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Abstract
In this paper, we report robust evidence that the process
of corporate defaults is time-dependent and can be mod-
elled by extending an autoregressive count time series
model class via the introduction of regime-switching.
That is, some of the parameters of the model depend
on the regime of an unobserved Markov chain, cap-
turing the model changes during clusters observed for
count time series in corporate defaults. Thus, the process
of corporate defaults is more dynamic than previously
believed. Moreover, the contagion effect—that current
defaults affect the probability of other firms defaulting
in the future—is reduced compared to models without
regime-switching, and is only present in one regime. A
two-regime model drives the counts of monthly corpo-
rate defaults in the United States. To estimate the model,
we introduce a novel quasi-maximum likelihood estima-
tor by adapting the extended Hamilton–Gray algorithm
for the Poisson autoregressive model.
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1 INTRODUCTION

Major causes for modelling and forecasting corporate defaults have been both the aspiration and
the need to explain the observed clustering of defaults. In essence, two justifications have been
proposed for this stylized fact. First, each firm can be considered exposed to a ‘systematic risk’,
which is represented by shared economic or financial variables causing changes to a firm’s con-
ditional default probabilities; and second, the default of one firm may increase the likelihood of
other firms defaulting, resulting in contagion.

While several existing models accommodate the possible impact of these two sources, fitting
such models during different periods can produce significantly different parameter estimates (see,
e.g. Agosto et al., 2016). Consequently, there may exist varying ways in which systematic risk and
contagion effects impact the number of defaults during periods of clustering and periods with a
low number of defaults. This paper explores such possibilities by using a regime-switching (RS)
Poisson autoregressive model that allows parameter values to change over time.

Several studies have examined default clustering in the past and have done so using two main
categories. For the first one, firm-level data are available in addition to macroeconomic variables
and dates of default. These default times are then usually modelled by Poisson processes with
both types of covariates driving the default intensities. Studies belonging to this category are, for
example Das et al. (2007), who provide evidence that the ‘systemic risk’ on its own cannot explain
the degree of clustering observed in American industrial defaults. Moreover, Lando and Nielsen
(2010) put a different type of test procedure to practice and did not report a contagion effect.
Duffie et al. (2007) provide evidence that default probabilities of American companies increase
with decreasing short-term interest rates, whereas Duffie et al. (2009) present strong evidence for
the presence of common latent factors.

Studies in the second category use aggregate data, consisting of the number of defaults and
macroeconomic variables in given periods. Several papers have used this approach, for example
Koopman et al. (2012), Agosto et al. (2016), Sant’Anna (2017), and Azizpour et al. (2018). In par-
ticular, Azizpour et al. (2018) find strong evidence that the contagion effect represents a main
source for the observed clustering behaviour, even when including a so-called frailty factor (see
also Bai et al., 2015). The papers most related to our approach are those by Agosto et al. (2016)
and Sant’Anna (2017). Agosto et al. (2016) introduce a class of Poisson autoregressive models with
covariates to model default counts. They find evidence of a contagion effect, which has dimin-
ished in recent years. Sant’Anna (2017) introduces a new test procedure that permits model checks
for dynamic count models and finds evidence of a contagion effect as well. None of the existing
studies of corporate defaults considers a regime-switching modelling approach to the best of our
knowledge.

In this paper, we model the default counts using a specific class of regime-switching
integer-valued generalized autoregressive conditional heteroscedasticity models with exogenous
covariates (RS-INGARCHX). The model can be seen as an RS extension of the INGARCH mod-
els studied in Rydberg and Shephard (2000), Ferland et al. (2006), and Fokianos et al. (2009),
and in particular the INGARCHX model used for studying defaults in Agosto et al. (2016).
For an overview of count time series models and regime-switching models, see Appendix A.
In detail, we consider a general m-regime RS-INGARCHX model in a frequentist framework,
and we approximate the likelihood using an adaptation of the extended Hamilton–Gray (EHG)
algorithm. Originally, an analogous algorithm was used for estimating a regime-switching autore-
gressive moving-average (RS-ARMA) model in Chen and Tsay (2011), which builds on the original
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algorithms of Hamilton (1989) and Gray (1996). Our version of the estimation algorithm also
contains a backward procedure, which provides smoothing probabilities that we use to infer the
clustering structure underlying the data.

Our model allows for the investigation of several features regarding the characteristics of
default counts. In the economic and financial regime-switching literature, certain regimes often
correspond to certain crisis periods (see, e.g. Ang & Timmermann, 2012; Bernardi et al., 2017;
Gray, 1996). We establish the presence of one regime linked to low counts of defaults and a second
one linked to clusters with high default counts. A posteriori, the second regime also coincides with
periods of economic crisis. In comparison to existing models, our approach improves the model
fit and forecasting performance. Furthermore, we investigate the extent to which contagion rep-
resents a significant source of default clustering. Our approach improves the ability to identify
this effect and the impact of macroeconomic variables, thus enabling a deeper understanding of
the dynamics of default counts.

The paper is organized as follows. Section 2 describes the American default counts data that
we analyse. Section 3 contains the formulation of the RS-INGARCHX model and provides an
interpretation of the model’s inherent contagion and macroeconomic risk components as well as
the implications of regime-switching. Furthermore, we present algorithms permitting the estima-
tion of model parameters, state inference and prediction. Section 4 contains results and starts with
a presentation of the considered models in Section 4.1. Subsequently, Sections 4.2 and 4.3 examine
the link of regime-switching an economic crisis and the sources of clustering under it, respec-
tively. We shed light on regime-specific dynamics in Section 4.4. After that, Section 4.5 presents
various aspects related to the model fit and in-sample performance of multiple models under
investigation. We offer details on the out-of-sample performance, including forecast accuracy and
robustness checks in Section 4.6. Finally, Section 5 presents our conclusions. Also, the appendices
(found in the supplementary files) presents further aspects and details. These include a more
in-depth literature review, algorithmic information, a simulation study and various robustness
checks.

2 DATA

The American default counts data consist of the monthly number of bankruptcies filed in the US
bankruptcy courts and is available from the UCLA-LopPucki Bankruptcy Research database (see
http://lopucki.law.ucla.edu). We study data covering the period from January 1985 to September
2017, a total of 393 monthly observations. The data bases on the counts of defaults of all com-
panies that had declared assets of more than US$ 100 million measured in 1980 dollars in the
year before the firm filed the bankruptcy case, and had reported to the Securities and Exchange
Commission (SEC) in the three years before the bankruptcy. The counts of monthly bankrupt-
cies are considered in terms of the month during which the bankruptcy was filed. A total of 1065
defaults is counted over the entire sample period. Figure 1 (left panel) displays the time series
together with recession periods. NBER-based recession indicators for the United States (USREC)
available from the St. Louis Fed online database FRED determine these recession periods. The
figure clearly shows the default clusters related to the savings and loan crisis of the late 1980s and
early 1990s, the burst of the dot-com bubble in 2000–2002, and the financial crisis of 2007–2008.
However, the European sovereign debt crisis of 2011 did not impact the numbers of US defaults
considerably. The peak of defaults in 2016 can be partly explained by the fact that the economic
growth in the US slowed to a tepid 1.6% annual rate, which was a 5-year low and a sharp drop

http://lopucki.law.ucla.edu
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F I G U R E 1 Monthly default data
Notes: The left figure shows the monthly number of defaults of American firms from January 1985 to September
2017. The grey rectangles represent US recession periods according to NBER. The right figure displays the
autocorrelation function of these data.

