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Abstract

This thesis is based on four papers and aims to establish perfusion and diffusion measure-
ments with magnetic resonance imaging (MRI) in selected clinical applications. While
structural imaging provides invaluable geometric and anatomical information, new dis-
ease relevant information can be obtained from measures of physiological processes in-
ferred from advanced modelling. This study is motivated by clinical questions pertaining
to diagnosis and treatment effects in particular patient groups where inflammatory pro-
cesses are involved in the disease.

Paper 1 investigates acquisition parameters in dynamic contrast enhanced (DCE)-MRI
of the temporomandibular joint (TMJ) with possible involvement of juvenile idiopathic
arthritis. High level elastic motion correction should be applied to DCE data from the
TMJ, and the DCE data should be acquired with a sample rate of at least 4 s. Paper 2 inves-
tigates choices of arterial input functions (AIFs) in dynamic susceptibility contrast (DSC)-
MRI in brain metastases. AIF shapes differed across patients. Relative cerebral blood vol-
ume estimates differentiated better between perfusion in white matter and grey matter
when scan-specific AIFs were used than when patient-specific AIFs and population-based
AIFs were used. Paper 3 investigates DSC-MRI perfusion parameters in relation to out-
come after stereotactic radiosurgery (SRS) in brain metastases. Low perfusion prior to
SRS may be related to unfavourable outcome. Paper 4 applies free water (FW) corrected
diffusion MRI to characterise glioma. Fractional anisotropy maps of the tumour region
were significantly impacted by FW correction. The estimated FW maps may also con-
tribute to a better description of the tumour.

Although there are challenges related to post-processing of MRI data, it was shown that
the advanced MRI methods applied can add to a more accurate description of the TMJ
and of brain lesions.
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Paper 1: L. Starck, E. Andersen, O. Macı́ček, O. Angenete, T. A. Augdal, K. Rosendahl, R.
Jiřı́k, and R. Grüner, ”Effects of Motion Correction, Sampling Rate and Parametric Mod-
elling in Dynamic Contrast Enhanced MRI of the Temporomandibular Joint in Children
Affected With Juvenile Idiopathic Arthritis,” MRI, vol. 77, pp. 204-212, 2021.

Paper 2: L. Starck, B. S. Skeie, H. Bartsch, and Renate Grüner, ”Arterial Input Functions
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1 Introduction

The work in this thesis encompasses advanced perfusion and diffusion weighted image
acquisition and analysis in selected clinical applications. An overview is given pertaining
to the general principles of magnetic resonance imaging (MRI). The theory of the more
advanced perfusion and diffusion weighted imaging and analysis methods is presented,
followed by a brief summary of current state-of-the-art in the field. These methods are
applied to three selected clinical cases. First, a new diagnostic test for juvenile idio-
pathic arthritis (JIA) in the temporomandibular joint (TMJ) is explored, using perfusion
weighted imaging (PWI). Second, to explore prognostic value, PWI is performed in the
longitudinal follow-up of brain metastases treated with stereotactic radiosurgery (SRS).
Third, diffusion weighted imaging (DWI) is applied to characterise glioma.

1.1 Basic principles of magnetic resonance imaging

MRI is based on a strong external magnetic field interacting with atomic nuclei that pos-
sess a net spin. A major source of resonance signals from the human body originate from
hydrogen (1H) atoms. The MRI measuring methods are well suited to describe geome-
try of structures, physiological changes, and chemical composition in tissue, for example
in cancerous tumours. This is possible due to high spatial resolution (1 mm3), dynamic
tracking of contrast agents injected into the blood stream, recording of signal losses due
to apparent diffusion, as well as the resonance frequency signatures caused by unique
kinds of molecules.

1.1.1 The physics of MRI

A clinical MRI system has a large bore shaped coil magnet, typically producing a 1.5 T or
3 T homogeneous magnetic field directed into the magnet bore. The main field direction
is usually denoted as the z-direction in a cartesian coordinate system. The field causes a
net precession of the atomic spins in the body about the field direction, described by the
Bloch equation (Eqn. 1) [1],

dM(t)

dt
= γ(M(t)×B(t)) (1)

which states that the change in time in net magnetic momentum M , is proportional
to the cross product between the net magnetic momentum and the applied magnetic
field B, with the gyromagnetic ratio, γ , acting as the constant of proportionality. The
gyromagnetic ratio of an atomic nucleus is defined as its magnetic moment divided by its
angular momentum. The magnetization amplitude is governed by the relations expressed
in Eqn. 2,

|M | ∝
Nγ2B0

3kT
(2)

1



where M is the magnetization amplitude, N is the number of spins, γ is the gyromagnetic
ratio, B0 is the main field strength, k is the Boltzmann constant, and T is the temperature.
At 42.58 MHz/T [2] hydrogen has the largest gyromagnetic ratio among all MR sensitive
isotopes in the body. This, along with its high relative abundance [3], contributes toward
the dominance of resonance signals derived from hydrogen atoms. By comparison the
gyromagnetic ratios of other MR active isotopes, Fluorine (19F) and Sodium (23Na) which
next to hydrogen, are the second and third most MR sensitive isotopes in the human body
are 40.08 MHz/T and 11.27 MHz/T [3, 4], respectively. Placed in the main magnetic
field, spins will align parallel and anti-parallel to it, populating different energy levels as
described by the Boltzmann distribution (Eqn. 3) [3].

N↓
N↑

= e−
∆E
kT (3)

N↓ and N↑ are the number of spins aligned anti-parallel (high energy state) and parallel
(low energy state) to the main field direction, respectively. ∆E denotes the energy differ-
ence between the energy states, k is the Boltzmann constant, and T is the temperature.
The energy difference ∆E can be expressed in terms of frequency and in terms of mag-
netic field strength (Eqn. 4), from which the Larmor frequency, (Eqn. 5), can easily be
calculated.

∆E = ω~ = γ~B0 (4)
ω = γB0 (5)

ω is the spin precession and resonance frequency, ~ is the Planck constant divided by 2π,
γ is the gyromagnetic ratio, and B0 is the main magnetic field strength.

In order to excite the hydrogen atoms, an oscillating radio frequency pulse is applied.
The radio frequency pulse has components perpendicular to the main field direction and
a frequency equal to the resonance frequency of the hydrogen spins [3]. This causes the
net magnetization that was aligned with the main field direction (along the z-axis) prior
to the pulse application to flip towards the xy-plane, while simultaneously precessing
about the z-axis (Fig. 1).

The excitation energy is released in the free induction decay signal following the excita-
tion pulse. The spins relax back into their original positions. The relaxation process has
two independent components; T1- and T2-relaxation, that is, the re-alignment along the
main field direction (z-direction) and the loss of phase coherence in the xy-plane, respec-
tively. The T1 and T2 relaxation times are defined according to Eqns. 6 and 7, when the
exponents are set equal to one [1].

Mz(t) = Mz,max

(
1− e−

t
T 1

)
(6)

Mxy(t) = Mxy,maxe
− t
T 2 (7)

2



Figure 1: Excitation and net spin precession in a magnetic field. Application of a radio
frequency pulse perpendicular to the main magnetic field direction parallel to the z-axis
causes the net spin to flip toward the xy-plane. The cartesian frame of reference spins
about an axis parallel to the z-axis with frequency identical to the net spin precession
frequency.

Mz is the magnetization along the z-axis, Mz,max is the steady state nuclear magnetization,
that is, the magnetization along the z-axis prior to excitation. t is the elapsed time after
the excitation pulse and T1 is the T1 relaxation time. Similarly, Mxy is the magnetization
in the xy-plane, Mxy,max is the maximum magnetization in the xy-plane, present prior to
T2 relaxation, and T2 is the T2 relaxation time. It is the T1 and T2 times inherent to
the various tissues that provide contrast in the final MR image [5]. Eqn.8 is the Bloch
equation modified [1] to encompass the effects of relaxation,

d
dt

Mx
My

Mz

 =


− 1
T 2 γBz −γBy

−γBz − 1
T 2 γBx

γBy −γBx − 1
T 1


Mx
My

Mz

+


0
0

Mz,max
T 1

 (8)

where Mx, My , and Mz and Bx, By , and Bz are the magnetic moment components and field
strength components, respectively. Mz,max is the steady state nuclear magnetization. T1
and T2 are the T1 and T2 relaxation times.

Gradients and radio frequency pulses are applied in specific patterns to de-phase and re-
phase the response signal, producing a delayed resonance signal echo, the origin of which
can be spatially located [6]. The sequences determining the timing and interplay between
the pulses and gradients are called pulse sequences. The time between two successive
excitation pulses is called repetition time (TR), and the time between the excitation pulse
and sampling of the echo signal is called the echo time (T E). Mxy , the signal that the

3



receiver coils are sensitive to, is dependent on the chosen TR and T E, according to Eqn.
9, which is valid for a pulse sequence in which the echo signal response is generated
by application of gradients and a longitudonal steady-state was reached [7, 8]. When a
gradient echo is produced, some of the loss of phase coherence in the xy-plane is due
to field inhomogeneities and not just neighbouring spin properties, for which reason the
measured T2 time is often denoted T2*.

Mxy(TR,T E,α) ∝Mz,max

sinα
(
1− e− TR

T 1
)

(
1− (cosα)e−

TR
T 1

)e− T E
T 2∗ (9)

Mxy is the magnetization in the xy-plane, Mz,max is the steady state nuclear magnetization,
α is the flip angle, and T 1 and T 2* are the T1 and T2 times, respectively. In other words,
the image can be weighted according to the tissue inherent T1 and T2 relaxation times
by adjusting the repetition and echo times. Thus, pulse sequences have three main tasks;
determining image contrast weighting, creating resonance signal and signal echoes, and
spatially encoding the sampled resonance echo signal.

1.1.2 Image encoding

To construct an MR image, it is necessary to locate the resonance signal origin. To select
a slice of the three-dimensional object, a slice selective gradient is superimposed on the
main magnetic field, causing a scale of spin precession frequencies along the gradient
[6]. Only spins that are precessing with frequencies matching the excitation pulses will
contribute to the sampled signal.

The sliced two-dimensional image is mapped to a cartesian frame of reference, as in the
classic example of a spin warp sequence (Fig. 2) [9]. Signals along the x-axis are localised
by application of a frequency encoding gradient, like, but applied subsequently to, the
initial slice selection gradient. When a gradient is applied in the y-direction, spins along
the y-axis will also acquire a range of precession frequencies. When the y-gradient is
turned off, the spins will return to their original precession frequencies, but the phase of
their periodic motion is shifted. With multiple phase encoding steps, the phase shift can
be detected by measuring the amount of signal interference caused by the phase encoding
gradient.

Because the sampled MRI signal is a mix of many frequencies, a Fourier transform [10],
is applied to detect which frequencies are in the signal, such that the intensity per fre-
quency can be extracted. Eqn. 10 is the general form of a Fourier transform of an infinite
continuous signal,

F(v) =
∫ ∞
−∞

f (t)e2πitvdt (10)

4



Figure 2: The spin warp pulse sequence diagram. A slice selection gradient in the z-
direction is applied simultaneously to the radio frequency and overlapping with the ini-
tial free induction decay. The sampled signal echo is generated by a de-phase re-phase
and frequency encoding gradient in the x-direction. A phase encoding gradient with
varying amplitude is applied in the y-direction for every radio frequency pulse repeti-
tion.

where F(v) is the signal in the frequency domain and f (t) is the signal in the time domain.

Any image can be Fourier transformed and mapped to a complex plane, according to
its spatial frequencies. Spatial frequencies in the horizontal direction can be viewed as
vertical line densities. Correspondingly, spatial frequencies in the vertical direction can
be viewed as horizontal line densities. The Fourier transform can be applied both in the
horizontal and vertical direction to obtain a two-dimensional frequency representation
of any regular image (Eqn.11),

F(u,v) =
∫ ∞
−∞

∫ ∞
−∞

f (x,y)e2πi(xu+yv)dxdy (11)

where F(u,v) is the frequency encoded image intensities as a function of the vertical and
horizontal line densities and f (x,y) is the regular image in the spatial domain. By ap-
plying the inverse Fourier transform to the frequency representation of an MR image,
the conventional MR image in the spatial domain is generated. Low spatial frequencies
correspond to slow intensity changes in the image, containing the contrast information
and general shapes. High spatial frequencies correspond to rapid intensity changes in the
image, corresponding to image resolution.

Facilitating MRI, in that it organises the measured resonance echo signal in the spatial
frequency domain, k-space is defined (Fig. 3) [11, 12]. It is a coordinate system with axes
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labelled kx and ky , where kx = γGxm∆t and kx = γn∆Gyτ . γ is the gyromagnetic ratio, and
Gx and Gy are the frequency encoding gradients in the respective kx and ky directions. m
is the sample number in the kx direction and n is the sample number in the ky direction,
also known as the partition number. Finally, ∆t is the elapsed time between each signal
sample point in the kx direction and τ is the length of time that the Gy gradient is applied
for. The k-space axes have units of m−1.

The reason why the MR signal can be mapped directly to k-space is that while the sam-
pling gradient remains switched on, spins along the readout direction will, as previously
discussed, precess with a frequency dependent on their position. Since phase shift scales
with frequency and time, phase shift increases with the duration of the gradient. Accord-
ing to the definition of kx, k can be thought of as the gyromagnetic ratio multiplied by
the area under the gradient. The phase shift is cyclic and increases with increasing area
under the gradient. While the area is still small, the image raw data consists of few phase
cycles, whereas as time goes on, more cycles fit into the field of view. Large objects can be
detected with low frequency phase cycles since different parts of it will have unique phase
shifts, whereas they will be invisible to high frequency phase cycles because signals with
phases shifted 180° will cancel out. Conversely, the resolution of small objects becomes
possible with the high frequency phase cycles. In other words, the frequencies of the
phase cycles correspond to spatial frequencies analogous to the Fourier transformation
of a regular spatial image. To arrive at a spatial representation of the information con-
tained in the sampled frequencies, which will constitute the final MR image, the inverse
Fourier transform is applied to the sampled k-space in both directions [11, 12]. Since the
measurement points are discrete, the discrete Fourier transform is applied (Eqn. 12), and
is usually computed using the fast Fourier transform approach [10].

f (x,y) =
1
mn

m−1∑
kx=0

n−1∑
ky=0

F(kx, ky)e
−2πi

(
xkx
m +

yky
n

)
(12)

f (x,y) is the spatial proton density representation and F(kx, ky) is the spatial frequency
representation of the MR image.

1.1.3 MRI and quantitative measurements

The physical quantities T1 and T2 are rarely measured in MRI. Rather, as discussed above,
the MRI contrast is dependent on the proton density and the amount of T1 and T2 weight-
ing as determined by the pulse-sequence parameters, such as echo- and repetition times,
flip angle, as well as net magnetic field strength and the imaged isotope. While it is true
that an MR image is usually composed of thousands of imaging voxels, each represent-
ing a mean signal value that scales with proton densities, there is no fixed scale of image
brightness that corresponds to a certain proton density.

There are also additional mechanisms that can cause a voxel to display a brightness that
does not correspond to the real proton density at the location of the voxel. Some of these
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Figure 3: k-space (A) stores the spatial frequency representation of a pineapple along the
kx and ky axes. The MR image (B) is a more familiar spatial representation of that same
pineapple.

are artefacts caused by the imaging hard-ware, encompassing for example gradient field
non-linearity and radio frequency pulse distortions, causing voxel misregistration due
to physical limitations of the coils and magnets [13, 14]. Another group of artefacts are
inherent to physics, the natural phenomena that are exploited in the imaging process.
Among these are chemical shifts and susceptibility artefacts. Chemical shifts are caused
by slight differences in resonance frequency that depend on the molecular structure in
which the hydrogen atoms are bound [15]. Susceptibility artefacts occur when the spins
are subjected to local field distortions that arise depending on the para- or diamagnetic
properties of the various materials of which the imaged object is composed [16]. Suscep-
tibility properties are the basis for use of exogenous contrast agents. Physiology can also
be the origin of artefacts. Among these are flow effects and motion. Spins that are flowing
may be moving from one phase and frequency encoded area to another during the MRI
measurement, causing loss or gain of signal in different voxels, and misregistration of
the signal in the phase encoding direction [17]. Similarly, when patients or their organs
move, it can cause errors in magnitude and registration of the signal.

To correctly interpret MR images, one is usually dependent on expert radiologists. Their
numerous years of experience are paramount to identify expected tissue structures and
abnormalities warranting medical attention. Even when contrast agents are applied, so
that enhancing areas of interest are achieved, based on a static MR image it is not always
obvious at an early stage whether for example a tumour has responded to treatment or
not. The bright contrast enhanced signal could be interpreted either as scar tissue, or as
a growing tumour [18–20]. In other instances, it may not yet be obvious what abnormal-
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ities to look for, such as in the diagnostics of arthritis in the TMJ [21–23]. PWI and DWI
can be applied to obtain quantifiable physiological measurements and to establish MRI
as a quantitative measuring tool in the clinic.

By introduction of contrast agents or tracers to the blood stream, tissue dynamics can be
explored. These kinds of measurements are usually referred to as perfusion weighted
MRI, i.e., PWI. Dynamic PWI, such as dynamic contrast enhanced (DCE)-MRI [24] and
dynamic susceptibility contrast (DSC)-MRI [25, 26], provides new information that is not
present in a basic structural MR image. Visualising dynamics for efficient interpretation
by the radiologists can be a challenge but is facilitated by computing parameter maps.
The parameter maps constitute voxel-wise estimates of perfusion related physical prop-
erties of the tissue and are computed by application of appropriate models of the tissue
microvasculature.

Diffusion weighted MRI, i.e., DWI, is another approach to generate quantitative measure-
ments, simultaneously revealing some of the qualities of the investigated tissue microvas-
culature. Diffusion measurements are based on random motion of molecules, the mean
diffusivity being the average total distance covered by a randomly moving molecule per
unit time [27]. As diffusing spins are exiting the region along the chosen gradient di-
rection, their phase shift will no longer match that of the surrounding spins. When a
gradient of opposite polarity is applied, a signal loss will occur, since the moving spins
will not regain their original phase [28]. Based on this signal loss, the amount of diffusion
in a given direction can be detected. In general, diffusion in tissue cannot be regarded
as isotropic, since the tissue is full of barriers that restrict otherwise random diffusion
motion. When diffusion is measured in multiple directions, these barriers defining the
tissue structure can, to a degree, be reconstructed.

Specific research questions investigated as part of this thesis are:

- How should DCE imaging data from the TMJ in children that are being investigated for
JIA be acquired and processed? Do they provide useful information in the diagnosis
of JIA?

- What normalisation should be applied for optimal longitudinal follow-up of DSC pa-
rameters in patients with brain metastases that are treated with SRS?

- Can DSC-MRI data acquired prior to SRS help predict outcome in patients with brain
metastases?

- Can free water (FW) estimations and FW corrected data improve characterisation of
tumours in treatment naı̈ve glioma patients?

The use of PWI and DWI in the clinic is dependent on application. Before returning to
the above research questions, a description is given of tissue microstructure, PWI and
DWI.

8



1.2 Physiology of the microvasculature

1.2.1 Contrast agent administration to the circulatory system

Investigating microvasculature using PWI, a standard contrast agent administration con-
sists of chelate embedded Gadolinium, at a dosage of 20 ml/ 100 kg (0.1 mmoles/kg)
[29, 30]. As a rule, contrast agent is injected intravenously using a power injector and a
subsequent saline flush. The power injector ensures accurate and repeatable flow rates of
contrast [31]. The saline flush is injected to clear contrast agents from the veins, creating a
sharper pass bolus as it is pushed toward the heart [32]. After passing through heart and
lungs, the contrast is circulated through the other organs in the body [33]. Recirculation
and down-stream dilution effects can prevent the contrast-time curve from returning to
baseline [32]. Initially, the half time of Gadolinium based contrasts in the body ranges
between 70 and 120 minutes [34], but there has recently been raised some concern about
residual Gadolinium accumulating in the brain after repeated usage [34–36].

1.2.2 Capillary architecture

When imaging the microvasculature, one is limited to the size of a voxel containing in-
travascular and extravascular extracellular space (EES) space (Fig. 4a). The intravascular
space, containing blood plasma and red blood cells, consists of multiple arterioles branch-
ing out into capillaries (diameter 8-10 µm) [37]. The contrast agent is assumed to be well
mixed in the blood plasma, but the space taken up by the red blood cells is not available
to it [38]. Capillaries form a web and can be modelled as a collection of straight tube
segments [39–41] (Fig. 4b). They are collected again as they drain into the venules. If the
vessels are leaky, contrast agent will also accumulate in the EES before slowly diffusing
back into the blood stream and being washed out through the kidneys [33].

