′ : [n] → V (G) be linear orders of
V (G) of cutwidth at most w. Then, τ can be reconfigured into τ ′ in cutwidth at most
cw(G, τ) + cw(G, τ ′) ≤ 2w.

To prove this theorem, we need the following three lemmas. First, we will show that
taking induced linear order does not increase the cutwidth (Lemma 89). Then, we will
show that some specific intermediate linear orders have bounded cutwidth (Lemma 90).
Finally, we will show that there is a reconfiguration sequence of bounded cutwidth be-
tween each consecutive pair of intermediate linear orders (Lemma 91). First, we recall
some notations and properties that will be used in the proof. Let G be an n-vertex
graph with vertex set V (G) and edge set E(G). Given sets S, S ′ ⊆ V (G), we let
E(G,S, S ′) = {{u, v} ∈ E(G) : u ∈ S, v ∈ S ′} be the set of edges with one endpoint in
S and the other endpoint in S ′. As a special case, we define E(G,S) = E(G,S, V (G)\S).
We recall two properties that we use without explicit mention.

• Monotonicity property: If T ⊆ S and T ′ ⊆ S ′, then E(G, T, T ′) ⊆ E(G,S, S ′).

• Linearity property: If {S1, S2} is a partition of S, then {E(G,S1, S
′), E(G,S2, S

′)}
is a partition of E(G,S, S ′).
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We start by the monotonicity of the cutwidth by taking induced linear orders.

Lemma 89. Let G be an n-vertex graph, S ⊆ V (G) and τ : [n] → V (G) be a linear order
on V (G). Then, τS is a linear order on V (G[S]). Additionally, cw(G[S], τS) ≤ cw(G, τ).

Proof. As S = V (G[S]), τS is a linear order on V (G[S]). Let p ∈ [|S|] and let p′ ∈ [n]

be the unique number such that τS(p) = τ(p′). Then,

cw(G[S], τS, p) = |E(G[S], τS([p− 1]))|
= |E(G[S], τS([p− 1]), {τS(r) | r ≥ p})|
= |E(G, τS([p− 1]), {τS(r) | r ≥ p})|
≤ |E(G, τ([p′ − 1]))|
= cw(G, τ, p′)

≤ cw(G, τ) ,

as τS([p−1]) ⊆ τ([p′−1]) and {τS(r) | r ≥ p} ⊆ {τ(r′) | r′ ≥ p′} = V (G)\τ([p′−1]).

To prove Theorem 88, we will give a reconfiguration sequence that uses the composition
of linear orders. At a high level, we will go from one linear order τ to the other τ ′ by
using the composition of the two linear orders at each position τ ′ ⊕i τ . Therefore, we
show that the composition of two linear orders has bounded cutwidth.

Lemma 90. Let G be an n-vertex graph and τ, τ ′ : [n] → V (G) be linear orders of
V (G) with cutwidth of at most w. Then, for each i ∈ [n], τ ⊕i τ

′ has cutwidth at most
cw(G, τ) + cw(G, τ ′) ≤ 2w.

Proof. Let i, p ∈ [n]. By definition of the cutwidth, we have that

cw(G, τ ⊕i τ
′, p) = |E(G, τ ⊕i τ

′([p− 1]))|
= |E(G, τ ⊕i τ

′([p− 1]), V (G) \ τ ⊕i τ
′([p− 1]))| .

There are two cases to be analyzed. First, if p ≤ i, then, by definition of τ ⊕i τ
′ we have

τ ⊕i τ
′([p− 1]) = τ([p− 1]). Therefore,

cw(G, τ ⊕i τ
′, p) = |E(G, τ([p− 1]), V (G) \ τ([p− 1]))| = cw(G, τ, p) ≤ cw(G, τ) .
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Secondly, if p > i, then we have

cw(G, τ ⊕i τ
′, p) = |E(G, τ ⊕i τ

′([p− 1]), V (G) \ τ ⊕i τ
′([p− 1]))|

(a)
= |E(G, τ([i]), V (G) \ τ ⊕i τ

′([p− 1]))|
+ |E(G, (τ ⊕i τ

′([p− 1])) \ τ([i]), V (G) \ τ ⊕i τ
′([p− 1]))|

(b)

≤ cw(G, τ, i+ 1) + cw(G[V (G) \ τ([i])], τ ′V (G)\τ([i]), p− i)

≤ cw(G, τ) + cw(G, τ ′).

For Equality (a), observe that τ([i]) ⊆ τ⊕iτ
′([p−1]), therefore, (τ⊕iτ

′([p−1]))∩τ([i]) =
τ([i]) and {τ([i]), (τ ⊕i τ

′([p−1]))\τ([i])} is a partition of τ ⊕i τ
′([p−1]). To understand

Inequality (b), we need two arguments. As τ([i]) ⊆ τ ⊕i τ
′([p− 1]),

E(G, τ([i]), V (G) \ (τ ⊕i τ
′([p− 1]))) ⊆ E(G, τ([i]), V (G) \ τ([i])) ,

which shows that the cardinality of the first set is upper-bounded by cw(G, τ, i+ 1). As
the edges in E(G, (τ ⊕i τ

′([p− 1])) \ τ([i]), V (G) \ (τ ⊕i τ
′([p− 1]))) only connect vertices

with positions beyond i within τ ⊕i τ
′, after an index shift, we see that only the linear

order τ ′ really matters, which explains the inequality

|E(G, (τ ⊕i τ
′([p− 1])) \ τ([i]), V (G) \ (τ ⊕i τ

′([p− 1])))|
≤ cw(G[V (G) \ τ([i])], τ ′V (G)\τ([i]), p− i) .

For the last inequality, apply Lemma 89 to derive cw(G[V (G) \ τ([i])], τ ′V (G)\τ([i])) ≤
cw(G, τ ′). As p is arbitrary, we have that cw(G, τ ⊕i τ

′) ≤ cw(G, τ) + cw(G, τ ′) ≤ 2w

follows for each i ∈ [n].

Finally, we show that we can reconfigure the composition of two linear orders at position
i, τ ′ ⊕i τ , to the composition at position i+ 1, τ ′ ⊕i+1 τ , in bounded cutwidth.

Lemma 91. Let G be an n-vertex graph, τ, τ ′ : [n] → V (G) be linear orders on V (G) of
cutwidth at most w, and i ∈ {0, . . . , n−1} be an integer. Then, τ⊕iτ

′ can be reconfigured
into τ ⊕i+1 τ

′ in cutwidth at most cw(G, τ) + cw(G, τ ′) ≤ 2w.

Proof. By Lemma 90, τ ⊕i τ
′ and τ ⊕i+1 τ

′ have cutwidth at most cw(G, τ)+cw(G, τ ′) ≤
2w. Let j ∈ [n] such that τ ⊕i τ

′(j) = τ(i+1), i.e., j is the position of τ(i+1) in τ ⊕i τ
′.

As for each p ∈ [i], τ ⊕i τ
′(p) = τ ⊕i+1 τ

′(p) = τ(p), we have j > i. Let us consider the
following sequence of swaps:

τ ⊕i τ
′ = τ0

j−1−−→ τ1
j−2−−→ · · · i+1−−→ τj−i−1 = τ ⊕i+1 τ

′.
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If j = i+1, this sequence is empty and τ ⊕i τ
′ = τ ⊕i+1 τ

′. At each step of this sequence,
we swap τ(i+ 1) with its left neighbor. This brings τ(i+ 1) from position j to position
i+ 1. By doing this, we transform τ ⊕i τ

′ into τ ⊕i+1 τ
′.

Consider Figure 8.1 for an illustration of the key part of the following proof by induction.
Inductively, we show that each element τt in the sequence has cutwidth upper-bounded
by cw(G, τ) + cw(G, τ ′) ≤ 2w. By Lemma 90, cw(G, τ0) = cw(G, τ ⊕i τ

′) ≤ cw(G, τ) +

cw(G, τ ′) ≤ 2w, which proves the induction basis. Let t ∈ [j − i− 1] and p ∈ [n] be two
integers. As induction hypothesis, we have cw(G, τt−1) ≤ cw(G, τ) + cw(G, τ ′) ≤ 2w. If
p ≤ j − t or p > j − t + 1, then we have τt−1([p − 1]) = τt([p − 1]), so cw(G, τt, p) =

cw(G, τt−1, p) ≤ cw(G, τ) + cw(G, τ ′) ≤ 2w by induction hypothesis. Otherwise, p =

j − t+ 1 ∈ {i, . . . , j} (Figure 8.1) and we have

cw(G, τt, p) = |E(G, τt([p− 1]))|
= |E(G, τt([p− 1]), {τt(r) | r ≥ p})|
= |E(G, τt([i] ∪ {p− 1}), {τt(r) | r ≥ p})|

+ |E(G, {τt(l) | i < l < p− 1}, {τt(r) | r ≥ p})|.

By definition of τt and p, we have τt(p − 1) = τt(j − t) = τ(i + 1). Therefore, we have
|E(G, τt([i] ∪ {p − 1}), {τt(r) | r ≥ p})| = |E(G, τ([i + 1]), {τt(r) | r ≥ j − t + 1})|. As
we are swapping τ(i + 1) leftwards, {τt(r) | r ≥ j − t + 1} ⊆ {τ(r) | r ≥ i + 2} =

V (G) \ τ([i+ 1]). Again by definition of τt and p, the elements in {τt(l) | i < l < p− 1}
are ordered according to τ ′, which is also true for {τt(r) | r ≥ p}. More formally,
{τt(l) | i < l < p−1} = {τ⊕i τ

′(l) | i+1 ≤ l ≤ p−2} = {τ ′V (G)\τ([i+1])(l′) | l′ ≤ p−2− i}
and {τt(r) | r ≥ p} = {τ⊕i τ

′(r) | r ≥ p} = {τ ′V (G)\τ([i+1])(r′) | r′ ≥ p− i−1}. Therefore,

cw(G, τt, p) ≤ cw(G, τ, i+ 2) + cw(G[V (G) \ τ([i+ 1])], τ ′V (G)\τ([i+1]), p− i− 1)

≤ cw(G, τ) + cw(G[V (G) \ τ([i+ 1])], τ ′V (G)\τ([i+1]))

≤ cw(G, τ) + cw(G, τ ′)

≤ 2w.

To achieve the penultimate inequality, we again apply Lemma 89.

We are now ready to prove Theorem 88.

Proof of Theorem 88. Consider the following sequence: τ = τ ′ ⊕0 τ →∗ τ ′ ⊕1 τ →∗

· · · →∗ τ ′ ⊕n τ = τ ′. By Lemma 91, one can realize each step in cutwidth at most
cw(G, τ) + cw(G, τ ′) ≤ 2w, which then also upper-bounds the whole reconfiguration
sequence.
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τt = τ(1) τ(2) · · · τ(i) τ ′′(1) · · · τ(i+ 1) · · ·

p = j − t+ 1

Figure 8.1: Illustration of the key part in Lemma 91. In this figure τ ′′ = τ ′V \τ([i+1]). The
red part of the linear order follows the linear order τ for the first i + 1 elements, and
the blue part of the linear order follows τ ′ for the remaining elements. Then, the set of
edges crossing the cut at position p = j − t+ 1 can be split in two, the set of edges that
start from the red part and the set of edges that start from the green part. The number
of red edges is bounded by the cutwidth of τ and the number of green edges is bounded
by the cutwidth of τ ′.

We have proved, in Theorem 88, that one can always reconfigure a linear order τ , of
cutwidth at most w, into a linear order τ ′, of cutwidth at most w, in cutwidth at most
2w. Now, we show that for every w ∈ N>0, there exists a graph G and two linear orders
τ and τ ′ of cutwidth w such that any reconfiguration sequence between τ and τ ′ needs
linear orders of cutwidth at least 2w. In other words, the bound given in Theorem 88 is
sharp.

Proposition 92. For each w ∈ N, there exists a sequence of graphs Gn of size n and
linear orders τ, τ ′ : [n] → V (Gn) such that cw(Gn, τ) = cw(Gn, τ

′) = w, but any recon-
figuration sequence that transforms τ into τ ′ will have cutwidth of at least 2w.

Proof. For simplicity, we will start by giving a sequence of multigraphs with this property
and we will see how to build simple graphs from them. Let w, n ∈ N. Let V (Gn) = [n]

be the vertex set of a multigraph Gn with w edges between i and i+1 for each i ∈ [n−1].
Furthermore, let τ : [n] → [n] be the identity and τ ′ : [n] → [n] satisfy τ ′(i) = n + 1− i

for i ∈ [n]. Then, cw(Gn, τ) = cw(Gn, τ
′) = w, but applying a swap to τ at any position

will result in a linear order of cutwidth 2w.

Now, to prove this result in the case of simple graphs, we will turn each graph Gn into
a simple graph by replacing each edge in G with a path of length 2. In other words, we
split each edge and add a new vertex in the middle. We call the vertices from G the
main vertices and the added vertices the dummy vertices. To complete the construction,
we have to extend τ and τ ′. For that, we put the dummy vertices on the path from i

to i+ 1 for each i ∈ [n] after (respectively before) i and before (respectively after) i+ 1

in τ (respectively τ ′). The order between the dummy vertices does not matter. Now
it is easy to see that the cutwidth of τ and τ ′ is w. Any reconfiguration sequence that
transforms τ into τ ′ needs to swap two main vertices at some point. Let i and i + 1 be
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the two first main vertices to be swapped. If i > 1, then there exist w paths from i to
i+1 and w paths from i to i−1. Those 2w paths are disjoint, therefore, the cut between
i and i + 1 has a size of at least 2w. If i = 1 then i + 1 < n and the same reasoning
works for i+ 1 instead of i.

8.3 String Rewriting System and Graph Isomorphism

Now, we use our result on the Bounded Cutwidth Order Reconfiguration prob-
lem to make a connection between two apparently unrelated computational problems,
namely, the Reachability problem for a two-letter rewriting system and the Graph

Isomorphism problem. To do so, we introduce a notion of graph decomposition based
on cutwidth named unit decomposition. In a unit decomposition, the graph is split into
small pieces called slices. If a graph has bounded cutwidth, it can be decomposed into
a unit decomposition of bounded width. Using the slices as an alphabet, we can see a
graph as a word. Then, we introduce a rewriting system over this alphabet that preserve
isomorphism. Our main result (Theorem 98) states that two graphs are isomorphic if
and only if, their unit decompositions are reachable in this rewriting system.

8.3.1 Slice Rewriting System

We start by describing the notion of slices and unit decompositions. Intuitively, a slice is
a piece of graphs. Given two compatible slices, we can combine them using an operation
called the gluing operation to build a new bigger slice. After gluing enough slices, we end
up with a graph. A unit decomposition is the representation of a graph as a sequence
of compatible slices. Then, using slices as letters, we define an alphabet and a rewriting
system over unit decompositions.

Slices. Let I = {[a] | a ∈ N} denote the set of intervals of the form [a] = {1, . . . , a} for
a ∈ N (recall that [0] = ∅). We let I0 = {{0} × [a] : [a] ∈ I}, and I1 = {{1} × [a] : [a] ∈
I}. A slice S = (I, C,O,E) is a (multi-)graph where the vertex set V = I ∪̇ C ∪̇ O

is partitioned into an in-frontier I ∈ I0, a center C ∈ I, and an out-frontier O ∈ I1,
and E is a multiset of unordered pairs from I ∪ C ∪ O in such a way that vertices of
I ∪O have degree exactly 1, there is no edge between any two vertices in I, and no edge
between any two vertices in O. We depict slices as in Figure 8.2. We define slices using
multigraphs, as the gluing operation, defined below, can take slices which are simple
graphs, and create a slice that is a multigraph (see Figure 8.3). Given a slice S, we
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S

1

2

3

1
2
3

1

2 4

Figure 8.2: Slices are drawn as tiles. This figure depicts the slice S = (I, C,O,E) where
I = {(0, 1), (0, 2)}, C = {1, 2, 3}, O = {(1, 1), (1, 2), (1, 3), (1, 4)} and E = {{(0, 1), 1},
{(0, 2), 3}, {1, 2}, {2, 3}, {1, (1, 1)}, {2, (1, 2)}, {2, (1, 3)}, {3, (1, 4)}}. We omit the first
element of the pair for frontier vertices and use the following convention. The in-frontier
vertices are on the left of the tile and the out-frontier vertices are on the right of the
tile. If the frontier vertices are not explicitly mentioned in the drawing, we assume that
frontier vertices are ordered from top to bottom as in this drawing.

(a)

S1

1 ◦
S2

1 ◦
S3

1 =

U
◦

1

2

3

Figure 8.3: Slice associated with the unit decomposition U = S1S2S3. The resulting
slice does not have any vertex in its frontier. It can therefore be seen as a multigraph
on 3 vertices.

define I(S) as the in-frontier of S, O(S) as the out-frontier of S, and C(S) as the center
vertices of S. The width of a slice S is defined as w(S) = max(|I(S)|, |O(S)|).

Gluing Slices. A slice S1 = (I1, C1, O1, E1) can be glued to S2 = (I2, C2, O2, E2)

if for some interval [a] ∈ I, O1 = {1} × [a] and I2 = {0} × [a]. In this case, the
gluing gives rise to the slice S1 ◦ S2 = (I1, C1 ∪ (|C1| ⊕ C2), O2, E) where |C1| ⊕ C2 is
a shift of the elements in C2 by |C1|, more formally |C1| ⊕ C2 = [|C1|+ |C2|] \ [|C1|] =
{|C1|+ 1, |C1|+ 2, . . . , |C1|+ |C2|},

E ={{x, y} ∈ E1 | x, y ∈ I1 ∪ C1}
∪ {{x, y + |C1|} | {x, y} ∈ E2 ∧ x ∈ O2 ∧ y ∈ C2}
∪ {{x+ |C1|, y + |C1|} | {x, y} ∈ E2 ∧ x, y ∈ C2}
∪ {{x, y} | ∃i, {x, (1, i)} ∈ E1 ∧ y ∈ O2 ∧ {(0, i), y} ∈ E2}
∪ {{x, y} | ∃i, {x, (1, i)} ∈ E1 ∧ y ∈ |C1| ⊕ C2 ∧ {(0, i), y − |C1|} ∈ E2}.

Note that the gluing operation is associative. Therefore, we will not write parentheses
for the gluing of more than two slices. Figure 8.4 illustrates the gluing of two slices.
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S1

11

2

1

2

3

◦
S2

13 2

2

1 1

=

S1 ◦ S2

11 1

22 2

Figure 8.4: Gluing of two slices S1 and S2. The gluing operation is a way to merge
two slices into one. In this example, the edge from the center vertex 1 from S1 to the
out-frontier vertex (1, 2) is stitched to the edge from the in-frontier vertex (0, 2) to the
center vertex 1 from S2 to form the edge between the center vertices 1 and 2 in S1 ◦ S2.
The stitching of edges is done following the order of the frontier vertices.

S1

1 ◦
S2

1 ◦
S3

1

=

U
◦

1

2

3

Figure 8.5: Slice associated with the unit decomposition U = S1S2S3. The gluing
operation is associative, therefore parentheses are not needed.

Unit Slices and Unit Decompositions. We say that a slice is a unit slice if it has a
unique vertex in its center. A unit decomposition is a sequence U = S1S2 . . .Sn, where
Si are unit slices and Si ◦ Si+1 is well defined for each i ∈ [n − 1]. The slice associated
with a unit decomposition U is defined as U

◦
= S1 ◦ S2 ◦ . . . ◦ Sn (see Figure 8.5 for an

example). Note that if the in-frontier of S1 and the out-frontier of Sn are empty, then
U
◦

is just a multigraph with vertex set [n] (see Figure 8.3). For each w ∈ N, we define
the alphabet Σ(w) as the set of all unit slices of width at most w.