T A B L E 1 Overview and summary statistics of variables considered, including standard deviations (SD),
skewness (Skew.) and Kurtosis (Kurt.). The last two columns shows the p-values for the augmented
Dickey–Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt–Shin (KPSS) test for (level) stationarity. Monthly
sampling frequency

Abbrev. Description Mean SD Skew. Kurt. ADF KPSS

Yt Defaults per month 2.71 2.61 1.59 6.21 0.18 0.01

indpro Industrial production index 1.89 7.32 −1.64 12.54 <0.01 0.08

ppifgsup Produce price index:finished good 1.96 6.99 −0.84 6.94 <0.01 0.10

ppieng Produce price index:fuels and related energy 1.71 48.43 −0.60 5.88 <0.01 0.10

unrate Civilian unemployment rate −0.09 0.93 2.05 8.21 <0.01 0.10

baa Moody’s seasoned baa corporate bond yield −0.30 0.90 −0.19 3.79 <0.01 0.10

SP500ret S&P500 yearly returns 3.53 7.06 −1.34 5.75 <0.01 0.09

GDP Gross domestic product 2.66 2.34 −1.08 6.43 <0.01 0.01

SP500vol S&P500 return volatility 0.94 0.59 3.76 25.74 <0.01 0.10

from the 2.9% annual growth of 2015. Figure 1 (right panel) shows the autocorrelation function of
the observations, which exhibits signs of strong temporal dependence. Table 1 displays summary
statistics related to the variables considered. These data have been analysed in the past (see e.g.
Sant’Anna, 2017), while other studies have been using data from Moody’s Default Risk Service
(such as Agosto et al., 2016; Azizpour et al., 2018). However, both data sets exhibit comparable
patterns, and no apparent reason is visible for preferring either.

We will study the impact of several macroeconomic and financial variables representing
the common systematic risk corporations face on the monthly rate of defaults. Table 1 pro-
vides an overview of the considered covariates, along with summary statistics. These variables
are the following: industrial production index (indpro), producer price index by commodity
for final demand: finished goods (ppifgsup), producer price index: fuels and related energy
(ppieng), civilian unemployment rate (unrate), Moody’s seasoned baa corporate bond yield
(baa), S&P500 yearly returns (SP500ret), gross domestic product (GDP) and S&P500 realized
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F I G U R E 2 Cross-correlation matrix
Notes: This figure displays the cross-correlation (lower triangle) of the default counts and covariates considered.
The covariates are lagged by one relative to the default counts.

volatility (SP500vol). Except for the variables SP500ret and SP500vol, which are collected from
DataStream, the variables originate from the St. Louis Fed online database FRED. The variables
indpro, ppifgsup and ppieng are expressed as yearly growth rates, whereas the variables unrate,
baa and SP500ret are expressed as yearly differences. The SP500vol is monthly realized volatil-

ity defined as SP500vol =
(

1∕nt
∑nt

i=1r2
i,t

)1∕2
, with ri,t denoting the i-th daily return of the S&P 500

index in month t and nt being the number of trading days in month t. The GDP is the annualized
quarterly growth rate of the United States. Thus, it is only observed on a quarterly basis, which
we extrapolated backwards to obtain monthly observations. We will refer to all these variables
as covariates during model development. They were selected because most of these covariates
have been found significant and used in related studies, see for example Das et al. (2007), Duffie
et al. (2009), Giesecke et al. (2011), Agosto et al. (2016) and Azizpour et al. (2018). Figure 2
shows the cross-correlation matrix of the default counts and covariates lagged by one month rel-
ative to the default counts. The last row in Figure 2 shows the cross-correlation between the
default counts and the lagged covariates, which indicates the predictive power of several of the
covariates. Note that several of the covariates also display high cross-correlation between each
other.

Figure 3 (top) displays a three-year rolling window estimate of lag-one autocorrelation of the
default counts. The rolling window estimate is highly variable throughout the sample period and
is typically lower than the full sample lag-one autocorrelation, except for the maximum around
the financial crisis 2007–2008. Similarly, the bottom panel of Figure 3 displays a three-year rolling
window estimate of the cross-correlation between defaults and realized volatility of the S&P 500
(lagged by one), which is highly variable throughout the sample period as well, again with a maxi-
mum around the financial crisis. These variations suggest that past defaults and covariates impact
the default counts in a time-varying manner.
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Notes: The top panel displays the lag-one autocorrelation of the monthly number of default, and the bottom panel
shows the cross-correlation between these counts and realized volatility on S&P 500. Both estimates are based on
windows of size 36 (three years). The red dashed line represents the corresponding full sample (1985–2017)
estimate.

3 THE REGIME-SWITCHING INGARCHX MODEL

3.1 Model formulation

Let Yt be the monthly number of defaults and let Xt = (Xt,1, … ,Xt,r)t denote an r-dimensional
time-varying covariate vector consisting of the macroeconomic and financial covariates described
in Section 2. We model Yt as a conditional Poisson distribution where the intensity 𝜆t at time
t depends on both past default counts and past covariates. To capture possible regime changes
in this dependence structure, we introduce an unobserved first-order Markov process St taking
discrete values 1, … , m. Let Γ = {𝛾ij} denote the m × m transition probability matrix of {St},
where the terms {𝛾ij} represent the probability of moving from the ith regime at time t − 1 to
regime j at time t, where i, j = 1, … , m. We assume that the Markov chain is independent of
previous counts and covariates. Suppose that t−1 is the information set {Yt−1, 𝜆t−1,Xt−1, St}. The
model we consider is then given by

Yt |t−1 ∼ Poisson(𝜆t), 𝜆t = aSt𝜆t−1 + bSt Yt−1 + exp
(
𝛼St + 𝛽 t

St
Xt−1

)
, t ≥ 1. (1)

The above specification implies m regime-specific sets of INGARCHX parameters {ak, bk, 𝛼k, 𝛽k},
i.e. k = 1, … , m. For regime k, the coefficients ak and bk represent the effect of the intensity
𝜆t−1 in the previous month and the number of defaults in the previous month Yt−1, respectively.
The last term captures the contribution of the covariates, which enter the intensity through a
log-link function. In this function, the parameter 𝛼k and the parameter vector 𝛽k = (𝛽k,1, … , 𝛽k,r)t



BERENTSEN et al. 7

correspond to a scaling factor and covariate effects, respectively. This form ensures a positive
contribution to the intensity when the covariates take negative values. For the same reason, we
assume that all parameters ak and bk are greater or equal to zero. Moreover, in line with Agosto
et al. (2016), see in particular Lemma 2 p. 646 allowing for non-Lipschitz functions of covariates,
we suppose that the INGARCHX process is stationary within each regime such that

ak + bk < 1, E
(
exp

(
𝛼k + 𝛽 t

kXt
))

< ∞, k = 1, … ,m. (2)