Inflammatory conditions are characterised by changes in the microvascular function [42].
Arterioles may dilate, increasing blood flow, which in turn increases the fluid extrava-
sation gradient across the endothelial wall coating of capillaries and venules [42, 43].
Where the capillary web becomes disrupted or altered due to angiogenesis, which is typ-
ical in the case of cancers, there will be an effect on perfusion measurement parameters
[44, 45]. Increases in fluid content and defective cell membranes will affect diffusion mea-
surements [46]. Alterations in microvascular function forms a basis for using advanced
MRI to explore extent and physiology of chronic inflammatory diseases.
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Figure 4: Modelling capillary architecture. A voxel containing intravascular and extra-
cellular space (A) and capillaries modelled as randomly oriented straight tube segments
(B). The intravascular space can contain both arterioles and capillaries.
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1.3 Perfusion weighted imaging

According to the Oxford Lexico dictionary, in a medical context, perfusion refers to “the
passage of blood, a blood substitute, or other fluid through the blood vessels or other
natural channels in an organ or tissue” [47]. Perfusion related measurements can be
performed using a variety of imaging modalities, such as positron emission tomography
(PET), computed tomography (CT) and MRI [48]. Commonly, PWI relies on measur-
ing dynamic signal changes related to tracers in the blood stream. When an exogenous
contrast agent is administered, PWI is performed with DCE-MRI [24], or DSC-MRI [25,
26]. Common to DSC- and DCE-MRI is the dynamic measurement of the tissue contrast
response curve, as well as the arterial input function (AIF), which denotes the contrast
flowing into the tissue. As will be further discussed below, the deconvolution of these
functions reveals important properties of the physiology under investigation.

1.3.1 Dynamic contrast enhanced MRI

By repeatedly acquiring T1-weighted images prior to, during and after the passing of the
injected contrast agent, the aim of DCE-MRI is to arrive at quantitative parameter estima-
tions from the tissue response curve. Some of these parameters can be estimated directly
from the signal response curve [49]. These include steepness, maxima, time to peak, area
under the response curve, and bolus arrival time (Fig. 5).

Figure 5: A signal response curve. The signal response curve in dynamic contrast en-
hanced MRI is used to infer parameters such as slope of tail, maximum, time to peak,
area under the response curve, and bolus arrival time.
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Other parameters are derived from tracer kinetic models that assume various physiolog-
ical tissue properties and must be estimated by deconvolution of the AIF and contrast
response curve [24]. A short summary of relevant tissue parameters is presented in Ta-
ble 1. The tissue can be visualised in terms of the estimated parameters by generating
parameter maps were each pixel representing a parameter estimation corresponds to an
imaging voxel in the structural image. The contrast molecules can traverse the vascular
endothelium of the vessels and capillaries in the body by way of passive diffusion, though
usually assumed, not through the blood brain barrier unless it is disrupted [50]. As time
passes, contrast agent will accumulate in the EES until it slowly diffuses back into the
blood stream and is washed out of the body through the kidneys. However, recent stud-
ies have shown that incomplete excretion from both brain and kidneys is a concern [51].
Both T1 and T2 relaxation times are shortened by the contrast agent [52–54]. The T1
relaxivity is usually assumed to be linearly related to contrast agent concentration and
expressed according to Eqn.13 [53–55],

R1 = R1,0 + r1 ·C (13)

where R1 = 1
T 1 is the total T1 relaxivity, R1,0 = 1

T 10
is the tissue T1 relaxivity in the absence

of contrast agent, r1 is the contrast agent T1 relaxivity, and C is the contrast agent concen-
tration. R1, R1,0 and r1 are theoretically known quantities, though they depend on field
strength, tissue and chemical composition [54]. Both gradient and spin echo sequences
can be applied to acquire the DCE images [56]. Eqn. 9, remains valid when gradient
echoes are applied and is then used to relate the signal intensity to the contrast agent
concentration present in a voxel at a given time. Because the T1 relaxivity is increased by
the contrast agent, the T1 relaxation time is shortened, and the contrast signal increased.
To generate T1-weighted images, DCE-MRI is performed with short TR (≤ 500 ms) and
T E (≤ 10 ms). Because the TR is short, the flip angle is also kept small (≤ 20 °) [56]. Total
acquisition time typically exceeds five minutes.

To estimate perfusion parameters, it is necessary to make some assumptions about the
tissue that is investigated. The sum of these assumptions can be regarded as a tissue
model, to which the data are fitted. One can think of the models as dividing the tis-
sue into different volumes and imposing certain rules about how the contrast may travel
through the system of these volumes. Assuming contrast agent can neither be generated
nor destroyed in the system, these rules are summarised mathematically. As the data are
fitted, one finds an impulse function H(t) which is convolved with the AIF to yield the
measured contrast response curve. In PWI literature one is often referred to the residue
function [38, 57], as defined as in Eqn. 14,

R(t) = 1−
∫ ∞

0

H(t)dt (14)
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Parameter Unit Description
α−1 - Width of capillary transit time distribution
BAT min Bolus arrival time
E - Extraction fraction
Fp ml/ml/min Blood plasma flow
K trans 1/min Transfer constant
Kep 1/min Rate constant
P S ml/ml/min Permeability surface area product
σ min Standard deviation of mean transit time
Tc min Mean capillary transit time
ve - Extravascular extracellular volume
vp - Plasma volume

Table 1: Summary of dynamic contrast enhanced MRI parameters. Perfusion parameters
(α−1, BAT , E, Fp, K trans, Fp, P S, σ , Tc, ve and vp) estimated by application of dynamic
contrast enhanced MRI and pharmacokinetic modelling.

R(t) reflects the amount of contrast agent concentration left in the capillary after a time
t. Intuitively R(0) = 1 and limt→∞R(t) = 0. The mean capillary transit time can therefore
defined as in Eqn. 15.

Tc =
∫ ∞

0

R(t)dt (15)

Theoretically, a residue function could contain all information about the microcircula-
tion [58], however the deconvolution does not have a unique solution when it contains
more than one unknown parameter, nor is any measurement completely free of noise. In
DCE-MRI several tissue models have been developed in order that one may reasonably
account for unique features of the physiology.
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Tofts model
The Tofts model [59], assumes that a voxel contains two parts; blood vessels or capillaries,
and EES (Fig. 6). The blood vessel or capillary contains volumes of blood plasma, as well
as erythrocytes. As a rule, the contrast agent concentration is somewhat higher in the
plasma regions, than in the total blood volume, and is calculated according to Eqn. 16
[38],

Cb =
Cp

1−Hct
(16)

where Cp and Cb are the contrast agent concentrations in plasma and blood volumes
respectively, and Hct is the ratio of plasma to blood. The Tofts model also assumes that
the contrast agent is well mixed in the blood vessel, and that the amount of contrast
passively diffusing into the EES is proportional to the relative amount of contrast present
on either side of the dividing wall comprised of the vascular endothelium [59]. In other
words, the contrast agent may passively diffuse back and forth across the capillary wall.
The original formulation of Tofts model [59], neglects the fractional plasma volume vp,
such that based on conservation of mass, the descriptive differential equation becomes
Eqn. 17 [24]. Eqn. 18 is the integral form.

Ct(t)
dt

= K trans

(
Cp(t)− Ct(t)

ve

)
(17)

Ct(t) = K trans
∫ t

0
Cp(t)e

−
(
Ktrans

ve

)
(t−τ)

dτ (18)

Cp corresponds to the measurable AIF and Ct is the measured tissue contrast response
curve. The equation has two unknowns, the transfer constant K trans and the fraction of
the total volume that is EES and where the contrast agent may diffuse; ve. These un-
known quantities are estimated by fitting the measured AIF and contrast response curve
to the model. By definition, kep = K trans/ve [24], and is easily calculated. How much
contrast that may diffuse into the EES per time, K trans depends on the blood flow Fp in
the capillary, the capillary surface S, and how permeable it is, P [60]. Oftentimes, S and
P are simply collected in a single parameter, the surface permeability product P S [60, 61].

Given that the total contrast concentration, CT , equals the sum of concentrations in the
capillary vpCp(t) and tissue concentration Ct(t), Eqn. 18 can be modified to Eqn. 19
[24]. The extended Tofts model includes the plasma volume vp and therefore has three
unknown parameters that must be fitted to the data.

CT (t) = vpCp(t) +K trans
∫ t

0
Cp(t)e

−
(
Ktrans

ve

)
(t−τ)

dτ (19)
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Figure 6: The extended Tofts model of tracer kinetics. The model divides a voxel into
two parts; the blood vessel or capillary (top box), and the compartment of extravascular
extracellular space (EES) (bottom box). The extended Tofts model seeks to estimate the
relative volumes of the capillary (vp) and EES (ve), as well as the transfer rate (K trans)
of contrast into the EES and the reverse transfer rate of contrast diffusing back into the
capillary from the EES (kep).

Two-compartment exchange model
The two-compartment exchange model (2CXM) was proposed by Brix et al. [62, 63], and
it describes the capillary system with two differential equations (Eqns. 20 and 21). The
equations correspond to two compartments. The EES is counted as a compartment, as
is the capillary, where blood enters the arterial end and exits the venous end, and from
which it can diffuse into the EES (Fig. 7).

Vp

Cp(t)

dt
= Fp

(
Ca(t)−Cp(t)

)
− P S

(
Cp(t)−Ct(t)

)
(20)

Vt

Cp(t)

dt
= P S

(
Cp(t)−Ct(t)

)
(21)

Assuming well mixed volumes, the amount of contrast that enters or leaves the capillary
is equal to the plasma volume Vp multiplied by the change in contrast agent concentration
dCp(t)
dt . The first term of the right-hand side of Eqn. 20 describes the difference between

contrast agent concentration entering the capillary Ca(t) (AIF), and the concentration in
the capillary Cp(t) that will leave, multiplied by the blood flow Fp. The second term of
the right-hand side of Eqn. 20 describes the amount of contrast leaving into the EES,
which is proportional to the difference in contrast agent concentrations in the capillary
and in the tissue, Ct(t). Eqn. 21 is simply the negative equivalent of the second term on
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the right-hand side of Eqn. 20, it describes the contrast agent that enters the EES volume
Ve. Finally, the measured contrast response curve CT (t) is given by Eqn. 22,

CT (t) = vpCp(t) + veCt(t) (22)

where Cp(t) and Ct(t) are the contrast agent concentrations in the capillary and EES re-
spectively, and where vp = Vp/VT and ve = Vt/VT correspond to the volume ratios of the
plasma volume and the EES volume to the total volume VT .

The 2CXM model requires a temporal resolution that is sufficient for resolving K trans into
Fp and P S [57, 60]. Given Fp and P S one may calculate the extraction fraction E Eqn. 23.
It is the fraction of the contrast entering the capillary which is extracted into the EES.

E =

∫ ∞
0

P S ·Cp(t)dt∫ ∞
0

Fp ·Cp(t)dt
=
P S
Fp

(23)

Figure 7: The two-compartment exchange model (2CXM).1 In the 2CXM blood, contain-
ing contrast, enters the capillary compartment in the arterial end and exits through the
venous end. Contrast can also diffuse across the endothelial wall between the capillary
compartment and extravascular extracellular space. The contrast is well mixed in the
compartments.

1Fig. 7 is an adaption of a figure presented by Brix et al. [62].
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Tissue homogeneity model
Contrary to the Tofts model and the 2CXM, the tissue homogeneity (TH) model does not
assume that the capillary is well mixed [64]. Instead, a plug-flow model is assumed, in
which the contrast agent concentration is initially reduced with increasing distance from
the capillary arterial inlet and is dependent on time (Fig. 8). Again, from the conservation
of mass, one arrives at coupled pair of equations (Eqns. 24 and 25) [65].

Ap

∂Cp(x, t)

∂t
= −Fp

∂Cp(x, t)

∂x
− P S

L

[
Cp(x, t)− Ct(t)

λ

]
(24)

AtL
dCt(t)
dt

=
P S
L

∫ L

0

[
Cp(x, t)− Ct(t)

λ

]
dx (25)

Cp(x, t) and Ct(t) are the contrast agent concentrations in the capillary and EES, respec-
tively. Similarly, Ap and At are the cross-sectional areas of the compartments. Fp denotes
the blood flow, P S is the permeability surface area product, L is the capillary length and
λ is the equilibrium partition coefficient. The solution to the TH equations is rather com-
plicated but can be handled in the frequency domain by performing Laplace or Fourier
transforms, where closed form solutions exist [65, 66].

Figure 8: The tissue homogeneity model (TH).2 In the TH model blood, containing con-
trast enters, the capillary compartment in the arterial end and exits through the venous
end. Contrast diffuses across the endothelial wall between the capillary compartment
and extravascular extracellular space. The amount of contrast is dependent on distance
(L) from the arterial inlet and time.

2Fig. 8 is an adaption of a figure presented by St. Lawrence and Lee [65].
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Adiabatic approximation to the tissue homogeneity model
The adiabatic approximation to the tissue homogeneity (AATH) model assumes that the
contrast agent concentration in the EES changes slowly compared to the contrast agent
concentration in the capillary [65, 67]. Thus, a simplification to the TH model is made
where for short time intervals the change in EES contrast concentration is assumed to be
zero, in other words, it changes only in discrete steps (Fig. 9). The adiabatic approxima-
tion is performed by substituting Eqn. 26 into Eqns. 24 and 25,

Ct(t) =
n−1∑
j=0

∆Ct(j∆t)u(t − j∆t) (26)

where ∆Ct(j∆t) is the discrete change in contrast agent concentration in the EES and
u(t − j∆t) is the unit step function. St. Lawrence and Lee [65, 67], showed that the AATH
impulse function, i.e., the solution to this problem is simpler than the TH model solution
and can be handled in the temporal domain (Eqn. 27),

H(t) =

 1 0 ≤ t < Tc

Ee−
EFp
ve

(t−Tc) t ≥ Tc
(27)

where the solution describes that there is a fixed time before contrast is extracted through
the venous end of the capillary. E is the extraction fraction, Fp is the blood flow, ve is the
EES volume and Tc is the mean transit time. They are estimated based on the numerical
fitting of the measured AIF and contrast response curve to the model.

Figure 9: The adiabatic approximation to the tissue homogeneity (AATH) model.3 The
AATH model is similar to the tissue homogeneity model, however, the contrast agent
concentration changes in discrete steps along the distance (L) from the arterial inlet.

3Fig. 9 is an adaption of a figure presented by St. Lawrence and Lee [65].
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Distributed capillary adiabatic tissue homogeneity model
The distributed capillary adiabatic tissue homogeneity (DCATH) model was originally
motivated by the fact that cancerous vasculature architecture is different from that of
normal tissue [68]. The hypothesis was that the variability of transit times would be
greater in cancerous tissues than that in normal tissues. Koh et al. [68], chose to model
an imaging voxel not as a single capillary compartment accompanied by the EES, but as
is closer to the truth, that there are many capillaries within a voxel, each with their own
transit time. Consequently, the DCATH model assumes a probability density function of
Tc, i.e., capillary transit times (Eqn. 28).

1
N

∫ t

0
g(Tc)dTc =

∫ t

0
gc(Tc)dTc = 1 (28)

The distribution function g(Tc) can be assumed to be Gaussian, where N is an ad hoc
normalisation factor that is introduced to incorporate the physical necessity of the lower
limit of Tc to be non-negative, and gc(Tc) = 1

N g(Tc). Alternatively, an assymetric distribu-
tion could be chosen for gc(Tc), incorporating the gamma function, smoothly decreasing
to zero, and otherwise decaying like the normal distribution. In both cases, the standard
deviation σ of the distribution is an additional parameter that must be estimated in the
numerical deconvolution of the AIF and contrast response curve [68]. With the assump-
tion in Eqn. 28, the AATH impulse function Eqn. 27 can now be rewritten as Eqn. 29

H(t) =

 1−
∫ t

0
gc(Tc)dTc 0 ≤ t < Tc

Ee−
EFpt
ve

∫ t

0
gc(Tc)e

−
EFpt
ve dTc t ≥ Tc

(29)

Gamma capillary transit time model
The gamma capillary transit time (GCTT) model is based on the DCATH model (Eqn. 29),
but exchanges the DCATH probability distribution g(Tc) for a normalised gamma prob-
ability distribution of transit times [69]. The inverse of the gamma distribution shape
parameter, i.e., α−1 = τ/Tc is proportional to the scale parameter τ of the distribution,
and hence represents a measure of the width of the distribution. It has been shown that
in the limit α−1→ 0, the GCTT model impulse response approaches the impulse response
of the AATH model and when α−1 → 1, the GCTT model impulse response approaches
that of the 2XCM [69].

While there have been proposed many pharmacokinetic models, simpler models like the
Tofts model remain frequently applied. These models have fewer target parameters.
When choosing a model, it is important to consider how plausible its a priori parame-
ter assumptions are, and whether increasing the number of fitted parameters sufficiently
improves the fit [57]. With increasing complexity of the models, additional features of
the tissue of interest can be described, though it comes at the cost of the need for higher
temporal resolutions and increased signal to noise ratios, since adding additional free
parameters increases the risk of over-fitting and one would rather avoid modelling noise.
Improved MRI scanner capabilities may help alleviate these issues.
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1.3.2 Dynamic susceptibility contrast MRI

Under the assumption that contrast agent does not traverse the blood brain barrier thus
accumulating in the tissue [50], first pass bolus tracking, i.e., DSC-MRI, has predomi-
nantly been used for perfusion imaging in the brain [55]. It remains true that both T1 and
T2 relaxation times are shortened by the contrast agent. The T2 relaxivity is expressed in
Eqn. 30.

R2 = R2,0 + r2 ·C (30)

where R2 = 1/T 2 is the total T1 relaxivity, R2,0 = 1/(T 20) is the tissue T2 relaxivity in
the absence of contrast agent, r2 is the contrast agent T1 relaxivity, and C is the contrast
agent concentration, analogous to Eqn. 13 [52]. Gradient echo sequences are commonly
applied in DSC-MRI, generating T2-weighted images, typically with somewhat longer TR
(≤ 2000 ms) and T E (30-50 ms) as well as a larger flip angle (60-90 °) than in DCE-MRI,
but the total acquisition time is limited to approximately two minutes [56]. In contrast to
T1 relaxivity, the T2 relaxation causes a hypointense signal.

Like in DCE-MRI, the DSC-MRI contrast response curves can be used to estimate semi-
quantitative perfusion parameters [70]. However, the main interest lies in estimating
cerebral blood flow (CBF), cerebral blood volume (CBV ) and mean transit time (MTT )
[71] (Tab. 2), of contrast agent in the capillary bed. The capillary bed is simply taken
to be the imaging voxel. A correct parameter estimation relies on the system behaving
linearly [72], that is, that contrast is neither created nor destroyed within the system and
that the rules of linear superposition apply.

Parameter Unit Description
CBF ml/min/100 g Cerebral blood flow
CBV ml/100 g Cerebral blood volume
MTT min Mean transit time

Table 2: Summary of dynamic susceptibility contrast MRI parameters. Perfusion param-
eters (CBF, CBV and MTT ) estimated by application of dynamic susceptibility contrast
MRI.

DSC-MRI is less complicated than DCE-MRI. A priori assumptions about interactions
between multiple tissue compartments before fitting the model equations to the mea-
surement data are not necessary. Although some assumptions may have to be made in
the measurement of the AIF and tissue response curve, to find CBF, the tissue response
function (Eqn. 31), just needs to be deconvoluted [25, 73].

Cv(t) = CBF ·K
∫ ∞

0
Ca(τ)R(t − τ)dτ (31)
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Here Cv(t) and Ca(t) are known functions, since they are the measured tissue contrast
response curve inside the voxel and the AIF, respectively. CBF is the cerebral blood flow,
K is a normalisation constant and R(t) the residue function, i.e., the impulse response of
the imaging voxel, a dimensionless function ranging between 1 and 0, determining what
happens to the contrast Ca(t) entering the imaging voxel. CBF ·K and R(t) are unknowns
and consequently the parameters that must be fitted in the deconvolution process [73].
In practice, relative cerebral blood flow (rCBF) is usually the estimated parameter.

Singular value decomposition (SVD) has become a popular approach to deconvolution
in DSC-MRI [74]. The tissue response curve and arterial input function are measured at
equally spaced discrete time points and Eqn. 31 can be rewritten as a matrix equation,
Eqn. 32, or shorthand Eqn. 33.

CBF ·∆t


Ca(t1) 0 ... 0
Ca(t2) Ca(t1) ... 0
... ... ... ...

Ca(tj ) Ca(tj−1) ... Ca(t1)



R(t1)
R(t2)
...

R(tj )

 =


Cv(t1)
Cv(t2)
...

Cv(tj )

 (32)

A ·b = c (33)

Given that R(0) = 1, the equation may be solved iteratively. But the method is sensitive
to noise, and while one could add a regularization term [75], the SVD approach is often
preferred instead. With SVD the inverse of A is diagonalised and Eqn. 33 is solved in
terms of the diagonalization, where the elements in the diagonal matrix that are above a
certain threshold are set to zero, thereby reducing noise [76].