Proposition 93. Σ(w) is finite, |Σ(w)| ∈ O(w4).

Proof. In a unit slice of width at most w, the in-frontier and out-frontier can have between
0 and w vertices and there is only one center vertex. Therefore there are (w + 1)2

configurations for the vertices of a slice. By definition, vertices of the in-frontier and
the out-frontier have degrees exactly 1, vertices in the in-frontier can be connected to
the center vertex or an out-frontier vertex and there is no self-loop. Therefore, fixing
the connectivity of the in-frontier vertices defines the full unit slice, because, if an out-
frontier vertex is not connected to an in-frontier vertex, then it must be connected to the
center vertex. Once the number of vertices in the frontier is chosen, there are at most
(w + 1) · (w + 2) ways to connect the vertices in the in-frontier.

We let Σ(w)⊛ denote the set of all unit decompositions over Σ(w).

The order of the unit slices in a unit decomposition U = S1S2 . . .Sn induces a linear
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S1

1

S2

1

∼
S′
1

1

S′
2

1

Figure 8.6: Local equivalence. S1S2 is (locally) R(4)-equivalent to S′
1S

′
2.

order τU on the center vertices of the slice U
◦
. We extend this linear order to all the

vertices of U
◦

by putting the vertices in the in-frontier first, then the center vertices and,
finally, the vertices in the out-frontier. More formally, the linear order defined by U sets
τU(i) = (0, i) for each (0, i) ∈ I(S1), τU(|I(S1)| + i) = i for each i ∈ {1, . . . , n} and
τU(|I(S1)|+ n+ i) = (1, i) for each (1, i) ∈ O(Sn).

Given a unit decomposition U = S1S2 . . .Sn in Σ(w)⊛, we let w(U) = maxi∈[n] w(Si)

be the width of U. Recall that w(Si) = max(|I(Si)|, |O(Si)|).

Equivalence of Slices. Let S1 = (I1, C1, O1, E1) and S2 = (I2, C2, O2, E2) be two
slices. We say that S1 is equivalent to S2, denoted by S1 ∼ S2, if and only if I1 = I2,
O1 = O2, C1 = C2, and there is an isomorphism ϕ from S1 to S2 such that the restriction
of ϕ to I1 and O1 is the identity function. In other words, S1 and S2 are equivalent if
they are equal up to the renaming of the center vertices.

We let R(w) ⊆ Σ(w)2×Σ(w)2 be the set of all rewriting rules of the form S1S2 → S′
1S

′
2

such that S1◦S2 ∼ S′
1◦S′

2. By Proposition 93, R(w) is finite and R(w) ∈ O(w8). We call
two unit decompositions U,U′ ∈ Σ(w)⊛ locally R(w)-equivalent, and denote this fact by
U

w∼ U′, if there exist W,W′ ∈ Σ(w)⊛ and S1,S
′
1,S2,S

′
2 ∈ Σ(w) with S1 ◦S2 ∼ S′

1 ◦S′
2

such that U = WS1S2W
′ and U′ = WS′

1S
′
2W

′ (see Figure 8.6). In other words, U is
locally R(w)-equivalent to U′ if U can be rewritten in one step into U′ using a rule from
R(w).

We let
w≡ ⊆ Σ(w)⊛ ×Σ(w)⊛ be the equivalence relation defined on unit decompositions

by taking the reflexive, symmetric and transitive closure of w∼. If U
w≡ U′, then we say

that U′ is R(w)-equivalent to U. We note that if U is a unit decomposition in Σ(w)⊛

then any unit decomposition U′ that is R(w)-equivalent to U is also a unit decomposition
in Σ(w)⊛. We also note that there may exist unit decompositions in Σ(w)⊛ that are not
R(w)-equivalent but that are R(w′)-equivalent for some w′ > w.

Twisting. Let U = S1S2 · · ·Sn and U′ = S′
1S

′
2 · · ·S′

n be two unit decompositions. We
say that U is a twisting of U′ if U

◦
= U′◦

. Note that we are not equating slices up
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S1

1 ◦
S2

1 ◦
S3

1 =

U
◦
= U′◦

1
2

3 =

S′
1

1 ◦
S′
2

1 ◦
S′
3

1

Figure 8.7: The unit decomposition U = S1S2S3 is a twisting of the unit decomposition
U′ = S′

1S
′
2S

′
3. Note that S2 ◦S3 = S′

2 ◦S′
3. Note that if we let π be the permutation that

sets π(1) = 2, π(2) = 3 and π(3) = 1, then S′
2 is obtained by permuting the out-frontier

of S2 according to π and S′
3 is obtained by permuting the in-frontier of S3 according

to π.

to isomorphism. In other words, we are really requiring that the slices U
◦

and U′◦
are

syntactically identical.

Let S1 and S2 be unit slices in Σ(w) such that the out-frontier of S1 and the in-frontier
of S2 have w′ vertices for some w′ ≤ w. Given a permutation π : [w′] → [w′], let Sπ

1

be the slice obtained by renaming each vertex (1, i) in the out-frontier of S1 to (1, π(i)),
and let πS2 be the slice obtained by renaming each vertex (0, i) in the in-fronter of S2

to (0, π(i)). Then, it should be clear that S1 ◦ S2 = Sπ
1 ◦ πS2. In other words, Sπ

1
πS2 is

a twisting of S1S2. Additionally, for each two unit slices S′
1 and S′

2 such that S′
1S

′
2 is a

twisting of S1S2 (S1 ◦S2 = S′
1 ◦S′

2), it should be clear that there is some permutation π
such that S′

1 = Sπ
1 and S′

2 =
πS2. Note also that for every two such slices S′

1 and S′
2, the

rewriting rule S1S2 → S′
1S

′
2 belongs to R(w). This implies that if a unit decomposition

U = S1S2 . . .Sn is a twisting of a unit decomposition U′ = S′
1S

′
2 . . .S

′
n, then U and U′

are R(w)-equivalent and can be transformed into each other by applying a sequence of
rewriting rules that “twists” for each i ∈ [n− 1] the out-frontier of Si and the in-frontier
of Si+1 according to some permutation πi. This process is illustrated in Figure 8.7.

Proposition 94 (Twisting). Let U = S1S2 · · ·Sn and U′ = S′
1S

′
2 · · ·S′

n be two unit
decompositions in Σ(w)⊛ such that U is a twisting of U′. Then, U can be transformed
into U′ by the application of n− 1 rewriting rules from R(w).

8.3.2 Graph Isomorphism as a Rewriting System

Now, we are ready to see the connection between the Graph Isomorphism problem
and the Reachability problem in R(w). First, we show that a graph G has cutwidth at
most w if and only if it has a unit decompositions of width at most w (Proposition 95 and
Proposition 96). Then, we show that the rewriting system R(w) preserves isomorphism
(Lemma 97). Building on those results, we show the connection between the Reach-

ability problem in R(2w) and the Graph Isomorphism for graphs of cutwidth at
most w.
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Intuitively, a unit decomposition U is a decomposition of the graph U
◦
. This decomposi-

tion induces an ordering of the vertices of U
◦
. The size of the common frontier between

two neighbouring slices in U corresponds to the size of the cut at the same position in
U
◦

with respect to τU. Therefore, U induces an ordering of U
◦

of cutwidth w(U). This
idea is formalized by the following proposition.

Proposition 95. Let w ∈ N, and U = S1S2 . . .Sn be a unit decomposition in Σ(w)⊛,
and τU be the linear order induced by U on U

◦
. Then, cw(U

◦
, τU) = w(U).

Proof. This follows by noticing that each vertex in I(S1) has degree 1 and there is no
edge between vertices in I(S1), therefore for each position p in {1, . . . , |I(S1)| + 1},
cw(U

◦
, τU, p) ≤ |I(S1)| and cw(U

◦
, τU, |I(S1)| + 1) = |I(S1)|, in the same way, we have

for each p in {|I(S1)| + n + 1, . . . , |I(S1)| + n + |O(Sn)|}, cw(U
◦
, τU, p) ≤ |O(Sn)| and

cw(U
◦
, τU, |I(S1)| + n + 1) = |O(Sn)|, and for each p ∈ {|I(S1)| + 2, . . . , |I(S1)| + n},

cw(U
◦
, τU, p) = |O(Sp−|I(S1)|−1)| = |I(Sp−|I(S1)|)|.

The relation between cutwidth and unit decomposition is valid in both directions. The
following proposition states the reverse direction compared to Proposition 95.

Proposition 96. Let G be an n-vertex graph and τ be a linear order on the vertices of
G of cutwidth w. Then, we can construct in time O(wn) a unit decomposition U such
that τ = τU.

Proof. We will do this construction by first drawing the graph G in the plane. G does
not need to be planar for this construction to work. First, we will place the vertices
of G on a straight line L isomorphic to R. The i-th vertex of G with respect to the
linear order τ is placed at the coordinate i on the line. Then, edges are drawn as curves
between their endpoints. Now, we will draw n+1 lines perpendicular to L at coordinates
{−0.5, 0.5, 1.5, . . . , n−0.5, n+0.5}. We call these lines cut-lines. The cutwidth of τ is w,
therefore each cut-line intersects at most w edges in the drawing of G. We put a vertex at
the intersection of a cut-line and an edge. The graph between two consecutive cut-lines
defines a unit slice of width at most w. Taking all those slices in the order induced by
τ on the line L gives a unit decomposition U of width w such that τ = τU. Figure 8.8
illustrates this construction.

Now that we have defined the rewriting system, we are ready to show the connection be-
tween the rewriting system R(w) and the graph isomorphism problem. This connection
is formalized in Theorem 98. The next lemma shows one direction in this connection.

Lemma 97. Let w ∈ N and U and U′ be unit decompositions in Σ(w)⊛. If U is
R(w)-equivalent to U′, then U

◦
is isomorphic to U′◦

.
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(b) 1 2 3 ⇒
S1

1

S2

1

S3

1

Figure 8.8: Slicing of the graph G on the left into a unit decomposition U on the right.

Proof. It is enough to show that if U can be transformed into U′ in one R(w)-rewriting
step then U

◦
is isomorphic to U′◦

. Therefore, assume that U → U′. Then, there exist unit
decompositions W,W′ ∈ Σ(w)⊛ and a rewriting rule S1S2 → S′

1S
′
2 in R(w) such that

U = WS1S2W
′ and U′ = WS′

1S
′
2W

′. Since S1 ◦ S2 ∼ S′
1 ◦ S′

2, we have an isomorphism
φ from S1 ◦S2 to S′

1 ◦S′
2 that acts as the identity map on frontier vertices. This implies

that U
◦
= W

◦ ◦ S1 ◦ S2 ◦W′◦
is isomorphic to U′◦

= W
◦ ◦ S′

1 ◦ S′
2 ◦W′◦

.

An interesting question is whether, for each w ∈ N, there is some w′ ∈ N such that
any two unit decompositions U and U′ in Σ(w) are R(w′)-equivalent if and only if U

◦
is

isomorphic to U′◦
. The answer turns out to be yes, as shown in Theorem 98 below.

Theorem 98. Let U and U′ be unit decompositions in Σ(w)⊛. Then, U
◦

is isomorphic
to U′◦

if and only if U and U′ are R(2w)-equivalent.

Proof. Let U = S1S2 · · ·Sn and U′ = S′
1S

′
2 · · ·S′

n. Suppose that U and U′ are R(2w)-
equivalent. Then, by Lemma 97, U

◦
is isomorphic to U′◦

.

For the converse, suppose that U
◦

is isomorphic to U′◦
and let φ be an isomorphism from

U
◦

to U′◦
. We show that U and U′ are R(2w)-equivalent.

Given a position i ∈ [n− 1] in the unit decomposition U, a swap between Si and Si+1 is
a rewriting rule in R(w′) for some w′ that rewrites U into the unit decomposition

Ui = S1S2 · · ·Si−1S
′′
iS

′′
i+1Si+2 · · ·Sn

such that, the function ψ : [n] → [n] that sets ψ(p) = p for all p /∈ {i, i+1}, ψ(i) = i+1

and ψ(i+ 1) = i is an isomorphism from U
◦

to U
◦
i.

Intuitively, we swap the center vertex of Si with the center vertex of Si+1. Note that,
because of the twisting of the frontier, there may be several rewriting rules corresponding
to such a swap. Now, a swap in the unit decomposition U corresponds to a swap in τU

as defined for linear orders in Section 8.1. The isomorphism φ defines a transformation
of τU into τU′ .
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By Proposition 95, cw(U
◦
, τU) ≤ w and cw(U′◦

, τU′) ≤ w. Now, our result in Section 8.2
can be used for the slice rewriting system R(2w). More precisely, it follows from Theo-
rem 88 that we can transform τU into τU′ by a sequence of O(n2) swaps and at each step,
the cutwidth is at most 2w. By using the rewriting rules from R(2w), we can replicate
these swaps into the unit decomposition U, obtaining in this way a unit decomposition
U′′ such that τU′′ = τU′ . Since U′′◦

= U′◦
, we have that U′′ is a twisting of U′. Therefore,

it follows from Proposition 94 that U′′ can be further transformed into U′ by applying
a sequence of n− 1 rewriting rules from R(w) ⊆ R(2w).

Hence, U can be rewritten into U′′ by applying O(n2) rewriting rules from R(2w).

Theorem 98 allows us to establish connections between the graph isomorphism problem
for graphs of cutwidth at most w and the reachability problem in R(2w).

Theorem 99 ([Giannopoulou et al., 2019]). Let G be an n-vertex graph of cutwidth w.
We can compute a linear order τ of the vertices of G of width w in time 2O(w2 logw) · n.

Theorem 100. Graph isomorphism for n-vertex graphs of cutwidth at most w can be
reduced in time 2O(w2 logw) · n to R(2w)-reachability.

Proof. Given n-vertex graphs G and G′ of cutwidth at most w, we first compute in
time 2O(w2 logw) · n linear orders τ and τ ′ of the vertex sets of G and G′, respectively, of
cutwidth at most w. Then, from Proposition 96, we construct unit decompositions U

and U′ such that τU = τ , τU′ = τ ′, G is isomorphic to U
◦

and G′ is isomorphic to U′◦
. By

Proposition 96, those decompositions belong to Σ(w)⊛. By Theorem 98, we have that
U
◦

and U′◦
are isomorphic if and only if U and U′ are R(2w)-equivalent.

8.4 Bounded Vertex Separation Number Order

Reconfiguration

In this section, we show that the techniques employed in Section 8.2 for total orders
of bounded cutwidth can be generalized to the context of orders of bounded vertex-
separation number (Theorem 101). We consider that this generalization may be of
independent interest in the theory of reconfiguration since vertex separation number is a
width measure for graphs that is strictly more expressive than cutwidth. We note that
it is not clear to us how to establish a direct connection between this generalized order
reconfiguration problem and string rewriting as in the case of cutwidth.
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For each w ∈ N and each n-vertex graph G, let VSN(G,w) = {τ : [n] → V (G) :

vsn(G, τ) ≤ w} be the set of linear orders of V (G) of vertex separation number at
most w. We say that τ can be reconfigured into τ ′ in vertex separation number at
most w if there is a reconfiguration sequence τ = τ0

i1−→ τ1
i2−→ · · · ir−→ τr = τ ′ such that for

each j ∈ [r], τj ∈ VSN(G,w).

Problem name: Bounded Vertex Separation Number Reconfiguration

Given: An n-vertex graph G, two linear order τ, τ ′ : [n] → V (G) on the vertex set of
G, and a non-negative integer w ∈ N.
Output: Is it true that τ can be reconfigured into τ ′ in vertex separation number at
most w?

The proof of Theorem 101 below is analogous to the proof of Theorem 88. More precisely,
this proof follows by restating Lemma 89, Lemma 90 and Lemma 91 in terms of the vertex
separation number of a graph instead of cutwidth, and then by using this last restated
lemma to conclude the proof, as done in Theorem 88.

Theorem 101. Let G be an n-vertex graph and τ, τ ′ : [n] → V (G) be linear orders of
V (G) of vertex separation number at most w. Then, τ can be reconfigured into τ ′ in
vertex separation number at most vsn(G, τ) + vsn(G, τ ′) ≤ 2w.

8.5 Discussions

In this chapter, we have studied the order reconfiguration problem under the framework
of the theory of fixed-parameter tractability. In particular, in our main technical result,
we have shown that the order reconfiguration problem for linear orders of cutwidth at
most w can always be achieved in cutwidth at most 2w (Theorem 88). Using this result,
we have established new connections between the graph isomorphism problem and the
reachability problem for a special two-letter string rewriting system operating on unit
slices. In particular, we have proven that unit decompositions U and U′ of width w are
R(2w)-equivalent if and only if the graphs U

◦
and U′◦

are isomorphic (Theorem 98).

Theorem 98 opens up the possibility of studying the graph isomorphism problem under
the perspective of term rewriting theory. The most immediate question in this direction
is the complexity of deciding R(2w)-reachability for unit decompositions of width w. By
a reduction to isomorphism of graphs of cutwidth w, this problem can be solved in time
2O(w·polylogw)nO(1) using the results from [Grohe et al., 2018b]. Can techniques that are
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intrinsic to string/term rewriting theory be used to improve this running time? Can such
techniques be used to obtain algorithms running in time f(w)·nO(1) for some computable
function f : N → N? Note that a positive answer to this question would be conceptually
relevant even if the function f(w) is substantially worse than the current 2O(w·polylog(w)),
since techniques based on rewriting may carry over to contexts where group theoretic
techniques do not. One interesting line of attack for this question would be to study
connections between R(2w) and techniques related to Knuth-Bendix completion and
their generalizations [Sternagel and Thiemann, 2013, Wehrman et al., 2006, Kapur and
Narendran, 1985, Hirokawa et al., 2019].

A natural question that arises in the context of reconfiguration of linear orders is the
following: given two linear orders τ and τ ′, what is the minimum cutwidth of a linear
order τ ′′ occurring in a reconfiguration sequence from τ to τ ′? Is this problem NP-hard,
or hard to approximate? Is it solvable in FPT-time for certain parameters? We thank
one of the reviewers of [Arrighi et al., 2021a] for bringing these interesting questions to
our attention.
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Three is Enough for Steiner Trees

Emmanuel Arrighi∗1 and Mateus de Oliveira Oliveira†1

1University of Bergen, Norway

Abstract

In the Steiner tree in graph problem, the input consists of an edge-weighted
graph G together with a set S of terminal vertices. The goal is to find a minimum
weight tree in G that spans all terminals. This fundamental NP-hard problem
has direct applications in many subfields of combinatorial optimization, such as
planning, scheduling, etc. In this work we introduce a new heuristic for the Steiner
tree problem, based on a simple routine for improving the cost of sub-optimal
Steiner trees: first, the sub-optimal tree is split into three connected components,
and then these components are reconnected by using an algorithm that computes
an optimal Steiner tree with 3-terminals (the roots of the three components). We
have implemented our heuristic into a solver and compared it with several state-
of-the-art solvers on well-known data sets. Our solver performs very well across
all the data sets, and outperforms most of the other benchmarked solvers on very
large graphs, which have been either obtained from real-world applications or from
randomly generated data sets.