Tests for stationarity (see Table 1) suggest that stationarity can be assumed for all covariates con-
sidered, perhaps with the exception of GDP. The same statement holds for the exponentially
transformed covariates. Note that while the model defined by Equation (1) certainly belongs to
the INGARCHX family for m = 1, the parametrization differs slightly from the one employed in
Agosto et al. (2016). They avoid using a log-link function for implementing covariates, albeit enter-
taining the idea in a simulation study. Instead, they split covariates taking negative values into a
positive and (absolute value of) a negative part. As most of the covariates we consider exhibit both
negative and positive values, such an approach would almost double the number of considered
covariates. Moreover, such a procedure could mask possible regimes driven by the covariates. An
alternative approach would be to examine a RS extension of the log-linear INGARCH model of
Fokianos and Tjøstheim (2011). However, the linear model has significant advantages in terms
of interpretation since it allows for an additive decomposition of the intensity into an overall
contagion and a macroeconomic risk component, as we will see below. Lastly, note that there is
no additive intercept in the linear model part scale. The reason for this is that we experienced
intrinsic aliasing for regimes with no or small covariate effects; multiple parameter sets of such
an intercept and the parameter 𝛼St implied models that are indistinguishable from each other.
Even when fitting a simple INGARCHX model with additional additive intercept, the correspond-
ing parameter estimate of such intercept equals practically zero. Moreover, we also attempted to
replace the parameter 𝛼St in the RS-INGARCHX model with an additive intercept in Equation (1).
This did not lead to satisfactory results either, because the additive intercepts still converged
towards zero, and the resulting models performed unsatisfactorily.

3.2 Contagion and macroeconomic risk components

The joint impact of all past defaults and covariates propagates to future values of 𝜆t due to the
feedback mechanism of the term aSt𝜆t−1 in Equation (1). To illustrate this, assume that Y0, X0, and
𝜆0 are known quantities for simplicity. Furthermore, to ease notation, let Y (t) and S(t) represent
the vector of observations (Y0, … ,Yt)′ and the vector of hidden regimes (S1, … , St)′, respec-
tively. Similarly, let X (t) denote the t + 1 times r matrix with row vectors X0, … ,Xt. By repeated
substitution of Equation (1) we can rewrite the intensity in the form

𝜆t = 𝜆0

t∏
k=1

aSk + C
(

Y (t−1), S(t)) + R
(

X (t−1), S(t)) , (3)

where the first term of Equation (3) will approach zero with increasing t (since 0 ≤ ak < 1,
k = 1, … , m). The second term of Equation (3) is given by

C
(

Y (t−1), S(t)) = t−1∑
i=0

bSt−i Yt−i−1

i−1∏
k=0

aSt−k , (4)
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and represents the influence of all past defaults Y0, … ,Yt−1 on the intensity at time t. Hence,
this term can be interpreted as the overall contribution of the contagion effect as is of the form
of a weighted sum

∑t−1
i=0wibSt−i Yt−i−1 with wi =

∏i−1
k=0aSt−k . The contribution of a past observation

Yt−i−1 to the intensity at time t is associated with an effect bSt−i that fades away with time (since
0 ≤ wt−1 ≤ wt−2 < · · · < w1 < w0 = 1). It is noteworthy that the rate at which this effect fades away
is determined by both the current and past values of aSt . The third term of Equation (3) is given by

R
(

X (t−1), S(t)) = t−1∑
i=0

exp
(
𝛼St−i + 𝛽 t

St−i
Xt−i−1

) i−1∏
k=0

aSt−k (5)

and models the impact of all past covariates X0, … ,Xt−1 on the intensity at time t. This term
represents the overall contribution of macroeconomic or financial risk and takes the form of a
weighted sum

∑t−1
i=0wi exp

(
𝛼St−i + Xt−i−1𝛽St−i

)
with the same weights introduced for the second

term. Similar to Yt−i−1, the contribution of Xt−i−1 (via the log-link function) fades away with time
at a rate determined by current and past values of aSt .

3.3 Implications of regime-switching

Contagion can broadly be defined as a situation in which past defaults affect current defaults in
some way, even when correcting for covariates. However, as pointed out by Agosto et al. (2016),
this definition is specific to each model. In our case, contagion is explicitly represented by the term
C(Y (t−1), S(t)), which is not only driven by past defaults but also by the underlying Markov chain
St. This implies that the effect of past defaults on the intensity at time t is time-varying. To illus-
trate this, consider as an example that bk = 0 and ak ≠ 0 for some k ∈ (1, … , m). Moreover, we
assume that St = k over some period t ∈ (ta, t]. Regime k then represents a situation without con-
tagion in the sense that defaults Yt occurring during this period are independent of past defaults
Yt−1,Yt−2, … ,Yta , conditional on the covariates Xt−1,Xt−2, … ,Xta and the intensity before enter-
ing the regime period 𝜆ta . For further illustration, suppose bk > bh in conjunction with ak ≥ ah
for some other regime h. The overall contribution of contagion in regime k is then stronger than
in regime h. Note that in the extreme case, that is when b1 = b2 = · · · = bm = 0, current and past
defaults are independent conditional on all past covariates.

The impact of past covariates on current defaults is addressed by the term R(X (t−1), S(t)), which
is also driven by the underlying Markov chain St. Thus, we may observe covariates that have a
larger impact on the intensity in one regime, while these effects remain small or negligible in
another regime. For example, assume that 𝛽k = 0 for some k ∈ {1, … , m}. If the process then
sojourns in regime k for a long duration, the contribution of the macroeconomic variables to
R(X (t−1), S(t)) becomes negligible. Consequently, the terms involving 𝛼k dominate R(X (t−1), S(t)),
picking up effects that are not captured by exogenous covariates. Nevertheless, those covariates
observed before switching to regime k still possess an impact on R(X (t−1), S(t)) at the beginning
of such a sojourn. Empirical evidence for time-varying covariate effects are observed in Agosto
et al. (2016), who reported rolling-window estimates. These effects changed substantially over the
20-year forecasting period, with no effects present at all during some interludes within this span.

In a case where the estimated parameters are different across regimes and a specific regime
is persistent during periods of default clustering, one may conclude that the corresponding
INGARCHX model under this regime provides a good description of the default clustering chan-
nels. Moreover, bias may be introduced from omitting relevant covariates (as pointed out in
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Section 2.2. of Agosto et al., 2016), or from averaging parameter estimates by fitting a model with
fewer states than would be appropriate. In a broader sense, regime-switching can also be inter-
preted as a mixed effect model, with time-varying random effects driven by the latent state process
(Bartolucci & Farcomeni, 2009). Hence, the RS-INGARCHX model can account for certain types
of unobserved heterogeneity. In our case, this concerns heterogeneity resulting from different
parameter configurations during varying observation periods, but to a limited extent also omitted
covariates through the time-varying term 𝛼St .

3.4 Estimation

Let 𝜃 denote the vector of parameters in the model given by

𝜃 =
(
{ak, bk, 𝛼k, 𝛽1,k, … , 𝛽r,k}m

k=1, {𝛾ij}m
i,j=1

)
,

where the terms {𝛾ij} represent the probability of moving from the ith regime at time t − 1 to
regime j at time t. We estimate 𝜃 by a quasi-maximum likelihood procedure. Appendix B contains
a detailed description, and we present the general concepts. As shown by Equation (3), 𝜆t depends
on the entire regime path of St. For a sample of size T, evaluation of the likelihood involves sum-
mation over all mT possible regime paths, which quickly becomes infeasible as the sample size
increases. To avoid this problem, we use an adaptation of the EHG algorithm described in Chen
and Tsay (2011), which has a computational cost similar to the recursive scheme proposed by
Hamilton (1989). The EHG algorithm is implemented using the free and open-source R (R Devel-
opment Core Team, 2020) package Template Model Builder (TMB, Kristensen et al., 2016), which
provides a high-speed evaluation of the resulting quasi log-likelihood along with its gradient and
Hessian matrix. In combination with TMB, the EHG algorithm renders feasible parameter estima-
tion even for models with many regimes. It also provides approximate standard deviations of the
parameters via the delta method. A simulation study suggests that the EHG algorithm generates
consistent and approximately normal estimates of the parameters (see Appendix C). Following
the approach of Kim (1994), we also provide a backward version of the EHG algorithm for com-
puting the posterior marginal distribution of St given a comprehensive information set in Section
3.5. These smoothing probabilities provide useful information about if and when regime switches
occur.