CBV is proportional to the area under the contrast curve. If one could divide by the
amount of contrast present in an ideal voxel containing only blood, one would have a
measurement in terms of a fraction of a voxel. The size of a voxel is known and the
amount of contrast in an ideal voxel is taken to be the arterial input function. Thus,
relative cerebral blood volume rCBV can be calculated according to Eqn. 34 [25, 73],

rCBV =

∫ t

0
Cv(τ)dτ∫ t

0
Ca(τ)dτ

(34)

where Cv(t) is the tissue contrast response curve and Ca(t) is the arterial input function.
MTT is related to CBF and CBV by the central volume theorem [58], Eqn. 35.

MTT =
CBV
CBF

(35)
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1.3.3 Arterial input functions

Until now it has merely been stated that an AIF is needed to perform DCE- and DSC-MRI,
and its place in the perfusion parameter estimation equations has been described. These
equations alone should indicate that an accurate AIF measurement is critical to achieve
accurate perfusion parameter estimations, and experiments have confirmed it [71, 77].
Because there will always be a trade-off between various quality aspects of an AIF mea-
surement [78, 79], a plethora of measurement and approximation techniques have been
developed and are widely applied.

Figure 10: An arterial input function (AIF). Typically, an AIF exhibits an early signal rise,
small width and a high peak.
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Local and global AIFs
AIFs are meant to be a measurement of the contrast agent concentration flowing into the
region of interest (ROI). A local AIF measurement close to the ROI would therefore seem
intuitive [80]. It has been shown that when this is not the case, delay and dispersion
of the AIF can lead to an underestimation of CBF [81, 82]. However, delay can be cor-
rected for by applying an appropriate deconvolution method [76], and to some degree,
so can dispersion [75]. Dispersion can also be reduced by the choice of local AIFs [83].
Saline injection following the contrast agent administration is standard protocol, regard-
less of whether a global or local AIF is chosen, and part of its effect when administered
properly is to shorten BAT , increase initial steepness, maximum intensity, and maximum
intensity duration of the signal [84, 85]. Tissue surrounding the measurement vessel can
contribute to the AIF signal. These are partial volume effects that occur when the vessel
is smaller than the imaging voxel. Local AIFs are often measured in small vessels close
to the ROI. While global AIFs can be measured in large feeding arteries rendering partial
volume effects less pertinent, they too are susceptible to partial volume effects [86, 87].

Scan-specific, subject-specific, and population-based AIFs
AIFs can be categorised as scan-specific [88–95], subject-specific [94–96], or population-
based [88–94, 96]. Like the name suggests, scan-specific AIFs are extracted from individ-
ual study scans and may consequently do better justice to AIF variations between scans
than subject-specific and population-based AIFs [93]. Hence, they could potentially also
render more accurate perfusion parameter estimations. However, single measurements
may cause poorer repeatability of subsequently derived perfusion parameters than do av-
eraged AIFs [92], and unless an automated AIF search algorithm is applied, scan-specific
AIFs can be somewhat more labour demanding than applying a population-based AIF.

An AIF is subject-specific if it is applied for parametric perfusion modelling based on
data acquired from repeated study scans of the same subject. The AIF may for instance
be the scan-specific AIF from the first-time scan of a patient, used repeatedly on subse-
quent data collected from follow-up scan sessions [94–96].

A population-based AIF can be calculated from a random subset of the patients in ques-
tion, temporally aligning the set of AIFs and then computing the median or average [97].
The mean population-based AIF could be applied straight away, or it could be fit to a
parametric model AIF (not to be confused with the main DCE or DSC parametric mod-
elling) before application. Numerous AIF models exist [59, 82, 97, 98]. Among AIF mod-
elling methods, the Parker model, originally proposed for abdominal MRI, is probably
the most famous, and was designed to be applied to population-based AIFs [97]. Some-
times, like in the NordicICE software (NordicNeuroLab Inc., Bergen, Norway) one can
choose a population-based model AIF, first developed by van Osch et al. [99], based on
physiological data from a typical 35-year old male. In such cases, the population-based
AIF is independent of the subjects in the actual data being analysed. Population-based
AIFs are easy to apply, but individual variations are often disregarded [93, 100].
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The choice between scan-specific, subject-specific, and population-based AIFs may de-
pend on the application. For DCE-MRI studies, some authors argue for population-based
AIFs when imaging the head and neck area [92]. When imaging the prostate cancer,
more accurate perfusion model output has been achieved using a scan-specific AIF [88],
though in predicting biopsy outcome scan-specific AIFs where not found to be better
than population-based AIFs [91]. Others have claimed diagnostically accurate perfusion
analysis with population-based AIFs in the prostate [89]. In studies of DCE-MRI param-
eters in brain tumours, scan-specific AIF measurements have been recommended [93].
In DSC-MRI, scan-specific and automated AIFs are by far the most commonly applied
AIFs, probably because the temporal resolution relative to DCE-MRI is high, such that
measurements of scan specific AIFs are less noise ridden. Nevertheless, though research
addressing choice if AIFs in DSC-MRI is scarce, preferences for scan- or subject-specific
AIFs in brain tumour patients have been reported [94–96].

Automated and semi-automated AIFs
Both automated and semi-automated AIF search algorithms are being used in perfusion
MRI studies [101–105]. The AIF detection algorithms look for voxels that display con-
trast signal curves with a high maximum, small width, and an early signal rise [77, 106–
110]. Several automatic AIF selection methods are based on clustering algorithms, an
example is provided by Mouridsen et al. [108]. Mouridsen et al. [108], describe a k-
means clustering approach which is implemented in NordicICE (NordicNeuroLab Inc.,
Bergen, Norway). They argue that the Euclidean distance between vectors describing
contrast curves originating from different tissue should be large compared to contrast
curves originating from similar tissue. Assuming equal contrast concentrations across
the arteries, the contrast curves were normalised to have the same area under the curve
prior to k-means clustering. K-means clustering minimises the inter cluster variance, and
maximises the intra cluster variance. K-means clustering was performed a second time
on the AIFs contained in the cluster with shortest arrival time and a final AIF was chosen
by computing the mean of the shortest arrival time AIFs in the second clustering [108].

Semi-automatic AIF search algorithms have traditionally involved the selection of a search
region [108, 111–113], and applied algorithms typically identify voxels experiencing
early arrival and maximum peak contrast agent concentrations within these regions [77,
80, 109, 110]. A set of suitable AIF candidates can be displayed by an applied software,
and the user may then choose which ones to apply in the perfusion analysis, or perform
other minor adjustments [105]. This allows a user-controlled experiment, though it can
also add a level of subjectivity to the measurements [112]. AIFs can also be simulated by
applying the method of mean tissue response. Mean perfusion parameter values of one
or more healthy tissues are assumed to be known, and an AIF can then be calculated in-
versely and applied to the ROI [114, 115]. An obvious limitation of the method is that the
subject may not be normally perfused, for example in the case of brain tumours, healthy
appearing tissue may be affected by the disease [116, 117].

24



1.4 Diffusion weighted imaging

An important method of probing tissue microstructure with MRI are diffusion measure-
ments and reconstruction of maps that reflect aspects of tissue diffusivity. Diffusion is the
random motion of micro-molecules. In the diffusion measurement context, the motion
of spin possessing molecules is modelled as Brownian motion [118], where there is no
preferred direction of flow or change in concentration of molecules. The motion of indi-
vidual spins is characterised by random fluctuations in position, such that individually
traced out paths appear as random walks (Fig. 11). These random walks can be hindered
by tissue structures. The goal of diffusion measurements is to make inferences about the
tissue structure, based on the collective contributions, or rather lack thereof, of diffusing
spins to a measurement signal.

Figure 11: Free and restricted Brownian motion. The average displacement of diffusing
water molecules, characterised by their random Brownian motion, is reduced by restric-
tions, such as for example tissue boundaries.

1.4.1 Measuring diffusion and constructing diffusion tensors

To measure diffusion, is to measure the amount of signal attenuation caused by a set of de-
phasing and re-phasing gradients that are added to the imaging sequence (Fig. 12). These
were introduced by Stejskal and Tanner [28]. The de-phasing gradient causes spins at dif-
ferent locations to experience different amounts of phase shifts. When the re-phasing gra-
dient is applied, the spins at the different locations will have their phase shifts reversed
and returned to base. Spins that in the meantime have moved relative to the surrounding
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spins will not experience equal amounts of phase shifts in both directions. Therefore,
they contribute to signal loss compared to spins with none or shorter net displacement
in the direction of the applied de-phase and re-phase gradients. The amount of signal
loss is dependent on the gradient amplitude, the gradient duration, and the time inter-
val between gradients. These are parameters that can be controlled in the experiment.
Lastly, the signal attenuation is dependent on the diffusion constant D of the diffusing
substance, that is, the particle flux through an area per time. The diffusion constant is
the target variable of the measurements necessary for diffusion tensor imaging (DTI).

Figure 12: The Stejskal-Tanner sequence. Diffusion signal attenuation can be measured
with the Stejskal Tanner sequence. The de-phasing gradient ensures that spins at differ-
ent locations along the gradient acquire different amounts of phase shifts. Non-moving
spins will have their phases returned to base by the re-phasing gradients. Since moving
spins do not have equal phase shifts in both directions, they contribute to a signal loss
compared to a non-diffusion sensitised image.

The diffusion constant D has units mm2/s, as can be seen again from Fick’s first law of
diffusion (Eqn. 36),

J = −D∇c (36)

which states that the particle flux J is proportional to the negative gradient of particle
concentration c. ∇ refers to the gradient in spatial dimensions. Applying the rule of mass
conservation (Eqn. 37), for a constant diffusion coefficient D one arrives at Fick’s second
law [119] in the form of Eqn. 38, which when ∂c/∂t = 0 describes cases where the particle
concentration does not change with time, as is the case with Brownian motion.
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∂c
∂t

= −∇J (37)

∂c
∂t

= D∇2c (38)

Fick’s second law has the form of the heat equation, with the fundamental solution given
by the Gaussian kernel (Eqn. 39), which can also be expressed with reference to Einstein’s
formula (Eqn. 40), [27].

P (x, t) =
1

√
4πDt

e
x2

4Dt =
1

σ
√

2π
e

x2

2σ2 (39)

σ =
√

2Dt (40)

P (x, t) is the probability to find a spin at a particular point in space in time, σ is the mean
displacement, D is the diffusion constant and t is the diffusion interval.

The phase difference for a single spin at a specific point in space and time φ(x, t) with
reference to a chosen base line point is given by Eqn. 41,

φ(x, t) = e
∫
iγG(t)tx (41)

where γ is the gyromagnetic ratio and G is the applied de-phase or re-phase gradient
pulse.

The total measurement signal is the sum across phase differences originating from points
in space and time, weighted by the probability to find the spins at said position [28, 120],
and scaled by a minimally diffusion weighted baseline image (Eqn. 42),

S = S0

∫
t

∫
x
P (x, t)φ(x, t)dxdt (42)

S and S0 are the total measurement signal and the baseline signal, respectively. In the
limit that the gradients are applied instantaneously, i.e., have a rectangular shape, Eqn.
42 can be solved, to yield Eqn. 43, which is re-stated in exponential form in Eqn. 44.

lnS = S0 −γ2G2δ2
(
∆− δ

3

)
D = lnS0 − bD (43)

S = S0e
−bD (44)

where ∆ is defined as the time interval between the onsets of the de-phase and re-phase
gradients, δ is the time interval for which the gradients are switched on, and b collects
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the experiment-controlled variables into one parameter. Accordingly, there is a linear re-
lationship between the b-value and the logarithm of the measured signal. A minimum of
two measurements is required to compute the slope D, which, in an ideal world, is the
diffusion constant.

Eqns. 43 and 44 only provide information about diffusion in the direction that the de-
phase and re-phase gradients were applied. In addition to the non-diffusion weighted
images, measurements of the diffusion constant D are required in a minimum of six di-
rections to uniquely determine the magnitudes and directions of three orthogonal diffu-
sion vectors, defining an ellipsoid [121]. The information contained in the six diffusion

constant measurements are stored in a three-by-three symmetric diffusion tensor D, such
that its eigenvectors are unit vectors corresponding to the orientation of the principal
axes of the ellipsoid and its eigenvalues correspond to their length [122–124]. The diag-
onal elements of the diffusion matrix contain the diffusion constants Dxx, Dyy and Dzz,
which are a measure of diffusion in the x-, y, and z-direction, respectively. To determine
the diffusion tensor, Eqn. 43 is modified to a system of equations, each of which are in
the form of Eqn. 45,

lnSi = lnS0 − bĝTi Dĝi (45)

where ĝi is the unit vector in the direction of the applied de-phase and re-phase gradients
of the measurement number i, Si . To reduce noise, additional diffusion directions are
oftentimes applied, and Eqn. 45 is solved with multi-variate linear regression.

1.4.2 The apparent diffusion coefficient and noise

There are several effects beyond diffusivity that affect signal attenuation. Therefore, in-
stead of measuring the diffusion constant D, what is really measured is the apparent
diffusion constant (ADC). Signal attenuation effects can be inherent to the tissue that is
probed [125–127], due to motion and misregistration [128–130], and depend on the exact
timing and interplay of the pulses applied in the measurement [131].

The Gaussian diffusion probability distribution is an approximation, precisely because
the tissue microstructure restricts diffusion, such that the diffusion probability curve is
less heavy tailed than the Gaussian distribution, causing a lower ADC than otherwise
expected. The level of kurtosis introduced this way varies depending on the tissue and
is more pronounced at higher b-values (Fig. 13) [126]. At low b-values the effect of in-
travoxel incoherent motion becomes apparent, due to microcirculation in the capillary
network mimicking true diffusion [41]. Signal attenuation increases, which causes an
increased ADC. Additionally, general phase dispersion can be caused by susceptibility
effects [127], also contributing towards signal loss and a higher than expected ADC.

DWI requires long TR (∼ 2000-5000 ms) [132] to reduce T1 effects. Ideally, T2 effects
should also be minimised by short TE. However, the gradient amplitudes are limited
and require the de-phasing and re-phasing gradients to be switched on for some non-
infinitesimal time prior to sampling of the echo signal, necessitating somewhat longer TE

28



Figure 13: Diffusion signal across b-values.4 Signal attenuation (S) may increase at low
b-values due to intravoxel incoherent motion, and across b-values due to susceptibility
effects and phase dispersion. At high b-values the signal attenuation can deviate toward
slightly lower signal attenuation than the straight line in the logarithmic plot would pre-
dict.

(∼ 80-160 ms) [132, 133]. As discussed, calculation of the diffusion tensor presupposes
that diffusion weighting is applied in at least six directions, and when multi-shell imag-
ing is performed the amount of collected data scales with the number of b-values. Conse-
quently, rapid image readouts are necessary, but even when these are applied, as a rough
rule of thumb, one can acquire ten DWI volumes per minute, during which time the sub-
ject has ample opportunity to move. Diffusion measurements are extremely sensitive to
motion, because of for example cardiac pulsations, respiration, and subject movement
[128, 129]. Whenever spins move due to other mechanisms than diffusion, it can cause
both additional phase dispersion and signal attenuation, as well as misregistration of the
signal, oftentimes recognised as ghosting [130]. Ghosting effects appear with movement
along the phase encoding direction such that image readout lines are shifted. The effects
become more severe with stronger gradients.

4By courtesy of Allen D. Elster, MRIquestions.com, Fig. 13 is adapted of a version avail-
able at https://mriquestions.com/diffusion-kurtosis.html (visited 01/02/2022).
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Single shot echo planar imaging (EPI) is the most common acquisition strategy for the
necessary fast diffusion image readout [131], but it is also liable to image distortions. It is
characterised by small blips in the phase-encoding gradient and large rapid oscillations
in the frequency-encoding gradient [134, 135]. EPI acquisitions must be corrected for
chemical shifts, particularly in the phase-encoding direction. Spins experience slightly
differing fields due to different electron shielding effects in lipids and water, which causes
them to have slightly different resonance frequencies. The frequency bandwidth per pixel
is small in the phase-encoding direction and the phase difference is allowed to accumulate
due to the single shot acquisition [130, 131]. Signal attenuation and the ensuing diffusion
measurements are also affected by the acquisition scheme. Strong and fast shifting gradi-
ents can cause lingering fields inducing eddy currents that cause new random gradients
which in turn affect signal attenuation [130]. Non-linearity of any applied gradient, as
well as susceptibility artifacts, cause distortions in the image readout. Careful design of
pulse sequences [131], and quality checks and calibrations of the scanner gradients [136],
can help alleviate some of these issues.

1.4.3 Indicies and directionality

The information stored in the diffusion matrices, i.e., the lengths and directions of the
principal axes of a modelled ellipsoid, may need to be visualised and interpreted. By far
the most common scalar contrasts that can be calculated are mean diffusivity (MD), Eqn.
46 and fractional anisotropy (FA), Eqn. 47.

MD =
λ1 +λ2 +λ3

3
(46)

FA =

√(
(λ1 −λ2)2 + (λ2 −λ3)2 + (λ3 −λ1)2

)
√

2
(
λ2

1 +λ2
2 +λ2

3

) (47)

Here λ1, λ2, and λ3 correspond to the longest, middle, and shortest lengths of the prin-
cipal ellipsoid axes. MD intuitively corresponds to the mean ADC across the three di-
mensions of the ellipsoid, which is also equal to the trace of the diffusion tensor divided
by three [122–124, 137]. Other ways to measure anisotropy exist, though FA as rendered
in Eqn. 47 is most common. Regardless of which anisotropy measure that is chosen,
anisotropy will usually range between 0 and 1, quantifying the ellipsoid shape such that
a value closer to zero indicates that the ellipsoid approaches spherical shape.

Care must be taken when interpreting scalar MD and FA maps. Both MD and FA are
susceptible to partial volume artefacts [138], and are consequently both somewhat de-
pendent on voxel size. This is particularly true for FA, as disorganised fibres within
a voxel can cause reduced FA [139]. Smaller voxel sizes can therefore induce over-all
higher measured FA. FA also does not distinguish between tubular ellipsoids and ellip-
soids that have a disc-like shape, and so there could be not just one, but multiple main
diffusion directions within the same voxel. Nevertheless, FA contrasts are proven to be
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of clinical value for investigating disease and treatment effects in, e.g., multiple sclerosis
[140], stroke [141, 142], and cancer [116, 143], where abnormal FA is often interpreted
as structural damage.

Tractography can be performed based on the principal eigenvectors within a voxel. The
aim is to reconstruct a map of possible fibre tract trajectories in the brain. In determinis-
tic fibre tracking, starting at user defined voxels, streamlines can be traced out following
the principal eigenvectors between neighbouring voxels [144]. Another approach to fibre
tracking includes the computation of the amount of anisotropic spins diffusing in a par-
ticular direction, using high resolution diffusion imaging [145]. In that case, steps in the
tracking algorithm can include filtering out noise by thresholding the magnitude of pos-
sible fibre orientations within the voxel, and if there are more than one possible tracking
direction within the voxel, the direction forming the smallest tract turning angle should
be selected [145]. To practically perform fibre tracking, several tracking parameters, such
as seed regions (i.e., starting voxels), minimum and maximum lengths of tracts, angular
thresholds between fibre orientations in neighbouring voxels, as well as a minimum FA
threshold need to be supplied. In addition to the concerns that accompany the inter-
pretation of FA maps, the method of tract propagation and interpolarisation between
neighbouring voxels and user set parameters contribute to uncertainties in the tracking
[146].

1.4.4 Free water elimination

There are two main motivations for performing FW correction in the post processing
steps of DWI. Firstly, the large water content in the cerebral spinal fluid (CSF) and large
fibre tracts may cause partial volume effects at the edges of these areas [138, 147]. With-
out FW corrections MD at edge locations may be overestimated, and FA underestimated,
due to the isotropic diffusion component characteristic of FW. Secondly, there are many
conditions causing increased local vascularity or oedema [148, 149]. To better charac-
terise these conditions, it may be helpful to remove FW signal contributions, such that
the tissue structure at oedematous sites can be better investigated. While fluid-attenuated
inversion recovery (FLAIR) DWI can suppress the CSF signal [150, 151], it may be unreli-
able in correcting oedematous fluids due to the fluid composition [148, 152, 153], it does
not allow periodic motion correction [154], and is not applied in the clinic nearly as often
as the classic single shot EPI sequence. Superiority of FW corrected DWI over FLAIR
DWI has been experimentally verified in the Fornix [153].
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FW correction with a two-compartmental tissue model was first proposed by Pierapoli
and Jones [155] (Eqn. 48), where each voxel is assumed to have a compartment contain-
ing freely diffusing water, and one compartment where diffusion is restricted. There is
assumed to be no exchange between the two compartments.