1 Introduction

In the Steiner tree problem in graph, we are given an undirected graph G whose edges are
weighted with non-negative values, and a subset of vertices S, whose elements are called
terminals. The goal is to find a minimum-weight tree in G whose nodes span all terminal
in S. This is a fundamental NP hard problem [Karp, 1972], which has been studied since
the seventies [Hakimi, 1971] and which has found applications in several fields of research
such as planning [Keyder and Geffner, 2009], social networks [Lappas et al., 2009], sensor

∗The author was supported by research Council of Norway (no. 274526)
†The author was supported by research Council of Norway (no. 288761)
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networks [Lee and Younis, 2010], community detection [Chiang et al., 2013], VLSI circuit
design [Joobbani, 2012], as well as in numerous applications in industry [Cheng et al.,
2004].

Since Steiner tree is an NP-hard problem, most research surrounding this problem has
been devoted both to the task of developing heuristics that work reasonably well in prac-
tice, and to the task of developing approximation algorithms that provide approximation
guarantees within polynomial time. In particular, a short list of heuristic paradigms that
have been used to attack the Steiner-tree problem include simulated annealing [Lundy,
1985], genetic algorithms [Chakraborty, 2001], logic programming [Menai, 2009] and con-
straint solving [de Uña et al., 2016]. On the other hand, when it comes to approximation
algorithms, the approximation ratio guarantee achievable by algorithms running in poly-
nomial time was gradually improved from 2 [Takahashi, 1990] to 1.39 [Byrka et al., 2013]
in a span of two and a half decades [Takahashi, 1990, Zelikovsky, 1993, Berman and
Ramaiyer, 1994, Zelikovsky, 1996, Prömel and Steger, 1997, Karpinski and Zelikovsky,
1997, Hougardy and Prömel, 1999, Robins and Zelikovsky, 2000, Robins and Zelikovsky,
2005, Byrka et al., 2013]. It is worth noting that unless P = NP , the Steiner tree prob-
lem in general graphs cannot be approximated within a factor of 1 + ε for sufficiently
small ε > 0 [Bern and Plassmann, 1989].

In this work, we introduce a new heuristic for the Steiner tree problem and show that on
large graphs, it outperforms several state of the art algorithms. Our heuristic has two
main components. First, we devise a method that can be used to quickly compute a good
initial Steiner tree. The second component is based on an improvement procedure that
takes a Steiner tree as input and tries to output a lighter Steiner tree. Essentially, this
procedure is executed until it stabilizes, or until a specific time limit is up. It is worth
noting that our improvement strategy is similar in spirit to an improvement procedure
used in a celebrated approximation algorithm due to Robins and Zelikovsky [Robins and
Zelikovsky, 2005].

This improvement procedure can be explained in two high-level steps. First, given a
(potentially suboptimal) Steiner tree T0, one appropriately split it into three subtrees
T1, T2 and T3 such that, all terminals are contained in T1 ∪ T2 ∪ T3. Then those three
subtrees are reconnected together by solving an instance of the Steiner tree problem with
three terminals. This gives a new Steiner tree T ′0. As the Steiner tree problem with three
terminals can be solve exactly and efficiently, the weight of T ′0 is at most the weight of
T0.

We observe that there are two crucial differences between the optimization procedure
used in our heuristic and the one used in the algorithm of [Robins and Zelikovsky, 2005].

2
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The first is that their algorithm runs in a complete graph where for each two vertices v
and u, the weight of the edge {v, u} is the weight of the shortest path between v and
u in the original graph, while our algorithm runs without the need to compute shortest
paths between all possible pairs of vertices. The second difference is that in Robins and
Zelikovsky’s algorithm, the split is chosen to be the optimal one, while in our algorithm
we replace optimality by a greedy selection strategy. Building the complete graph and
looking for the optimum splitting is costly and cannot be done on large graphs. Therefore,
the algorithm of [Robins and Zelikovsky, 2005] cannot handle large real world instances.
By doing something that does not need such large structures our approach can handle
large instances. As a consequence, our optimization procedure performs especially well
on large graphs. We also note that this optimization procedure can also be used to
improve the weight of sub-optimal Steiner trees output by other solvers.

To validate our new heuristic, we implement a solver in C++ and benchmark it against
several state of the art solvers for the Steiner tree problem on well known data sets. These
solvers implement several paradigms, such as genetic algorithms, linear programming
algorithms, local search algorithms as well as algorithms with approximation guarantees.
The data sets were obtained from a variety of sources, such as established real-world
benchmarks for the Steiner tree problem, data sets of common use in the field of road
networks, and a synthetic data set where instances are generated at random. Our solver
obtained very good results in most data sets. In particular our solver was able to obtain
solutions that are on par with those obtained by solvers that employed large scale mixed-
linear programming suites such as SCIP [Gleixner et al., 2017]. Our solver was also able
to handle very large instances, with millions of vertices and edges, while most of the
solvers failed in these instances. A detailed exposition of these results can be found in
section 4.

2 Preliminaries

In this section, we set notation for basic graph-theoretic concepts used in the description
of our algorithm. We let N denote the set of natural numbers. For a finite set V , we let
P(V, 2) = {{u, v} : u, v ∈ V, u 6= v} be the set of unordered pairs of elements from V .

An undirected graph is a pair G = (V,E) where V is a set of vertices and E ⊆ P(V, 2) is
a set of undirected edges. We may write V (G) to denote the vertex-set of G and E(G) to
denote the edge-set of G. An edge-weighted graph is a graph G = (V,E) together with
a cost function cost : E → N. We let cost(G) be the sum of the costs of all edges in G.
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We say that a graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
For each subset X ⊆ V (G), the subgraph of G induced by X is the graph G[X] with
vertex set X and edge set E(G) ∩ P(X, 2).

A walk in a graph G is a sequence of vertices v1, . . . , vk such that for each i in {1, . . . , k−
1}, {vi, vi+1} ∈ E(G). A path in G is a walk in which all vertices are distinct. We let
dist(v, v′) be the minimum number of edges in a path between v and v′. We say that
G is connected if for each two vertices v1 and v2 there is a path between v1 and v2. A
cycle is a walk v1, . . . , vk such that v1 = vk and vi 6= vj for i, j ≤ k and i 6= j. A graph
is acyclic if it contains no cycle.

A tree is a connected acyclic graph T . A rooted tree is a tree T together with a distin-
guished vertex r. If T is a rooted tree with root r, and v ∈ V (T ) is such that r 6= v, then
the parent of v is the unique neighbour v′ of v such that dist(r, v′) < dist(r, v). Note that
the root r does not have a parent. Each neighbour v′ of v with dist(r, v′) > dist(r, v) is
called a child of v. A leaf of T is a vertex with no child. A descendant of a vertex v is
a vertex v′ such that the unique path between r and v′ contains v. We consider v to be
a descendant of itself. The subtree of T rooted at v is the subgraph of T induced by the
set of descendants of v.

Given a graph G, a spanning tree of G is a tree T such that T is a subgraph of G and
V (T ) = V (G). Given a connected edge-weighted graph G, and a vertex v ∈ v(G), a
shortest-path tree for G rooted at v is an edge-weighted spanning tree T of G rooted at
v such that for each vertex u ∈ V (G), the distance between v and u in G is equal to the
distance between v and u in T .

Let G be an undirected edge-weighted graph and let S ⊆ V (G) be a subset of vertices
of G whose elements are called terminals. A Steiner tree in G is a subgraph T of G such
that T is a tree and S ⊆ V (T ). We note that T may contain non-terminal vertices. We
call the vertices in V (T )\S, Steiner points. The cost of a tree, cost(T ), is the sum of the
costs of its edges.

Let G be a graph and H be a connected subgraph of G. The contraction of H in G,
written G/H, is the graph obtained from G by first deleting all vertices of H, then by
adding a new vertex vH , and finally by connecting vH to a vertex u ∈ V (G)\V (H) in
G/H if and only if there is an edge between u and some vertex from V (H) in G. The
weight of an edge between vH and u is the minimum weight of an edge connecting a vertex
of H to u. In our algorithm, we will need to temporarily contract a subgraph H multiple
times. Doing the actual contraction of a subgraph and restoring the graph afterwards
is a costly operation. To avoid such costly operations, we use several tricks to simulate
the contraction of a subgraph in our implementation. Since our graphs are weighted, the
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contraction of a subgraph H can be simulated by simply setting the weights of the edges
of H to 0, and therefore, the topology of the original graph remains unchanged. When
we need to build the shortest path tree rooted in the vertex vH , vertex obtained by the
contraction of H, we simulate the contraction of H by using a custom initialisation of
the Dijkstra’s algorithm. In this case, the graph remains unchanged.

3 Our Heuristics

In this section, we describe the main components of the heuristic used in our Steiner tree
solver 3TST. There are three main components. A pre-processing component, which
simplifies the input graph, a greedy procedure that constructs an initial Steiner tree,
an optimization function that takes a given Steiner tree as input and outputs another
Steiner tree that is at least as light as the original one. This optimization procedure
is then repeated until it stabilizes, or until the time is up. Once the solution can not
be improved, our solver starts again with a new starting Steiner tree. It repeats this
procedure until it receives a timeout signal. These three components are described in
more details below.

3.1 Preprocessing

During the preprocessing step, we modify the input graph by applying two standard
rules [Uchoa et al., 2002, Rehfeldt et al., 2019a] with the goal of eliminating redundancies.
Once a solution is obtained in the modified graph, this solution can be easily converted
into a solution to the original graph. The two preprocessing rules we apply are the
following.

1. The first rule removes non-terminal vertices of degree 1 from the graph. These
vertices are redundant because if a Steiner tree contains such a vertex, then one
can safely delete it from the tree and still obtain a valid Steiner tree.

2. The second rule eliminates non-terminal vertices of degree 2. More precisely, let
u be a non-terminal vertex of degree 2 connected to vertices v1 and v2 by edges
e1 = {u, v1} and e2 = {u, v2} respectively. Then we delete the vertex u and the
edges e1 and e2 from the graph. If the graph has an edge of cost c connecting v1 and
v2, then we update the cost of this edge to min(c, cost(e1) + cost(e2)). Otherwise,
we just add a new edge e = {v1, v2} of cost cost(e1) + cost(e2) to the graph. This
rule is repeated until no vertex of degree 2 is left.
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This preprocessing step can be done in time O(n) where n is the number of vertices.
Note that if a solution to the modified graph contains an edge e = {u, v} that is not
present in the original graph, then one can obtain a solution to the original graph by
replacing each such edge e by a path between u and v in which all internal vertices have
degree 2.

3.2 Minimum Steiner trees with 2 or 3 terminals

A fact that we will use often both in the construction of an initial Steiner tree and in our
optimization procedure is the fact that Steiner trees with two or three terminals can be
computed very quickly by using elementary algorithms. Indeed, a Steiner tree with two
terminal vertices t0 and t1 is simply a shortest path between these two vertices. On the
other hand, it can be shown that if T is a Steiner tree with 3 terminals {t0, t1, t2} then
there is a center vertex c such that T is obtained by taking the union of the shortest
paths p0, p1 and p2 between c and the terminals t0, t1 and t2 respectively. We call c the
center of T (Figure 1). We observe that c can be one of the terminals. Therefore, to
construct such Steiner tree, we need to find the center c. Then, the Steiner tree will
be the union of the shortest paths between each terminal t0, t1 and t2 and c (p0, p1
and p2). To find the center we proceeds as follow. We start by computing a shortest
path tree rooted in t0, t1 and t2 using the Dijkstra’s algorithm. Then, we can iterate
through the vertices of G and set as the center c the vertex that minimizes the sum of
the lengths of the shortest paths p0, p1 and p2. In this paper, we will call this procedure
3Steiner(G, t0, t1, t2). We note that 3Steiner(G, t0, t1, t2) is a deterministic procedure that
produces an optimal Steiner tree with three terminals, and runs in time O(m+n log(n))

where n the number of vertices and m the number of edges.

3Steiner is used in construction of an initial solution (subsection 3.3) and in the opti-
mization procedure (subsection 3.4). In the later one, 3Steiner is often called with three
terminals that are close to each other in G. Intuitively, in such case, we do not need to
compute the full shortest path tree from each terminals, we just need to compute it up
to some distance. More precisely, one can see that the center c cannot be further away
from t0 than t1 or t2, otherwise t1 or t2 would be a better center. Therefore, in 3Steiner,
when computing the shortest path tree from t0, we run the Dijkstra algorithm until it
reaches one of the other terminals. The same argument and early stop criteria applies
for computation of the shortest path trees rooted in t1 and t2.

6
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c

t0

t1 t2

Figure 1: A Steiner tree with three terminals t0, t1 and t2 is a union of shortest paths
between a center vertex c and t0, t1 and t2 respectively.

3.3 Constructing an Initial Solution

Once the preprocessing procedure has been applied, our algorithm proceeds to construct
a suitable initial solution. We actually implement two initialization functions. Both
functions take as input a triple (G,S, r) consisting of a graph G, a set of terminals S and
a root vertex r, and return a Steiner tree covering the terminals in S rooted at r. We
note that the root can be an arbitrary vertex in the graph, but in our implementation
we always choose a terminal to be the root.

The first function, DetInitialST(G,S, r), is used to construct a reasonable first-solution.
We use this procedure first, one time for each terminal in S. This function is completely
deterministic. At each step, the function DetInitialST(G,S, r) maintains the following
data:

1. a partial Steiner tree T spanning some of the terminals;

2. a graph G/T obtained from G by contracting T to its root r; and

3. a shortest-path tree D for G/T rooted at r.

In the beginning, T contains only the root r, G/T = G, and D is simply the shortest-
path tree for G rooted at r. After this initialization has taken place, the algorithm enters
in a loop, where at each iteration, at least two new terminals t1 and t2 are incorporated
to the tree. Each iteration consists of three steps.

1. First, one applies a function SelectTerminals that selects the next two terminals
t1, t2 that will be added to the tree. This function proceeds as follows. First, it
sets t1 as the terminal with greatest distance to the root vertex r in the graph G/T .
Note that the contraction of T is simulated by setting the costs of its edges to 0 in
the graph G. Subsequently, a shortest path from r to t1 is temporarily contracted
for the selection of t2, and t2 is selected as the terminal with the greatest distance
to r.
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Algorithm 1: DetInitialST(G,S, r)

Input: An edge weighted graph G, a set of terminals S, a vertex r
Output: A Steiner tree in G connecting all terminals in S rooted in r
T ← r
while there are two terminals in S not spanned by T do

G′ ← G/T
D ← ShortestPathTree(G′, r)
t1, t2 ← SelectTerminals(G′, D)
T ′ ← 3Steiner(G′, r, t1, t2)
T ← T ∪ T ′

end
if some terminal t ∈ S is not spanned by T then

Set T ← T ∪ p where p is a shortest path between r and t in G/T
end
return T

2. Once the terminals t1 and t2 have been determined, one calls the function 3Steiner

to compute the minimum Steiner tree T ′ in G/T with respect to the terminal set
{r, t1, t2}.

3. Finally, the two trees T and T ′ are merged. This merging process consists in taking
the union T ∪ T ′. Note that the union T ∪ T ′ is a tree.

The three steps above are repeated until a Steiner tree spanning at least |S|−1 terminals
in S has been obtained. If, at the end, a terminal t ∈ S is not spanned by T , then the
shortest path between r and t in G/T is added to T . The algorithm described above
is specified more formally in algorithm 1. The procedure DetInitialST(G,S, r) has time
complexity O(|S| · (m + n log(n))), where n the number of vertices, m the number of
edges of G.

Once we have a starting Steiner tree, we will improve it by applying the optimization
procedure described in subsection 3.4. Since this optimization procedure may converge
to a local minimum, we will repeat the optimization process with respect to several
initial Steiner trees. To get several initial Steiner trees, we first use DetInitialST, using
each of the terminal in S as root. DetInitialST is deterministic therefore, the only way
to get different tree is by using a different starting vertex as root. From this point
on, each initial Steiner tree will be selected using a much cheaper procedure, which we
call RandomInitialST(G,S, r). This procedure simply selects random path between some
terminal t1 in S and the root vertex r. Subsequently, it selects a random path between
some terminal t2 and some vertex in the first path, then a random path between some
terminal t3 and some vertex in the previous paths and so on, until all terminals have
been selected. Each random path is selected by performing a random walk in the graph
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starting at the terminal to be added.

3.4 Optimization Procedure

Once the preprocessing stage has been completed, and an initial Steiner tree has been
computed using the procedure described in the previous subsection, our algorithm applies
an optimization procedure that takes a Steiner tree T rooted at a terminal vertex r as
input, and outputs a Steiner tree T ′, also rooted at r, with equal or smaller weight than
T . This optimization procedure is repeated until the time is up or until it has stabilized.
Alternatively, the procedure can be halted by an external algorithm even if it has not
stabilized. In this case the best Steiner tree computed so far is given as the result.

Intuitively, this optimization procedure tries to improve T be replacing part of it by
a locally optimal one, using the fact that we can compute efficiently an optimal solu-
tion when there is only 3 terminals. This optimization procedure works in two stages.
In the first stage, we split the Steiner tree T into three subtrees T1, T2 and Tr, where
T1 and T2 are rooted at vertices v1 and v2 respectively, and Tr is rooted at r. Subse-
quently, we reconnect the three subtrees by finding an optimal Steiner tree with respect
to {T1, T2, Tr}.

Figure 2: (a) A Steiner tree T , a pair {v1, v2} of vertices in SelectCut(T ), and Steiner
paths p1 and p2. (b) The internal vertices of p1 and p2 are removed. This results into
three trees Tr, T1 and T2. (c) {r, v1, v2} are connected using an optimal 3-terminal Steiner
tree obtained using 3Steiner(G, r, v1, v2) function.

Before describing the details of the procedure, we need to define the concept of a relevant
vertex. Let T be Steiner tree of G a rooted at a vertex r. We say that a vertex v ∈ V (T )

is relevant for T if v is a terminal or if v has at least 2 children in T . A path p in T is a
Steiner path if the two endpoints of p are relevant for T and if the remaining vertices of
p are not relevant, which means they are Steiner points of degree 2 in T . Note that each
middle vertex of a Steiner path has a unique child. Let v and v′ be relevant vertices. We
say that v′ is a relevant child of v if these two vertices are the endpoints of a relevant

9

149



path in T and if dist(r, v) < dist(r, v′).

The algorithm starts by applying a simple routine that prunes the input Steiner tree.
More precisely, this routine processes the input tree by removing every Steiner point that
does not have a terminal as descendant. Such Steiner points do not connect the root to
any terminal, and therefore can be safely removed. The resulting tree is still a Steiner
tree and every leaf is a terminal.

Subsequently, the algorithm executes a procedure Improve(G,S, T ) that takes a graph
G, a set of terminals S and a tree T as input, and tries to modify T with the goal of
reducing its cost by proceeding as follows.

1. First, we construct a list SelectCut(T ) containing a selection of pairs of the form
{v1, v2} where both v1 and v2 are relevant vertices, v1 6= r, and v2 6= r. The list
is constructed as follow. The vertices of T are traversed in a reverse depth-first
search order. For each relevant vertex v in T , we add to the list SelectCut(T ) all
pairs of relevant children of v and if v is a terminal, all pairs containing v and a
relevant child of v.