3.5 Inference about the states

Several quantities involved in the EHG algorithm base on the information set Ω𝜏 , 𝜏 = {1, … , T},
which is a reduced version of 𝜏 involving conditional expectations of 𝜆𝜏 and reduced state infor-
mation (see Equation (B.3) in Appendix B). Given this information set, inference about the state
(regime) St at any time t may be carried out via probabilities of the form P(St = j |Ω𝜏), j= 1, … , m.
Another core component of the EHG algorithm is the process S∗

t , which corresponds to a Markov
chain tracing the m2 possible two successive state visits of St (see Equation (B.2) in Appendix B).
Using analogous probabilities for state inference for the process S∗

t , the quantity P(St = j |Ω𝜏) can
be computed by

P(St = j |Ω𝜏) =
m2∑
i=1

P(St = j, S∗
t = i |Ω𝜏) =

m2∑
i=1

P(S∗
t = i |Ω𝜏)1

[
St(S∗

t = i) = j
]
, (6)
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where 1[⋅] corresponds to the indicator function, and St(S∗
t = i) equals the value of St given

that S∗
t is in regime i. Thus, the filter probabilities P(St = j |Ωt) and one-step-ahead probabilities

P(St+1 = j |Ωt), j = 1, … , m, can be computed directly by Equation (6) once the corresponding
probabilities for the process S∗

t have been obtained. This part is as well described in Appendix B,
see in particular Equation (B.8) and (B.9), respectively.

Furthermore, the smoothing probabilities P(St |ΩT), j = 1, … , m, can be derived. These
represent the inference about St given the information set ΩT , and are of particular interest
when analysing data in in-sample settings. Similar to the filter and one-step-ahead probabilities,
the smoothing probabilities can be computed by Equation (6), provided that the corresponding
smoothing probabilities for S∗

t are available. For this purpose, we follow the approach of Kim
(1994). First, the Markov property of S∗

t yields the identity

P(S∗
t = i |S∗

t+1 = j,ΩT) = P(S∗
t = i |S∗

t+1 = j,Ωt) =
𝛾∗ij P(S

∗
t = i |Ωt)

P(S∗
t+1 = j |Ωt)

,

where 𝛾∗ij corresponds to the transition probabilities of S∗
t analogously to 𝛾ij. Second, the smoothing

probabilities for S∗
t can be represented as

P(S∗
t = i |ΩT) =

m2∑
j=1

P(S∗
t+1 = j |ΩT)P(S∗

t = i |S∗
t+1 = j,ΩT)

= P(S∗
t = i |Ωt)

m2∑
j=1

𝛾∗ij P(S
∗
t+1 = j |ΩT)

P(S∗
t+1 = j |Ωt)

(7)

for i, j = 1, … m2. Third, using the already obtained filter and smoothing probabilities, we can
iterate backward through Equation (7). For this part, the filter (smoothing) probabilities P(S∗

T =
j |ΩT), j = 1, … ,m2 serve as initial values. Hence, this recursive procedure permits to calcu-
late the smoothing probabilities for St, t = T − 1, … , 1 via Equation (6). Estimates of the
filter, one-step-ahead, and smoothing probabilities result directly from replacing 𝜃 with the
quasi-maximum likelihood estimate (QMLE) �̂� in Ω𝜏 .

3.6 Prediction

The one-step-ahead prediction �̂�T+1 for YT+1 for the single-regime model follows directly from iter-
ating through Equation (1) given the parameter estimates obtained via ordinary QMLE (Agosto
et al., 2016). For the regime-switching models, a natural one-step-ahead prediction �̂�T+1 for YT+1
is given by the expectation of YT+1 conditional on the information set ΩT . Consistent with the
Poisson assumption follows

�̂�T+1 = E(yT+1 |ΩT) =
m2∑
i=1

E
(

yT+1 |S∗
T+1 = i,ΩT

)
P(S∗

T+1 = i |ΩT)

=
m2∑
i=1

�̂�T+1 | S∗
T+1=i,ΩT P(S∗

T+1 = i |ΩT), (8)
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where the quantities P(S∗
T+1 = i |ΩT) and �̂�T+1 | S∗

T+1=i,ΩT , i = 1, … ,m2, are available from the
Tth and T + 1th recursion of the EHG algorithm, respectively. Note that these quantities also
characterize the predictive distribution of YT+1 via Equation (B.7) in Appendix B:

P(YT+1 = y |ΩT) =
m2∑
i=1

(
�̂�T+1 | S∗

T+1=i,ΩT

)y exp
(
−�̂�T+1 | S∗

T+1=i,ΩT

)
y!

P(S∗
T+1 = i |ΩT). (9)

Provided that we possess (or predict) covariate information up to time T + k − 1, k-step-ahead pre-
dictions �̂�T+k for YT+k can also be obtained. For achieving this, the EHG algorithm needs to be exe-
cuted up to time T + k while iteratively replacing the unobserved observations YT+1, … ,YT+k−1
in ΩT+1, … ,ΩT+k−1 by their respective one-step-ahead predictions �̂�T+1, … , �̂�T+k−1. In practice,
𝜃 is replaced by the QMLE �̂� based on y1, … , yT in ΩT+1, … ,ΩT+k−1. Similarly, if covariates are
not observed beyond T, these also need to be replaced by predicted values.

In an in-sample situation where y1, … , yT have been observed, the in-sample predictions
of y1, … , yT provide valuable information about the model fit. Similar as in Equation (8), the
in-sample predicted values are given by

�̂�t =
m2∑
i=1

�̂�t | S∗
t =i,Ωt−1 P(S∗

t = i |ΩT), (10)

where �̂�t | S∗
t =i,Ωt−1 , i = 1, … ,m2 is available from the tth recursion of the EHG algorithm and

P(S∗
t = i |ΩT) corresponds to the smoothing probabilities given by Equation (7). Note that com-

pared to Equation (8) we are using the smoothing probabilities rather than the one-step-ahead
probabilities since these are directly available in a post-processing situation. Moreover, in analogy
to Equation (9), the in-sample predictive distribution relying on smoothing probabilities is given
by

P(Yt = y |ΩT) =
m2∑
i=1

(
�̂�t | S∗

t =i,Ωt−1

)y exp
(
−�̂�t | S∗

t =i,Ωt−1

)
y!