S2C = S0

(
f e−bDFW + (1− f )e−bDR

)
(48)

S = S0e
−bDTOT (49)

S2CM , S, and S0 are the diffusion weighted two-compartmental, single-compartmental
measured, and minimally weighted signal, respectively. FW diffusion is isotropic and
has a diffusivity most commonly set to 3.0 · 10−3 mm2/s. The FW compartment diffusion
tensor DFW is therefore known a priori. DTOT is the naı̈vely measured diffusion tensor
with no correction applied, incorporating the entire diffusion signal into the matrix. The
remaining variables are fractional water volume f and the restricted diffusion tensor DR.
These are unknown parameters and must be found by fitting Eqn. 48 to diffusion mea-
surements. Though prolonging scan times and ignoring that a single diffusion exponent
may no longer perfectly fit the measured diffusion data, Pierapoli and Jones [155], sug-
gested performing the bi-compartmental measurement with multiple b-values.

For any fractional water volume f there is a solution DFW that minimises the difference
between S2C and S in Eqns. 48 and 49. This implies an infinite number of possible
problem solutions [156]. Pasternak et al. [157] therefore added extra constraints on the
solution in the form of a Laplace-Beltrami regularization [158]. This ensures piecewise
smoothness in the restricted diffusion tensor across tissue voxels [159]. The range of solu-
tions was also narrowed down by putting limits on f based on minimum and maximum
expected signal attenuation in the tissue compartment [157]. This FW correction method
[157], is applied in the current study, however the Laplace-Beltrami regularization is ex-
changed for a Euclidean metric [160], multiple b-shells are included, and as part of the
initialization of the diffusion tensor an MD of 0.6 · 10−3 mm2/s was assumed.

Several other FW correction methods have, as is one of the goals in this thesis, exam-
ined the effects of FW corrections in patients with cerebral glioma [161–167]. These FW
correction methods include a new fractional FW volume initialization for single-shell ac-
quisitions [161], deep learning algorithms [162–164], filtered tractography [165, 166],
and restriction spectrum imaging [167]. Most of these studies focus on fibre tract re-
constructions, and the consensus is that incorporating FW corrections allows more fibre
reconstructions in peritumoral areas than non-corrected diffusion measurements do [161,
162, 165–167]. Others suggest the analysis of FA maps to describe tumour infiltration in
the oedematous regions [163, 164].
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1.5 Aims

The main focus of this thesis is to help establish perfusion and diffusion measurement
MRI methods in important clinical applications where they may provide a substantial
added value. Conventional clinical MR imaging is to a large extent based on structural
images and is usually interpreted qualitatively. While structural imaging provides in-
valuable geometric and anatomical information when assessed by radiologists, there is
much relevant information that may not be available at such a macroscopic level. New
disease relevant information can be obtained from measures of physiological processes.
It has been shown that in several applications, these measures can be early markers of
disease severity or effects of treatment [168–171].

This study is motivated by clinical questions pertaining to diagnosis and measuring treat-
ment effects in selected patient groups in which inflammatory procesess are involved in
the disease. With conventional structural MRI, it can be difficult to detect inflammation
related to arthritis, to predict outcome after radiosurgery of brain metastases, to assess
glioma quantitatively or to assess possible tumour infiltration. An overarching goal of
this research is to be part of the current scientific development, where advanced MRI
methods are developed in relation to the potentially heterogeneous nature of the under-
lying disease.

1.5.1 Optimisation of perfusion measurements to evaluate juvenile idiopathic arthri-
tis in the temporomandibular joint

JIA is defined as arthritis of unknown origin, with a chronic persistence for a minimum
of six weeks and onset prior to the 16th birthday [172]. While the reading of post con-
trast injection structural MR images is common in the evaluation of JIA in the TMJ [173,
174], there is still no consensus regarding the diagnostic method. There is a wide range
of methods for JIA detection in the TMJ, [21, 173–177]. There is also a range of reported
disease prevalence (0.7 - 40 ‰) [22], reported continuation of the disease into adulthood
(41 - 67 %) [178, 179], and reported TMJ involvement in JIA (35 - 87 %) [21, 173, 175,
180]. Both differing diagnostic procedures and asymptomatic TMJ may contribute to lack
of early therapeutic interventions [21–23]. It has been hypothesised that JIA causes an in-
flammation in the TMJ, hallmarked by increased vascularity [149, 181]. DCE-MRI may
therefore lend itself as a tool for assessment of the microvasculature in the TMJ.

In the paper Effects of Motion Correction, Sampling Rate and Parametric Modelling in Dy-
namic Contrast Enhanced MRI of the Temporomandibular Joint in Children Affected with Ju-
venile Idiopathic Arthritis, effects of DCE-MRI acquisition and post processing methods
on physical parameter estimations from dynamic data is investigated. The paper aims to
provide a framework for DCE-MRI data processing methods to ensure that future eval-
uations of DCE-MRI as a possible diagnostic tool for JIA affected TMJ can be performed
with parameter estimations of best attainable quality. To this end, DCE-MRI data with
high temporal resolution (4 s) were acquired from 73 children with JIA. Three levels
of motion correction were applied to the dynamic data, which was also down sampled,
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mimicking a poorer temporal resolution. Additionally, the patients were stratified into
two groups based on parameter estimations computed with several two-compartmental
models; the 2XCM [62, 63], AATH [65, 67], DCATH [68], and GCTT [69] models. The
groups were compared to one another, as well as to stratifications of the patients based
on three radiologists’ assessment of post contrast structural MR images.

1.5.2 Choice of arterial input functions

DSC-MRI relies on, and is sensitive to the measurement of an AIF for estimation of perfu-
sion parameters [71, 77]. Care should be exercised to measure an adequate AIF. There are
several examples of AIF selection methodologies that have been developed in response
[182–185]. Clinical studies are often limited by the number of patients available to a re-
search site, though there seems to be a move toward increased data sharing [186–190].
In order to estimate comparable quantitative perfusion parameters longitudinallt and
across sites, post-processing pipelines including a protocol for AIF measurements should
be of interest.

In the paper Arterial Input Functions in Dynamic Susceptibility Contrast MRI (DSC-MRI) in
Longitudinal Evaluation of Brain Metastases, various AIFs are applied to estimate DSC-MRI
parameters in a longitudinal data set. Scans were performed approximately every three
months in the follow-up schedule of 8 patients with brain metastases. The AIFs were se-
lected using both fully automated and semi-automated algorithms, with various selection
criteria. Scan-specific and subject-specific AIFs, as well as AIFs mimicking population-
based AIFs were selected. The paper aims to investigate AIF selection criteria for use in
longitudinal DSC-MRI assessment of brain metastases.

1.5.3 Perfusion measurements prior to stereotactic radiosurgery to predict outcome
in brain metastases

Metastatic spread to the brain is estimated to happen in 5.6 – 9.6 % of cancer patients
[191–193], and SRS is a primary treatment strategy of brain metastases [194–196]. Fol-
lowing treatment, apparent tumour volume may increase, either due to true disease pro-
gression or to pseudo-progression [18]. Using only structural images it is difficult to dif-
ferentiate these states at an early stage [19, 20], complicating outcome predictions after
SRS. So far, pretherapeutic DSC-MRI parameter estimates have not always been reported
to correlate with SRS treatment outcome [197–199].

In the paper Dynamic Susceptibility Contrast MRI May Contribute in Stereotactic Radio-
surgery Outcome Prediction in Brain Metastases 32 patients are characterised with either
progressing or non-progressing brain metastases at some point after SRS. The paper aims
to investigate whether DSC-MRI parameters obtained from within contrast enhancing
ROIs prior to SRS treatment are helpful in predicting outcome after SRS treatment. Sta-
tistical testing was performed to evaluate whether the estimated perfusion parameters
can help distinguish between patients that likely have poor survival or progressive dis-
ease from those that are likely experiencing pseudo-progression or regression.
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1.5.4 Free water diffusion corrections applied to detect heterogeneity in glioma

Among primary tumours, of malignant brain and central nervous system tumours, glioma
account for 81 % of malignant cases [200, 201]. The proportion of cured patients has been
estimated to 7.9 % [202]. Evaluations of DTI derived contrasts in imaging glioma disagree
between studies [203–206]. Motivating free water elimination is the fact that reduction
in FA can be caused both by isotropic diffusion signals, as well as tumour infiltration of
white matter tracts [116, 117]. In conventional DTI, these effects may be difficult to dif-
ferentiate [207].

In the paper Effects of Multi-Shell Free Water Correction on Glioma Characterization, the aim
is to test whether multi-shell DTI can increase the amount of information contained in
the FW maps and FW-corrected FA (FAt) maps. The FW elimination method developed
by Pasternak et al. [157], involving multiple shells, including low b-value shells, was
applied to data acquired from 26 glioma patients. Summary variables were computed
from the constructed FW and FAt maps, and their ability to characterise tumours was
tested.
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2 Methods

Four papers are presented in this thesis, based on data collected in three groups of pa-
tients with three different diseases. Although separate entities, these diseases all involve
inflammatory processes. Three advanced MRI techniques were applied to access physio-
logical processes on a microvascular and microstructural level (Fig. 14).

Figure 14: Paper 1 investigates acquisition parameters in dynamic contrast enhanced
(DCE)-MRI of the temporomandibular joint (TMJ) with possible involvement of juvenile
idiopathic arthritis (JIA). Paper 2 investigates choices of arterial input functions (AIFs)
in dynamic susceptibility contrast (DSC)-MRI in brain metastases. Paper 3 investigates
DSC-MRI perfusion parameters in relation to outcome after stereotactic radiosurgery in
brain metastases. Paper 4 applies free water (FW) corrected diffusion MRI to characterise
glioma.

2.1 Data collection

2.1.1 Patients and clinical scores

Written and informed consent to participation in the studies were given by all patients
or their caretakers if the patients were younger than 12 years. All data were acquired in
agreement with ethical approvals of either REK Vest or the NRES Committee of East Eng-
land, Cambridge 2. Table 3 summarises the patient cohorts. Radiological image scores
reflecting likelihood of JIA affected TMJ, and tumour gradings of glioma were performed
by expert radiologists.

2.1.2 MRI protocols

Data collection parameters are summarised in Table 4.
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Paper 1 Paper 2 Paper 3 Paper 4

Disease Juvenile Idiopathic
Arthritis (JIA)

Brain
metastases

Brain
metastases

Glioma

Study type Retrospective
cross-sectional

Retrospective
longitudinal

Retrospective
longitudinal

Retrospective
cross-sectional

Number of
patients

73 (30 M, 42 F) * 8 (2 M, 6 F) 32 (15 M, 17 F) 26 (11 M, 15 F)

Mean age (years) 12 ± 3 64 ± 14 67 ± 10 53 ± 18
*52 (27 M, 25 F) had temporomandibular joints scored for JIA.

Table 3: Summary of patient cohorts comprising disease, type of study, numbers, sex (M
= male, F = female), and age.

2.2 Parameter extraction

2.2.1 Paper 1

ROIs covering the synovial TMJs were based on consensus among three expert paediatric
radiologists and were drawn manually on the 5th imaged volume after acquisition start.
Contrast time curves were extracted from these ROIs by computing the average pixel sig-
nal value contained in the ROIs, and relative contrast enhancement curves were obtained
by subtracting and dividing by the baseline signal. The relative contrast time curves
were the bases for semi-quantitative perfusion parameters as described in chapter 1.3.1.
Quantitative perfusion parameters were computed by implementing the AATH, DCATH,
GCTT and 2XCM models in an inhouse developed MATLAB tool, version R2017a, (Math-
Works Inc., Natick, Massachusetts, US). A population-based AIF was based on 22 ran-
dom patients in the study. In a region containing the large brain feeding arteries, voxels
with the highest signal peak were chosen to yield individual AIFs, these were temporally
aligned by measuring and adjusting for the time between peaks. Finally, the median AIF
was obtained and fitted and scaled according to the Parker model [97, 208]. As it is un-
likely that JIA affected TMJ are symmetric in a patient [209], relative parameters, i.e.,
difference between parameters derived from the left and right TMJ divided by their sum,
were calculated, and used for subsequent statistical analyses.

2.2.2 Paper 2 and Paper 3

Perfusion analysis was performed with NordicICE (NordicNeuroLab Inc., Bergen, Nor-
way), using SVD to do the deconvolution [73]. Leakage correction was performed with
a residue function approach and a parametric leakage fit [210]. Parameter maps were
computed including rCBV , rCBF, and MTT maps. In each scan, 10 different AIFs were
applied to perform perfusion analyses. The first two AIFs were scan-specific and fully
automated, where one AIF was detected using unsupervised global detection in all slices,
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Paper 1 Paper 2 Paper 3 Paper 4

MRI system
Magnetom

Skyra*
Symphony

Vision*
Symphony

Vision*
Discovery
MR750**

Field
strength

3 T 1.5 T 1.5 T 3 T

Contrast
agent

Gd-DOTA,
Dotarem ***

Gd-DOTA,
Dotarem***

Gd-DOTA,
Dotarem***

-

Kind of MRI DCE-MRI DSC-MRI DSC-MRI DWI

Sequences 3D fast low
angle shot

2D spin
echo

2D
gradient
recalled

echo echo
planar

imaging

2D spin
echo

2D
gradient
recalled

echo echo
planar

imaging

Inversion
prepared
fast 3D
spoiled
gradient
recalled

echo

Pulsed-
gradient
spin echo

echo planar
imaging

Image matrix 160 × 160
× 16 †

512 × 512
× 12

128 × 128
× 12 ‡

512 × 512
× 12

128 × 128
× 12 ‡

256 × 256
× 252

256 × 256
× 16

Slice thickness
(mm)/
spacing (mm)

2/2 5.5/7.2 5.5/7.2 5.5/7.2 5.5/7.2 1.5/1.5 2/4

Field of
view (mm)

210 × 210 230 × 230 230 × 230 230 × 230 230 × 230 240 × 240 220 × 220

Repetition
time (ms)

4 430 1450 430 1450 8.2 2000

Echo time (ms) 1 9.4 47 9.4 47 3.2 80

Inversion time (ms) - - - - - 450 -

Flip angle (°)
9 - - - - - -

b-values
(s/mm2)

- - - - - - 0, 90, 150,
500, 1000

Diffusion
directions

- - - - - - 8

*Siemens, Healthineers, Erlangen, Germany, **GE Healthcare, Waukesha, WI
***Guerbet, Villepinte, France
† 60 volumes in time, 4 s sample rate, ‡ 60 volumes in time, 1.45 s sample rate

Table 4: Summary of MRI protocols including scanner name, field strength, type of MR
image, applied sequence, resolution, sequence timings, flip angles, and parameters spe-
cific to diffusion imaging.
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where voxels displaying an AIF-like shape were detected with a clustering algorithm
[211], the second AIF was based on mean tissue response. The third and fourth AIFs were
also scan-specific, where the AIF detecting clustering algorithm was applied in a user set
ROI. One search region covered the circle of Willis. The other search region was placed in
the hemisphere contralateral to the lesion. The fifth and sixth AIFs were patient-specific
and defined identical to the already described semi-automatic scan-specific AIFs at the
first scan in each patient. The seventh and eight AIF were two AIFs chosen among the
scan-specific semi-automatically detected AIFs. They were chosen such that their mean
height, full width at half maximum, time to peak and area under curve were close to the
corresponding mean values in the scan-specific semi-automatically detected AIFs, thus
mimicking population-based AIFs. The ninth and tenth AIFs were patient-specific and
defined by calculating the means of the scan-specific semi-automatically detected AIFs.
For Paper 3, only perfusion maps computed with the scan-specific semi-automated AIF
with a search region placed over the circle of Willis were used.

Lesion volumes were drawn in the clinic for planning SRS. Though track was kept of the
numerical representation of tumour volumes, the ROI maps drawn in the clinic were not
available at time of analysis. Therefore, ROIs were redrawn using an inhouse algorithm
based on subtraction of pre- and post-contrast T1-weighted images. Extraction of average
perfusion parameters from ROIs was performed by aligning the perfusion maps to ROI
masks based on structural T1 maps by way of slice-wise rigid translations performed in
an inhouse script in MATLAB, version R2019b (MathWorks Inc., Natick, Massachusetts,
US). Following an affine image registration scheme with the Elastix [212–214] command
line tool, ROIs were defined by subtracting pre-contrast T1-weighted images from post-
contrast T1-weighted images. The subtraction image was binarised by setting pixel-
values below 5 % and above 80 % of maximum pixel value to zero, and remaining pixels
to 1. Finally, guiding a manual segmentation in ITK-Snap, version 3.6.0 [215], the binary
image was overlaid onto the post-contrast T1-weighted image. Volume estimations based
on the new ROIs were found to be significantly correlated (r(135) = 0.84,p < 10−37) to the
volume estimations performed in the clinic (Fig. 15). Skull stripping, and white matter
and grey matter segmentation was performed with FSL toolbox, version 6.0.1 [216–218].

In Paper 3 it was necessary to define the status of progressing and non-progressing dis-
ease. Definitions were based on the development of metastatic volume in time. Non-
progression was defined as either continuous volume decrease (regression), and transient
volume increase (pseudo-progression) taking place before a second SRS or death. Pro-
gression was defined as continuous or delayed volume increase prior to a second SRS or
death. If death occurred prior to the first possible follow-up, this was also defined as
progression.
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Figure 15: Correlation between region of interest volume estimates in metastatic brain
tumours. Estimates were performed in the clinic and performed using an in-house T1-
weighted subtraction approach.
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2.2.3 Paper 4

In Paper 4, the FW-elimination algorithm developed by Pasternak et al. [157] was used.
This method assumes two diffusion attenuation matrices, corresponding to two compart-
ments within a voxel. The free water compartment is assumed to contain water diffusing
isotropically at 3.0 · 10−3mm2/s. The other compartment contains the restricted water.
Measuring diffusion, the sum of the contributions of these two attenuation matrices is
measured, and the algorithm therefore minimises the distance between the measured
attenuation and the attenuation caused by FW. Thus, the relative volumes of the water
compartments are estimated. As an initialisation guess, non-CSF voxels are assigned an
MD of 0.6 · 10−3mm2/s. A regularization term with a Euclidean metric [160] is added to
provide piecewise smoothness between voxels.

Three parameter maps were produced: an FW map, an FA map, and an FAt map. The
FW map and FAt map were computed by applying the FW corrected tensor fitting de-
veloped by Pasternak et al. [157] to multi-shell diffusion data (b-values 90 s/mm2, 150
s/mm2, 500 s/mm2, and 1000 s/mm2). The non-corrected FA map was computed by per-
forming regular tensor fitting with the FSL toolbox, version 6.0.1 (University of Oxford,
UK) [216]. Using a normalised mutual information function and a 4th degree b-spline
interpolation in SPM12, version 7771 (University College London, UK) [219], B0 images
were registered to the T1-weighted images, and the transformation was applied to the
parameter maps. ROIs, including total tumour volume, enhancing tumour volume, and
necrotic tumour volume were drawn by an expert radiologist. Summary variables, com-
prising mean and variance, 25th and 75th quantile, median, skewness, kurtosis, and en-
tropy, were extracted from the ROIs.

Additionally to the analysis presented in Paper 4, both FW-corrected and non-corrected
DWIs were used to perform tractography at a b-value of 1000 s/mm2, using the DSI
software [220]. 10,000 seeds were placed across the brain, an angular threshold of 90°
was used, and only tracts between 10 mm and 60 mm were included. FW correction
causes a shift in FA values across the parameter maps. Due to differences in optimal
FA tracking thresholds several tracking thresholds were applied and compared based on
resultant tract numbers, lengths, and irregularity (Equation 50) [221].

Irregularity =
Area of Surf ace

π ·Diameter ·Length
(50)

The surface area is proportional to the number of tract surface voxels, length is calcu-
lated by summing over distances between coordinates representing the tract trajectory
and taking their mean. Tract diameter is estimated based on tract length and volume,
where volume scales with voxels covered by the tracts.

In regular fibre tracking a tracking threshold at FA = 0.2 is common [157, 161, 167,
222]. The shift in mean FA values after FW-correction was 0.07, and so fixed tracking
thresholds of both FA = 0.2 and FA = 0.27 were applied. Additionally, another tracking
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threshold was implemented using the Otsu threshold [223]. It is a method for binaris-
ing an image by maximising the intraclass variance between the upper and lower regions
of the distribution that represents pixel intensities in the image (image histogram). Fol-
lowing the implementation in the DSI software package to filter out background voxels,
where filtered out voxels are defined as those less than 0.6 times the Otsu threshold. The
Otsu threshold has been successfully applied in several studies [221, 224–226].

The left Superior Longitudinal Fasciculus 3 was mapped in a single patient where this
tract ran through an oedematous region, using a tractography as atlas implemented in
DSI [206].

2.3 Statistical analyses

A significance threshold of p = 0.05 was chosen for all statistical tests involving p-values.