2. Now, for each pair of vertices (v1, v2) in the list SelectCut(T ) built in the previous
step, we call a function Cut(T, v1, v2) that cuts the tree above each of the vertices v1
and v2. More precisely, for each i ∈ {1, 2}, one deletes from T the internal vertices
of the unique Steiner path pi that starts at vi that is contained in the unique path
between vi and r in T (Figure 2.(a)). Such Steiner paths p1 and p2 are always
guaranteed to exist because the root is a relevant vertex. This process splits the
original tree into three disjoint subtrees Tr, T1, T2 (Figure 2.(b)).

3. Subsequently, the algorithm contracts each of the three subtrees into a single vertex.
More precisely, Tr is contracted to r, T1 is contracted to v1, and T2 is contracted to
v2. We let G′ be the contracted graph. We note that in practice, the contraction
of a subtree is simulated by using a custom initialization in the Dijkstra algorithm.

4. Finally we apply the subroutine 3Steiner(G′, r, v1, v2) to computes an optimal 3-
terminal Steiner tree with terminal set {r, v1, v2} (Figure 2.(c)). This tree, to-
gether with the three subtrees Tr, T1 and T2 give rise to a tree Tr ∪ T1 ∪ T2 ∪
3Steiner(G′, r, v1, v2) whose weight is at most the weight of the input tree T . The
algorithm then returns a spanning-tree of this graph.

A summary of the algorithm is provided in algorithm 2. The procedure Improve does
not cut in all possible ways the tree T in three parts but tries to cut it at promising
locations. These locations are selected by the function SelectCut. This is done to speed

10
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up the convergence of the algorithm. The procedure Improve is receptively applied until
it stabilizes. After that, we apply a variation of this procedure called ImproveFull. The
only difference is that instead of using the function SelectCut in the first step, ImproveFull

build a list of all pairs of relevant vertices using a function called FullCut.

Let t be the number of terminals in the graph and ∆ be the maximum degree in T .
Every leaf of T are terminal, therefore we have ∆ ≤ t. We note that relevant vertices
are either terminals or have at least 2 children in T . As the leaf of T are terminals.
There is at most O(t) Steiner points that are relevant vertices. Therefore, there are at
most O(t) relevant vertices. For each relevant vertices, the algorithm generates at most
∆2 pair of vertices. Therefore, the time complexity of the function Improve(G,S, T ) is
O(t ·∆2 · (m+n log(n))), where n is the number of vertices and m is the number of edges
in G. The complexity of the function ImproveFull(G,S, T ) is O(t2 · (m+ n log(n))).

Algorithm 2: Improve(G,S, T )

Input: An edge weighted graph G, a set of terminals S and a Steiner tree T in G
spanning S
Output: A Steiner tree T ′ of cost at most cost(T ) spanning S.
for {v1, v2} ∈ SelectCut(T ) do

G′ ← G
if v1 ∈ T and v2 ∈ T then

(Tr, T1, T2)← Cut(T, v1, v2)
G′ ← G′/Tr/T1/T2 (G′ is obtained by contracting Tr, T1 and T2)
T ← Tr ∪ T1 ∪ T2 ∪ 3Steiner(G′, r, v1, v2)

end
end
return T

4 Experimental results

We have implemented our heuristic algorithm in C++ and compared it with six state-
of-the art solvers for the Steiner tree problem, including solvers that competed at the
PACE challenge 2018 [Bonnet and Sikora, 2019]. We refer to our solver as 3TST, an
acronym for 3-Terminal Steiner Tree. We will also benchmark a variant of our algorithm
called fast-3TST. In this variation, the algorithm generate a single initial solution using
DetInitialST applied to the first terminal, improve it until it stabilizes, and outputs the
result. The idea behind fast-3TST is to see the potential of the greedy algorithm and
the optimization procedure. We will see that the results of fast-3TST are closed to
3TST. The remaining solvers in our benchmarks are named according to the surnames,
or initials of their respective authors. These solvers are listed below.
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1. Grandcola’s Solver1 implements a local search algorithm.

2. HTKME Solver2 combines a star contraction algorithm from [Dvorák et al., 2018]
with several auxiliary heuristics.

3. HGSSB Solver3 performs a shortest path heuristic followed by a local optimization
step.

4. RCLG Solver4 implements an evolutionary algorithm.

5. KR Solver5 reduces the Steiner tree problem to a linear programming problem.

6. AO solver6 is based on a local optimization heuristic.

We used the original implementation of each of these solvers in our benchmark, without
any modification in the code. We benchmarked all the solvers on different data sets, some
of which are well established datasets for the Steiner tree problem (PACE2018 dataset
[Bonnet and Sikora, 2019], Vienna dataset), and some of which are well known datasets
in the field of networks (Urban Road Networks set [Road Networks, 2016], Network
repository [Rossi and Ahmed, 2015]). Finally, we also compared the solvers on synthetic
data sets obtained by generating random d-regular graphs for distinct values of d.

To compare the different solver we need a baseline value for each graph in our benchmark.
To get it, we use the exact solver SCIP-Jack [Rehfeldt et al., 2019b] to get an optimal
solution if possible or a lower bound on the optimal solution. The SCIP-Jack solver
uses the mixed integer programming framework SCIP to solve the Steiner tree problem
in graph. Solutions obtain by SCIP-Jack to the dual problem allows us to get a lower
bound on the insance. We run SCIP-Jack for 4 hours on a computer equipped with an
RyzenTM 1800X with at least 4Go of ram per instance running UbuntuTM 21.04. Some
of the graphs considered are too big to even get a lower bound using SCIP-Jack. In such
case, we use the best value found by any solver during our experiments as the baseline
value.

For each graph considered in our benchmark, we run each solver with a time limit of 30
minutes. When the time limit is reached, each solver received a Unix signal SIGTERM,
and had 30 seconds to output a solution before being killed. This is a similar experimental
setting as the one used in the PACE challenge 2018, whose theme was the Steiner tree

1http://www.dil.univ-mrs.fr/~gcolas/sgls.c
2https://github.com/goderik01/PACE2018
3https://github.com/maxhort/Pacechallenge-TrackC/
4https://github.com/HeathcliffAC/SteinerTreeProblem
5https://github.com/dRehfeldt/scipjack/
6https://github.com/SteinerGardeners/TrackC-Version1
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problem in graph. Each solution is associated with a score, which is defined as the
relative distance of the solution to the baseline value. If the value of the solution is v
and the baseline value is b then the score is the ratio v−b

b
. The score of a solver on a

data set is the sum of the scores over all graphs in the data set. With this measure, the
lower the score the better is the performance of the solver. In particular, a solver that
gets a score of 0 in a given instance have either found an optimal solution or is the best
solver on that instance.

For some instances of some data sets, some solvers did not output a feasible solution. In
these cases, we assigned a default value for the instance. To avoid penalizing excessively a
solver on such instances, we have defined the default value as the weight of a Steiner tree
obtained by computing a minimum spanning tree of the input graph and subsequently
by pruning this tree in such a way that each leaf is a terminal.

Each solver that uses a random procedure has an option to choose a particular seed with
the goal of making a computation deterministic, and therefore reproducible. We run
each solver 5 times with 5 different seeds and took the average cost of solutions. All the
5 seeds were chosen before the experiments were run. All our experiments were executed
on computers equipped with a Intel Xeon-GoldTM 6138 with a memory limit set at 4Gb
of RAM.
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In all figures and tables, our implementation is called 3TST and the fast variant is called
fast-3TST. Table 1 summarises the comparison between all the solvers. This table
gathers the sum of ratios obtained by each algorithm on each data set. The symbol
“*” following an entry in the table is used to indicate that for some graphs in the data
set, the solver did not output a feasible solution for at least one run. NC means that
the solver did not output a feasible solution for any of the graph in the data set. We
can see that our main implementation (3TST) obtains good results in most data sets,
and on one dataset, our main implementation obtains the best score (Geo Original).
Additionally, it is worth noting that the variation of our implementation is, with RCLG,
the one that could find feasible solutions more often in the Big Road Networks data
set, which contains graphs with millions of nodes. The difference between 3TST and
fast-3TST is that fast-3TST need less memory, all the failure for our implementation
comes from reaching the memory limit.

PACE-Challenge Graphs of the PACE Challenge 2018 dataset were selected by the
organizers of the competition from the hard instances of the well known Steinlib and
Vienna data sets. The average number of vertices is 27K, the average number of edges
is 48K, and the average number of terminals is 1114, with a median at 360.5. Finally,
most of these instances have treewidth above 40.

Figure 3 shows the score of each solver on each instance. Instances are sorted by in-
creasing number of vertices. On the first half of the instances, both variants of our
implementation provide decent solution but not as good as RCLG, KR or HTKME
which are among the four first in the PACE Challenge 2018. And Figure 4 show a fo-
cus on the second half of the instances. Those are the larger instances of the dataset.
On those larger instances with smaller average degree, both variant of our implemen-
tation is very good and on par with KR which is the best solver on this part of the
data. We note that the implementation of KR is based on the SCIP Optimization Suite,
a state-of-the-art tool for mixed integer programming [Gleixner et al., 2017]. We note
that 3TST and fast-3TST results are really closed. The main difference comes from
the small instances on which 3TST have time to try more than one initial solution. On
big instance, 3TST does not have time to finish stabilising the first initial solution and
therefore is identical to fast-3TST.

Vienna set Graphs in the Vienna set were generated from real-world telecommuni-
cation networks at the University of Vienna. This dataset is split into several types
of instances. We realized our benchmark on the so called I-Instances sub-dataset and
the Geo-Instances sub-dataset. I-Instances datases contains 85 instances representing
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deployment areas from various Austrian cities, but they also include rural areas with
smaller population density and very sparse infrastructure. The underlying graphs con-
tain between 7K and 178K nodes, 9K and 239K edges, and between 38 and 4991 ter-
minals. I-instances are available after simple preprocessing that eliminates non-terminal
nodes of degrees 1 and that contracts non-terminal nodes of degree 2. GEO-Instances
contains 23 instances originating from an Austrian city, with different deployment areas
and different density concerning the number of terminals. The graphs contain between
42K and 235K nodes, 52K and 366K edges, and between 88 and 6313 terminals. GEO-
instances are available both in their original form, or after advanced preprocessing as
proposed by Ribeiro et al. [Ribeiro et al., 2002].

Figure 5 shows the score of each solver on each instance of the I simple preprocessed
instances dataset. The graph is zoom in to be able to see the variation between most of
the solvers. As HGSSB has quite large ratios compared to the other solvers, its graph is
outside of the figure for most of the instances. Instances are sorted by increasing number
of vertices. We can see a similar behaviour as for the PACE Challenge instances. On
small instances, both variations of our implementation give decent solutions and show
their strength on larger instance where they give very good solutions. The instances of
this data set are small enough so that the KR solver, which is base on an exact solver,
manage to give the best solution in all case. KR solver use the same framework SCIP as
the SCIP-Jack exact solver. On such data set solutions given by KR Solver are optimal
or really close to optimal.

Figure 6 (resp. Figure 7) show the score of each solver on each instance of the Geo
Original (resp. Geo Advanced Preprocessed) dataset. Our implementation performs
well across the dataset. Both variants are just behind KR on most instances. Those two
versions of the dataset, with and without preprocessing, show the impact of preprocessing
on the different solvers. We can see that preprocessing have little impact for RCLG
solver and our solvers. In opposition to our previous solver AO or Grandcolas solver
which perform poorly on the big instance without preprocessing.

Steinlib [Koch et al., 2000] The SteinLib [Koch et al., 2000] is a collection of
Steiner tree problems in graphs and variants. This library is focus on hard instances
for the Steiner Tree problem on Graph. From this library, we use two datasets, namely
PUC [Rosseti et al., 2001] and I640 [Duin, 1993]. In PUC, graphs are hypercubes cho-
sen for their large integrality gaps and instances in I640 are random generated sparse
graphs with so called incidence edge weights, which are chosen to defy preprocessing.

Figure 8 (resp. Figure 9) shows the score of each solver on each instance of the PUC
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(resp. I640) instances dataset. I640 is an old datasets, we note that most solvers solve
every instances optimally or close to optimally. The PUC dataset is more interesting,
instances are still hard and only few of them are solved optimally. On this dataset, our
solvers perform inline with the other solvers.

d-regular graphs We generated random d-regular graphs using the random generator
from the python package Networkx. The number of vertices were chosen uniformly at
random from the range [10000; 200000]. The weights on the edge follow a normal distri-
bution with mean uniformly chosen from the range [2000; 10000] and standard deviation
uniformly chosen from the range [200; 2000]. Negative weights were set to 0. The num-
ber of terminals was chosen uniformly at random between 2% and 10% of the number of
vertices. Terminals were chosen uniformly at random from the vertices. We generated
10 graphs for each d in the set {3, 4, 5, 6, 7, 8, 9, 10, 20}.

Figure 10 and Table 1 show the evolution of the ratio for each solver with respect to the
degree d of the vertices of the graphs. The gap between the costs obtained by the solver
and the lower bound is really big, therefore, in Figure 10 the baseline value used is the
best solution found during the experiment. The KR solver perform quite poorly on those
datasets. The ratio obtained by the KR solver for d ≥ 4 are arround 10, therefore they
cannot be seen on Figure 10. The best solver in these datasets is the solver RCLG, which
implements a genetic algorithm. The ratios obtained by our solvers (3TST) alternated
between the third best and forth best. We note that, the solver KR, which reduces
the Steiner tree problem to mixed integer-programming, started failing to give feasible
solutions for some instances. We also note that for most of value of d, the ratio obtains
by all the solvers are big. This seems to indicate that on those dataset, the exact solver
SCIP-Jack does not manage to get good lower bound. This is coherent with the failures
of KR on some of the instances.

City Road Networks This well known data set contains graphs associated with road
networks for 80 of the most populated urban areas in the world. As the original graphs
were not connected we filtered each instance by taking only the largest connected com-
ponent of each graph. Since these graphs do not come originally with information about
terminal nodes, we selected these terminals at random. First, we selected a number
r uniformly at random in the range between 2% and 10% of the number of vertices.
Subsequently, we selected r distinct vertices uniformly at random among the vertices of
the graph. The graphs contain between 2K and 685K nodes, 3K and 924K edges and
between 246 and 53275 terminals

Figure 11 shows the score of each solver on each instance of the City Road Networks set.

17

157



Solvers AO Grandcolas HGSSB HTKME KR RCLG 3TST fast-3TST

Instance 1 NC NC 0.3803* 0.0226 NC 0.0010 0.12414 0.12413
Instance 2 NC NC NC 0.0062 NC 0.0001 0.09974 0.09963
Instance 3 NC NC NC 1.0189* NC 0.0000 0.13593 0.13562
Instance 4 NC NC NC 0.0223 0.0002 0.0073 0.12464 0.12475
Instance 5 NC NC NC 0.0027 0.0000 0.0019 0.10464 0.10475
Instance 6 NC NC NC NC NC 0.0000 0.13313 0.13292
Instance 7 NC NC NC NC NC 0.0000 NC 0.17022
Instance 8 NC NC NC NC NC 0.0000 NC 0.08592
Instance 9 NC NC NC NC NC NC NC NC

Table 2: Big road networks: ratios for all algorithms on the big road networks data set.
The smallest the value the better is the solver on a given data set. A value of 0 means
that the solver was the best the instance. The superscript number in the column of our
solver give the rank of our solver on that instance. For example 0.08912 means that our
solver is the second best solver on the instance. NC means that the solver could not find
a solution for the instance.

Instances are sorted by increasing number of vertices. We note that on the first half of
the instances, almost all solvers manage to give really good solutions. As the size of the
instances grow, the solver KR, which reduces Steiner tree to mixed-integer programming,
starts to be the dominant best solver. Nevertheless, our solver still outputs solutions with
a very good ratio (of at most 0.2). Unlike with the other datasets, our approach does
not scale smoothly as the size of the graphs increase. In the second half of the dataset,
the ratio obtained by our solvers oscillate between less than 0.02 and more than 0.1.

Big Road Networks In this data set was used to push the solvers to their limits. We
selected 9 unweighted road networks with more than 1 million nodes. As in the previous
dataset, the biggest connected component was kept, the number of terminals was chosen
uniformly at random between 2% and 10% of the number of vertices. These graphs
contain between 1087K and 23947K nodes, 1541K and 28854K edges, and between
52K and 2074K terminals

Table 2 shows the ratio of each solver on each of these five instances. On this dataset
HGSSB, HTKME, KR, RCLG and our algorithm (3TST and fast-3TST) managed to
output some solution for some of the instances. AO and Grandcolas did not output any
valid solution. On the 9 graphs, HGSSB outputs a solution on some of it run on the first
instance, HTKME outputs some solution for the first 5 instances, KR outputs solutions
for 2 instances, RCLG output solution for all except the biggest instance, and 3TST

output solution for the first 6 instance and 3TST for all instance except the last one.
This dataset highlights one of the strengths of our solver, which is the ability to handle
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very large instances and still give good solutions, when compared with other solvers. On
this dataset, the failures of our implementation are due to the memory limit. The same
applies for most the failures of the other solvers as well.

Running time of fast-3TST fast-3TST is the only solver that terminates by it-
self. All other tested solvers run until the timeout signal is received. Therefore, measur-
ing the running time is only interesting for fast-3TST. We have seen in our experiment,
even if fast-3TST is more restricted than 3TST, the results obtained are quite close.
Figure 12, Figure 13 and Figure 14 show the running time of fast-3TST on each in-
stance of the PACE Challenge, PUC and I640 dataset. Let first note that on those 3
datasets, fast-3TST runs significantly less than 30 min on many instances. This shows
that the simple combination of DetInitialST and our optimization procedure outputs fast
good solutions.

5 Conclusion

In this work, we introduced a simple combinatorial heuristic algorithm for the Steiner
tree problem. Our heuristic is similar in spirit to the classic approximation algorithm of
Robin and Zelikovsky [Robins and Zelikovsky, 2005], that works by replacing sub-trees of
a prospective solution with Steiner trees on a small set of terminals. In our case, we use
a routine that splits a prospective solution Steiner tree into three disjoint subtrees, and
that reconnects these subtrees by taking the union with a 3-terminal Steiner tree, where
the terminals are the roots of the subtrees. We note that one distinguishing feature of
our algorithm is that it is well suited for large graphs, since it does not require the book-
keeping of the distances between all pairs of vertices in the graph. Indeed we almost only
need to keep track of the edges of a slightly pre-processed version of the input graph,
where non-terminal vertices of degree 1 are removed, and edges containing non-terminal
vertices of degree 2 are contracted.

Our experimental results have shown that our algorithm fits well the category of a
general purpose Steiner tree heuristic, since it was able to obtain good solutions in all
benchmarked datasets when compared with other solvers. We note that the best solver in
some datasets was built upon a state-of-the art mixed-integer programming package. In
some other datasets, the best solver was based on genetic algorithms. On the other hand,
our algorithm essentially consists in the application of a single simple replacement routine
that is applied multiple times until the time limit is reached. Still the solutions obtained
by our solvers were very competitive, often being the second best in the benchmarks and
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with a very small ratio (v − b)/b where v is the weight of our solution and b a known
lower bound or the weight of the best solver. It is also worth noting that our algorithm
was able to handle graphs with millions of vertices, while most of the other solvers failed
in all these big instances. Finally, it is worth noting that one possible application of our
Steiner-tree improvement sub-routine is as a black-box that can be used to improve the
solution output by other solvers.
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Figure 3: PACE Challenge: Show the ratio obtained by each solver on each instance of
the PACE Challenge data set. Instances are sorted by increasing number of vertices.