P(S∗
t = i |ΩT). (11)

3.7 Estimating the contribution of contagion and macroeconomic
risk

To investigate the contribution of contagion and macroeconomic risk, we decompose the fitted
values into quantities corresponding to the macroeconomic risk and contagion components in
Equation (3). For the single-regime model (i.e. m = 1), the fitted values can directly be computed
by Equation (3) for given parameter estimates. However, for m ≥ 2 the necessary computations
depend on the entire regime-path of St. The EHG algorithm is based on recursively deriving the
evolution of the conditional means (distributions), and there is no simple way for decomposing
the fitted values Equation (10). Following the idea of Gray (1996), we instead rely on iteratively
replacing the intensity with its (unconditional) expectation. For m = 2, this involves iterating the
following set of equations

𝜆t | 1 ∶= a1𝜆
∗
t−1 + b1Yt−1 + exp

(
𝛼1 + 𝛽 t

1Xt−1
)



12 BERENTSEN et al.

𝜆t | 2 ∶= a2𝜆
∗
t−1 + b2Yt−1 + exp

(
𝛼2 + 𝛽 t

2Xt−1
)

𝜆∗t = 𝜆t | 1P(St = 1) + 𝜆t | 2P(St = 2) (12)

Once parameter estimates (âi, b̂i, �̂�i, 𝛽 i) and the smoothing-probabilities P(St = i |ΩT) are
obtained from the EHG algorithm and Equation (7), respectively, the above forwarding scheme
provides the fitted values

�̂�
∗
t = a(t)�̂�∗t−1 + b(t)Yt−1 + g(t). (13)

Here, a(t), b(t), and g(t) are the estimated temporal trajectories of aSt , bSt , and the link function
component, respectively, given by

a(t) =
m∑

i=1
âiP(St = i |ΩT),

b(t) =
m∑

i=1
b̂iP(St = i |ΩT),

g(t) =
m∑

i=1
exp

(
�̂�i + 𝛽

t
iXt−1

)
P(St = i |ΩT).

Similar to the decomposition carried out for 𝜆t in Equation (3), we can rewrite �̂�
∗
t as

�̂�
∗
t = �̂�

∗
0

t∏
k=1

a(k) + Ĉ(t;Y (t−1)) + R̂(t;X (t−1)), (14)

by repeated substitution of Equation (13). Note that the estimators Ĉ(t;Y (t−1)) and R̂(t;X (t−1)) only
depend on the previous observations and covariates, respectively:

Ĉ
(

t;Y (t−1)) = t−1∑
i=0

b(t − i)Yt−i−1

i−1∏
k=0

a(t − k) (15)

R̂
(

t;X (t−1)) = t−1∑
i=0

g(t − i)
i−1∏
k=0

a(t − k) (16)

Our experience is that �̂�∗t is close but inferior to �̂�t given by Equation (10) in terms of prediction
performance measured by the MSE. However, it permits to assess the contribution of the con-
tagion component Ĉ(t;X (t−1)) and macroeconomic component R̂(t;X (t−1)), respectively, to each
prediction of 𝜆t.

4 ANALYSIS

4.1 Considered models

As basis for our empirical analysis and for forming a benchmark for the later comparison to mod-
els with several regimes, we start by considering the single-regime INGARCHX model having the
default intensity



BERENTSEN et al. 13

T A B L E 2 Estimation results of different single-regime models, estimated standard errors in parentheses.
Estimated parameters significantly different from zero, on the 95% level, are marked with an asterisk

Parameter INGARCH indpro ppifgsup ppieng unrate baa SP500ret GDP SP500vol

a 0.652* 0.751* 0.745* 0.750* 0.546* 0.778* 0.577* 0.641* 0.683*

(0.080) (0.045) (0.045) (0.041) (0.131) (0.037) (0.100) (0.087) (0.065)

b 0.284* 0.194* 0.208* 0.200* 0.330* 0.198* 0.298* 0.262* 0.244*

(0.059) (0.036) (0.037) (0.034) (0.076) (0.033) (0.061) (0.058) (0.048)

𝛼 −1.743* −1.944* −2.157* −2.374* −1.097* −3.007* −0.968* −0.927* −2.140*

(0.421) (0.326) (0.386) (0.379) (0.497) (0.985) (0.376) (0.346) (0.400)

𝛽 − −0.065* −0.096* −0.016* 0.263* 1.332* −0.056* −0.202* 0.494*

(0.008) (0.015) (0.002) (0.095) (0.584) (0.011) (0.036) (0.092)

log-likelihood −733.54 −725.24 −726.78 −724.96 −732.06 −729.88 −728.89 −726.69 −727.41

𝜆t = a𝜆t−1 + bYt−1 + exp
(
𝛼 + 𝛽′Xt−1

)
. (17)

This corresponds to the model specified by Equation (1) when m = 1, and is comparable to the
model introduced in Agosto et al. (2016), as described earlier. Table 2 reports the estimation results
for the model without covariates (denoted INGARCH) and all univariate INGARCHX model
specifications. The univariate model specification with SP500vol as covariate (rightmost column)
serves as a benchmark model for further comparisons due to various performance aspects, which
are illustrated later.

Extending the single-regime model to a two-regime INGARCHX model leads to the default
intensity given by

𝜆t =

{
a1𝜆t−1 + b1Yt−1 + exp

(
𝛼1 + 𝛽 t

1Xt−1
)

if St = 1
a2𝜆t−1 + b2Yt−1 + exp

(
𝛼2 + 𝛽 t

2Xt−1
)

if St = 2
. (18)

We report the estimation results for this model with no covariates (denoted RS-INGARCH), and
for all univariate RS-INGARCHX specifications in Table 3. The best performing model (right-
most column) in terms of various aspects that will be presented in the following sections contains
SP500vol as the single covariate.

The selection of the correct number of regimes (m) is in general a challenging task.
Several formal tests for different model specifications have already been introduced over
the past decades, see e.g. Hansen (1992), Bartolucci (2006) and Holzmann and Schwaiger
(2016) On the other hand, Zucchini et al. (2016) suggest relying on the Akaike informa-
tion criteria (AIC) and Bayesian information criteria (BIC) as a feasible approach, see also
Bacci et al. (2014). We follow an approach similar to the approach of Pohle et al. (2017).
That is, we do not only rely on AIC and BIC but also consider other practical aspects of
the model such as mean square error, forecasting performance and interpretability. As we
will see in the following, a model with two regimes brings along various advantages over
a one-regime model and that a further extension to a three-regime model is difficult to
justify.



14 BERENTSEN et al.

T A B L E 3 Estimation results of different two-regime models. Estimated parameters significantly different
from zero, on the 95% level, are marked with an asterisk. Note that we also report the stationary distribution of
St, 𝛿1 and 𝛿2 (see Appendix B.2 for computational details). The significance of the stationary distribution and
transition probabilities are relative to 0.5

Parameter RS-INGARCH indpro ppifgsup ppieng unrate baa SP500ret GDP SP500vol

a1 0.958* 0.913* 0.903* 0.894* 0.909* 0.919* 0.898* 0.883* 0.907*

(0.008) (0.025) (0.039) (0.027) (0.030) (0.020) (0.029) (0.034) (0.027)

a2 0.411* 0.955* 0.946* 0.902* 0.907* 0.982* 0.812* 0.923* 0.941*

(0.154) (0.087) (0.117) (0.117) (0.098) (0.064) (0.164) (0.099) (0.102)

b1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

b2 0.461* 0.076 0.083 0.112 0.110 0.035 0.175 0.102 0.073

(0.103) (0.072) (0.102) (0.091) (0.084) (0.055) (0.115) (0.084) (0.083)