2.3.1 Paper 1

Three levels of motion correction (non-corrected, affine motion correction, and elastic
motion correction) were compared by computing a least square fit (χ2) between the mo-
tion corrected contrast concentration time curves and the pharmacokinetic model time
curves. The effect of various levels of motion correction on relative pharmacokinetic pa-
rameters calculated with the GCTT model were compared using a one-way ANOVA test
and Tukey’s post hoc test. A paired sample t-test was used to compare low temporal res-
olution (8 s, 12 s, 16 s, and 20 s) semi-quantitative relative parameters to high temporal
resolution semi-quantitative relative parameters. Both k-means clustering, and a random
forest model were applied to group patients. Group sensitivities and specificities rela-
tive to diagnostic scorings based on structural MR images were computed. A two-way
ANOVA test with Tukey’s post hoc test was applied, where perfusion parameters (i.e.,
RT , M, S, A, Fp, E, ve, Tc, σ , BAT , and P S) and statistical group scorings were used as
independent variables.

2.3.2 Paper 2

Standardised measurements describing the shape of a semi-automated scan-specific AIF
were compared between each patient and the group mean, applying a one-sided t-test.
Paired t-tests were used to test how well perfusion parameters rCBV , rCBF, and MTT
calculated with 10 different AIFs, distinguished white matter and grey matter. Correla-
tion coefficients between perfusion parameters in successive scans were calculated and
ordered in matrices using a k-means algorithm, to form clusters of AIFs producing more
similar perfusion parameters. Matrices containing Pearson’s product moment correla-
tion coefficient based p-values corresponding to the correlation coefficient matrices were
also constructed, and adjustments for multiple comparisons were performed using the
Bonferroni method.
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2.3.3 Paper 3

Linear regression was applied to compare perfusion parameters rCBV and rCBF in pa-
tients defined as experiencing disease progression and non-progression. By way of ANOVA
testing, it was tested whether several possible covariates (age, sex, lesion volume, two
kinds of primary cancers, and dichotomised survival) and combinations of these, could
improve a regression model free of covariates. Linear regression was also used to compare
perfusion parameters between short survivors (survival < 60 days) and long survivors
(survival > 60 days).

2.3.4 Paper 4

The effect of FW-correction on low-grade tumours (grade I and II) and high-grade tu-
mours (grade III and IV) were compared by performing paired t-tests between FW-corrected
(FAt) and FA distributions. ANOVA testing with Tukey’s post hoc test was applied to test
whether neighbouring tumour volumes could be separated based on FW estimations and
FAt. A paired t-test was applied to FAt and FA distributions derived from the various
tumour volumes. p-values were adjusted for multiple comparisons using the Bonferroni
method. To test how well FW-corrected data could correctly classify image voxels to the
correct parts of the tumour, receiver operating characteristic (ROC) curves were calcu-
lated using a logistic regression model and labelled image voxels. Number of fibre tracts,
their length, and irregularity [221] were compared using paired t-tests and several differ-
ent FA tracking thresholds.
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3 Results

3.1 Paper 1

Elastic motion correction provides a better least square fit to the GCTT model com-
pared to non-correction and affine correction (Fig. 2 in Appendix A). Compared to non-
correction, the percental improvement with elastic motion correction is 72 and 84 % in
the left and right TMJ, respectively. With affine correction the corresponding percental
improvements are 56 and 76 %. The applied pharmacokinetic models (AATH, DCATH,
GCTT, and 2CXM) all leave comparable residues (Fig. 5 in Appendix A), with a relative
standard deviation of 3.4 %.

With elastic motion correction, semi-quantitative relative parameters obtained with a
simulated 8 s sample rate differ significantly from those obtained with a 4 s sampling rate.
Disease relevant information may therefore be lost without a minimum 4 s sampling rate.

Parameters and group scorings (i.e., whether a patient’s TMJ was likely affected by JIA
or not) were used as categorical independent variables in an ANOVA test. Neither the
parameters, nor the group interaction of the parameters with the group scorings sig-
nificantly affected the values of the standardised relative parameters. However, group
scorings did significantly affect the standardised relative parameters (p = 1.0 · 10−6).

3.2 Paper 2

Applying a range of AIFs causes much variability in the estimated perfusion parameters
(Fig. 2 in Appendix B). Any of the applied AIFs can be used to differentiate between white
matter and grey matter based on rCBF (p ≤ 0.002), but scan-specific AIFs should be used
to differentiate between white matter and grey matter based on rCBV , (p < 0.001). How-
ever, if the top 1 % of rCBV are taken out of the analysis, corresponding to implausible
parameter estimations, patient-specific AIFs are also applicable (p ≤ 0.02). Shape param-
eters of scan-specific AIFs suggest that AIFs sampled from the same patient at different
time points may be more similar to one another than to AIFs sampled from separate pa-
tients (Fig. 4 in Appendix B).

3.3 Paper 3

Progressors had significantly lower rCBV and rCBF (p ≤ 0.01) in the enhancing tumour
volume at baseline and prior to SRS, than non-progressors, when patients with no follow-
up were included in the analysis. Based on volume changes post SRS, 12 patients were
labelled progressors, and 20 patients were labelled non-progressors. There were 13 re-
gressors and 7 non-progressors with pseudo-progression among the non-progressors. Pa-
tients surviving for less than 60 days after SRS had significantly lower rCBV (p = 0.03)
than patients surviving longer than 60 days. There is a peak in rCBF after SRS and prior
to the transient volume increase in 5 of 7 pseudo-progressors (Fig. 4 in Appendix C). Of

45



the 25 patients with progressing or consistently regressing metastases, only 11 returned
for more than two follow-up scans, and 5 returned for more than 3 follow-up scans.

3.4 Paper 4

The necrotic tumour region has a larger parameter mean and variance than other tumour
regions (Fig. 2 in Appendix D). Mean FA and FW measurements from the enhancing,
non-enhancing and total tumour regions do not differ significantly from one another.
The area under the ROC curves separating necrotic tumour regions form enhancing re-
gions based on FA estimations increased by 5 % after FW-correction. The effect of FW
corrections on FA distributions differs in various tumour regions. In general, the FA dis-
tribution shifts toward higher FA values after FW-correction, but this is not the case in
necrotic regions. Across tumour grades, the entropy of the FA distribution increases post
FW-correction (p ≤ 0.003). Skewness decreases (p ≤ 0.004) in both low- and high-grade
tumours, and kurtosis increases in high-grade tumours (p < 0.001). Tumour grade could
not be significantly correlated to the mean of the parameters FW ,FAt, and FA, nor to any
of the distribution summary variables other than the mean (i.e., variance, 25th and 75th
quantile, median, entropy, kurtosis, and skewness).

The various FA tracking stopping thresholds were used to perform whole brain tractog-
raphy and the resulting statistics are shown in Table 5. The left Superior Longitudinal
Fasciculus 3 was tracked in a patient where the tract ran through the oedematous region
surrounding a grade IV tumour, (Fig. 16). 139 tracts were traced with FW-correction and
an FA threshold of 0.27. Only 27 tracts were traced without FW-correction and an FA
tracking threshold of 0.2.

Figure 16: Fibre tracking in the left Superior Longitudinal Fasciculus 3. 139 tracts with
FW-correction with an FA threshold of 0.27 (A). 27 tracts without FW-correction with an
FA tracking threshold of 0.2 (B).
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4 Discussion

Advanced MRI methods were applied to quantitatively assess MR data collected in pa-
tients with diseases that are difficult to diagnose or treat due to lack of quantitative di-
agnostic tools. A prerequisite for being able to use different modelling techniques is
that the data basis is of a quality that enables the modelling to best approximate true
measurements of potential disease-relevant parameters. Consequently, post-processing
of the MRI recordings is important to achieve a sufficient image quality for the images to
be used in the modelling. Image quality with respect to temporal resolution and motion
correction of DCE-MRI recordings was studied in more detail in Paper 1. AIFs are also
measurements that are part of subsequent perfusion estimates. AIF selections were stud-
ied in the context of DSC-MRI in Paper 2. Further, one must examine whether the output
from the advanced models has clinical relevance. In Paper 3, lower perfusion parameters
prior to SRS were associated with potentially less favourable outcome, and it was found
that 5 of 7 pseudo-progressors had transiently increased rCBF prior to transient volume
increase. In Paper 4 the characterisation of glioma, in particular the necrotic tumour part,
following FW estimation was explored.

4.1 Paper 1

There is no standard way to diagnose JIA in TMJ [21, 173–177]. With a sample rate of 4
s, we could investigate whether this high temporal resolution causes significant changes
in semi-quantitative parameters (i.e., parameters describing the contrast response curve
shape) in combination with different levels of motion correction. The contrast curve is
also the starting point for the estimation of pharmacokinetic parameters, and we found
that a high-level elastic motion correction made the model curves fit very well with the
measured data. Many pharmacokinetic models have been developed. The papers that
originally presented the AATH, DCATH and GCTT models [65, 67–69] are cited 128,
7 and 17 times, respectively, by papers that are available in PubMed, as of January 21st,
2022. In approximately 10 % of the papers citing these advanced models, they are applied
to clinical DCE-MRI data [227–241]. In comparison, the extended Tofts model [24] is
cited 1014 times and the 2XCM model [62, 63] 113 times by papers available in PubMed.
An early comparison between pharmacokinetic models was performed by Buckley [242].
By modelling DCE-MRI data and subsequently fitting the Tofts and AATH models to the
synthetic DCE-MRI data, he found that the Tofts model simulated the DCE-MRI data
more reproducibly than the AATH model, and that the AATH model tended to overes-
timate P S and underestimate Fp at low flow or high permeability. Subsequently, others
have also compared pharmacokinetic models by comparing various pharmacokinetic pa-
rameters [227, 228, 243]. Although the main aim of the study by Keunen et al. [243]
was to characterise cancer drug treatment in rats, using the DCATH model, decreased
Ktrans and Kep and no change in ve was found after treatment and similar trends were
found with application of the Tofts model. Others have reported that the GCTT model
outperforms the Tofts model in the characterisation of glioblastoma [227], and yet others
found that while there may be correlation in pharmacokinetic parameters across several
two-compartmental models, they are not necessarily quantitatively the same, and there
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may be more agreement between parameters in healthy tissue than in cervical cancer tis-
sue [228]. Insofar as the pharmacokinetic models fit the contrast-time-curve, our study
shows that applied in the TMJ, it makes little, if any difference, whether one uses the
2XCM, AATH or GCTT models, as computed within the GCTT framework, or whether
one applies the DCATH model. Which of the four models is most JIA sensitive in the TMJ,
is still an open question. DCE-MRI could be suited for evaluation of JIA affectation of the
TMJ, if the temporal resolution is high (≤ 4 s) and with a high-level motion correction.
Although structural contrast-enhanced images are most used in the clinic at present [173,
174], given the lack of consensus on how to diagnose JIA affected TMJ, a comparison to
some gold standard is difficult. Longitudinal follow-ups to monitor disease progression
and changes in pharmacokinetic parameters in time may be of value.

4.2 Paper 2

A key to reaching treatment decisions concerning brain metastases is the longitudinal
follow-up of patients to monitor disease development. Perfusion parameters such as
rCBV and rCBF are sensitive to the AIF measurement needed for their estimation. To
assess the potential of perfusion parameters in the evaluation of developing disease, one
needs adequate AIF measurements to arrive at robust rCBV and rCBF estimates. Scan-
specific AIFs are the most applied AIFs in DSC-MRI. There are many easily applicable
methods for automated AIF selections [182–185]. However, apart from two abstracts pre-
sented at the ISMRM, both reporting preference for patient-specific AIFs when perform-
ing DSC-MRI [94, 95], little has been done to verify whether scan-specific or patient-
specific AIFs are better suited in the longitudinal follow-up of brain metastases. Our
results show that scan-specific AIFs are preferable. Shape analysis of the AIF showed
that AIFs sampled at different time points in the same patient may be more similar to
one another than to AIFs sampled across patients, implying that at least patient-specific
AIFs rather than population-based AIFs are necessary. Low correlation between param-
eter estimations in time could provide a basis not preferring certain AIFs. Therefore, to
assess parameters estimations in time, a clustering algorithm was applied to identify AIFs
yielding the most correlated perfusion parameter estimations in time. Nevertheless, it is
difficult to evaluate repeatability at different time points in metastases, as lesions develop
in time. Consequently, the ability to differentiate between white matter and grey matter
was tested. Scan-specific AIFs were best suited for this differentiation.

4.3 Paper 3

Low baseline perfusion estimates were associated with unfavourable outcome post SRS.
An explanation for this may be that hypoxic tumours exhibit poorer response to radio-
therapy and SRS [244, 245]. This result does not mean that patients with low perfusion
do not benefit from SRS. Rather, if the metastasis in question appears to increase in size
post treatment, it may trigger particular attention as it is more likely progressing than
if it were highly perfused prior to SRS. However, this must be regarded as a possible
hypothesis, since significant findings did not persist if patients with no follow-up were
excluded from the analysis. Furthermore, the results are valid for metastases larger than
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0.5 cc, given that this was one of our inclusion criteria to limit partial volume effects.
Most research focusing on perfusion measurements in brain metastases patients is con-
centrated on post-SRS treatment perfusion measurements [246–250]. Insofar as perfu-
sion measurements have been made prior to SRS treatment, our results harmonise well
with other studies, one of which found increased rCBV at baseline in treatment respon-
ders [251], and others have struggled to find a correlation between pretherapeutic rCBV
and rCBF and outcome [197, 199, 252]. 5 out of 7 pseudo-progressors were observed to
exhibit a transient rCBF increase prior to transient volume increase. This is an obser-
vation that needs further validation in future research, as there are few patients in our
study. Although transient volume observations are not an unusual proxy measurement
for pseudo-progression, ideally pseudo-progression should be confirmed on histology.

4.4 Paper 4

By applying free water correction in gliomas, we showed that the estimation of FW es-
timation is a way to quantitatively and non-invasively characterise necrotic tumour re-
gions. It may also be possible to monitor potential changes within tumour regions that are
due to the development of the disease, although the hypothesis produced by our results
must be further evaluated. In general, post contrast T1-weighted images are a common
basis for the segmentation of enhancing lesion areas. There are also deep learning meth-
ods that help segment glioma and tumour classification [253–255]. The level of contrast
enhancement, however, depends on the contrast dose, timing, and individual vascula-
ture of the patient [256]. FW-correction may therefore introduce less user bias than the
standard contrast enhanced MRI used for segmentation. Furthermore, the usefulness
of characterising the necrotic area may exceed the task of mere segmentation. Recent
studies have found that describing the necrotic region can help predict tumour aggres-
siveness in glioblastoma patients [257, 258]. Oxygen enhanced MRI, where the patient
inhales pure O2 prior to imaging, and the super oxygenated haemoglobin increases the
T1 relaxation rate in perfused tissue where the O2 is dissolved, is currently explored to
characterise necrotic tumour regions, linking it to tumour aggressiveness [259]. Further
research, perhaps in conjunction with other methods of characterising necrotic tumour
regions should be performed to validate the clinical usefulness of our proof-of-concept
study.

Discussion of non-published material related to Paper 4

Fibre tracts in the immediate vicinity of the glioma can be of importance when plan-
ning surgery, and several studies have reported improved fibre tracking following FW
correction [164, 165, 168–170]. In agreement with these studies, we found an increased
number of tracts in the tumour vicinity when applying a fixed threshold of FA = 0.27 to
the FW corrected data, compared to the number of tracts in the same region by applying
a threshold of FA = 0.2 to the non-corrected data. A usual tracking threshold is FA = 0.2
in non-corrected data, and so the applied threshold in the corrected data corresponds
to the shift in mean FA post FW correction. Comparing tractography results between
FW-corrected and non-corrected data is challenging due to the inherent FA increase in
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FW-corrected data relative to non-corrected data. By setting a fixed FA threshold one
risks engineering an increased number of modelled fibre tracts compared to the non-FW
corrected scenario [165]. To assess possible biases in our results, we performed whole
brain tractography with Otsu-optimal and two different fixed thresholds. With a fixed
FA threshold of 0.27 in the FW-corrected data, and a fixed FA threshold of 0.2 in the
non-corrected data, we observed no significant difference in mean number and length
of modelled tracts in the corrected and non-corrected data. However, tract irregularity
was significantly lower when tracking in the FW-corrected data. This could mean that
FW-correction may help avoid false positive tracts. The employed FW-correction applies
piecewise smoothing between neighbouring voxels in the diffusion tensor, hence some of
the reduction of irregularity may also be due to the regularization. On the other hand,
when equal and fixed FA thresholds are applied to FW-corrected and non-corrected DWI,
there is no difference in tract irregularity.

4.5 Remaining challenges and outlook

4.5.1 Number of patients

A limitation in all the papers on which this thesis is based is the number of patients in-
cluded in each study. In Paper 1, 52 out of 73 patients showed evidence of having JIA
affected TMJ, based on scores determined from structural imaging as the ground truth.
In Paper 2 only 8 brain metastases patients, that underwent at least five scans were in-
cluded, although this included data from 83 scans. Papers 3 and 4 included perfusion
or diffusion estimates from baseline scans from 32 and 25 patients, respectively. Because
diseases investigated in this thesis are heterogeneous in nature, and there may be many
factors contributing to a parametric map, larger numbers of patients are necessary to
identify precise origins of the observed effects. To increase the number of patients multi-
centre, and even international studies are necessary, since disease prevalence is relatively
low and, in the case of brain tumours, the mortality rate is high. Paper 1 is a multi-
centre study, but we acknowledge that data sharing concerning the JIA scores based on
structural images could have been better managed. While studies such as these should
be expanded, it is still the case that each patient needs an individual assessment for di-
agnostics and treatment planning. Even though one cannot hope to identify all causes
and effects with relatively few data points, we were still able to evaluate post-processing
techniques of DCE- and DSC-MRI data, and to point towards early perfusion measure-
ments as potential biomarkers predictive of outcome in brain metastases and towards a
FW elimination method for characterisation of glioma.
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4.5.2 Image quality

Motion correction is a standard step in the data processing, and several software tools
have been developed to do this; for instance Elastix [212, 213], SPM [219] and FSL [216–
218]. In Paper 1 an affine motion correction as implemented in Elastix was combined
with an inhouse algorithm through successive application. SPM and FSL are tools devel-
oped particularly for brain imaging. Tools like Elastix, SPM and FSL have been carefully
validated and have been applied successfully many times. Nevertheless, it may be nec-
essary to carefully consider the extent to which the motion correction tools provide the
correct approach to the images being analysed.

Voxel brightness due to contrast enhancement is dependent on contrast dose, timing, and
individual vasculature of the patient [256]. This may be of greater interest in delineation
of ROIs than in the calculation of perfusion parameters. In the deconvolution for perfu-
sion parameter estimation, contrast time curves are usually adjusted for delay. Also, the
perfusion parameters are supposed to pick up differences in vascularity, not necessarily
defining an ROI.

Diffusion images are sensitive to noise. For the diffusion acquisitions in Paper 4, diffusion
was measured along eight directions in each b-value shell. While six directions are the
minimum to fit the diffusion tensor, measurements in more directions might have ren-
dered the data less noisy. However, the total acquisition time for the diffusion protocol
was four minutes, which is a reasonable time frame in the clinic.

4.5.3 Ethical concerns with use of contrast agent

It could be a concern that contrast agent may accumulate in the brain, particularly when
it is administered repeatedly. Although it is not currently established that Gadolinium-
based contrast agent accumulation in the brain is dangerous [260], it may still be undesir-
able, particularly in children, as their brains are still undergoing rapid development. The
risk of possible neurologic effects needs to be weighed against the advantages of possible
early diagnosis of JIA affected TMJ. The assessment of post-contrast structural MR im-
ages is currently one of the more common methods for evaluation of possible JIA affected
TMJ [173, 174]. Adding DCE-MRI analysis does therefore not add extra risk to a method
which is already applied in the clinic. The use of Gadolinium-based contrast agent in
brain tumour patients is much less controversial. Brain tumour patients are older, the
disease is lethally aggressive, and it is probably not possible to distinguish symptoms of
contrast agent accumulation from those of treatment side effects.

53



4.5.4 Complementary information with different MRI indices

PWI and DWI can be regarded as complementary, though not entirely independent, ad-
vanced MRI techniques. The dynamics of microcirculation is usually explored with DSC-
and DCE-MRI, although intravoxel incoherent motion can also be picked up by low b-
value diffusion imaging [41]. Diffusion imaging and DTI on the other hand, capture
aspects of the tissue microstructure. Different tissue aspects are investigated with perfu-
sion and diffusion estimates, and the estimates are performed independently. However,
microstructural integrity can also affect perfusion estimates. The net effect of damaged
microstructure depends on the kind of damage. For example, one expects low perfusion
estimates in necrotic regions, and high perfusion in regions with angiogenesis, however
MD could be increased in both cases.