Figure 4: PACE Challenge: Show the ratio obtained by each solver on the 50 largest
instances of the PACE Challenge data set. Instances are sorted by increasing number of
vertices.

Figure 5: I simple: Show the ratio obtained by each solver on each instance of the I
simple preprocessed instances data set. Instances are sorted by increasing number of
vertices. 24
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Figure 6: Geo Original: Show the ratio obtained by each solver on each instance of the
Geo Original instances data set. Instances are sorted by increasing number of vertices.

Figure 7: I simple: Show the ratio obtained by each solver on each instance of the Geo
Advanced preprocessed instances data set. Instances are sorted by increasing number of
vertices.
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Figure 8: PUC: Show the ratio obtained by each solver on each instance of the PUC
instances data set. Instances are sorted by increasing number of vertices.

Figure 9: I640: Show the ratio obtained by each solver on each instance of the I640
instances data set. Instances are sorted by increasing number of vertices.
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Figure 10: d-regular: Show the ratio obtained by each solver on d-regular random graph.
Show the evolution of the ratio with respect to increasing values of d. Starting from
d = 4, the ratio of the KR solver is around 10.

Figure 11: City road networks: Show the ratio obtained by each solver on each instance
of the City road networks data set. Instances are sorted by increasing number of vertices.
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Figure 12: PACE Challenge: Show the running time of fast-3TST on each instance of
the PACE Challenge data set. Instances are sorted by increasing number of vertices.

Figure 13: PUC: Show the running time of fast-3TST on each instance of the PUC
data set. Instances are sorted by increasing number of vertices.

Figure 14: I640: Show the running time of fast-3TST on each instance of the I640
data set. Instances are sorted by increasing number of vertices.
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Abstract

In the Intersection Non-emptiness problem, we are given a list of finite
automata A1, A2, . . . , Am over a common alphabet Σ as input, and the goal is to
determine whether some string w ∈ Σ∗ lies in the intersection of the languages
accepted by the automata in the list. We analyze the complexity of the Inter-

section Non-emptiness problem under the promise that all input automata
accept a language in some level of the dot-depth hierarchy, or some level of the
Straubing-Thérien hierarchy. Automata accepting languages from the lowest levels
of these hierarchies arise naturally in the context of model checking. We identify
a dichotomy in the dot-depth hierarchy by showing that the problem is already
NP-complete when all input automata accept languages of the levels B0 or B1/2

and already PSPACE-hard when all automata accept a language from the level B1.
Conversely, we identify a tetrachotomy in the Straubing-Thérien hierarchy. More
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precisely, we show that the problem is in AC0 when restricted to level L0; complete
for L or NL, depending on the input representation, when restricted to languages in
the level L1/2; NP-complete when the input is given as DFAs accepting a language
in L1 or L3/2; and finally, PSPACE-complete when the input automata accept lan-
guages in level L2 or higher. Moreover, we show that the proof technique used
to show containment in NP for DFAs accepting languages in L1 or L3/2 does not
generalize to the context of NFAs. To prove this, we identify a family of languages
that provide an exponential separation between the state complexity of general
NFAs and that of partially ordered NFAs. To the best of our knowledge, this is
the first superpolynomial separation between these two models of computation.

1 Introduction

The Intersection Non-emptiness problem for finite automata is one of the most
fundamental and well studied problems in the interplay between algorithms, complexity
theory, and automata theory [Kozen, 1977,Kasai and Iwata, 1985,Lange and Rossmanith,
1992, Wareham, 2000, Karakostas et al., 2003, Wehar, 2014, Fernau and Krebs, 2017,
Wehar, 2016]. Given a list A1, A2, . . . , Am of finite automata over a common alphabet Σ,
the goal is to determine whether there is a string w ∈ Σ∗ that is accepted by each
of the automata in the list. This problem is PSPACE-complete when no restrictions are
imposed [Kozen, 1977], and becomes NP-complete when the input automata accept unary
languages (implicitly contained already in [Stockmeyer and Meyer, 1973] and studied in
detail in [Morawietz et al., 2020]) or finite languages [Rampersad and Shallit, 2010].

In this work, we analyze the complexity of the Intersection Non-emptiness prob-
lem under the assumption that the languages accepted by the input automata belong
to a given level of the Straubing-Thérien hierarchy [Place and Zeitoun, 2019, Straub-
ing, 1981, Straubing, 1985, Thérien, 1981] or to some level of the Cohen-Brzozowski
dot-depth hierarchy [Brzozowski, 1976,Cohen and Brzozowski, 1971,Place and Zeitoun,
2019]. Somehow, these languages are severely restricted, in the sense that both hier-
archies, which are infinite, are entirely contained in the class of star-free languages, a
class of languages that can be represented by expressions that use union, concatena-
tion, and complementation, but no Kleene star operation [Brzozowski, 1976,Brzozowski
and Knast, 1978, Place and Zeitoun, 2019]. Yet, languages belonging to fixed levels
of either hierarchy may already be very difficult to characterize, in the sense that the
very problem of deciding whether the language accepted by a given finite automaton
belongs to a given full level or half-level k of either hierarchy is open, except for a few
values of k [Almeida and Klíma, 2010,Glaßer and Schmitz, 2001,Glaßer and Schmitz,
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2000,Place and Zeitoun, 2019]. It is worth noting that while the problem of determining
whether a given automaton accepts a language in a certain level of either the dot-depth
or of the Straubing-Thérien hierarchy is computationally hard (Theorem 1), automata
accepting languages in lower levels of these hierarchies arise naturally in a variety of ap-
plications such as model checking where the Intersection Non-emptiness problem
is of fundamental relevance [Abdulla, 2012,Bouajjani et al., 2000,Bouajjani et al., 2007].

An interesting question to consider is how the complexity of the Intersection Non-

emptiness problem changes as we move up in the levels of the Straubing-Thérien hier-
archy or in the levels of the dot-depth hierarchy. In particular, does the complexity of
this problem changes gradually, as we increase the complexity of the input languages? In
this work, we show that this is actually not the case, and that the complexity landscape
for the Intersection Non-emptiness problem is already determined by the very first
levels of either hierarchy (see Figure 1). Our first main result states that the Inter-

section Non-emptiness problem for NFAs and DFAs accepting languages from the
level 1/2 of the Straubing-Thérien hierarchy are NL-complete and L-complete, respec-
tively, under AC0 reductions (Theorem 3). Additionally, this completeness result holds
even in the case of unary languages. To prove hardness for NL and L, respectively, we will
use a simple reduction from the reachability problem for DAGs and for directed trees,
respectively. Nevertheless, the proof of containment in NL and in L, respectively, will
require a new insight that may be of independent interest. More precisely, we will use a
characterization of languages in the level 1/2 of the Straubing-Thérien hierarchy as shuf-
fle ideals to show that the Intersection Non-emptiness problem can be reduced to
concatenation non-emptiness (Lemma 2). This allows us to decide Intersection
Non-emptiness by analyzing each finite automaton given at the input individually. It
is worth mentioning that this result is optimal in the sense that the problem becomes
NP-hard even if we allow a single DFA to accept a language from L1, and require all the
others to accept languages from L1/2 (Theorem 5).

Subsequently, we analyze the complexity of Intersection Non-emptiness when all
input automata are assumed to accept languages from one of the levels of B0 or B1/2

of the dot-depth hierarchy, or from the levels L1 or L3/2 of the Straubing-Thérien hi-
erarchy. It is worth noting that NP-hardness follows straightforwardly from the fact
that Intersection Non-emptiness for DFAs accepting finite languages is already
NP-hard [Rampersad and Shallit, 2010]. Containment in NP, on the other hand, is a
more delicate issue, and here the representation of the input automaton plays an im-
portant role. A characterization of languages in L3/2 in terms of languages accepted
by partially ordered NFAs [Schwentick et al., 2001] is crucial for us, combined with the
fact that Intersection Non-emptiness when the input is given by such automata
is NP-complete [Masopust and Thomazo, 2015]. Intuitively, the proof in [Masopust and
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Thomazo, 2015] follows by showing that the minimum length of a word in the intersection
of languages in the level 3/2 of the Straubing-Thérien hierarchy is bounded by a polyno-
mial on the sizes of the minimum partially ordered NFAs accepting these languages. To
prove that Intersection Non-emptiness is in NP when the input automata are given
as DFAs, we prove a new result establishing that the number of Myhill-Nerode equiva-
lence classes in a language in the level L3/2 is at least as large as the number of states
in a minimum partially ordered automaton representing the same language (Lemma 5).

Interestingly, we show that the proof technique used to prove this last result does not
generalize to the context of NFAs. To prove this, we carefully design a sequence (Ln)n∈N≥1

of languages over a binary alphabet such that for every n ∈ N≥1, the language Ln can
be accepted by an NFA of size n, but any partially ordered NFA accepting Ln has
size 2Ω(

√
n). This lower bound is ensured by the fact that the syntactic monoid of Ln has

many J -factors. Our construction is inspired by a technique introduced by Klein and
Zimmermann, in a completely different context, to prove lower bounds on the amount of
look-ahead necessary to win infinite games with delay [Klein and Zimmermann, 2016].
To the best of our knowledge, this is the first exponential separation between the state
complexity of general NFAs and that of partially ordered NFAs. While this result does
not exclude the possibility that Intersection Non-emptiness for languages in L3/2

represented by general NFAs is in NP, it gives some indication that proving such a
containment requires substantially new techniques.

Finally, we show that Intersection Non-emptiness for both DFAs and for NFAs is
already PSPACE-complete if all accepting languages are from the level B1 of the dot-depth
hierarchy or from the level L2 of the Straubing-Thérien hierarchy. We can adapt Kozen’s
classical PSPACE-completeness proof by using the complement of languages introduced
in [Masopust and Krötzsch, 2021] in the study of partially ordered automata. Since the
languages in [Masopust and Krötzsch, 2021] belong to L3/2, their complement belong
to L2 (and to B1), and therefore, the proof follows.

Acknowledgment We like to thank Lukas Fleischer and Michael Wehar for our dis-
cussions. This work started at the Schloss Dagstuhl Event 20483 Moderne Aspekte der
Komplexitätstheorie in der Automatentheorie https://www.dagstuhl.de/20483.

2 Preliminaries

We let N≥k denote the set of natural numbers greater or equal than k.
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We assume the reader to be familiar with the basics in computational complexity the-
ory [Papadimitriou, 1994]. In particular, we recall the inclusion chain: AC0 ⊂ NC1 ⊆
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE. Let AC0 (NC1, respectively) refer to the class of problems
accepted by Turing machines with a bounded (unbounded, respectively) number of alter-
nations in logarithmic time; alternatively one can define these classes by uniform Boolean
circuits. Here, L (NL, respectively) refers to the class of problems that are accepted by
deterministic (nondeterministic, respectively) Turing machines with logarithmic space,
P (NP, respectively) denotes the class of problems solvable by deterministic (nonde-
terministic, respectively) Turing machines in polynomial time, and PSPACE refers to
the class of languages accepted by deterministic or nondeterministic Turing machines
in polynomial space [Savitch, 1970]. Completeness and hardness are always meant with
respect to deterministic logspace many-one reductions unless otherwise stated. We will
also consider the parameterized class XP of problems that can be solved in time nf(k),
where n is the size of the input, k is a parameter, and f is a computable function [Flum
and Grohe, 2006].

We mostly consider nondeterministic finite automata (NFAs). An NFA A is a tuple
A = (Q,Σ, δ, q0, F ), where Q is the finite state set with the start state q0 ∈ Q, the
alphabet Σ is a finite set of input symbols, and F ⊆ Q is the final state set. The
transition function δ : Q×Σ→ 2Q extends to words from Σ∗ as usual. Here, 2Q denotes
the powerset of Q. By L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }, we denote the language
accepted by A. The NFA A is a deterministic finite automaton (DFA) if |δ(q, a)| = 1 for
every q ∈ Q and a ∈ Σ. Then, we simply write δ(q, a) = p instead of δ(q, a) = {p}. If
|Σ| = 1, we call A a unary automaton.

We study Intersection Non-emptiness problems and their complexity. For finite
automata, this problem is defined as follows:

• Input : Finite automata Ai = (Qi,Σ, δi, q(0,i), Fi), for 1 ≤ i ≤ m.

• Question : Is there a word w that is accepted by all Ai, i.e., is
⋂m

i=1 L(Ai) 6= ∅?

Observe that the automata have a common input alphabet. Note that the complexity
of the non-emptiness problem for finite automata of a certain type is a lower bound for
the Intersection Non-emptiness for this particular type of automata. Through-
out the paper we are mostly interested in the complexity of the Intersection Non-

emptiness problem for finite state devices whose languages are contained in a particular
language class.

We study the computational complexity of the intersection non-emptiness problem for
languages from the classes of the Straubing-Thérien [Straubing, 1981,Thérien, 1981] and
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Figure 1: Straubing-Thérien and dot-depth hierarchies: the Intersection Non-
emptiness status.

Cohen-Brzozowski’s dot-depth hierarchy [Cohen and Brzozowski, 1971]. Both hierarchies
are concatenation hierarchies that are defined by alternating the use of polynomial and
Boolean closures. Let’s be more specific. Let Σ be a finite alphabet. A language L ⊆ Σ∗ is
a marked product of the languages L0, L1, . . . , Lk, if L = L0a1L1 · · · akLk, where the ai’s
are letters. For a class of languages M, the polynomial closure of M is the set of
languages that are finite unions of marked product of languages fromM.

The concatenation hierarchy of basisM (a class of languages) is defined as follows (also
refer to [Pin, 1998]): Level 0 isM, i.e.,M0 =M and, for each n ≥ 0,

1. Mn+1/2, that is, level n+ 1/2, is the polynomial closure of level n and

2. Mn+1, that is, level n+ 1, is the Boolean closure of level n+ 1/2.

The basis of the dot-depth hierarchy is the class of all finite and co-finite languages1 and
their classes are referred to as Bn (Bn+1/2, respectively), while the basis of the Straubing-
Thérien hierarchy is the class of languages that contains only the empty set and Σ∗ and
their classes are denoted by Ln (Ln+1/2, respectively). Their inclusion relation is given
by

Bn+1/2 ⊆ Bn+1 ⊆ Bn+3/2 and Ln+1/2 ⊆ Ln+1 ⊆ Ln+3/2,

for n ≥ 0, and

Ln−1/2 ⊆ Bn−1/2 ⊆ Ln+1/2 and Ln ⊆ Bn ⊆ Ln+1,

for n ≥ 1. In particular, L0 ⊆ B0, B0 ⊆ B1/2, and L0 ⊆ L1/2. Both hierarchies are
infinite for alphabets of at least two letters and completely exhaust the class of star-free
languages, which can be described by expressions that use union, concatenation, and
complementation, but no Kleene star operation. For singleton letter alphabets, both
hierarchies collapse to B0 and L1, respectively. Next, we describe the first few levels of
each of these hierarchies:

1The dot-depth hierarchy, apart from level B0, coincides with the concatenation hierarchy starting
with the language class {∅, {λ},Σ+,Σ∗}.
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Straubing-Thérien hierarchy: A language of Σ∗ is of level 0 if and only if it is empty
or equal to Σ∗. The languages of level 1/2 are exactly those languages that are
a finite (possibly empty) union of languages of the form Σ∗a1Σ∗a2 · · · akΣ∗, where
the ai’s are letters from Σ. The languages of level 1 are finite Boolean combina-
tions of languages of the form Σ∗a1Σ∗a2 · · · akΣ∗, where the ai’s are letters. These
languages are also called piecewise testable languages. In particular, all finite and
co-finite languages are of level 1. Finally, the languages of level 3/2 of Σ∗ are the
finite unions of languages of the form Σ∗0a1Σ∗1a2 · · · akΣ∗k, where the ai’s are letters
from Σ and the Σi are subsets of Σ.

Dot-depth hierarchy: A language of Σ∗ is of dot-depth (level) 0 if and only if it is
finite or co-finite. The languages of dot-depth 1/2 are exactly those languages that
are a finite union of languages of the form u0Σ∗u1Σ∗u2 · · · uk−1Σ∗uk, where k ≥ 0

and the ui’s are words from Σ∗. The languages of dot-depth 1 are finite Boolean
combinations of languages of the form u0Σ∗u1Σ∗u2 · · · uk−1Σ∗uk, where k ≥ 0 and
the ui’s are words from Σ∗.

It is worth mentioning that in [Schwentick et al., 2001] it was shown that partially
ordered NFAs (with multiple initial states) characterize the class L3/2, while partially
ordered DFAs characterize the class of R-trivial languages [Brzozowski and Fich, 1980], a
class that is strictly in between L1 and L3/2. For an automaton A with input alphabet Σ,
a state q is reachable from a state p, written p ≤ q, if there is a word w ∈ Σ∗ such that
q ∈ δ(p, w). An automaton is partially ordered if ≤ is a partial order. Partially ordered
automata are sometimes also called acyclic or weakly acyclic automata. We refer to a
partially ordered NFA (DFA, respectively) as poNFA (poDFA, respectively).

The fact that some of our results have a promise looks a bit technical, but the following
result implies that we cannot get rid of this condition in general. To this end, we study,
for a language class L, the following question of L-Membership.

• Input : A finite automaton A.

• Question : Is L(A) ∈ L?

Theorem 1. For each level L of the Straubing-Thérien or the dot-depth hierarchies,
the L-Membership problem for NFAs is PSPACE-hard, even when restricted to binary
alphabets.

Proof. For the PSPACE-hardness, note that each of the classes contains {0, 1}∗ and is
closed under quotients, since each class is a positive variety. As Non-universality
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is PSPACE-hard for NFAs, we can apply Theorem 3.1.1 of [Hunt III and Rosenkrantz,
1978], first reducing regular expressions to NFAs.

For some of the lower levels of the hierarchies, we also have containment in PSPACE, but
in general, this is unknown, as it connects to the famous open problem if, for instance,
L-Membership is decidable for L = L3; see [Masopust, 2018,Place and Zeitoun, 2019]
for an overview on the decidability status of these questions. Checking for L0 up to L2

and B0 up to B1 containment for DFAs can be done in NL and is also complete for this
class by ideas similar to the ones used in [Cho and Huynh, 1991].

3 Inside Logspace

A language of Σ∗ belongs to level 0 of the Straubing-Thérien hierarchy if and only if it
is empty or Σ∗. The Intersection Non-emptiness problem for language from this
language family is not entirely trivial, because we have to check for emptiness. Since
by our problem definition the property of a language being a member of level 0 is a
promise, we can do the emptiness check within AC0, since we only have to verify whether
the empty word belongs to the language L specified by the automaton. In case ε ∈ L,
then L = Σ∗; otherwise L = ∅. Since in the definition of finite state devices we do not
allow for ε-transitions, we thus only have to check whether the initial state is also an
accepting one. Therefore, we obtain:

Theorem 2. The Intersection Non-emptiness problem for DFAs or NFAs accept-
ing languages from L0 belongs to AC0.

For the languages of level L1/2 we find the following completeness result.

Theorem 3. The Intersection Non-emptiness problem for NFAs accepting lan-
guages from L1/2 is NL-complete. Moreover, the problem remains NL-hard even if we
restrict the input to NFAs over a unary alphabet. If the input instance contains only
DFAs, the problem becomes L-complete (under weak reductions2).

Hardness is shown by standard reductions from variants of graph accessibility [Hartmanis
et al., 1978,Sudborough, 1975].