𝛼1 −2.992* −2.538* −2.823* −2.913* −2.563* −2.571* −2.698* −1.466* −2.878*

(0.283) (0.387) (0.453) (0.592) (0.636) (0.316) (0.608) (0.319) (0.548)

𝛼2 −0.371 −2.546* −2.235* −1.730* −1.861* −2.878* −1.042 −1.312* −2.920*

(0.568) (1.195) (1.073) (0.614) (0.912) (0.763) (0.758) (0.656) (0.941)

𝛾11 0.978* 0.894* 0.891* 0.861* 0.900* 0.918* 0.865* 0.889* 0.879*

(0.007) (0.052) (0.061) (0.047) (0.037) (0.027) (0.057) (0.059) (0.055)

𝛾21 0.044* 0.169* 0.186* 0.239* 0.164* 0.139* 0.196* 0.196* 0.173*

(0.023) (0.068) (0.064) (0.071) (0.061) (0.045) (0.073) (0.067) (0.064)

𝛾12 0.022* 0.106* 0.109* 0.139* 0.100* 0.082* 0.135* 0.111 ∗ 0.121 ∗

(0.007) (0.052) (0.061) (0.047) (0.037) (0.027) (0.057) (0.059) (0.055)

𝛾22 0.956* 0.831 ∗ 0.814 ∗ 0.761 ∗ 0.836 ∗ 0.861 ∗ 0.804 ∗ 0.804 ∗ 0.827 ∗

(0.023) (0.068) (0.064) (0.071) (0.061) (0.045) (0.073) (0.067) (0.064)

𝛿1 0.666 0.614 0.630 0.633 0.620 0.628 0.593 0.639 0.589

(0.126) (0.078) (0.092) (0.073) (0.077) (0.076) (0.083) (0.091) (0.087)

𝛿2 0.334 0.386 0.370 0.367 0.380 0.372 0.407 0.361 0.411

(0.126) (0.078) (0.092) (0.073) (0.077) (0.076) (0.083) (0.091) (0.087)

𝛽1 − −0.037 0.091 0.023 ∗ −0.130 0.009 0.033 −0.246 ∗ 0.265

(0.040) (0.072) (0.006) (0.648) (0.189) (0.057) (0.041) (0.261)

𝛽2 − −0.071 ∗ −0.095 ∗ −0.013 ∗ 0.690 ∗ 1.437 ∗−0.065 ∗ −0.235 ∗ 0.809 ∗

(0.026) (0.033) (0.003) (0.347) (0.335) (0.027) (0.088) (0.204)

log-likelihood −719.78 −713.66 −712.58 −708.55 −716.61 −711.35−715.11 −713.55−711.60
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F I G U R E 4 One-step-ahead and smoothing probabilities
Notes: The two panels show one-step-ahead and smoothing probabilities for the RS-INGARCH and
RS-INGARCHX (SP500vol) model on the top and bottom, respectively. Recall that the one-step-ahead
probabilities are based on the information available at time t − 1 while the smoothing probabilities are based on
the entire sample.

4.2 Regimes and default clustering

As a first step for illustrating the implications of our model, we examine the occurrences of
regime-switching. Figure 4 shows the probabilities of being in a regime using one-step-ahead and
smoothing probabilities. The top panel is dedicated to the RS-INGARCH model, which exhibits
highly persistent regimes. For this model, the second regime mainly corresponds to the recession
periods, cfr. Figure 1, during which the clustering of defaults is most pronounced. Parts of 2016
also fall in the second regime, where a prominent peak of defaults is observed. This, however, is
not the case for the period of the sovereign debt crisis of 2011, albeit the smoothing probabilities
are estimated somewhat higher during this period compared to the, for example calm periods of
1993–1999 and 2004–2006. Analogously, the lower panel shows the corresponding probabilities
for the RS-INGARCHX model with SP500vol as the covariate. This covariate inclusion results in a
model with different dynamics inherent to the regimes. Most importantly, we infer a higher num-
ber of switches between the two regimes overall. More precisely, we observe occasional switches to
the first regime during recession periods, although the second regime still mainly corresponds to
these periods. Furthermore, some visits of the second regime also lie outside of periods of default
clustering. This aspect needs to be kept in mind when discussing regimes across different models.

Summarizing, Figure 4 suggests that the parameters estimated for the second regime for both
the RS-INGARCH and the RS-INGARCHX model in principle represent the dynamics during
periods of default clustering. In contrast, the first regime of these models represents the dynamics
in the periods without (notably) default clustering. Consequently, models ignoring the presence
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F I G U R E 5 Comparison of sources of default clustering
Notes: The upper panel displays the estimated decomposition of predicted defaults into the contagion source and
the macroeconomic source for the INGARCHX and RS-INGARCHX models with SP500vol as covariate. The
lower panel shows a normalized decomposition. For the INGARCHX model, the estimates are plug-in estimators
of Equations (4) and (5), while Equations (15) and (16) are used for estimating the RS-INGARCHX decomposition.

of any regime-switching may not be able to capture essential data features on various levels. More-
over, it should be kept in mind that the inclusion of covariates may affect regime dynamics. The
subsequent sections illustrate these aspects in further detail. Last, it is noteworthy that the more
dynamic regime-switching and correspondence of one regime to default clustering are present
for most alternative RS-INGARCHX models with different covariates as well.

4.3 Sources of clustering under regime-switching

The consideration of regime-switching provides a new view on the contribution of conta-
gion and macroeconomic sources to default clustering. Figure 5 illustrates the impact of
regime-switching on the contribution of these two sources. For the preferred INGARCHX model
(left plots), the contagion component is the main driver, accounting for 75–85% of the intensity
in the periods of default clustering. This is in line with the findings of Azizpour et al. (2018)
(cfr. their Figure 9).

On the other hand, the decomposition of the two sources for the preferred RS-INGARCHX
model paints a rather different picture. The impact of the same covariate is first higher, and sec-
ond, more dynamic over the entire observation period. Furthermore, in the calm periods with few
defaults (corresponding to regime one), the contagion source is small, and the default intensity is
mainly driven by the macroeconomic source. In periods of default clustering (corresponding to
the second regime), a further distinction is necessary. The contagion source dominated during the
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savings-and-loan crisis and the burst of the dot-com bubble. In contrast, the impact of the macroe-
conomic source remains on par with calm periods during the global financial crisis. During this
latter period, the macroeconomic source accounts for 70%–75% compared to only 25%–40% in the
course of the former two crises. The particular behaviour during the global financial crisis sup-
ports the presence of structural instabilities in the single-regime model. This has been commented
by Agosto et al. (2016), who finds that macroeconomic and financial fundamentals mostly drove
the financial crisis.

4.4 Regime-specific dynamics

The findings presented in the previous two sections naturally lead to the question to which
extent the two regimes—or more specifically, their dynamics—differ from each other and the
one-regime model.

Investigation of the parameter estimates for the one-regime models reported in Table 2 shows
that the effect of the covariates are in line with the results of previous studies, and all of them are
significant in all univariate model specifications. In particular, the one-regime model confirms
that the default intensity increases when the industrial production growth rate (indpro) falls,
as shown, for example in Lando and Nielsen (2010). Furthermore, the default intensity rises in
periods of GDP contraction, as described by Giesecke et al. (2011) and Azizpour et al. (2018). For
the preferred single-regime model, the default intensity also increases with increasing realized
volatility, a finding also reported by Agosto et al. (2016). Furthermore, compared to the INGARCH
model, the b parameter decreases for all specifications where covariates are included (except for
SP500ret). However, this parameter remains significantly positive, implying that contagion is still
present (cfr. Section 3.3).