In Paper 4 we observed that “the FA distribution changed significantly in both the en-
hancing and non-enhancing tumour regions, but not in the necrotic region”. Since pseudo-
progression is often accompanied by dead tissue, water, and immune cell infiltration, FA
may behave similarly in regions of pseudo-progression as those of necrosis. In future
work it could be tested whether FW-correction can help in early detection of pseudo-
progression, and whether FW-based characterisations of lesions prior to or simultane-
ously to developing pseudo-progression can be correlated to findings of low baseline per-
fusion estimates, such as in Paper 3. As previously observed, it can be challenging to
perform large studies on brain tumour patients. Also, the transition from group statistics
to treatment decisions in individual patients may not be straight forward. If several inde-
pendently estimated markers of disease development could be identified, more accurate
singling out individuals with particular outcomes may be possible.

In recent years radiomics has become an emerging field. In radiomics, various pixel
intensity-based features are used to characterise image patterns in ROIs, and then these
features are fed to machine learning algorithms that correlate features to clinical out-
comes [261]. A challenge in radiomics is that the features that are studied are based on
image patterns, e.g., shapes and heterogeneity, rather than simple quantitative physio-
logical estimates. Nevertheless, radiomics is being explored using parameter perfusion
and diffusion maps as well [262–265], and patterns in the parameter maps are caused
by the physiology represented on the maps. Since FW corrected maps may give a better
characterisation of the underlying tissue, (ref. our study in Paper 4 with better descrip-
tion of the necrotic area, improved delineation of necrotic and enhancing regions as well
as increased entropy in FW-corrected areas) adding FW estimates and FW corrected DTI
indices to radiomics could help the understanding of the mechanisms leading to certain
clinical outcomes. One could imagine applying radiomics to a range of pharmacokinetic
parameter maps too, both in the central nervous system and in other parts of the body,
for instance in the TMJ.
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4.5.5 Application in the clinic

Although there is great potential in the application of advanced MRI methods in the
clinic, there are still a few obstacles. One must take the step from group statistics to
clinical decisions pertaining to individual patients. If an ROI is better described using a
multi-modal approach combining several modelling approaches, the patients will spend
more time in the scanner. This could compromise current patient comfort as current
research may benefit future patients more than the present patients. Further, advanced
MRI requires excellent cooperation between technical and clinical staff. An automated
pipeline is necessary to ensure fast and homogeneous data processing without increasing
the work load of hospital staff.

4.6 Conclusion

This thesis is part of the move toward increasingly quantitative MRI diagnostics and
prognostics, based not only on structural imaging but also on physiological informa-
tion inferred from advanced modelling. Necessary requirements for optimal data pre-
processing were explored, as well as the feasibility of perfusion and diffusion MRI in
selected clinical applications. It was shown that the advanced MRI methods applied
can add to a more accurate description of the TMJ and of brain lesions. To routinely
apply these methods in the clinic, however, pre-processing steps should become more
automated, combinations of advanced MRI methods should be considered, and one must
make the move from reporting group statistics to individual treatment decisions.
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[152] I. Blystad, J. B. M. Warntjes, Ö. Smedby, P. Lundberg, E. M. Larsson, and A. Tisell,
“Quantitative MRI for analysis of peritumoral edema in malignant gliomas,” PLoS
ONE, vol. 12, no. 5, e0177135, 2017.

[153] A. R. Hoy, S. R. Kecsekemeti, and A. L. Alexander, “Free water elimination dif-
fusion tractography: A comparison with conventional and fluid-attenuated in-
version recovery, diffusion tensor imaging acquisitions,” J Magn Reson Imaging,
vol. 42, no. 6, pp. 1572–1581, 2015.

67



[154] C. Pierapoli, S. Marenco, G. Rohde, D. K. Jones, and A. S. Barnett, “Analyzing the
contribution of cardiac pulsation to the variability of quanatities derived from the
diffusion tensor,” in ISMRM, 2003.

[155] C. Pierapoli and D. K. Jones, “Removing CSF contamination in brain DT-MRIs by
using a two-compartment tensor model,” in ISMRM, 2004.

[156] B. Scherrer and S. K Warfield, “Why multiple b-values are required for multi-
tensor models: Evaluation with a constrained log-Euclidean model,” in 2010 IEEE
International Symposium on Biomedical Imaging: From Nano to Macro, 2010.

[157] O. Pasternak, N. Sochen, Y. Gur, N. Intrator, and Y. Assaf, “Free water elimination
and mapping from diffusion MRI,” Magn Reson Med, vol. 62, no. 3, pp. 717–730,
2009.

[158] Y. Gur, O. Pasternak, and N. Sochen, “Fast GL(n)-invariant framework for tensors
regularization,” Int J Comput Vis, vol. 85, no. 211, pp. 211–222, 2009.

[159] R. Kimmel, N. Sochen, and R. Malladi, “From high energy physics to low level
vision,” Lecture Notes in Computer Science. Scale-Space Theory in Computer Vision.
Springer, vol. 1252, pp. 236–247, 1997.

[160] O. Pasternak, N. Sochen, and P. J. Basser, “The effect of metric selection on the
analysis of diffusion tensor MRI data,” Neuroimage, vol. 49, no. 3, pp. 2190–2204,
2010.

[161] A. A. O. Ismail et al., “Characterizing peritumoral tissue using free water elimina-
tion in clinical DTI,” Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic
Brain Injuries - MICCAI, BrainLes 2018, vol. LNCS 11383, no. Pt 1, pp. 123–131,
2018.
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A B S T R A C T   

The temporomandibular joint (TMJ) is typically involved in 45–87% of children with Juvenile Idiopathic 
Arthritis (JIA). Accurate diagnosis of JIA is difficult as various clinical tests, including MRI, disagree. The purpose 
of this study is to optimize the methodological aspects of Dynamic Contrast Enhanced (DCE) MRI of the TMJ in 
children. In this cross-sectional study, including data from 73 JIA affected children, aged 6–15 years, effects of 
motion correction, sampling rate and parametric modelling on DCE-MRI data is investigated. Consensus among 
three radiologists determined the regions of interest. Quantitative perfusion parameters were estimated using 
four perfusion models; the Adiabatic Approximation to Tissue Homogeneity (AATH), Distributed Capillary 
Adiabatic Tissue Homogeneity (DCATH), Gamma Capillary Transit Time (GCTT) and Two Compartment Ex-
change (2CXM) models. Effects of motion correction were evaluated by a sum of least squares between corrected 
raw data and the GCTT model. The effect of systematically down sampling the raw data was tested. The sum of 
least squares was computed across all pharmacokinetic models. Relative difference perfusion parameters be-
tween the left and right TMJ were used for an unsupervised k-means based stratification of the data based on a 
principal component analysis, as well as for a supervised random forest classification. Diagnostic sensitivity and 
specificity were computed relative to structural image scorings. Paired sample t-tests, as well as ANOVA tests, 
were used (significant threshold: p < 0.05) with Tukeys post hoc test. High-level elastic motion correction 
provides the best least square fit to the GCTT model (percental improvement: 72–84%). A 4 s sampling rate 
captures more of the potentially disease relevant signal variations. The various parametric models all leave 
comparable residues (relative standard deviation: 3.4%). In further evaluation of DCE-MRI as a potential diag-
nostic tool for JIA a high-level elastic motion correction scheme should be adopted, with a sampling rate of at 
least 4 s. Results suggest that DCE-MRI data can be a valuable part in JIA diagnostics in the TMJ.   

1. Introduction 

Juvenile Idiopathic Arthritis (JIA) encompasses all cases of arthritis 

of unknown origin with onset prior to the 16th birthday, persisting for a 
minimum of 6 weeks [1]. Reported JIA prevalence varies between 0.07 
and 4.01 per 1000 children [2]. Continuation of active disease into 
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adulthood has, depending on the study, been reported for 41% and 67% 
of the patient cohort [3,4]. Early effective treatment is contingent on 
early detection of the disease, yet therapeutic interventions are often 
hampered by differing methodologies and asymptomatic temporoman-
dibular joints (TMJs) [2,5,6]. Inflammation in the (TMJ) are frequently 
reported in cases of JIA, and it is estimated that the TMJ may be involved 
in between 45% and 87% of the cases [5], [7–10]. 

Methods for detecting JIA-involvement of the TMJ include structural 
imaging (radiographs, ultrasound, computed tomography and MRI) and 
clinical assessment including restricted mouth opening, mandibular 
deviation during mouth opening, facial asymmetry, and history of pain. 
[5], [10–13]. Reading of structural MRI images post contrast injection (i. 
e. T1 static) is currently one of the most sensitive assessment methods 
[8,9], [11]. Even though a variety of MRI techniques for examination of 
the temporomandibular joint exist, static images remain the gold stan-
dard. The TMJ may also be studied under the hypothesis that the 
inflammation is an origin of pain, accompanied by increased vascularity 
[8,14,15]. In addition to the MRI techniques recently reviewed [16], the 
TMJ may also be assessed with Dynamic Contrast Enhanced (DCE)-MRI. 
To capture the increased vascularity, the microvasculature may be 
assessed by measuring the change in signal intensity due to the passing 
of a contrast agent in time (i.e. T1 dynamic) [8]. DCE-MRI dynamics can 
be studied by means of semi-quantitative measures derived directly from 
the signal intensity time curves [17–19] or by tracer kinetic modelling 
[20,21]. No standard pipeline to process the DCE-MRI data in the 
temporomandibular joint exists. There are several models that can be 
applied in tracer kinetic modelling. A general feature of these ap-
proaches is that the capillary bed is regarded as a box (being the imaged 
tissue voxel or region of interest) with an inlet and an outlet, where 
blood containing contrast agent flows in and out, respectively. The 
contrast agent may also diffuse back and forth across the capillary wall. 
It is assumed that the system is linear and time invariant, and that 
contrast agent is neither generated nor destroyed in the system [21,22]. 
In general, the change in the measured contrast agent concentration 
within the capillary bed, C(t), is the sum of all in-fluxes with the sum of 
all out-fluxes subtracted, Eq. (1), 

dC(t)
dt

=
∑

in
Ji(t) −

∑

out
Jo(t) (1)  

where Ji(t) is the in-flux and Jo(t) is the out-flux [21]. The concentration 
at the input of the voxel is called an arterial input function (AIF). The 
measured tracer concentration, C(t), is determined by the impulse 
response of the system and is given by the convolution in Eq. (2), 

C(t) =

∫ t

0
Cp(τ)⋅i(t − τ)dt = [x ∗ i](t) (2)  

where Cp(t) is the AIF and i(t) is the impulse response [21]. The impulse 
response is given by the specific model describing the microvasculature. 
Each model has several analytical parameters that are varied to provide 
the best fit between the left- and right-hand side of Eq. (2). 

The aim of the current study is to explore the feasibility of DCE-MRI 
in the diagnosis of TMJ involvement in JIA. Methodological aspects of 
motion correction, signal sampling and parametric modelling are eval-
uated. Three levels of motion correction were applied and the results on 
the data examined and the sampling rate capturing the dynamics of the 
TMJ is investigated, [23]. Additionally, the ability of the Adiabatic 
Approximation to the Tissue Homogeneity Model (AATH), Distributed 
Capillary Adiabatic Tissue Homogeneity Model (DCATH), Gamma 
Capillary Transit Time Model (GCTT) and Two Compartment Exchange 
Model (2CXM) to produce parameters that are able to distinguish be-
tween presumed healthy and affected TMJ are examined. Finally, it is 
discussed if DCE-MRI can be of added value in the diagnosis of JIA 
affected TMJ. 

2. Material and methods 

2.1. Data collection 

All data were acquired and used in agreement with ethical approval 
from REK Vest. Written informed consent was obtained from their care 
takers and participants older than 12 years. DCE-MRI was included as 
part of an extensive, longitudinal, multicentre study on quality of life, 
oral health and imaging in JIA (the Norwegian study in JIA, Nor JIA), in 
a larger group of children. The analysed data consists of DCE-MRI ac-
quisitions of the TMJ in a subset of 73 children, aged 6–15 years, 
diagnosed with JIA with possible TMJ involvement. The data constitutes 
a balanced subset of patients ranging from radiologically severe arthritis 
to cases with only subtle findings. With a sampling rate of 4 s, 60 image 
volumes (160x160x16 image matrices) were acquired from each 
participant, using a MAGNETOM Skyra 3 T system (Siemens Healthi-
neers, Erlangen, Germany), using a 64-channel head coil and a 3D- 
FLASH sequence (TR/TE/FA = 4 ms/1 ms/9◦). The contrast agent Gd- 
DOTA i.e. Dotarem®, (Guerbet, Villepinte, France) was injected at a 
rate of 5 mL/s, at 10 s after acquisition start, using a power injector and a 
subsequent saline injection. The MRI data was collected at three study 
sites, using identical acquisition parameters. Clinical scores derived 
from assessment of structural MR images determined a measurement of 
likelihood of affected and unaffected TMJs. The assessment was per-
formed by a by an expert paediatric radiologist. These scores were 
available from the local site only, comprising 52 participants. Among 
these 11 participants were deemed to have affected TMJ, 41 participants 
to have unaffected TMJ. 

2.2. Data processing 

Regions of interest were defined by manually selected masks, 
covering the left and right synovial TMJ, respectively, in the 5th imaged 
volume (acquired 20 s after acquisition start), Fig. 1. These were based 
on a consensus among three radiologists with between 5 and 15 years of 
experience. The DCE-MRI was acquired in coronal plane but several 
other acquisitions in both sagittal and coronal plane were also available 
to the image readers. When drawing the ROIs (on the coronal DCE- 
acquisition) the involved image readers (trained radiologists) carefully 
checked the location of the ROI also in sagittal plane, thereby avoiding 
the retrodiscal area and areas of abundant joint fluid. It is probably not 
possible to fully separate condylar cartilage from synovium. However, 

Fig. 1. Regions of interest, covering left (blue) and right (red) TMJ. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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contrast enhancement of the condylar cartilage is not a known marker of 
active inflammation in TMJ and does therefore not pose a diagnostic 
problem in this setting. 

Relative enhancement curves were extracted from the DCE-MRI data 
by averaging pixel signal values contained in the regions of interest, 
subtracted and divided by the baseline signal, (signal - baseline)/base-
line. Semi-quantitative perfusion parameters, Table 1 were computed 
directly from the relative enhancement curves. 

Quantitative perfusion parameters, Table 1, were estimated using an 
inhouse developed MATLAB tool, version R2017a, (MathWorks Inc., 
Natick, Massachusetts, US). An AIF was not measured for each indi-
vidual TMJ. Instead, a population-based AIF based on a random sample 
of 22 participants was used in the analysis. The 22 individual AIFs were 
selected semi-automatically by choosing voxels with the highest signal 
peak within a region containing the large brain feeding arteries. By 
finding delay between peaks, the AIFs were temporally aligned, and a 
median AIF calculated. The median AIF is composed of two peaks (due 
to the first and second bolus passage). The final AIF was obtained by a 
parametric fit and scaling according to the Parker model [24,25]. 

According to a previous study [26], it is unlikely that both TMJs in 
one participant are equally affected. In the following, relative parameter 
difference between the left and right TMJ, Eq. (3), are reported, 

Prel =

⃒
⃒Pleft − Pright

⃒
⃒

Pleft + Pright
(3)  

where Pleft and Pright are the parameters derived from the left and right 
TMJ, respectively and Prel is the ensuing relative parameter difference. 
Since relative parameter differences between the left and right TMJ are 
reported the choice of using an identical AIF, in this case a population- 
based AIF, is motivated by the goal of highlighting the asymmetry be-
tween the joints. 

2.3. Pharmacokinetic models 

The Adiabatic Approximation to the Tissue Homogeneity Model 
(AATH) assumes a plug-flow of the blood through the intravascular 
space, so that the tracer concentration, c(x, t) is dependent on the dis-
tance x from the inlet and the time t after the tracer enters at the inlet. 
The extravascular extracellular space (EES) is modelled as a single 
compartment [22], [27–29], and the contrast agent is assumed to cross 
the capillary wall only at the outlet (adiabatic approximation). Ex-
change of the contrast agent between the intra- and extra-vascular space 
is assumed in both directions. 

Since there is both many capillaries and EES inside a DCE-MRI voxel, 
there will be a variation in transit times inside of each voxel. This is 
taken into account by the Distributed Capillary Adiabatic Tissue 

Homogeneity Model (DCATH), which measures the contrast agent 
concentration in a voxel as a sum of concentrations in the capillaries in 
the voxel, iteratively applying either a normal, truncated normal or 
skewed Gaussian distribution of transit times (in this study the truncated 
normal distribution was applied). DCATH model thus outputs an addi-
tional parameter σ, which is the standard deviation in transit times in a 
voxel [30]. 

The Gamma Capillary Transit Time Model (GCTT) also, like the 
DCATH model, takes into account that a DCE-MRI voxel contains many 
capillaries of different sizes, causing varying transit times of the contrast 
agent through the capillaries. However, the GCTT model assumes a 
gamma distribution of transit times [20]. It can be shown that other 
tracer kinetic models, such as the Tofts, Extended Tofts, the Two 
Compartment Exchange Model (2CXM) and the AATH model, are special 
cases of the GCTT model when different transit time distributions are 
applied [20]. A special parameter for the GCTT model is α−1, which 
measures the width of the transit time distribution. α−1 varies between 
0 and 1, representing the limiting cases of a delta function distribution 
(α−1 = 0), corresponding to the AATH model and the exponential 
function distribution (α−1 = 0), corresponding to the 2CXM model [20]. 

2.4. Effects of motion correction 

In motion correction, an input image is adjusted to fit a reference 
image. Three levels of motion correction were applied successively; no 
image registration, primary (affine) registration and elastic registration. 
A common parametric approach is to define a transformation which will 
align an input x image to the reference image, Eq. (4), 

T(x) = Ax + t (4)  

where T(x) is the transformation function, A is a matrix containing 
parameters, that in the case of affine registration allow rotation, scaling 
and skewing of the input image. The vector t contains parameters 
causing translation of the input image. The open source software Elastix 
[31,32] was used to implement a 3D affine registration. Thus, by finding 
the optimal four times three parameters of A and t, the 3D affine 
registration should correct for translational or rotational movements of 
the region of interest (head). The time series volumes were aligned to 
volume number five, which was acquired 20s after acquisition start. At 
this time the contrast agent was injected, but not accumulated in the 
region of interest. This volume was also used to draw the regions of 
interest, Fig. 1. Initial transformation parameters, as well as other details 
of the affine registration as applied with the Elastix software [31–33], 
are defined in a publicly available parameter text file [34]. 

The time series volumes were expected to exhibit varying levels of 
contrast, due to changes in tracer concentration in time. Therefore, 
mutual information [35] was chosen as an alignment quality measure on 
which to base the cost function of the motion correction transformation. 
Due to differences in tracer levels, a pixel in the reference image may 
have an intensity value that differs from the intensity value in the cor-
responding pixel in the input image. A two-dimensional histogram plot 
comparing the intensity values of input (x-axis) and reference image (y- 
axis), respectively, governs the approach. Lower degree of entropy in the 
histogram plot expresses more accurate image registration [35]. The 
transformation parameters were optimized using an iterative process 
dubbed adaptive stochastic gradient descent [31,36]. 

A second motion correction algorithm was applied on the affine 
registered images. This was an elastic motion correction scheme, origi-
nally developed in-house for registration of kidney images [37]. In the 
elastic motion correction scheme, the regions of interest (i.e. the gross 
TMJ volumes) were co-registered to later time points independent from 
the rest of the image. After registration of the regions of interest, they are 
re-inserted into the image. The registration is based on co-aligned image 
intensity gradient vectors in the input and reference image. However, 
image intensities vary in time due to the passing of contrast agent. 

Table 1 
Parameter descriptions. Semi-quantitative (RT, M, S, A) and quantitative (Fp, E, 
ve, Tc, α−1, σ, BAT and PS) perfusion parameters, estimated by application of the 
pharmacokinetic models.  

Parameter Unit Description 

RT s Time from baseline to the first maximum of relative 
enhancement curve 

M – First maximum value of the relative enhancement curve 
S – Slope of the relative enhancement curve tail 
A – Area under the relative enhancement curve 
Fp ml/ml/ 

min 
Blood plasma flow 

E – Extraction fraction 
ve – Extravascular extracellular fraction 
Tc min Mean capillary transit time 
α−1 – Width of the capillary transit time distribution 
σ min Standard deviation of mean transit time 
BAT min Bolus arrival time (AIF vs ROI delay) 
PS ml/ml 

min 
Permeability surface product  
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Therefore, the gradients in the input and reference image are normal-
ized. [37]. Normalizing the gradients meant removing their amplitude, 
letting the gradient vector entries take on relative values between 0 and 
1, while the gradient direction remains the same, such that the 
geometrical outlines in the region of interest could be exploited. 

2.5. Effects of sampling rate 

The imaging data was acquired with a 4 s sample rate. Decreased 
sampling rates were mimicked by re-binning and averaging signal 
samples into bins of size 2, 3, 4 and 5. The results are relative 
enhancement curves with temporal resolutions of 8 s, 12 s, 16 s and 20 s, 
respectively. To investigate the effect of sampling rate on the informa-
tion in the sampled signal, semi-quantitative relative parameter differ-
ences (Prel) were computed and compared across the temporal 
resolutions. 