Lemma 1. The Intersection Non-emptiness problem for NFAs over unary alphabet
accepting languages from L1/2 is NL-hard. If the input instance contains only DFAs, the
problem becomes L-hard under weak reductions.

2Some form of AC0 reducibility can be employed.
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Proof. The NL-complete graph accessibility problem 2-GAP [Sudborough, 1975] is de-
fined as follows: given a directed graph G = (V,E) with outdegree (at most) two and two
vertices s and t. Is there a path linking s and t in G? The problem remains NL-complete
if the outdegree of every vertex of G is exactly two and if the graph is ordered, that is,
if (i, j) ∈ E, then i < j must be satisfied. The complexity of the reachability problem
drops to L-completeness, if one considers the restriction that the outdegree is at most
one. In this case the problem is referred to as 1-GAP [Hartmanis et al., 1978].

First we consider the Intersection Non-emptiness problem for NFAs. The NL-
hardness is seen as follows: let G = (V,E) and s, t ∈ V be an ordered 2-GAP instance.
Without loss of generality, we assume that V = {1, 2, . . . , n}, the source vertex s = 1,
and the target vertex t = n. From G we construct a unary NFA A = (V, {a}, δ, 1, n),
where δ(i, a) = { j | (i, j) ∈ E } ∪ {i}. The 2-GAP instance has a solution if and only
if the language accepted by A is non-empty. Moreover, by construction the automaton
accepts a language of level 1/2, because (i) the NFA without a-self-loops is acyclic,
since G is ordered, and thus does not contain any large cycles and (ii) all states do have
self-loops.

Finally, we concentrate on the L-hardness of the Intersection Non-emptiness prob-
lem for DFAs. Here we use the 1-GAP variant to prove our result. Let G = (V,E)

and s, t ∈ V be a 1-GAP instance, where we can assume that V = {1, 2, . . . , n}, s = 1,
and t = n. From G we construct a unary DFA A = (V, {a}, δ, 1, n) with δ(i, a) = j,
for (i, j) ∈ E and 1 ≤ i < n, and δ(n, a) = n. By construction the DFA A accepts
either the empty language or a unary language where all words are at least of a certain
length. In both cases L(A) is a language from level 1/2 of the Straubing-Thérien hier-
archy. Moreover, it is easy to see that there is a path in G linking s and t if and only if
L(A) 6= ∅.

It remains to show containment in logspace. To this end, we utilize an alternative charac-
terization of the languages of level 1/2 of the Straubing-Thérien hierarchy as exactly those
languages that are shuffle ideals. A language L is a shuffle ideal if, for every word w ∈ L
and v ∈ Σ∗, the set w � v is contained in L, where w � v := {w0v0w1v1 . . . wkvk |
w = w0w1 . . . wk and v = v0v1 . . . vk with wi, vi ∈ Σ∗, for 0 ≤ i ≤ k }. The operation �
naturally generalizes to sets. For the level L1/2, we find the following situation.

Lemma 2. Let m ≥ 1 and languages Li ⊆ Σ∗, for 1 ≤ i ≤ m, be shuffle ideals, i.e.,
they belong to L1/2. Then,

⋂m
i=1 Li 6= ∅ iff the shuffle ideal L1L2 · · ·Lm 6= ∅ iff Li 6= ∅

for every i with 1 ≤ i ≤ m. Finally, Li 6= ∅, for 1 ≤ i ≤ m, iff (a1a2 . . . ak)`i ∈ Li, where
Σ = {a1, a2, . . . ak} and the shortest word in Li is of length `i.
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Proof. The implication from left to right holds, because if
⋂m

i=1 Li 6= ∅, then there is a
word w that belongs to all Li, and hence the concatenation L1L2 · · ·Lm is nonempty,
too. Since this argument has not used the prerequisite that the Li’s belong to the first
half level of the Straubing-Thérien hierarchy, this implication does hold in general.

For the converse implication, recall that a language L of the first half level is a finite
(possibly empty) union of languages of the form Σ∗a1Σ∗a2 · · · akΣ∗, where the ai’s are
letters. Hence, whenever a word w belongs to L, any word of the form uwv with u, v ∈ Σ∗

is a member of L, too. Now assume that L1L2 · · ·Lm 6= ∅, which can be witnessed by
words wi ∈ Li, for 1 ≤ i ≤ m. But then the word w1w2 . . . wm belongs to every Li,
by setting u = w1w2 . . . wi−1 and v = wi+1wi+2 . . . wm and using the argument above.
Therefore, the intersection of all Li, i.e., the set

⋂m
i=1 Li, is nonempty, because of the

word w1w2 . . . wm.

The statement that L1L2 · · ·Lm is an ideal and that L1L2 · · ·Lm 6= ∅ if and only if Li 6= ∅,
for every i with 1 ≤ i ≤ m, is obvious.

For the last statement, assume Σ = {a1, a2 . . . , ak}. The implication from right to left
is immediate, because if (a1a2 . . . ak)`i ∈ Li, for `i as specified above, then Li is non-
empty. Conversely, if Li is non-empty, then there is a shortest word w of length `i that
is contained in Li. But then (a1a2 . . . ak)`i belongs to w�Σ∗, which by assumption is a
subset of the language Li, since Li is an ideal. Therefore, Li 6= ∅ implies (a1a2 . . . ak)`i ∈
Li, which proves the stated claim.

Now, we are ready to prove containment in logspace and thereby conclude the proof of
Theorem 3.

Lemma 3. The Intersection Non-emptiness problem for NFAs accepting languages
from L1/2 belongs to NL. If the input instance contains only DFAs, the problem is in L.

Proof. In order to solve the Intersection Non-emptiness problem for given finite
automata A1, A2, . . . , Am with a common input alphabet Σ, regardless of whether they
are deterministic or nondeterministic, it suffices to check non-emptiness for all lan-
guages L(Ai), for 1 ≤ i ≤ m, in sequence, because of Lemma 2. To this end, mem-
bership of the words (a1a2 . . . ak)`i in Li has to be tested, where `i is the length of the
shortest word in Li. Obviously, all `i are linearly bounded in the number of states of
the appropriate finite automaton that accepts Li. Hence, for NFAs as input instance,
the test can be done on a nondeterministic logspace-bounded Turing machine, guessing
the computations in the individual NFAs on the input word (a1a2 . . . ak)`i . For DFAs as
input instance, nondeterminism is not needed, so that the procedure can be implemented
on a deterministic Turing machine.
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4 NP-Completeness

In contrast to the Straubing-Thérien hierarchy, the Intersection Non-emptiness

problem for languages from the dot-depth hierarchy is already NP-hard in the lowest
level B0. More precisely, Intersection Non-emptiness for finite languages is NP-
hard [Rampersad and Shallit, 2010, Theorem 1] and B0 already contains all finite lan-
guages. Hence, the Intersection Non-emptiness problem for languages from the
Straubing-Thérien hierarchy of level L1 and above is NP-hard, too. For the levels B0,
B1/2, L1, or L3/2, we give matching complexity upper bounds if the input are DFAs,
yielding the first main result of this section proven in subsection 4.1.

Theorem 4. The Intersection Non-emptiness problem for DFAs accepting lan-
guages from either B0, B1/2, L1, or L3/2 is NP-complete. The same holds for poNFAs
instead of DFAs. The results hold even for a binary alphabet.

For the level L1 of the Straubing-Thérien hierarchy, we obtain with the next main the-
orem a stronger result. Recall that if all input DFAs accept languages from L1/2, the
Intersection Non-emptiness problem is L-complete due to Lemmata 1 and 3.

Theorem 5. The Intersection Non-emptiness problem for DFAs is NP-complete
even if only one DFA accepts a language from L1 and all other DFAs accept languages
from L1/2 and the alphabet is binary.

The proof of this theorem will be given in subsection 4.2.

For the level B0, we obtain a complete picture of the complexity of the Intersection

Non-emptiness problem, independent of structural properties of the input finite au-
tomata, i.e., we show that here the problem is NP-complete for general NFAs.

For the level L3/2, if the input NFA are from the class of poNFA, which character-
ize level L3/2, then the Intersection Non-emptiness problem is known to be NP-
complete [Masopust and Krötzsch, 2021]. Recall that L3/2 contains the levels B1/2,
and L1 and hence also languages from these classes can be represented by poNFAs. But
if the input automata are given as NFAs without any structural property, then the pre-
cise complexity of Intersection Non-emptiness for B1/2, L1, and L3/2 is an open
problem and narrowed by NP-hardness and membership in PSPACE. We present a “No-
Go-Theorem” by proving that for an NFA accepting a co-finite language, the smallest
equivalent poNFA is exponentially larger in Subsection 4.3.

Theorem 6. For every n ∈ N≥1, there exists a language Ln ∈ B0 on a binary alphabet
such that Ln is recognized by an NFA of size O(n2), but the minimal poNFA recognizing
Ln has more than 2n−1 states.
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While for NFAs the precise complexity for Intersection Non-emptiness of languages
from L1 remains open, we can tackle this gap by narrowing the considered language class
to commutative languages in level L1; recall that a language L ⊆ Σ∗ is commutative if,
for any a, b ∈ Σ and words u, v ∈ Σ∗, we have that uabv ∈ L implies ubav ∈ L. We show
that for DFAs, this restricted Intersection Non-emptiness problem remains NP-
hard, in case the alphabet is unbounded. Concerning membership in NP, we show that
even for NFAs, the Intersection Non-emptiness problem for commutative languages
is contained in NP in general and in particular for commutative languages on each level.
This generalizes the case of unary NFAs. Note that for commutative languages, the
Straubing-Thérien hierarchy collapses at level L3/2. See Subsection 4.4 for the proofs.

Theorem 7. The Intersection Non-emptiness problem

• is NP-hard for DFAs accepting commutative languages in L1, but

• is contained in NP for NFAs accepting commutative languages that might not be
star-free.

The proof of NP-hardness for commutative star-free languages in L1 requires an arbitrary
alphabet. However, we show that Intersection Non-emptiness is contained in XP,
with the size of the alphabet as the parameter, for specific forms of NFAs accepting
commutative star-free languages, i.e., for fixed input alphabets, the Intersection Non-

emptiness problem is solvable in polynomial time for this class of NFAs.

4.1 NP-Membership

Next, we focus on the NP-membership part of Theorem 4 and begin by proving that
for B0, regardless of whether the input automata are NFAs or DFAs, the Intersection
Non-emptiness problem is contained in NP and therefore NP-complete in combination
with [Rampersad and Shallit, 2010].

Lemma 4. The Intersection Non-emptiness problem for DFAs or NFAs all ac-
cepting languages from B0 is contained in NP.

Proof. Let A1, A2, . . . , Am be NFAs accepting languages from B0. If all NFAs accept
co-finite languages, the intersection

⋂m
i=1 L(Ai) is non-empty. We can check determin-

istically if an NFA Ai, accepting a language from B0, is co-finite in polynomial time by
using the promise of the language class, stating that L(Ai) is either finite or co-finite.
For that, we check whether Ai contains a cycle on an accepting path from the initial to
some final state. If this is the case, we know that L(Ai) is co-finite as it is not finite.
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Otherwise, there is at least one NFA accepting a finite language, where the longest word
is bounded by the number of states of this device. Hence, if

⋂m
i=1 L(Ai) 6= ∅, there is a

word w of length polynomial in the length of the input that witnesses this fact. Such
a w can be nondeterministically guessed by a Turing machine checking membership of w
in L(Ai), for all NFAs Ai, in sequence. This shows containment in NP as desired.

Notice that Masopust and Krötzsch have shown in [Masopust and Krötzsch, 2021] that
Intersection Non-emptiness for poDFAs and for poNFAs is NP-complete. Also the
unary case is discussed there, which can be solved in polynomial time. We cannot directly
make use of these results, as we consider arbitrary NFAs or DFAs as inputs, only with
the promise that they accept languages from a certain level of the studied hierarchies.
In order to prove that for the levels B0, B1/2, L1, and L3/2, the Intersection Non-

emptiness problem for DFAs is contained in NP, it is sufficient to prove the claim
for L3/2 as all other stated levels are contained in L3/2. We prove the latter statement by
obtaining a bound, polynomial in the size of the largest DFA, on the length of a shortest
word accepted by all DFAs. Therefore, we show that for a minimal poNFA A, the size of
an equivalent DFA is lower-bounded by the size of A and use a result of [Masopust and
Krötzsch, 2021] for poNFAs. They have shown that given poNFAs A1, A2, . . . , Am, if the
intersection of these automata is non-empty, then there exists a word of size at most∑

i∈{1,...,m} di, where di is the depth of Ai [Masopust and Krötzsch, 2021, Theorem 3.3].
Here, the depth of Ai is the length of the longest path (without self-loops) in the state
graph of Ai. This result implies that the Intersection Non-emptiness problem for
poNFAs accepting languages from L3/2 is contained in NP. We will further use this result
to show that the Intersection Non-emptiness problem for DFAs accepting languages
from L3/2 is NP-complete. First, we show that the number of states in a minimal poNFA
is at most the number of classes in the Myhill-Nerode equivalence relation.

Lemma 5. Let A = (Q,Σ, δ, q0, F ) be a minimal poNFA. Then, L(q1A) 6= L(q2A) for
all states q1, q2 ∈ Q, where qA is defined as (Q,Σ, δ, q, F ).

Proof. Let A = (Q,Σ, δ, q0, F ) be a minimal poNFA and q1, q2 ∈ Q be two states.
Suppose that L(q1A) = L(q2A). We have two cases.

1. If q1 and q2 are pairwise not reachable from each other, then let A′ = (Q′,Σ, δ′, q0, F
′)

be the NFA obtained from A, where q1 and q2 are merged into a new state q1,2,
so that Q′ = (Q \ {q1, q2}) ∪ {q1,2}, δ′(q1,2, a) = δ(q1, a) ∪ δ(q2, a), for all q ∈ Q′,
q1,2 ∈ δ′(q, a) if and only if q1 ∈ δ(q, a) or q2 ∈ δ(q, a), and q1,2 ∈ F ′ if and only if
q1 ∈ F or q2 ∈ F . Automata A′ is a partially ordered NFA. As q1 and q2 are not
reachable one from the other, they are incomparable in the partial order relation
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defined by A. Therefore, there is no state q such that q1 < q and q < q2. One can
check that L(A′) = L(A), which contradicts the minimality of A.

2. Otherwise, q1 is reachable from q2, or q2 is reachable from q1. Without loss of
generality, we assume that q2 is reachable from q1. Let A′ = (Q′,Σ, δ′, q0, F

′) be
the NFA obtained from A in two steps as described next. First, we remove all
outgoing transitions from q1 and then we merge q1 and q2 into a new state q1,2 as
done before. After removing all outgoing transitions from q1, state q2 is no longer
reachable from q1, therefore, as before, A′ is a partially ordered NFA. Now we will
prove that L(A) = L(A′).

• Let w ∈ L(A). Let ρ be an accepting run in A. If ρ does not contain q1, then
the run obtained by replacing every q2 by q1,2 is an accepting run in A′. If ρ
contains q1, then we split w into w1 and w2 such that w = w1w2 and w1 is
the shortest prefix of w such that, after reading w1, we reach q1 in ρ. Because
we merged q1 and q2 into q1,2, we have that q1,2 ∈ δ′(q0, w1) in A′. Because
L(q1A) = L(q2A), we have that L(q1A) = L(q2A) = L(q1,2A

′) and therefore
δ′(q1,2, w2) ∩ F ′ 6= ∅. So, w is accepted by A′.

• Conversely, let w ∈ L(A′). Let ρ be an accepting run in A′. If ρ does not
contain q1,2, then the same run is accepting in A, too. If ρ contains q1,2, we
split w into w1 and w2 such that w = w1w2, where w1 is the shortest prefix
of w such that, after reading w1, we reach q1,2 in ρ. Then, by definition of
q1,2, δ(q0, w1) ∩ {q1, q2} 6= ∅, and δ(q1, w2) ∩ F 6= ∅ iff δ(q2, w2) ∩ F 6= ∅ iff
δ′(q1,2, w2) 6= ∅. Therefore, w ∈ L(A).

This contradicts the minimality of A.

Now, we can use the result from Masopust and Krötzsch to prove that the Intersection
Non-emptiness problem for DFAs accepting languages in L3/2 is in NP.

Lemma 6. The Intersection Non-emptiness problem for DFAs accepting languages
from L3/2 belongs to NP.

Proof. By Lemma 5, we have that the number of states in a minimal poNFA is at
most the number of classes of the Myhill-Nerode equivalence relation. Hence, given
a DFA accepting a language L ∈ L3/2, there exists a potentially smaller poNFA that
recognizes L. By [Masopust and Krötzsch, 2021, Theorem 3.3], if the intersection is not
empty, then there is a certificate of size polynomial in the sizes of the poNFAs .
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Figure 2: DFA Aei with L(Aei) = Σi1 · 1 · Σn−i1−1 ∪ Σi2 · 1 · Σn−i2−1 ∪ Σ≥n+1. A dotted
arrow between some states j and j′ represents a chain of length j′ − j with the same
transition labels.

4.2 NP-Hardness

Recall that Intersection Non-emptiness for finite languages accepted by DFAs is
already NP-complete by [Rampersad and Shallit, 2010, Theorem 1]. As the level B0 of
the dot-depth hierarchy contains all finite language, the NP-hardness part of Theorem 4
follows directly from inclusion of language classes. Combining Lemma 6, and [Masopust
and Krötzsch, 2021, Theorem 3.3] with the inclusion between levels in the Straubing-
Thérien and the dot-depth hierarchy, we conclude the proof of Theorem 4.

Remark 1. Recall that the dot-depth hierarchy, apart form B0, coincides with the con-
catenation hierarchy starting with the language class {∅, {λ},Σ+,Σ∗}. The Inter-

section Non-emptiness problem for DFAs or NFAs accepting only languages from
{∅, {λ},Σ+,Σ∗} belongs to AC0, by similar arguments as in the proof of Theorem 2.

We showed in Section 3 that Intersection Non-emptiness for DFAs, all accepting
languages from L1/2, belongs to L. If we allow only one DFA to accept a language from L1,
the problem becomes NP-hard. The statement also holds if the common alphabet is
binary.

Theorem 5. The Intersection Non-emptiness problem for DFAs is NP-complete
even if only one DFA accepts a language from L1 and all other DFAs accept languages
from L1/2 and the alphabet is binary.

Proof sketch. The reduction is from Vertex Cover. Let k ∈ N≥0 and let G = (V,E)

be a graph with vertex set V = {v0, v1, . . . , vn−1} and edge set E = {e0, e1, . . . , em−1}.
The only words w = a0a1 . . . a` accepted by all DFAs will be of length exactly n = `+ 1

and encode a vertex cover by: vj is in the vertex cover if and only if aj = 1. Therefore,
we construct for each edge ei = {vi1 , vi2} ∈ E, with i1 < i2, a DFA Aei , as depicted in
Figure 2, that accepts the language L(Aei) = Σi1 · 1 ·Σn−i1−1 ∪Σi2 · 1 ·Σn−i2−1 ∪Σ≥n+1.
We show that L(Aei) is from L1/2, as it also accepts all words of length at least n+1. We
further construct a DFA A=n,≤k that accepts all words of length exactly n that contain
at most k letters 1. The finite language L(A=n,≤k) is the only language from L1 in the
instance.
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Proof. The NP-membership follows from Lemma 6 by inclusion of language classes. For
the hardness, we give a reduction from the Vertex Cover problem: given an undirected
graph G = (V,E) with vertex set V and edge set E ⊆ V × V and integer k. Is there a
subset S ⊆ V with |S| ≤ k and for all e ∈ E, S ∩ e 6= ∅? If yes, we call S a vertex cover
of G of size at most k.