Several aspects of the estimated parameters of the regime-switching models (see Table 3) are
interesting. First, we address regime one. Here, the estimated b1 parameter lies on the zero bound-
ary for all models, suggesting that this regime represents periods without contagion in the sense
described in Section 3.3. The estimated covariate effect 𝛽1 is not significant for the majority of
models; GDP and pping are exceptions. Similarly, the feedback parameters a1 and the scaling
parameters 𝛼1 are all significant. This causes the process to exhibit high dependence on past inten-
sities, and observed contagion effects in this regime originate from previous visits of the second
regime. Consequently, the macroeconomic sources drive default dynamics in this regime, despite
their mostly non-significant coefficients.

Second, in regime two, the overall effect of both covariates and past defaults increases com-
pared to regime one. More specifically, we observe non-zero estimates of the b2 parameter in all
cases, although the significance of the parameter is only evident for the RS-INGARCH model.
Moreover, the covariate effects 𝛽2 are significant in all model specifications. Both aspects result
in a regime that is more dynamic compared to the first regime. The scaling parameter 𝛼2, as well
as the feedback parameter a2, take values close to those in the first regime.

Note that the estimates of b2 may seem slightly surprising at first, as they indicate little con-
tagion effects for the second regime. From a statistical perspective, one could even argue that no
significant contagion effects are present at all. However, one has to keep in mind that large val-
ues of a2 in conjunction with non-zero values of b2 lead to a considerable overall effect of past
defaults. This explains the magnitude of contagion effects illustrated in the previous section.

Third, the sign and size of the covariate effects in regime two are mostly comparable to the
single-regime models. However, in some cases, there are crucial differences. For instance, the
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estimated coefficient for the industrial production growth rate (indpro) in regime two is −0.071
and significantly different from zero. This corresponds to the single-regime estimate in Table 2,
which equals −0.065, while the estimated coefficient in regime one is equal to −0.037 and not
significantly different from zero. This observation also holds for the covariate SP500vol. Here we
see a substantial increase of the estimated coefficient from 0.494 in the single-regime model to
0.809 in the second regime for the two-regime model. Notable exceptions exist, such as the models
including ppieng and GDP.

Last, the diagonal elements of the transition probability matrix (𝛾11 and 𝛾22) are closest to
one for the RS-INGARCH model. Although slightly lower, the corresponding probabilities for
the RS-INGARCHX models indicate that all regimes are persistent. This is in line with the more
dynamic regime-switching observed for the RS-INGARCHX model in Figure 4.

4.5 In-sample performance

In the following, we report the in-sample performance for the different models fitted in
Section 4.1. Table 4 shows the mean squared error of the Pearsons residuals et = (yt − �̂�t)2∕�̂�t given
by MSE =

∑T
t=1e2

t ∕(T − p). Here p corresponds to the number of model parameters (see Kedem &
Fokianos, 2005, Section 1.7). Moreover, we present the AIC and BIC.

Focusing on the MSE, the table clearly shows that all two-regime models possess a much lower
MSE than the single-regime models. Furthermore, the MSE decreases from the models without
covariates to the models with covariates. Note also that the two-regime model without covari-
ates actually provides a better in-sample performance than the best single-regime model with
covariates in terms of MSE. The overall best results are achieved by the three RS-INGARCHX
models with ppifgsup, ppieng and SP500vol, respectively, as covariate. Looking at the AIC,
the regime-switching models are all uniformly better than their corresponding single-regime
counterparts. This finding inverses in almost all cases when considering BIC instead of AIC.

Summarizing, the three criteria MSE, AIC and BIC lead to varying conclusions, how-
ever, mostly supporting the two-regime models. One should keep in mind that the model

T A B L E 4 In-sample performance, in terms of a standardized mean squared error (MSE) and the Akaike
and Bayesian information criterion (AIC and BIC), of the different models

MSE AIC BIC
Covariate
(s) INGARCHX

RS-
INGARCHX INGARCHX

RS-
INGARCHX INGARCHX

RS-
INGARCHX

– 1.2487 1.0465 1473.07 1455.56 1484.99 1487.35

indpro 1.2189 0.7789 1458.48 1447.33 1474.37 1487.07

ppifgsup 1.2239 0.7612 1461.55 1445.16 1477.45 1484.90

ppieng 1.2106 0.7648 1457.93 1437.10 1473.82 1476.84

unrate 1.2431 0.8052 1472.13 1453.22 1488.02 1492.96

baa 1.2516 0.7670 1467.76 1442.70 1483.66 1482.44

SP500ret 1.2160 0.8088 1465.78 1450.23 1481.68 1489.97

GDP 1.2299 0.7729 1461.38 1447.11 1477.28 1486.85

SP500vol 1.2045 0.7646 1462.82 1443.21 1478.72 1482.95
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F I G U R E 6 In-sample predictions
Notes: Observed number of defaults (grey line) plotted together with in-sample predictions (solid red line) and
corresponding 95% prediction intervals (dotted red line). The figure displays models with no covariates (upper
panel) and best models with covariates (lower panel) for the single-regime models (left side) and two-regime
models (right side). Section 3.6 outlines details on the predicted values (�̂�t) as well as the in-sample prediction
distribution which serves for constructing prediction intervals.

estimation was carried out via QMLE, which reduces the reliability of both AIC and BIC. Hence,
we prefer to rely on the MSE as the main criterion. Taking into account the out-of-sample
performance investigated in the following section as well, we prefer the two-regime model
with SP500vol as covariate. The univariate counterpart is preferred among the single-regime
models.

We visualize the in-sample fit for single- and two-regime models with and without the
SP500vol covariate in Figure 6. All models capture the dynamics in the process reasonably well,
but the regime-switching models (right panels) reproduce the variations in the process best. This
becomes evident in particular during periods of economic crisis.

Last, the defaults contain 63 (16.0%) zero counts. In comparison, the expected num-
ber of zero counts predicted by the preferred INGARCHX and RS-INGARCHX model dur-
ing the sample period is 54.26 (13.8%) and 67.39 (17.1%), respectively. For more details, see
Appendix E.

4.6 Out-of-sample performance and robustness

To assess the out-of-sample forecast accuracy of the different models, we start by estimating
initial models with the data ranging up to T0 = January 1, 1995, that is (Yt,Xt), t = 1, … ,T0. Sub-
sequently, these models forecast YT0+1 using the one-step-ahead prediction �̂�T0+1 described in
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Section 3.6. This procedure is then repeated for t = T0 + 1, … ,T − 1 to obtain the predictions
�̂�t+1. These predictions result from models fitted to updated data that are augmented successively
by (Yt,Xt). This imitates the situation of a forecaster that starts the predictions at time T0 and
updates the model and forecasts as more observations become available (Agosto et al., 2016; Stock
& Watson, 1996).