2.6. Data-driven stratification of participants 

Four semi-quantitative parameters and seven quantitative parameter 
differences were defined, Table 1. Each of the parameters was stan-
dardized and principal component analysis performed with Scikit-learn 
[38]. 

Using the MATLAB R2017a, (MathWorks Inc., Natick, Massachu-
setts, US) k-means clustering algorithm, the participants were divided 
into two groups based on four principal independent components, iter-
atively minimizing the distance between the vectors and the central 
point in each group. The k-means algorithm has a random starting point, 

and the results would therefore vary slightly in each run. To generate a 
basis for investigating the likelihood of a participant belonging to the 
group he or she would be assigned to the algorithm was implemented 
1000 times. Finally, each participant was assigned a decimal number 
between −1 and + 1, depending on the number of times the k-means 
algorithm would assign the participant to either of the groups. A positive 
number denoted the affected group, negative numbers denoted the un-
affected group. A number close to | − 1| would indicate a greater 
probability for the participant belonging to his or her assigned group. A 
number closer to zero should not be interpreted as evidence that the 
corresponding individual is necessarily closer to the opposite group. 

Data labels, i.e. structural image scorings, were available from the 
local cite, comprising 52 participants. These data were divided in 
balanced training and test sets and fitted to the random forest machine 
learning algorithm in Scikit-learn [38]. 75% (parameters from 39 par-
ticipants) were used for training and 25% (parameters from 13 partici-
pants) were used for testing. 

2.7. Statistics 

The three levels of motion correction were compared by applying a 
least square fit (χ2) between the measured data and the applied phar-
macokinetic model (GCTT). Later analysis showed that the model curves 
do provide similar fits to the raw data. Moreover, since the GCTT model 
has an extra parameter, it would be more likely to overfit the data, and 
thus minimize the least square fit, making this a conservative approach. 
Three successive levels of motion correction (non-registered, affine and 
elastic) were compared based on a one-way ANOVA test. Tukey’s post 

Fig. 2. Effects of three levels of motion correction in a random participant. Relative contrast agent enhancement curves from the left Temporomandibular Joint 
(TMJ) (upper row, red), right TMJ (lower row, green). DCE-MRI signal with no motion correction (left column), signal after affine motion correction (middle column) 
and signal after elastic registration (right column). The pharmacokinetic model GCTT is overlaid (blue). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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hoc test was applied to check for pairwise statistically differing means. 
The semi-quantitative parameter distributions of the GCTT model were 
visualized in boxplots with decreasing temporal resolutions, and with 
the different levels of motion correction applied. Semi-quantitative 
relative parameter difference (Prel) distributions with low temporal 
resolutions (8 s, 12 s, 16 s and 20 s) were compared to the high temporal 
resolution (4 s) parameter distribution, using a paired sample t-test. p- 
values describing the levels of significance between the k-means clus-
tered groups were computed based on a two-way ANOVA test with 
Tukeys post hoc test. 

A significance threshold of p = 0.05 was selected in all statistical tests 
described above, meaning that any p-value lower than 0.05 indicates 
that the compared parameter distributions are statistically 
distinguishable. 

3. Results 

3.1. Effects of motion correction 

Motion corrected relative enhancement curves from a randomly 
selected participant were overlaid by the GCTT model curves, Fig. 2, 
suggesting that elastic registration outperforms non-registration and 
affine registration. Without motion correction, the GCTT model failed to 
estimate parameters in 26 participants. The elastic registration scheme 
outperforms the affine registration, Table 2. The GCTT model was 
applied to the left and right TMJ from the remaining 47 participants. 
Measuring the sum-of-squares, χ2, between the measured motion cor-
rected data in each TMJ and the corresponding modelled curve for each 
level of motion correction (no motion correction, affine registration and 
elastic registration), a better fit to higher-level motion corrected data is 
observed, Table 3. 

Estimated GCTT relative perfusion parameter differences (Prel) do 
not display mean values that differ significantly, Fig. 3, nor are the 

Fig. 3. Comparison of mean parameter values, Prel, (Blood plasma flow Fp, Extraction fraction E, EES volume ve, Capillary transit time Tc, GCTT transit time dis-
tribution width α−1 and Bolus arrival time BAT) between the left and right TMJ obtained with different motion correction methods (Non-registration, Affine and 
Elastic) in 47 participants. 

Table 3 
Effects of motion correction on DCE-MRI relative parameter differences. Means, 
standard deviations and p-values comparing the relative parameter difference, 
Prel, distributions (Blood plasma flow Fp, Extraction fraction E, EES volume ve, 
Capillary transit time Tc, GCTT transit time distribution width α−1 and Bolus 
arrival time BAT) obtained with different motion correction methods (Non- 
registration, Affine and Elastic) in the 47 participants in which it was possible to 
estimate GCTT parameters without prior motion correction. The p-values are 
computed using the ANOVA test with three independent variables; no motion 
correction, affine motion correction and elastic Significance threshold p < 0.05.  

Parameter 
(unit) 

No motion 
correction 

Affine motion 
correction 

Elastic motion 
correction 

p- 
value 

Mean Std. 
dev. 

Mean Std. 
dev 

Mean Std. 
dev. 

Fp 0.16 0.1 0.17 0.1 0.14 0.1 0.56 
E 0.18 0.2 0.22 0.2 0.24 0.2 0.47 
ve 0.62 0.4 0.62 0.4 0.61 0.4 0.98 
Tc 0.28 0.3 0.27 0.2 0.23 0.2 0.51 
α−1 0.61 0.3 0.51 0.4 0.56 0.3 0.40 
BAT 0.05 0.1 0.03 0.02 0.02 0.2 0.31  

Table 2 
Sum of squares, χ2, between the relative enhancement curves and the fitted 
GCTT model after different applied motion corrections (non-registered, affine 
and elastic) across 47 participants. Percentages in round brackets refer to the 
percental improvement relative to non-registered data.  

Registration Method Left TMJ Right TMJ 

Sum of Squares Sum of Squares 

Not registered (n = 47) 2.18 3.74 
Affine (n = 47) 0.95 (56%) 0.90 (76%) 
Elastic (n = 47) 0.60 (72%) 0.60 (84%)  
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ANOVA p-values comparing the various motion corrected schemes sig-
nificant, Table 3. Means, standard deviations and p-values comparing 
the relative parameter difference, Prel, distributions obtained with 
different motion correction methods (Non-registration, Affine and 
Elastic) in the 47 participants in which it was possible to estimate GCTT 
parameters without prior motion correction were calculated, Table 4. 
With increasing the level of motion correction, the p-values comparing 
the semi-quantitative relative parameter differences (Prel) in the lower 
resolution data to the high (4 s) resolution data tend to decrease but are 
not statistically significant. 

3.2. Effects of sampling rate 

Reducing sampling rate reduces the variability in the estimated semi- 
quantitative relative parameter differences, Prel, Fig. 4. When succes-
sively comparing Prel of high temporal resolution (4 s), with lower 
temporal resolution (8 s, 12 s, 16 s and 20 s), Table 4, the distributions 
Prel also change significantly with sufficiently decreased sample rates. 
With elastic motion correction this happens when the temporal resolu-
tion drops from 4 s to 8 s and suggests that it is important to have a 
sampling rate of 4 s. 

3.3. Data-driven stratification of participants 

The four pharmacokinetic models are all suited to fit the DCE-MRI 
data, and differ little in performance, Fig. 5. The relative standard- 
deviation of the sum of squares of residuals between the elastic regis-
tered raw data curve and the model curves is 3.4%. 

A k-means algorithm was applied to categorize the participants into 
two groups, group A and group B. This was to investigate if the models 
categorize the participants very differently, based on the relative 
parameter differences. Based on a comparison to structural image 
scorings, group A was assumed to correspond to unaffected individuals, 
and group B was assumed to correspond to affected participants. Out of 
the 73 participants, 62 individuals were placed in group A, and 11 in-
dividuals were placed in group B, when analysing the data with the 

GCTT model. Using the DCATH model instead, 59 individuals were 
placed in group A, and 14 were placed in group B. With the AATH model 
66 individuals were placed in group A, and 7 individuals were placed in 
group B. Finally, with the 2CXM model, 63 individuals were placed in 
group A and 10 individuals were placed in group B. 

Scorings, giving an indication of whether or not a participant was 
affected by JIA, based on structural MRI images were available for 52 of 
the 73 participants. Sensitivities and specificities were calculated 
assuming structural MRI data as the ground truth, using both unsuper-
vised k-means stratification on all of the labelled data, as well as random 
forest classification on the balanced 25% of data used for testing of the 
random forest stratification, Table 5. 

Across the pharmacokinetic models there was agreement about 52 
participants; 51 of which were placed in group A, and one of which was 
placed in group B. Structural image scorings were available for 40 of the 
52 participants between which there was agreement about group as-
signments across all pharmacokinetic models. Sensitivity of scores 
across models relative to the structural image scores was found to be 0, 
and the specificity 0.96. There clearly is an overlap between relative 
parameter differences (Prel) in affected and unaffected participants 
Fig. 6, where the parameters are calculated with the DCATH model and 
there is agreement between the k-means clustered groupings and the 
structural image scores in 41 cases. Based on a two-way ANOVA test 
(significance threshold <0.05) with the standardized relative parame-
ters and group scorings as independent variables and Tukey’s post hoc 
test, that neither the parameters, nor the interaction of parameters with 
group scorings were significant. However, group scorings were found to 
be significant (p = 1.0 ⋅ 10−6). 

4. Discussion 

There is need for more accurate diagnostic tests for JIA in general, 
since reported disease prevalence varies between 0.07 and 4.01 per 
1000 children [2]. More specifically, reported TMJ involvement in 
confirmed cases of JIA covers a range from 45% to 87%, and this is 
largely due to differing diagnostic methodology and asymptomatic TMJ 
[2], [5–13]. In the current study DCE-MRI is explored as a potential tool 
to aid in the diagnosis. 

We have examined the methodology in application of DCE-MRI as a 
possible diagnostic tool and found that a better fit to the GCTT model is 
obtained with high-level elastic motion correction. We recommend a 
sampling rate of at least 4 s to capture potentially disease relevant signal 
variations after application of high-level motion correction. The various 
parametric models all leave comparable and small residues. Since none 
of the applied perfusion models left a substantial residue and since they 
display comparable sensitivities and specificities relative to the struc-
tural image scores, in principle, all the models are potentially applicable 
to the TMJ. It remains to be tested whether one of the models out-
performs the others in the diagnostics of JIA affected TMJ, and since the 
diagnostic criteria are still hampered by differing diagnostic methodol-
ogies, the model estimations must be evaluated in the light of more 
clinical data. 

High-level motion correction, specifically elastic image registration, 
provides smoother relative enhancement curves and a better fit to the 
GCTT model approximation. The model approximation also becomes 
smoother with increasing levels of motion correction of the raw data. 
The statistical comparison between mean values of parameter distribu-
tions does not suggest that the post registration parameter distributions 
differ significantly from pre-registration parameter distributions. A large 
proportion of data stemming from minimally moving participants could 
be a reason for this. Even though estimated parameter values do not 
change on a population level, individual parameters might still be esti-
mated more accurately when motion correction is applied. 

Even without application of motion correction, the results of this 
study indicate that if the sampling rate is lower than 4 s, it is possible 
that important information about the dynamics in the TMJ is lost. The 

Table 4 
Effects of sampling rate in DCE-MRI. Statistical differences in relative parameter 
difference distributions in the Temporomandibular Joint in 73 participants 
across sampling rates and degree of motion correction. Significance threshold p 
< 0.05.  

Parameter Registration 
scheme 

8 s 12 s 16 s 20 s 

Rise Time, 
RT 

Not registered 0.01 < 
0.005 

< 
0.005 

< 
0.005 

Affine 0.01 < 
0.005 

< 
0.005 

< 
0.005 

Elastic < 
0.005 

< 
0.005 

< 
0.005 

< 
0.005 

Max, M Not registered 0.90 0.42 < 
0.005 

< 
0.005 

Affine 0.72 0.97 < 
0.005 

< 
0.005 

Elastic 0.03 0.01 < 
0.005 

< 0.05 

Slope, S Not registered 0.83 0.48 0.26 0.24 
Affine 0.03 0.23 0.06 < 

0.005 
Elastic 0.01 0.01 0.04 0.05 

Area, A Not registered 0.62 0.70 < 
0.005 

< 
0.005 

Affine 0.48 0.29 < 
0.005 

< 
0.005 

Elastic 0.02 0.07 < 
0.005 

< 
0.005 

The significance threshold was set to p=0.05, and hence all values in table 4 
below this threshold were rendered in bold. Bold font was chosen for easy 
reading of the table, drawing the attention to the pattern of the data. 

L. Starck et al.                                                                                                                                                                                                                                   



Magnetic Resonance Imaging 77 (2021) 204–212

210

parameter distributions with diminishing temporal resolution become 
more dissimilar with a higher level of motion correction. This could also 
suggest the importance of high sampling rates to avoid loss of potentially 
valuable diagnostic information. 

There is substantial overlap within detectable differences in param-
eter estimations between the left and right TMJ in presumed affected 
versus unaffected participants. However, DCE-MRI may be a feasible 
diagnostic tool in the evaluation of JIA affected TMJ, as a specific, rather 
than a sensitive tool. The current study focuses on the methodological 
aspects of DCE-MRI data processing, to ensure that the data can be 
evaluated in JIA diagnostics. Since no consensus yet exists in the eval-
uation of JIA affected TMJ, to further assess DCE-MRI data for this 
application, DCE-MRI data should be compared to other clinical data in 
a larger study cohort. 

A limitation of this study is the use of a population-based AIF, as 
opposed to patient specific AIFs, since patient specific AIFs might be 
better suited for the description of individual biology. However, 
measuring individual AIFs would be user dependent, adding another 
level of variability to the data. A recent study did not find that patient 
specific AIFs improved the repeatability in the head and neck area [39]. 
Furthermore, we have been comparing relative perfusion parameter 
differences between the left and right TMJ. We have therefore assumed 
that inaccuracies that are not disease relevant, caused by the AIF are 
cancelled out. While it is unlikely that both TMJs are equally affected 
[26], one should keep in mind that the possibility that they are, though 
small, is still present. Our approach is conservative, in that if both TMJs 

should indeed be equally affected it would not contribute towards a 
positive conclusion about the DCE-MRI feasibility as a diagnostic tool for 
JIA. We have aimed to highlight the disease relevant information con-
tained in the measurements, given that we do not know whether abso-
lute parameter measurements can be directly compared between 
children. 

In conclusion, we have found that any of the pharmacokinetic 
models investigated can be used to model the TMJ vascularity. A tem-
poral resolution of at least 4 s should be used in the measurement of the 
DCE-MRI data. A high temporal resolution in DCE-MRI data from the 
TMJ holds information which is not available in corresponding lower 
sampled data. Elastic image registration allows motion affected data to 
be sufficiently recovered to be included for pharmacokinetic modelling. 
Motion correction thus facilitates the data analysis for evaluation of 
DCE-MRI as a diagnostic tool for JIA affected TMJ. To further assess the 
diagnostic value of high temporal resolution DCE-MRI data, as well as of 
motion corrected DCE-MRI data, the estimated perfusion parameters 
should be correlated to other clinical information in a larger study 
cohort. 
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Abstract: Diffusion MRI is a useful tool to investigate the microstructure of brain tumors. However,
the presence of fast diffusing isotropic signals originating from non-restricted edematous fluids,
within and surrounding tumors, may obscure estimation of the underlying tissue characteristics,
complicating the radiological interpretation and quantitative evaluation of diffusion MRI. A multi-
shell regularized free water (FW) elimination model was therefore applied to separate free water
from tissue-related diffusion components from the diffusion MRI of 26 treatment-naïve glioma
patients. We then investigated the diagnostic value of the derived measures of FW maps as well as
FW-corrected tensor-derived maps of fractional anisotropy (FA). Presumed necrotic tumor regions
display greater mean and variance of FW content than other parts of the tumor. On average, the area
under the receiver operating characteristic (ROC) for the classification of necrotic and enhancing
tumor volumes increased by 5% in corrected data compared to non-corrected data. FW elimination
shifts the FA distribution in non-enhancing tumor parts toward higher values and significantly
increases its entropy (p ≤ 0.003), whereas skewness is decreased (p ≤ 0.004). Kurtosis is significantly
decreased (p < 0.001) in high-grade tumors. In conclusion, eliminating FW contributions improved
quantitative estimations of FA, which helps to disentangle the cancer heterogeneity.

Keywords: glioma; free water; tumor characterization

1. Introduction

Glial tumors are the most frequent malignant primary brain tumors, with incidence
rates of 5.4/100,000 in Europe and 7.1/100,000 in the United States [1–3]. Gliomas are
highly heterogeneous and infiltrative, limiting a complete surgical removal and successful
treatment. Overall, the proportion of patients that fully recover is approximately 7.9% [3].
Gliomas can occur at any age, but when comparing to individuals under 20 years, gliomas
are approximately 1.5 times more common in those aged over 20 years [4] and more than
10 times more common in those aged over 60 years [3]. Magnetic resonance imaging
(MRI) retains a key role for diagnosis, treatment planning, and response monitoring of
gliomas using both conventional and more advanced imaging techniques [5–7]. Based
on morphological proton imaging, the tumor is commonly subdivided into different sub-
regions: solid tumor, enhancing, non-enhancing, or peritumoral areas [8–11].
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Diffusion tensor imaging (DTI) is an advanced technique that can estimate fractional
anisotropy (FA) and mean diffusivity (MD), describing properties of the underlying tissue
microstructure. There is still no consensus on the optimal methodology for processing
DTI data; consequently, their ability to characterize gliomas, particularly regarding tumor
grade, is still a matter of debate [8–10,12]. The most reported metrics are mean estimates of
MD and FA, although statistical measures other than the mean could be of interest [10,11].
Based on eigenvalues and eigenvectors of the estimated diffusion tensor in each imaged
voxel, tractography is often performed to create a three-dimensional visualization of fiber
tracts [13,14].

High-grade gliomas typically spread outside the boundaries of the contrast enhancing
lesion, within the surrounding peritumoral non-enhancing region of signal change. This
spread may cause a reduction of FA, due to disrupted fiber tracts [15,16], but this is difficult
to differentiate from the similar reduction of FA caused by vasogenic edema also abundant
in the peritumoral region [17]. Vasogenic edema is mostly composed of free water (FW),
and the fast diffusion of water molecules within edematous tissues will cause a more rapid
diffusion signal decay than typically observed in tissues where water is more hindered
or restricted. As a result, the DTI measures in edematous regions are biased by the FW
contribution and reflect a mixture of edema and tissue.

One means of extracting the isotropic diffusion signal contribution from the edema
is through advanced mathematical modelling [18–21]. A two-compartmental model ac-
counting for free water contribution was first proposed by Pierpaoli and Jones [22]. The
model assumes that the measured diffusion attenuation signal is the sum of attenuation
in the two compartments and that these compartments have different diffusion tensors.
In this study, an FW modelling approach proposed by Pasternak et al. [18] is applied in
gliomas to improve tumor characterization. Since tumor heterogeneity is a hallmark of dif-
ferent biological and metabolic microenvironments, an in vivo assessment of heterogeneity
may help, for instance, in determining treatment response, distinguishing true disease
progression from pseudo-progression [23–25]. Necrosis is the result of a reduction in cell
density [26,27], and increased FW content could provide a basis for a more detailed charac-
terization of the expansion of necrosis. Improving the characterization of gliomas may also
improve non-invasive tumor grading, as well as allow more accurate treatment planning.
For example, several studies have reported increased fiber tracking capabilities after FW
correction [28–32], indicating that FW correction may improve treatment planning.

To understand the impact of the advanced modelling in gliomas, diffusion tensor
data are analyzed in the current study both with and without the free water elimination.
Receiver operator characteristic (ROC) curves are estimated to investigate the classification
of tumor sub-regions in high-grade tumors. Furthermore, potential differences between
corrected and non-corrected FA estimations are evaluated in low- and high-grade tumors.

2. Materials and Methods
2.1. Data Collection

Twenty-six treatment-naïve glioma patients (11 males, 15 females; 52 ± 18 years, range
21–78 years), part of a cohort previously recruited for prospective, ethically approved
studies, were included in this retrospective study. Patient characteristics are summarized in
Table 1. MRI was carried out as part of routine surgical planning at Addenbrooke’s Hospital,
Cambridge University NHS Foundation Trust. Subjects included in this study matched
the following criteria: glioma confirmed on histology, presence of structural MR imaging,
multiple b-value diffusion imaging, and binarized masks of tumor volume. Written and
informed consent was obtained from all participants and the study was approved by the
NRES Committee East of England, Cambridge 2 ethics committee.
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Table 1. Number of patients, mean total tumor volume, mean age, and sex across tumor grades. Note
that edema was included in total volume, and the single grade I patient did not have much edema.