Let k ∈ N≥0 and let G = (V,E) be an undirected graph with vertex set V = {v0, v1, . . . ,

vn−1} and edge set E = {e0, e1, . . . , em−1}. From (G, k) we construct m + 1 DFAs over
the common alphabet Σ = {0, 1}. The input word for these automata will encode which
vertices are in the vertex cover. Therefore, we assume a linear order on V indicated by
the indices of the vertices. More precisely, a word accepted by all automata will have
a 1 at position j if and only if the vertex vj will be contained in the vertex cover S.
For a word w = a0a1 . . . a` with aj ∈ Σ for 0 ≤ j ≤ ` we denote w[j] = aj. We
may call a word w of length n a vertex cover and say that the vertex cover covers an
edge e = {vj1 , vj2} if w[j1] = 1 or w[j2] = 1.

For every edge ei = {vi1 , vi2} in E with i1 < i2, we construct a DFA Aei as depicted
in Figure 2 consisting of two chains, one of length n + 1 and one of length n − (i1 + 1)

(The length of a chain is the number of transitions in the chain). The DFA is defined as
Aei = (Q,Σ, δ, q0, F ) with state set Q = { qj | 0 ≤ j ≤ n + 1 } ∪ { q′j | i1 + 1 ≤ j ≤ n }
and final states F = { qn+1, q′n }. We first focus on the states { qj | 0 ≤ j ≤ n + 1 }.
The idea is that there, the first n + 1 states correspond to the sequence of vertices and
reading a 1 at position j for which vj ∈ ei will cause the automaton to switch to the chain
consisting of states { q′j | i1 + 1 ≤ j ≤ n }. There, only one state is accepting namely
the state that we reach after reading a vertex cover of length exactly n that satisfies the
edge ei. Note that the paths from q0 to q′n are one transition shorten than the path from
q0 to qn+1. To be more formal, we define δ(qi1 , 1) = q′i1+1 and δ(qi2 , 1) = q′i2+1. All other
transitions are leading to the next state in the corresponding chain. Formally, we define
δ(qi1 , 0) = qi+1 and δ(qi2 , 0) = qi2+1, and for all 0 ≤ j ≤ n with j /∈ {i1, i2}, we define
δ(qj, σ) = qj+1, for both σ ∈ Σ, and for all i+ 1 ≤ j ≤ n− 1, we define δ(q′j, σ) = q′j+1.
We conclude the definition of δ by defining self-loops for the two accepting states, i.e., we
define δ(qn+1, σ) = qn+1 and δ(q′n, σ) = q′n for both σ ∈ Σ. Clearly, Aei is deterministic
and of size O(n).

Note that the only words of length exactly n that are accepted by Aei contain a 1 at
position i1 or position i2 and therefore cover the edge ei. All other words accepted by Aei

are of length at least n + 1. More precisely Aei accepts all words which are of size at
least n+ 1. Hence, we can describe the language accepted by Aei as

L(Aei) = Σi1 · 1 · Σn−i1−1 ∪ Σi2 · 1 · Σn−i2−1 ∪ Σ≥n+1.
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Consider a word w ∈ L(Aei) of length n. W.l.o.g., assume w[i1] = 1. If we insert into w
one letter somewhere before or after position i1, then the size of w increases by 1 and
hence w falls into the subset Σ≥n+1 of L(Aei). Hence, we can rewrite the language L(Aei)

by the following equivalent expression.

L(Aei) = Σi1 · Σ∗ · 1 · Σn−i1−1 · Σ∗ ∪ Σi2 · Σ∗ · 1 · Σn−i2−1 · Σ∗ ∪ Σn+1Σ∗.

As we can rewrite a language of the form Σ`Σ∗ equivalently as a union of languages of
the form Σ∗w1Σ∗w2 . . . w`Σ

∗ for wi ∈ Σ, for 1 ≤ i ≤ `, it is clear that L(Aei) is a language
of level L1/2.

Next, we define a DFA A=n,≤k which accepts the finite language of all binary words of
length n which contain at most k appearances of the letter 1. We define A=n,≤k = ({qji |
0 ≤ i ≤ n+1, 0 ≤ j ≤ k+1},Σ, δ, q0

0, {qjn | j ≤ k}). The state graph of A=n,≤k is a (n, k)-
grid graph, where each letter increases the x dimension represented by the subscript i
up to the value n + 1, and each letter that is a 1 increases the y dimension represented
by the superscript j up to the value k + 1. More formally, we define δ(qji , 0) = qji+1,
and δ(qji , 1) = qj+1

i+1 for 0 ≤ i ≤ n and 0 ≤ j ≤ k; and δ(qji , σ) = qji for i = n + 1 or
j = k + 1. The size of A=n,≤k is bounded by O(nk). For readability, we defined A=n,≤k

as a non-minimal DFA. As L(A=n,≤k) is finite, it is of level B0 ⊆ L1.

By the arguments discussed above, the set of words accepted by all of the automata
(Aei)ei∈E and A=n,≤k are of size exactly n and encode a vertex cover for G of size at
most k.

4.3 Large Partially Ordered NFAs

The results obtained in the last subsection left open the precise complexity membership
of Intersection Non-emptiness in the case of input automata being NFAs without
any structural properties for the levels B1/2, L1, and L3/2. We devote this subsection to
the proof of Theorem 6, showing that already for languages of B0 being accepted by an
NFA, the size of an equivalent minimal poNFA can be exponential in the size of the NFA.

Theorem 6. For every n ∈ N≥1, there exists a language Ln ∈ B0 on a binary alphabet
such that Ln is recognized by an NFA of size O(n2), but the minimal poNFA recognizing
Ln has more than 2n−1 states.

Proof. While the statement requires languages over a binary alphabet, we begin by
constructing an auxiliary family (Mn)n∈N≥1

of languages over an unbounded alphabet.
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For all n ∈ N≥1 we then define Ln by encoding Mn with a binary alphabet, and we prove
three properties of these languages that directly imply the statement of the Theorem.

For every n ∈ N≥1, we define the languages M ′
n and M ′′

n over the alphabet {1, 2, . . . , n}
as follows. The language M ′

n contains all the words of odd length, and M ′′
n contains all

the words in which there are two occurrences of some letter i ∈ {1, 2, . . . , n} with only
letters smaller than i appearing in between.3 Formally,

M ′
n = {x ∈ {1, 2, . . . , n}∗ | |x| is odd },

M ′′
n = {xiyiz ∈ {1, 2, . . . , n}∗ | i ∈ {1, 2, . . . , n}, y ∈ {1, 2, . . . , i− 1}∗ }.

We then define Mn as the union M ′
n∪M ′′

n . Moreover, we define Ln by encoding Mn with
the binary alphabet {a, b}: Let us consider the function φn : {1, 2, . . . , n}∗ → {a, b}∗
defined by φ(i1i2 . . . im) = ai1bn−i1ai2bn−i2 . . . aimbn−im . We set Ln ⊆ {a, b}∗ as the union
of φn(Mn) with the language {a, b}∗ \ φ({1, 2, . . . , n}∗) containing all the words that are
not a proper encoding of some word in {1, 2, . . . , n}∗.

The statement of the theorem immediately follows from the following claims.

1. The languages Mn and Ln are cofinite, thus they are in B0.

2. The languages Mn and Ln are recognized by NFAs of size n+ 4, resp. O(n2).

3. Every poNFA recognizing either Mn or Ln has a size greater than 2n−1.

Proof of Item 1. We begin by proving that Mn is cofinite. Note that, by itself, the
language M ′

n is not in B0, as it is not even star-free. We show that M ′′
n is cofinite, which

directly implies that Mn = M ′
n ∪M ′′

n is also cofinite. This follows from the fact that
every word u ∈ {1, 2, . . . , n}∗ satisfying |u| ≥ 2n is in M ′′

n [Klein and Zimmermann,
2016]. This is easily proved by induction on n: If n = 1, we immediately get that
1j ∈M ′′

1 for every j ≥ 2 = 21: such a word contains two adjacent occurrences of 1. Now
suppose that n > 1, and that the property holds for n−1. Every word u ∈ {1, 2, . . . , n}∗
satisfying |u| ≥ 2n can be split into two parts u0, u1 such that |u0|, |u1| ≥ 2n−1. We
consider two possible cases, and prove that u ∈M ′′

n in both of them.

1. If either u0 or u1 contains no occurrence of the letter n, then by the induction
hypothesis, either u0 ∈M ′′

n−1 or u1 ∈M ′′
n−1, which directly implies that u ∈M ′′

n .

3The languages (M ′′n )n∈N≥1
were previously studied in [Klein and Zimmermann, 2016] with a game-

theoretic background. We also refer to [Naylor, 2011] for similar “fractal languages.”
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Figure 3: Automaton A′ recognizing M ′
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Figure 4: Automaton A′′ recognizing M ′′
n .

2. If both u0 and u1 contain (at least) one occurrence of the letter n, then u ∈ M ′′
n

since it contains two occurrences of the letter n with only letters smaller than n

appearing in between (the latter part trivially holds, as n is the largest letter).

Finally, we also get that Ln is cofinite: for all u ∈ {a, b}∗ satisfying |u| ≥ 2n · n, either u
is not a proper encoding of a word of {1, 2, . . . , n}∗, thus u ∈ Ln, or u encodes a word
v ∈ {1, 2, . . . , n}∗ satisfying |v| ≥ 2n, hence v ∈Mn, which again implies that u ∈ Ln. C

Proof of Item 2. We first construct an NFA A of size n + 4 recognizing Mn =

M ′
n ∪M ′′

n as the disjoint union of an NFA A′ (Figure 3) of size 2 recognizing M ′
n and

an NFA A′′ (Figure 4) of size n + 2 recognizing M ′′
n . The language M ′

n of words of
odd length is trivially recognized by an NFA of size 2, thus we only need to build an
NFA A′′ = (Q, {1, 2, . . . , n}, δ, qI , {qF}) of size n + 2 that recognizes M ′′

n . The state
space Q is composed of the start state qI , the single final state qF , and n intermediate
states {q1, q2, . . . , qn}. The NFA A′′ behaves in three phases:

1. First, A′′ loops over its start state until it non-deterministically guesses that it will
read two copies of some i ∈ Σ with smaller letters in between: δ(qI , i) = {qI , qi}
for all i ∈ Σ.
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2. To check its guess, A′′ loops in qi while reading letters smaller than i until it reads
a second i: δ(qi, j) = {qi} for all j ∈ {1, 2, . . . , i− 1} and δ(qi, i) = {qF}.

3. The final state qF is an accepting sink: δ(qF , j) = {qF} for all j ∈ Σ.

This definition guarantees that A′′ accepts the language M ′′
n .

Finally, we build an NFA B of size O(n2) that recognizes Ln by following similar ideas.
Once again, B is defined as the disjoint union of two NFAs B′ and B′′: The NFA B′ uses
4n states to check that either the input is not a proper encoding, or the input encodes a
word u ∈ {1, 2, . . . , n}∗ of odd length. Then, the NFA B′′ with O(n2) states is obtained
by adapting the NFA A′′ to the encoding of the letters {1, 2, . . . , n}: we split each of
the 2n intermediate transitions of A′′ into n parts by adding n − 1 states, and we add
2(n−1) states to each self-loop of A′′ in order to check that the encoding of an adequate
letter is read. C

Proof of Item 3. It is sufficient to prove the result for Mn, as we can transform each
poNFA A = (Q, {a, b}, δA, qI , F ) recognizing Ln into a poNFA B = (Q, {1, 2, . . . , n}, δB,
qI , F ) recognizing Mn with the same set of states by setting δB(q, i) = δA(q, aibn−i).

Note that, by itself, the language M ′′
n is recognized by the poNFA A of size n+ 2 defined

in the proof of Item 2. Let A′ be a poNFA recognizing Mn. To show that A′ has more
than 2n−1 states, we study its behavior on the Zimin words, defined as follows:

Let u1 = 1 and uj = uj−1juj−1 for all 1 < j ≤ n.

For instance, u4 = 121312141213121. It is known that |uj| = 2j − 1 and uj /∈ M ′′
n for

every 1 ≤ j ≤ n [Klein and Zimmermann, 2016]. These two properties are easily proved
by induction on j: Trivially, u1 is not in M ′′

1 and its size is 1 = 21−1. Now suppose that
j > 1 and that uj−1 satisfies both properties: |uj−1| = 2j−1−1 and uj−1 /∈M ′′

n . The first
property follows immediately from the induction hypothesis.

|uj| = |uj−1juj−1| = 2 · |uj−1|+ 1 = 2 · (2j−1 − 1) + 1 = 2j − 1;

To prove the induction step for the second property, we suppose, towards building a
contradiction, that uj ∈ M ′′

n . Then uj contains two occurrences of some letter i ∈
{1, 2, . . . , n} with only letters smaller than i appearing in between. Since uj contains
only one occurrence of the letter j and no letter is greater than j, i is strictly smaller
than j. Moreover, as only letters smaller than i (thus no j) can appear between these
two occurrences, they both need to appear in one of the copies of uj−1. Therefore uj−1
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is also in M ′′
n , which contradicts the induction hypothesis.

To conclude, remark that the word un is not in M ′′
n , but since |un| = 2n − 1 is odd, it

is in Mn = L(A′). Consider a sequence ρ ∈ Q∗ of states leading A′ from its start state
to a final state over the input un. Observe that the word un contains 2n−1 occurrences
of the letter 1, and deleting (any) one of these occurrences results in a word of even
length that is still not in M ′′

n , thus it is also not in Mn = L(A′). This proves that the
sequence ρ cannot loop over any of the 1’s in un. Moreover, as A′ is partially ordered
by assumption, once it leaves a state, it can never return to it. Therefore, ρ contains
at least 2n−1 + 1 distinct states while processing the 2n−1 occurrences of 1 in un, which
shows that the automaton A′ has more than 2n−1 many states. C

4.4 Commutative Star-Free Languages

In the case of commutative languages, we have a complete picture of the complexities
for both hierarchies, even for arbitrary input NFAs. Observe, that commutative lan-
guages generalize unary languages, where it is known that for unary star-free languages
both hierarchies collapse. For commutative star-free languages, a similar result holds,
employing [Hoffmann, 2021, Prop. 28].

Theorem 8. For commutative star-free languages the levels Ln of the Straubing-Thérien
and Bn of the dot-depth hierarchy coincide for all full and half levels, except for L0 and B0.
Moreover, the hierarchy collapses at level one.

Proof. The strict inclusion L0 ⊂ B0 even in the commutative case is obvious. Since
L1/2 ⊆ B1/2 we only need to show the converse inclusion in the case of commutative
languages. For the sake of notational simplicity, we shall give the proof only in a special
case. Observe that, by commutativity, if Σ∗abΣ∗ ⊆ L, then Σ∗aΣ∗bΣ∗ ⊆ L; moreover,
Σ∗abΣ∗ ⊆ Σ∗aΣ∗bΣ∗. Using this idea repeatedly for marked products, as they describe
languages from B1/2, we can write them as equivalent polynomials used for defining
languages from L1/2.

It remains to show that every commutative star-free language is contained in L1. As
shown in [Hoffmann, 2021, Prop. 28], every star-free commutative language can be writ-
ten as a finite union of languages of the form L = perm(u)� Γ∗ for some u ∈ Σ∗ and
Γ ⊆ Σ. Here perm(u) = {w ∈ Σ∗ | |u|a = |w|a for every a ∈ Σ }, where |w|a is equal
to the number of occurrences of a in w. Since perm(u) is a finite language, clearly,
language L is equal to the finite union of all v � Γ∗ for v ∈ perm(u), and thus belongs
to L3/2, since Γ ⊆ Σ.
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Now, note that v�Σ∗ = Σ∗v1Σ∗ · · ·Σ∗v|v|Σ∗, where v = v1 · · · v|u| with vi ∈ Σ, is in level
1/2 of the Straubing-Thérien hierarchy. Further,

v� Γ∗ = (v� Σ∗) ∩
⋃

a∈Σ\Γ
perm(va)� Σ∗.

Hence, we can conclude containment in L1. As we have shown earlier that for commu-
tative languages B1/2 ⊆ L1/2, we get B1 ⊆ L1 and hence L is also contained in B1, and
both hierarchies collapse at level one for commutative languages.

Next we will give the results, summarized in Theorem 7, for the case of the commutative
(star-free) languages. The NP-hardness follows by a reduction from 3-CNF-SAT.

Lemma 7. The Intersection Non-emptiness problem is NP-hard for DFAs accept-
ing commutative languages in L1.

Proof. The NP-complete 3-CNF-SAT problem is defined as follows: given a Boolean for-
mula ϕ as a set of clauses C = {c1, c2, . . . , cm} over a set of variables V = {x1, x2, . . . , xn}
such that |ci| ≤ 3 for i ≤ m. Is there a variable assignment β : V → {0, 1} such that ϕ
evaluates to true under β?

Let ϕ be a Boolean formula in 3-CNF with clause set C = {c1, c2, . . . , cm} and variable
set V = {x1, x2, . . . , xn}. Let Σ = {x1, x2, . . . , xn, x1, x2, . . . , xn}. It is straightforward
to construct polynomial-size DFAs for the following languages from L1:

Lci =
⋃

x∈ci
Σ∗xΣ∗ and Lxj

= Σ∗ \ (Σ∗xjΣ
∗xjΣ

∗ ∪ Σ∗xjΣ
∗xjΣ

∗) ,

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, the intersection of all Lci and all Lxj
is

non-empty if and only if the 3-CNF-SAT instance ϕ is satisfiable.

The upper bound shown next also holds for arbitrary commutative languages.

Theorem 9. The Intersection Non-emptiness problem for NFAs accepting arbi-
trary, i.e., not necessarily star-free, commutative languages is in NP.

Proof. It was shown in [Stockmeyer and Meyer, 1973] that the problem Intersec-

tion Non-emptiness is NP-complete for unary NFAs as input. Fix some order Σ =

{a1, a2, . . . , ar} of the input alphabet. Let A1, A2, . . . , Am be the NFAs accepting com-
mutative languages with Ai = (Qi,Σ, δi, q0,i, Fi) for 1 ≤ i ≤ m. Without loss of gen-
erality, we may assume that every Fi is a singleton set, namely Fi = {qf,i}. For each
1 ≤ i ≤ m and 1 ≤ j ≤ r, let Bi,j be the automaton over the unary alphabet {aj}

192 Intersection Non-emptiness for Star-Free Language Classes



q3 q2 q0 q1

a

aa

a
a

Figure 5: An example of a non-totally star-free NFA that accepts a star-free language.

obtained from Ai by deleting all transitions labeled with letters different from aj and
only retaining those labeled with aj. Each Bi,j will have one initial and one final
state. Let ~q0 = (q0,1, q0,2, . . . , q0,m) be the tuple of initial states of the NFAs; they
are the initial states of B1,1, B2,1, . . . , Bm,1, respectively. Then, nondeterministically
guess further tuples ~qj from Q1 × Q2 × . . . × Qm for 1 ≤ j ≤ r − 1. The jth tuple
is considered as collecting the final states of the Bi,j but also as the start states for
the Bi,j+1. Finally, let ~qf = (qf,1, qf,2, . . . , qf,m) and consider this as the final states of
B1,r, B2,r, . . . , Bm,r. Then, for each 1 ≤ j ≤ r solve Intersection Non-emptiness

for the unary automata B1,j, B2,j, . . . , Bm,j. If there exist words wj in the intersection of
L(B1,j), L(B2,j), . . . , L(Bm,j), for each 1 ≤ j ≤ r, then, by commutativity, there exists
one in a∗1a∗2 · · · a∗r, namely, w1w2 · · ·wm, and so the above procedure finds it. Conversely,
if the above procedure finds a word, this is contained in the intersection of the languages
induced by the Ai’s.