Given these forecast paths for the different models, we evaluate the performance by means
of two common forecasting measures. The first one is a standardized average mean squared
forecasting error given by

MSFEt =
1

t − T0

t−1∑
s=T0

(
ys+1 − �̂�s+1

�̂�s+1

)2

, t = T0 + 1, … ,T. (19)

As the second measure serves the average logarithmic forecasting score (Amisano & Giacomini,
2007), defined by

FSt =
1

t − T0

t−1∑
s=T0

log P̂(Ys+1 = ys+1), t = T0 + 1, … ,T. (20)

For the regime-switching models, P̂(Ys+1 = ys+1) corresponds to the one-step-ahead predictive
probabilities (see Equation 9). For single-regime models, similar probabilities are obtained by
evaluation of the Poisson density at ys+1 given �̂�s+1. Figure 7 display both these quantities, where
the left part compares all single-regime models and their regime-switching counterparts. It is
evident that regime-switching leads to a clear improvement in terms of both measures. The
right panels focus on four selected models, including the RS-INGARCHX with SP500vol as the
covariate. Again, regime-switching leads to an overall improvement, and our preferred model
exhibits the best predictive performance. In particular, it shows a substantially better performance
than the three other models during the two last periods of default clustering. For completeness,
Table 5 displays MSFET and FST for all models considered. Again, the RS-INGARCHX model
with SP500vol as covariate stands out as the preferred model.

In addition to the evaluation of forecast performance, we considered a series of alternative
model specifications as supplementary robustness checks. First, we fitted models with three
regimes with and without covariates. These models suggest the presence of a ‘middle’ regime,
which can be interpreted as an intermediate step between a calm first regime and a dynamic sec-
ond regime. While a transition to the additional regime may potentially serve as a warning before
a crisis could occur, the main conclusions do not change. Moreover, the three-regime model was
outperformed by the two-regime model in terms of AIC, BIC and forecasting, while only slightly
improving the MSE. Another alternative model we fitted is motivated by the estimate of 𝛽1 not
being significantly different from zero (see Table 3). Hence it seemed natural to consider a model
where 𝛽1 is fixed to zero. Such a model is supported by AIC/BIC, and is slightly inferior to our pre-
ferred RS-INGARCHX model in terms of MSE. In short, interpretations from the reduced model
are similar to those of the unrestricted alternative. Appendix F contains a detailed presentation of
our findings. Second, we have evaluated models with combinations of several covariates. For these
models, the main conclusions hold again, and we mostly identify two regimes with comparably
similar economic interpretations. Nevertheless, multiple correlations between several covariates
(see Figure 2) cause unreliable estimation results for several variable combinations, particularly
when including more than three variables. This problem was addressed by first carrying out a
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F I G U R E 7 Out-of-sample forecast accuracy
Notes: The forecasting error and the forecasting score as a function of time is displayed in the top and bottom
panels, respectively. The boxplots in the left panels depict these quantities in groups of single- and two-regime
models over three-year windows. The right panels show the monthly values of the quantities for the one- and
two-regime benchmark and the INGARCH and RS-INGARCH models.

T A B L E 5 Out-of-sample performance, in terms of mean squared forecasting error and logarithmic score for
monthly predictions for the complete forecasting period (1 January 1995 to 1 September 2017) for the fitted models

MSFE Log-score

Covariate INGARCHX RS-INGARCHX INGARCHX RS-INGARCHX

- 1.235 1.151 −1.966 −1.917

indpro 1.287 1.178 −1.960 −1.911

ppifgsup 1.210 1.194 −1.952 −1.916

ppieng 1.342 1.194 −1.993 −1.921

unrate 1.286 1.155 −1.969 −1.897

baa 1.211 1.103 −1.955 −1.897

SP500ret 1.183 1.091 −1.948 −1.893

GDP 1.216 1.110 −1.952 −1.892

SP500vol 1.118 1.087 −1.914 −1.883

principal component analysis (PCA) on the covariates and subsequently using the two leading
components as covariates in the model. In terms of model performance, the resulting model is
slightly worse than our favoured model and with the same overall conclusions. A description is
given in Appendix D. Third, we investigated the inclusion of higher lags of covariates in the autore-
gressive part. While on par with our preferred models in terms of MSE, the resulting alternative
models were inferior in terms of AIC and BIC. Moreover, simultaneous inclusion of covariates of
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lag one and higher lags generally led to unstable estimation results. The outcomes from analogous
extensions in the autoregressive part were similar. Last, we investigated the negative binomial
distribution as an alternative for the conditional densities. The resulting models were, however,
converging towards the limiting Poisson distribution in almost all cases.

5 DISCUSSION

In this paper, we introduce a new class of regime-switching models for count time series, present
a suitable estimation algorithm, and apply the model to default data from the United States. The
fitted model suggests the presence of (at least) two regimes, corresponding to calm periods as well
as periods of default clustering, respectively. Notably, all major financial crises belong to periods
with defaults driven by the second regime.

More importantly, the regimes exhibit different dynamics. This sheds light on the role of
contagion and macroeconomic variables and leads to an overall more dynamic description of
the sources of default clustering. Compared to models without regime-switching, our approach
indicates a reduced impact of contagion on default clustering and strengthens the impact of
macroeconomic variables. In particular, our preferred model shows a dominant impact of the
SP500vol covariate on default clustering during the financial crisis of 2007–08, which is not
the case during previous crisis periods. Analogously to Sant’Anna (2017), knowledge about
time-varying contagion and macroeconomic effects may also be beneficial for the correct spec-
ification of credit risk models, for example when managing portfolio credit risk at financial
institutions.

The results of Azizpour et al. (2018) exhibit an interesting overlap with the results of this
paper. Their data set extended to before 1985, which permitted an additional frailty component
in their model. This component roughly corresponds to a regime-switching additive intercept in
our model. In their analysis, the frailty component was estimated to be close to zero after around
1985 (less than 1 % contribution to the intensity), which could very well be why we were unable
to include an additional additive intercept in our setup.

Several exciting aspects fall outside the scope of this paper. First, the data set we analyse only
includes large firms (with more than 100 million USD in assets). We expect large companies to be
interconnected with other firms and thus strongly affected by contagion risk. On the other hand,
small, specialised firms may depend heavily on a few firms that they supply their products to and
consequently be more exposed to contagion risk compared to larger firms with more customers.
Likewise, macroeconomic conditions are possible of less relevance as long as the products of the
small company are still in demand by other firms in its industry, or if some industries or geo-
graphic areas are less affected by economic and financial turmoil. However, we note that such
effects could be captured using proper industry/firm-specific covariates. The findings of Azizpour
et al. (2018), Hertzel et al. (2008), and Jorion and Zhang (2009) indicate that contagion can occur
across industries, but a similar study taking into account the time dependence of the contagion
and macroeconomic component does, to our knowledge, not exist in the literature.

Second, there might be an interaction between macroeconomic conditions and the risk of
contagion. For example, there could be a feedback effect of past defaults into one or several of
the covariates. This would require a more structural approach to capture, for instance, specifying
a separate model for the covariates that allows dependence on past defaults. In a related direc-
tion, models where (combinations of) different covariates affect the conditional mean in different
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regimes may allow to capture more complex covariate effects. This would, however, require a
significantly higher number of observations.

Third, recent results of Aknouche and Francq (2021) in a related setting without covariates
suggest that the conditions formulated in Equation (2) may be relaxed. A detailed investigation
of stationarity conditions for our model constitutes a possibility for future research.

Finally, we have assumed that the Markov chain is independent of past counts and past covari-
ates. In theory, both past counts and covariates could be included additionally as covariates in the
transition probability matrix Γ, see for example Banachewicz et al. (2008). This, however, would
alter the interpretation of the model, see Bartolucci et al. (2012, p. 117).
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