Grade I Grade II Grade III Grade IV

Number of patients 1 (1 F *) 8 (7 F, 1 M **) 2 (1 F, 1 M) 15 (6 F, 9 M)
Mean age 22 years 35 ± 11 years 46 ± 11 years 65 ± 10 years

Mean total tumor volume 6.0 cc *** 57.6 ± 76.5 cc 48.0 ± 12.5 cc 46.7 ± 27.2 cc
* F = female, ** M = male, *** cc = cubic centimeters.

Data were collected on a 3 T MRI system (Discovery MR750, GE Healthcare, Wauke-
sha, WI, USA) using a 12-channel head coil. Structural T1 -weighted (T1w) images
(256 × 256 matrix size, slice thickness 1.5 mm, FOV 240 mm × 240 mm) were acquired
using an inversion-prepared fast 3D spoiled gradient echo sequence (TR/TE/TI/FA =
8.2 ms/3.2 ms/450 ms/12◦). T2 -weighted (T2w) images (320 × 320 matrix size, slice
thickness 1.2 mm, FOV 240 mm × 240 mm) were acquired using a 3D spin echo sequence
(TR/TE = 2500 ms/79 ms).

Multi-shell DWI were acquired as follows with a pulsed-gradient spin-echo echo-
planar imaging (EPI) sequence: b-values 0, 90, 150, 500, and 1000 s/mm2; 256 × 256 matrix
size; slice thickness 2 mm; FOV 220 mm × 220 mm; TR/TE = 2000 ms/80 ms. Diffusion
acquisitions were performed in 8 directions in each shell. Low b-value shells were selected
because, with a diffusivity of 3.00 × 10−3 mm2/s, FW is fast-diffusing compared to normal
brain tissue, which has a diffusivity of approximately 0.8 × 10−3 mm2/s. Hence, lower
b-values are better suited to estimate FW than higher b-values.

Based on the T1w- and T2w-images, a neuroradiologist with 8 years of experience
manually outlined regions of interest (ROIs) encompassing the entire lesion, including the
peritumoral region (total tumor volume), the enhancing lesion (enhancing tumor region),
and the non-enhancing, presumed necrotic core (necrotic tumor region) (Figure 1). ROIs
for the non-enhancing tissue (non-enhancing tumor region) were calculated by subtracting
the enhancing tumor region and necrotic tumor region from the total tumor region. The
tumor grades were confirmed by histology according to the 2016 WHO criteria [33,34].

2.2. Data Modelling

Each voxel is modelled as a weighted sum of two compartments, one compartment
composed of free water (FW compartment), the other containing water in the vicinity
of tissue structures that hinder or restrict water diffusion (tissue compartment). The
diffusivity of the FW compartment is isotropic and fixed to 3.00 × 10−3 mm2/s, which is
the diffusivity of FW at body temperature [35]. The data are modelled using a regularized
fit [18], implementing a Euclidean tensor metric [36], and initialized with tensors with MD
of 0.6 × 10−3mm2/s. The fractional volume of the FW compartment, f, and the diffusion
tensor modelling the tissue compartment are estimated. FW maps provide the voxel-wise f
value, and the tissue compartment tensor is decomposed to eigenvalues to calculate free
water corrected FA.

2.3. Data Processing and Parameter Extraction

Motion correction was performed using the FSL toolbox (version 6.0.1, University of
Oxford, Oxford, UK) [37]. Skull stripping was performed prior to fitting of parameters [38].

Both regular tensor fits and free water corrected multi-shell tensor fits were computed
from the data. Regular tensor fitting was applied to a single shell with b-value 1000 s/mm2

using FSL [37]. Free-water-corrected tensor fitting was applied to the multi-shell diffusion
data (b-values 90, 150, 500, and 1000 s/mm2). B0 images were registered to the T1w
images using a normalized mutual information cost function and a 4th degree b-spline
interpolation in SPM12 (version 7771, University College London, London, UK) [39]. The
transformation was then applied to all calculated maps, including the FW maps, FW-
corrected FA (FAt), and non-corrected FA (FA) maps. Measurements were extracted from
the total tumor region and non-enhancing regions using (1) FA maps derived with regular
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tensor fitting, (2) FAt maps derived with free water corrected tensor fitting, and (3) FW maps
derived with free-water-corrected tensor fitting. Map-derived ROI summary variables
including mean and variance, 25th and 75th quantile, median, skewness, kurtosis, and
entropy of the FA and FW map were computed.
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Figure 1. Masks in a grade IV patient overlaid on structural T1w images. The yellow boundary shows
the total tumor region (a); the area between the green and purple boundaries shows the enhancing
tumor region (b); the area within the purple boundary shows necrotic tumor region (c); and the area
between the yellow and green boundaries shows the non-enhancing tumor region (d).

FW correction failed in one out of the 15 grade IV patients, due to corrupted DICOM
images in the low b-value diffusion images.

2.4. Statistical Analysis

To test whether tumor volumes, i.e., necrotic and enhancing volumes, and enhancing
and non-enhancing volumes can be separated based on parameter means within these
volumes after FW correction, ANOVA testing with Tukey’s post hoc test was performed. To
test whether conventional mean MD that is not corrected for FW can differentiate between
tumor regions, the same ANOVA test with Tukey’s post hoc test was performed using
non-corrected data. Receiver operator characteristic (ROC) curves were computed by fitting
a logistic regression model to labelled image voxels to evaluate the ability of FW-corrected
data to classify voxels to their assigned tumor volume.

The effect of FW correction on the various tumor volumes (enhancing, necrotic, non-
enhancing, and total tumor volumes) were investigated using a paired t-test.

To assess group differences, the patient cohort was separated into low-grade (grades I
and II) and high-grade (grades III and IV) tumors, and differences were investigated using
paired t-tests.
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Results were deemed statistically significant for p < 0.05, and p-values were computed
with t-tests adjusted for multiple comparisons using the Bonferroni method.

3. Results
3.1. Characterizing Tumor Sub-Regions

There is a larger variance in the distribution of the mean FW in the necrotic tumor
region than in other parts of the tumor (Figure 2), and the mean FW is significantly higher
in the necrotic region (FWmean = 0.50) than in both the enhancing (FWmean = 0.30) and non-
enhancing (FWmean = 0.30) regions in grade IV patients (p ≤ 0.015), as well as in the total
tumor volume region across all patients (FWmean = 0.33). Mean FAt is significantly lower
(p ≤ 0.001) in the necrotic tumor region (FAtmean = 0.13) than in the other defined tumor
regions (FWmean ≤ 0.27). Measurements of FA and FW from the enhancing, non-enhancing,
and total tumor regions do not differ statistically significantly from one another. Although
there may be tendencies toward higher MD in the necrotic region compared to non-necrotic
regions, conventional MD that is not corrected for FW does not significantly differentiate
between tumor regions (Supplementary Material, Figure S1).
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tumor regions, non-enhancing tumor regions, and total tumor regions from grade IV patients. The
fifth box and whisker plot shows the mean parameter values in total tumor regions from all patients.
Significantly different distributions are marked with their corresponding p-values. Boxes with white
backgrounds do not differ significantly from other boxes with white backgrounds. Statistics were
performed with ANOVA tests and Tukey’s post hoc test at a significance threshold of p < 0.05.
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FW maps with cross-sections of total and necrotic tumor regions overlaid can be seen
in Figure 3. The variance in mean FW, as mentioned above, may be visually suggested by
the varying gray scale levels representing high and low FW content within the necrotic
areas (green outline).
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Figure 3. Free water (FW) maps across 25 patients. Tumor grades I, II, III, and IV are noted to the top left at each map.
Outlines of the total tumor regions (yellow) and necrotic tumor regions (green) are overlaid.

The FA distribution in the necrotic tumor region is least affected by FW corrections,
as there is no significant change in FA values, as measured by the mean, median, and
quantiles (Table 2). In non-necrotic regions, these summary variables increase on average
by 20.4%, and kurtosis decreases by 56.6%. Entropy increases by 6.7% in necrotic areas and
on average by 7.5% in non-necrotic regions. Skewness decreases by 49.9% in necrotic areas
and on average by 62.2% in non-necrotic regions.

Table 2. Significances of the effects of free water correction on fractional anisotropy (FA) summary
variables across tumor regions (TR) in grade IV patients. p-values are calculated with a paired t-test
and a significance threshold of p < 0.05. The p-values are adjusted for multiple comparisons using the
Bonferroni method.

p-Values Enhancing TR Necrotic TR Non-Enhancing TR Total TR

Mean 0.013 1.0 <0.001 <0.001
Variance 0.11 1.0 1.0 1.0

25th Quantile <0.001 0.27 <0.001 0.001
75th Quantile 0.005 0.068 <0.001 <0.001

Median <0.001 0.22 <0.001 <0.001
Entropy 0.010 0.018 <0.001 <0.001
Kurtosis <0.001 0.50 0.003 <0.001

Skewness <0.001 0.018 <0.001 <0.001

ROC curves were calculated based on voxel-wise labelling of necrotic and enhancing
tumor regions and a logistic regression model and show that necrotic tumor regions can be
better differentiated using FW-corrected data than with regular FA maps. Results are shown
from a single patient in Figure 4. In this patient, the average area under the curve (AUC)
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is greater than average. Across all patients, the AUC was 0.77 based on FAt, 0.73 with
FA, and 0.77 with FW. Enhancing tumor regions were defined as the true positive and
the adjacent necrotic tumor regions as the true negative. When enhancing tumor regions
are separated from the adjacent non-enhancing tumor regions and non-enhancing tumor
regions are labelled as the true positive, the AUCs are 0.66, 0.67, and 0.62 in FAt, FA, and
FW, respectively.
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Figure 4. Receiver operator characteristics (ROCs) based on voxel-wise labelling. (a) ROC curves
separating necrotic and enhancing tumor regions, and (b) ROC curves separating enhancing and
non-enhancing tumor regions. Enhancing tumor region is defined as the true positive and the
adjacent necrotic tumor region as the true negative. The patient is the same as the one shown in all
single patient examples in this paper. The data were fitted to a logistic regression model and the ROC
was computed for free-water (FW)-corrected fractional anisotropy (FA) (blue), non-corrected FA (red),
and FW (green). Area under curve (AUC) is rendered in corresponding colors.

3.2. Impact of FW Correction on Parameter Distributions

FW elimination increases FA entropy (p ≤ 0.003) and decreases FA skewness (p ≤ 0.004)
in the non-enhancing regions in both low- and high-grade tumors (Table 3). Kurtosis does
not decrease significantly in low-grade tumors (p = 0.90) but does decrease significantly in
high-grade tumors (p ≤ 0.001). The FA distribution shifts toward higher FA values after FW
correction. Refer to the Supplementary Material for a complete table of summary variables
(Supplementary Material, Table S1). Maps calculated with and without FW correction are
shown for a single patient in Figure 5.

Table 3. Comparison of fractional anisotropy summary variables with and without free water corrections in the non-
enhancing tumor region. Reported p-values were computed according to the paired t-test and were adjusted with the
Bonferroni method (significance threshold < 0.05).

Summary Variables from the
Non-Enhancing Tumor Volume

Grade I and II (n = 9) Grade III and IV (n = 16)

Mean and std. dev p-Value Mean and std. dev p-Value

Entropy FAt * 7.21 ± 0.31
0.003

7.15 ± 0.15
<0.001FA ** 6.73 ± 0.47 6.67 ± 0.35

Kurtosis
FAt 3.63 ± 1.44

0.90
3.57 ± 0.89

<0.001FA 7.86 ± 5.03 7.22 ± 3.76

Skewness
FAt 0.68 ± 0.51

0.004
0.59 ± 0.32

<0.001FA 1.58 ± 0.73 1.43 ± 0.71

* FAt = free-water-corrected fractional anisotropy, ** FA = non-corrected fractional anisotropy.
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Figure 5. Images and maps from a grade IV patient: (a) T1w image; (b) T2w image; (c) free-water (FW)-corrected fractional
anisotropy (FAt) map; (d) non-corrected fractional anisotropy (FA) map with contours defining non-enhancing tumor; and
(e) FW map. Within the non-enhancing region, more heterogeneity is revealed in the FAt map compared to the FA map. The
FW map quantitatively highlights FW content.

No significant correlation was found between tumors FW, FAt, and FA (Supplementary
Material, Table S2) nor to any parameter distribution summary variables apart from the
mean (variance, 25th and 75th quantile, median, entropy, kurtosis, and skewness).

4. Discussion

Improved oncological imaging is dependent on an accurate description of tissue mi-
croenvironments, and descriptions of tumor heterogeneity may be improved by correcting
for FW. The aim is to better characterize glioma by using FW modeling. Multi-shell DTI
fitting to estimate and remove the FW contribution was performed using the method
developed by Pasternak et al. [18]. The results indicate that by removing fluid bias from
conventional FA maps, FW estimation and elimination allow for a quantitative non-invasive
characterization of glioma, and FW correction improved automatic labelling of necrotic
tumor voxels. Results show that FW correction significantly increases entropy across grades
and significantly reduces kurtosis in high-grade tumors. Increased entropy may imply
greater detected heterogeneity.

4.1. Characterizing Tumor Sub-Regions

FW maps show large variation of FW content within necrotic tumor regions across pa-
tients, suggesting that FW estimations can be an easily applicable method for quantitatively
characterizing necrotic regions, as there is a reduction of cell density with necrosis [26,27].
Typically, lower grade patients do not have significant necrotic regions, but they may
develop with progressing disease. Necrosis can be detected based on expert evaluations of
MRI (post-contrast T1w images in particular), but quantitative thresholds of FW content
to characterize necrotic regions are not routinely applied in the clinic. Some studies have
suggested that a more accurate description of the necrotic region helps with predicting sur-
vival and tumor aggressiveness in glioblastoma patients [40,41], and deep learning-based
segmentation [42] and tumor classification [43] are being explored. Adding the estimation
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of FW to such analyses is a possible, clinically useful application of FW estimation. Con-
ventional MD that is not corrected for FW could not significantly differentiate between
tumor regions. Calculating FW content may therefore add to a more precise description of
the tumor.

The FA distribution within grade IV tumors changed significantly in all parts of the
tumor region, except in the necrotic tumor region. Significant differences between FA
and FAt distributions were not present in FW correction of the necrotic tumor region as
expected. The necrotic region contains large amounts of water, and due to the short TR
used in this study, a concern could be incomplete signal spoiling in these regions. However,
the diffusion signal versus b-values had the expected exponential decay (data not shown),
confirming that the acquisition protocol did not bias the results. The DWI signal decay
in both ventricles and the two most cystic necrotic volumes was found to be normal, and
FW was estimated to one in both cases. It is possible that FW correction methods, such as
the one applied in this study, can be of value in differentiating true disease progression
from pseudo-progression [44]. Tumor cellularity, as derived with RSI, has been presented
as a possible diagnostic tool in identifying pseudo-progression in glioblastoma [45,46]. The
patients in this study are treatment-naïve; consequently, no pseudo-progression can be
measured. Pseudo-progression is often accompanied by dead tissue and water, or it is due
to immune cell infiltration [47]. Since the FA distribution changed significantly in enhancing
and non-enhancing tumor regions and not in necrotic regions of these treatment-naïve
patients, it is possible that pseudo-progression might be detected with FW correction in the
enhancing and non-enhancing regions, if it could in the future be demonstrated that the FA
distribution is also different in regions containing less structure due to dead tissue, water,
or immune cell infiltration.

ROCs separating necrotic from enhancing tumor volumes had larger AUCs with
applied FW correction than without. This implies that FW-corrected data may reduce
partial volume effects, present on regular DWI, even if the tissues in enhancing volumes
and non-enhancing volumes are not very different. We found no statistically significant
differences between enhancing and non-enhancing tumor volumes based on FA or FW.
It is important to note that ROC comparisons were performed with reference to regular
structural T1w and T2w MR images and not histologically confirmed pathology. The
logarithmic fits performed as part of the ROC curve calculations are relatively poor. This
is because of the parameters FW, FAt, and FA to some extent overlapping in, for example,
necrotic and enhancing tumor regions. However, the point is not to fit the data to a
logarithmic model, but merely to calculate a parameter cut-off point that provides a basis
for a mathematical evaluation of ROC predictions. Based on “Restricted Spectrum Imaging”
(RSI)-based tissue modelling, it has previously been demonstrated that accounting for FW
components has been shown to help with tumor segmentation [48]. However, the study
by White et al. [48] focused on the delineation between tumor and normal-appearing
white matter based on various intensity ratios of ADC within tumor regions and normal-
appearing white matter and not on calculations of FW or FAt.

4.2. Impact of FW Correction on Parameter Distributions

The impact of free water elimination was found to significantly influence ROI sum-
mary variables, regardless of tumor grade when compared to regular diffusion tensor
metrics. Entropy of FA increases in the tumor volume, which means that tissue heterogene-
ity may reflect the underlying heterogeneity better, helping in the assessment of the tumor
microenvironment. Higher mean, median, and 25th and 75th quantiles in the FW-corrected
maps show that the mass of the distribution is shifted towards higher FA values. There
is an increase in median, quantiles, and mean FA after removal of FW contamination in
the measured signal. These changes are expected when the isotropic signal is removed by
the employed FW-correction method. Kurtosis and skewness decrease after FW correction,
and the FAt distribution comes closer to a normal distribution than the uncorrected FA
distribution. This can be an effect of the increasing summary variables or an indication that
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varying levels of FW are corrected for across the volume. FAt maps have higher entropy
than FA maps, which may be indicative that FW correction reveals tissue heterogeneity.
This heterogeneity may be due to, for example, fiber tracts or infiltrative tumor in the
peritumoral tissue.

In our study, we were not able to identify FW, FAt, or FA distribution summary
variables (mean, variance, 25th and 75th quantiles, median, entropy, kurtosis, or skewness)
that correlated with tumor grades. This adds to inconsistent findings in previous studies,
where some studies reported increased MD in high-grade glioma [8], while others reported
decreased MD [9,49] or no difference in MD [11]. Since MD was used for initialization of
the FW correction in our study, we do not report on MD. Similar to MD, FA has also been
found to be increased [49], decreased [8], and not significantly different [9,11] across tumor
grades, as well as to be increased in areas with recurrent tumors [44]. Kurtosis decreases in
non-enhancing areas in high-grade tumors and not in low-grade tumors. This may be due
to a larger number of low-grade tumors not having significant edema.

4.3. Limitations

FW correction provides more detail of the structures that are otherwise hidden beneath
the edema, though apart from better characterization of the tumor regions, further studies
are required to test the benefits of the FW correction in gliomas. Although tumor sub-
regions were drawn on structural T1w and T2w MR images by an expert radiologist,
the standard against which the FW-correction-based differentiation between tumor sub-
regions were assessed should ideally be the pathology confirmed by histology. The method
employed in our study makes use of multiple b-shell acquisitions. Nevertheless, it is
still easily applicable in the clinic routine considering the limited increase in acquisition
time. This study is a proof of concept, using previously acquired prospective data; hence,
the sample size is limited. Another limitation is the quality of the diffusion-weighted
imaging performed. Due to the relatively small number of signal acquisition from only
eight diffusion directions, the FW and FA maps, as well as the DWI used for fiber tract
reconstruction, are noisier than they could have been with more directions and signal
averaging. However, the data represented in this study only took 4 min to acquire; therefore,
it represents a clinically feasible scenario.

5. Conclusions

In conclusion, FW estimation is a way to quantitatively and non-invasively charac-
terize necrotic tumor regions in particular. Monitoring potential changes within tumor
regions due to developments of the disease may also be possible, though the hypothesis
produced by these results must be further evaluated by histology of FW-mapped regions.
Results based on FA maps of the tumor region are significantly impacted by FW correction,
suggesting increased heterogeneity. The applied method is easily applicable in the clinic
and reveals potentially important physiological information.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11122385/s1, Figure S1: Conventional MD from non-corrected data. The first four
box and whisker plots from the left show the mean MD in enhancing tumor regions, necrotic tumor
regions, non-enhancing tumor regions, and total tumor regions from grade IV patients. The fifth
box and whisker plot shows the mean parameter values in total tumor regions from all patients. No
statistical difference was found between tumor regions. Statistics were performed with ANOVA tests
and Tukey’s post hoc test at a significant threshold of p < 0.05. Table S1: Comparison of fractional
anisotropy summary variables with and without free water corrections in the non-enhancing tumor
volume. Reported p-values were computed according to the paired t-test and were adjusted with
the Bonferroni method (significance threshold < 0.05), Table S2: Comparison of fractional anisotropy
summary variables between low- and high-grade non-enhancing tumor volumes with and without
free water corrections. Reported p-values were computed according to the unpaired t-test and were
adjusted with the Bonferroni method (significance threshold < 0.05).
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