For fixed alphabets, we have a polynomial-time algorithm, showing that the Intersec-

tion Non-emptiness problem, with the alphabet size as a parameter, is in XP, for
totally star-free NFAs accepting star-free commutative languages. We say that an NFA
A = (Q,Σ, δ, q0, F ) is totally star-free, if the language accepted by qAp = (Q,Σ, δ, q, {p})
is star-free for any states q, p ∈ Q. For instance, poNFAs are totally star-free.

An example of a non-totally star-free NFA accepting a star-free language is given next.
Consider the following NFA A = ({q0, q1, q2, q3}, δ, q0, {q0, q2}) with δ(q0, a) = {q1, q2},
δ(q1, a) = {q0}, δ(q2, a) = {q3}, and δ(q3, a) = {q2} that accepts the language {a}∗.
The automaton is depicted in Figure 5. Yet, neither L(q0Aq0) = {aa}∗ nor L(q0Aq2) =

{a}{aa}∗ ∪ {ε} are star-free.

The proof of the following theorem uses classical results of Chrobak and Schützen-
berger [Chrobak, 1986,Schützenberger, 1965].

Theorem 10. The Intersection Non-emptiness problem for totally star-free NFAs
accepting star-free commutative languages, i.e., commutative languages in L1, is con-
tained in XP with the size of the alphabet as the parameter.

The proof of Theorem 10 is based on a combinatorial result that might be of independent
interest.
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Lemma 8. Let n ≥ 1 and ti, pi ∈ N≥0 for 1 ≤ i ≤ n. Set X =
⋃n

i=1 (ti + N≥0 · pi),
where N≥0 · pi = {x · pi | x ∈ N≥0}. If there exists a threshold T ≥ 0 such that N≥T ⊆ X,
then already for Tmax = max{ ti | 1 ≤ i ≤ n }, we find N≥Tmax ⊆ X.

Proof. The assumption basically says that every integer y greater than T−1 is congruent
to t` modulo p` for some 1 ≤ ` ≤ n. More specifically, if x is an arbitrary number with
x ≥ Tmax, then y = x + T · lcm{p1, p2, . . . , pn} is congruent to t` modulo p` for some
1 ≤ ` ≤ n. But this implies that x itself is congruent to t` modulo p`, and so, as x ≥ t`,
we can write x = t` + k` · p` for some k` ≥ 0, i.e., x ∈ X.

This result can be used to prove a polynomial bound for star-free unary languages on
an equivalence resembling Schützenberger’s characterization of star-freeness [Schützen-
berger, 1965].

Lemma 9. Let L be a unary star-free language specified by an NFA A with n states.
Then, there is a number N of order O(n2) such that aN ∈ L if and only if for all k ∈ N≥0,
aN+k ∈ L.

Proof. By a classical result of Chrobak [Chrobak, 1986], the given NFA A on n states
can be transformed into a normal form where we have an initial tail with length at
most O(n2) that branches at a common endpoint into several cycles, where every cycle
is of size at most n, see [Chrobak, 1986, Lemma 4.3]. Moreover, this transformation
can be performed in polynomial time [Gawrychowski, 2011]. Note that a unary star-free
language is either finite or co-finite [Brzozowski, 1976]. If L is finite, then there are no
final states on the cycles and we can set N to be equal to the length of the tail, plus
one. Otherwise, if L ⊆ {a}∗ is co-finite, then it can be expressed as a union of a finite
language corresponding to the final states on the tail and finitely many languages of the
form { a` | ` ∈ (t + N≥0 · p) }, where the numbers t and p are induced by the Chrobak
normal form. Then we can apply Lemma 8, where the set X is built from the t’s and p’s,
and where the t’s are bounded by Tmax, the sum of the longest tail and the largest cycle,
plus one. Note that Tmax is in O(n2) and that the threshold from Lemma 8 guarantees
that every word a` with ` ≥ Tmax is a member of L, as desired.

Theorem 10. The Intersection Non-emptiness problem for totally star-free NFAs
accepting star-free commutative languages, i.e., commutative languages in L1, is con-
tained in XP with the size of the alphabet as the parameter.

Proof. Let Ai = (Qi,Σ, δi, qi, Fi), for i ∈ {1, 2, . . . ,m}, be totally star-free NFAs accept-
ing commutative languages. Let ni = |Qi| be the number of states of Ai. Fix some order
Σ = {a1, a2, . . . , ar}.
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For 1 ≤ i ≤ m and 1 ≤ j ≤ r, as well as q, p ∈ Qi, let the automaton Bi,j,q,p =

(Qi, {aj}, δi, q, {p}) be obtained from Ai by deleting all transitions not labeled with the
letter aj and only retaining those labeled with aj. Further, let Ai,q,p be obtained from
Ai by taking q as (new) initial state and p as the new (and only) final state. As Ai is
totally star-free, L(Ai,q,p) is also star-free. By Schützenberger’s Theorem characterizing
star-freeness [Schützenberger, 1965], it is immediate that L(Ai,q,p) ∩ Γ∗ is also star-free
for each Γ ⊆ Σ. In particular, L(Bi,j,q,p) = L(Ai,q,p)∩{aj}∗ is star-free and commutative.

Recall that perm(u) = {w ∈ Σ∗ | |u|a = |w|a for every a ∈ Σ }, where |w|a is equal to
the number of letters a in w. Moreover, perm(L) =

⋃
v∈L perm(v). By commutativity,

the following property is clear:

L(Ai) = perm


 ⋃

p1,p2,...,pr−1∈Qi

⋃

pr∈Fi

L(Bi,1,qi,p1) · L(Bi,2,p1,p2) · · ·L(Bi,r,pr−1,pr)


 .

As Ai accepts a commutative language, by ordering the letters, we find that w ∈ L(Ai)

if and only if a`11 a
`2
2 · · · a`rr ∈ L(Ai), for `j being the number of occurrences of aj in w,

with 1 ≤ j ≤ r. Furthermore, the word a`11 a
`2
2 · · · a`rr is in L(Ai) if and only if for all j

with 1 ≤ j ≤ r, there is a state pj ∈ Qi such that a`jj ∈ L(Bi,j,pj−1,pj), where p0 = qi and
pr ∈ Fi. We can apply Lemma 9 to get constants Ni,1, Ni,2, . . . , Ni,r ∈ O(n2

i ) such that
checking membership of a`jj in L(Bi,j,pj−1,pj) can be restricted to checking membership
for a word of length at most Nj. Now, we describe a polynomial-time procedure to solve
Intersection Non-emptiness for fixed alphabets. Set Ni = max{Ni,1, Ni,2, . . . , Ni,r}
with the numbers Ni,j from above. Then, we know that a word a`11 a

`2
2 · · · a`rr is accepted

by an input automaton Ai if and only if the word a
min{`1,Ni}
1 a

min{`2,Ni}
2 · · · amin{`r,Ni}

r is
accepted by it. If we let N = max{N1, N2, . . . , Nr}, we only need to test the (N + 1)r

many words ai11 a
i2
2 · · · airr with 0 ≤ ij ≤ N and 1 ≤ j ≤ r if we can find a word among

them that is accepted by all automata Ai for 1 ≤ i ≤ m. Altogether, ignoring polynomial
factors, this leads to a running time of the form O∗(N r).

Remark 2. Note that Theorem 10 does not hold for arbitrary commutative languages
concerning a fixed alphabet, since in the general case, the problem is NP-complete even
for languages over a common unary alphabet [Stockmeyer and Meyer, 1973].
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5 PSPACE-Completeness

Here, we prove that even when restricted to languages from B1 or L2, Intersection
Non-emptiness is PSPACE-complete, as it is for unrestricted DFAs or NFAs. We
will profit from the close relations of Intersection Non-emptiness to the Non-

universality problem for NFAs: Given an NFA A with input alphabet Σ, decide if
L(A) 6= Σ∗. Conversely, we can also observe that Non-universality for NFAs is
PSPACE-complete for languages from B1.

Theorem 11. The Intersection Non-emptiness problem for DFAs or NFAs ac-
cepting languages from B1 or L2 is PSPACE-complete, even for binary input alphabets.

As B1 ⊆ L2, it is sufficient to show that the problem is PSPACE-hard for B1. While
without paying attention to the size of the input alphabet, this result can be readily
obtained by re-analyzing Kozen’s original proof in [Kozen, 1977], the restriction to binary
input alphabets needs some more care. We modify the proof of Theorem 3 in [Krötsch
et al., 2017] that showed PSPACE-completeness for Non-universality for poNFAs
(that characterize the level 3/2 of the Straubing-Thérien hierarchy). Also, it can be
observed that the languages involved in the intersection are actually locally testable
languages. The class of locally testable languages is a sub-class of B1 and consists of the
Boolean closure of languages of the form uΣ∗, Σ∗v, and Σ∗wΣ∗ where u, v, w are words
from Σ∗, see [Pin, 2017].

Corollary 1. The Intersection Non-emptiness problem for DFAs or NFAs accept-
ing locally testable languages is PSPACE-complete, even for binary input alphabets.

Proof. To see our claims, we re-analyze the proof of Theorem 3 in [Krötsch et al., 2017]
that shows PSPACE-completeness for the closely related Non-universality problem
for NFAs. Similar to Kozen’s original proof, this gives a reduction from the general
word problem of deterministic polynomial-space bounded Turing Machines. In the proof
of Theorem 3 in [Krötsch et al., 2017] that showed PSPACE-completeness for Non-

universality for poNFAs (that characterize the level 3/2 of the Straubing-Thérien
hierarchy), a polynomial number of binary languages Li was constructed such that⋃

i Li 6= {0, 1}∗ if and only if the p-space-bounded Turing machine M , where p is
some polynomial, accepts a word x ∈ {0, 1}∗ using space p(|x|). Observe that each
of the languages Li is a polynomial union of languages of the forms E{0, 1}∗, {0, 1}∗E,
{0, 1}∗E{0, 1}∗, or E for finite binary languages E. This means that each Li belongs
to B1/2. Now, observe that

⋃
i Li 6= {0, 1}∗ if and only if

⋂
i Li 6= ∅. As Li ∈ B1 and

each Li (and hence its complement Li) can be described by a polynomial size DFA, the
claims follow.
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By the proof of Theorem 3 in [Krötsch et al., 2017], also
⋃

i Li belongs to B1, so that we
can conclude:

Corollary 2. The Non-universality problem for NFAs accepting languages from B1

is PSPACE-complete, even for binary input alphabets.

We now present all proof details, because the construction is somewhat subtle.

The proof is based on simulating a p-space-bounded Turing machine M . We are inter-
ested in simulating a run of M on a string x. Its configurations are encoded as words
over an alphabet ∆, so that with the help of the enhanced alphabet ∆# = ∆ ∪ {#},
runs of M can be encoded, with # serving as a separator between configurations. More
precisely, if ΣM is the input alphabet of M , ΓM (containing a special blank symbol )
is the tape alphabet, and QM is the state alphabet, then transitions take the form
fM : QM × ΓM → QM × ΓM × {L,R}, where L,R indicate the movements of the head.
For simplicity, define ∆ = ΓM×(QM∪{$}). A configuration γ ∈ ∆+ has then the specific
properties that it contains exactly one symbol from ΓM×QM and that it has length p(|x|)
always, i.e., we are possibly filling up a string that is too short by the blank symbol .
Configuration sequences ofM , or runs for short, can be encoded by words from #(∆+#)∗,
or more precisely, from Lsimple−run = #((ΓM × {$})∗(ΓM × QM)(ΓM × {$})∗#)∗. The
latter language can be encoded by a 3-state DFA. However, we will not make use of this
language in the following, as it does not fit in the level of the dot-depth hierarchy that
we are aiming at.

Let Σ = {0, 1} be the binary target alphabet. A letter a ∈ ∆# is first encoded by a
binary word â of length K = dlog2(|∆#|)e, but this is only an auxiliary encoding, used
to define the block-encoding

enc(a) = 001â[1]1â[2]1 · · · â[K]1

of length L = 2K+3, where â[1] is the first symbol of the word â, and so on. This block-
encoding is extended to words and sets of words as usual. In order to avoid some case
distinctions, we assume that |∆#| is a power of two, so that enc(∆#) = 001Σ1Σ1 · · ·Σ1.
Hence, enc(∆#) = 00ΣL−2 \ enc(∆#) = 00{a1b1a2b2 · · · aKbK | a1a2 · · · aK ∈ ΣK ∧
b1b2 · · · bK ∈ 1∗0Σ∗}. Clearly, there are DFAs with O(L) many states accepting enc(∆#)

and enc(∆#) (†). In this proof, we will call DFAs with O(L · p(|x|)) many states small.
Any encoded word enc(w), with w ∈ ∆∗#, contains the factor 00 only at positions (minus
one) that are multiples of L, more precisely: enc(w)[i] = enc(w)[i + 1] = 0 if and
only if i − 1 is divisable by L. This observation allows us to construct small DFAs for
Σ∗ enc(∆#)cΣ∗ (for c ∈ {1, 01}) and for Σ∗ enc(∆#)Σ∗, based on (†). As shown in the
proof of Theorem 3 in [Krötsch et al., 2017], the language of words that are not encodings
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over ∆# at all is the union of the following languages:

1. (1 ∪ 01)Σ∗,

2. Σ∗ enc(∆#)Σ∗,

3. Σ∗ enc(∆#)(1 ∪ 01)Σ∗, and

4. Σ∗00(
⋃L−3

i=1 Σi) = {w ∈ Σ∗ | The factor 00 is in the last L− 1 positions}.

Each of these languages can be accepted by small DFAs A1, A2, A3, A4.

Then, we have to take care of the binary words that cannot be encodings of configuration
sequences, because the first configuration is not initial. By our construction, the (unique)
initial configuration γ is encoded by a binary string enc(γ) of length L · p(|x|), i.e., we
consider a language L′ which is the complement of enc(#γ#)Σ∗, the language of all
binary strings that do not start with the encoding of the initial configuration. Let #γ# =

a1a2 · · · ap(|x|)+2. As we already described non-encodings by automata A1 through A4,
instead of L′, we describe

⋃p(|x|)+2
j=0 L′j, where L′0 is the set of all words of which their

length is not divisible by L and bounded by L · (p(|x|) + 2). Intuitively, L′0 is the set
of strings that are too short and further contains the empty word. We further define
L′j = Σ(j−1)L enc(aj)Σ

∗ for j = 1 to p(|x|) + 2, describing a violation at symbol aj of the
initial configuration γ. Moreover, there are small DFAs A5, A6, . . . , Ap(|x|)+7 that accept
L′0, L

′
1, . . . , Lp(|x|)+2.

Assuming a unique final state and also assuming that M cleans up the tape after pro-
cessing, there is a unique final configuration γf that should be reached. Then, invalidity
of a computation with respect to the final configuration can be checked as for the initial
configuration, giving us small DFAs Ap(|x|)+8, Ap(|x|)+9, . . . , A2p(|x|)+10.

Finally, we want to check the (complement of the) following property of a valid con-
figuration sequence ρ ∈ #(∆+#)∗: any sequence of three letters a, b, c in ρ determines
the letter f(a, b, c) that should be present at a distance of p(|x|)− 1 to the right. More
precisely, we are interested in any factor abcvdf(a, b, c)e of ρ where |vd| = p(|x|) − 1.
Different scenarios can occur; we only describe three typical situations in the following.

• If a = (a′, $), b = (b′, $), c = (c′, $), then f(a, b, c) = b. For d, we know d ∈
{a′} × (Q ∪ {$}) and similarly for e, we know e ∈ {c′} × (Q ∪ {$}).

• If a = (a′, $), b = #, c = (c′, $), then f(a, b, c) = #. For d, we know d ∈
{a′} × (Q ∪ {$}) and similarly for e, we know e ∈ {c′} × (Q ∪ {$}).
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• If a = (a′, $), b = (b′, q), c = (c′, $) and if fM(q, b′) = (p, b̂′, L), then d = (a′, p),
f(a, b, c) = (b̂, $), and e = c.

We refrain from describing all such situations in detail. Yet with some more sloppiness,
we write enc(d(f(a, b, c)e) for all situations that do not obey the rules for df(a, b, c)e

as tentatively formulated before. Now, for each triple a, b, c ∈ ∆#, consider the binary
language La,b,c = Σ∗ · enc(abc) ·ΣL·(p(|x|)−1) · enc(d(f(a, b, c)e) ·Σ∗. This language can be
accepted by a small DFA Aa,b,c.

Altogether, we described 2p(|x|) + 10 + (|∆#|)3 many languages from B1 such that their
union does not yield Σ∗ if and only if M accepts x using p(|x|) space. Moreover, for each
of the languages, we can build small DFAs.

6 Conclusion and Open Problems

We have investigated how the increase in complexity within the dot-depth and the
Straubing-Thérien hierarchies is reflected in the complexity of the Intersection Non-

emptiness problem. We have shown the complexity of this problem is already com-
pletely determined by the very first levels of either hierarchy.

Our work leaves open some very interesting questions and directions of research. First,
we were not able to prove containment in NP for the Intersection Non-emptiness

problem when the input automata are allowed to be NFAs accepting a language in the
level 3/2 or in the level 1 of the Straubing-Thérien hierarchy. Interestingly, we have shown
that such containment holds in the case of DFAs, but have shown that the technique
we have used to prove this containment does not carry over to the context of NFAs. In
particular, to show this we have provided the first exponential separation between the
state complexity of general NFAs and partially ordered NFAs. The most immediate open
question is if Intersection Non-emptiness for NFAs accepting languages in B1/2, L1,
or L3/2 is complete for some level higher up in the polynomial-time hierarchy (PH), or if
this case is already PSPACE-complete. Another tantalizing open question is whether one
can capture the levels of PH in terms of the Intersection Non-emptiness problem
when the input automata are assumed to accept languages belonging to levels of a sub-
hierarchy of L2. Such sub-hierarchies have been considered for instance in [Klíma and
Polák, 2011].

It would also be interesting to have a systematic study of these two well-known sub-
regular hierarchies for related problems like Non-universality for NFAs or Union

Non-universality for DFAs. Notice the technicality that Union Non-universality
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(similar to Intersection Non-emptiness) has an implicit Boolean operation (now
union instead of intersection) within the problem statement, while Non-universality

lacks this implicit Boolean operation. This might lead to a small “shift” in the discussions
of the hierarchy levels that involve Boolean closure. Another interesting hierarchy is the
group hierarchy [Pin, 1998], where we start with the group languages, i.e., languages
acceptable by automata in which every letter induces a permutation of the state set, at
level 0. Note that for group languages, Intersection Non-emptiness is NP-complete
even for a unary alphabet [Stockmeyer and Meyer, 1973]. As Σ∗ is a group language,
the Straubing-Thérien hierarchy is contained in the corresponding levels of the group
hierarchy, and hence, we get PSPACE-hardness for level 2 and above in this hierarchy.
However, we do not know what happens in the levels in between.
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